
Accelerating Thermal Simulations of 3D ICs
with Liquid Cooling using Neural Networks

Alessandro Vincenzi, Arvind Sridhar, Martino Ruggiero, David Atienza

Embedded Systems Laboratory (ESL)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{alessandro.vincenzi, arvind.sridhar, martino.ruggiero, david.atienza} @ epfl.ch

ABSTRACT
Vertical integration is a promising solution to further in-
crease the performance of future ICs, but such 3D ICs present
complex thermal issues that cannot be solved by conven-
tional cooling techniques. Interlayer liquid cooling has been
proposed to extract the heat accumulated within the chip.
However, the development of liquid-cooled 3D ICs strongly
relies on the availability of accurate and fast thermal models.

In this work, we present a novel thermal model for 3D
ICs with interlayer liquid cooling that exploits the neural
network theory. Neural Networks can be trained to mimic
with high accuracy the thermal behavior of 3D ICs and their
implementation can efficiently exploit the massive computa-
tional power of modern parallel architectures such as graphic
processing units. We have designed an ad-hoc Neural Net-
work model based on pertinent physical considerations of
how heat propagates in 3D IC architectures, as well as ex-
ploring the most optimal configuration of the model to im-
prove the simulation speed without undermining accuracy.
We have assessed the accuracy and run-time speed-ups of the
proposed model against a 3D IC simulator based on com-
pact model. We show that the proposed thermal simulator
achieves speed-ups up to 106x for 3D ICs with liquid cooling
while preserving the maximum absolute error lower than 1.0
◦C.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Simulation

Keywords
Thermal Modeling, Thermal Simulation, 3D ICs, Liquid
Cooling, Neural Networks

1. INTRODUCTION
With conventional scaling of CMOS devices fast running

into theoretical walls, vertical integration of IC dies seems to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

be the most viable solution to meet the ever rising demands
for more compact and faster electronic products in the short-
and medium-term [1]. However, 3D integration brings with
it aggravated thermal issues due to compounded heat fluxes
and larger thermal resistances. In this context, interlayer
microchannel-based liquid cooling of 3D ICs has come to be
accepted as the most promising solution enabling vertical
integration of ICs [2].

Nevertheless, interlayer liquid cooling still remains a niche
technology and has not yet been deployed for large-scale pro-
duction by the electronics industry. One of the main reasons
which limits interlayer liquid cooling technology is the lack of
Electronic Design Automation (EDA) tools that can provide
IC designers with efficient simulation of thermal behavior of
ICs cooled using microchannel heat sinks. In particular, this
situation becomes a major bottleneck for the development
of thermal-aware design and run-time approaches for liquid
cooled 3D ICs.

In the last few years, several authors have attempted to
address this issue by using various modeling methodolo-
gies [3, 4, 5]. Unfortunately, most of these modeling and
simulation solutions are based on either fine-grained finite-
element/finite-difference methods [3] or compact modeling
techniques [4, 5]. Both methods have a superlinear com-
putational complexity with respect to size of the problem.
As more and more number of IC-dies are stacked with in-
terlayer microchannel cooling, the computational times of
these solutions would become too long to be practical for ef-
fective design-space explorations. In this paper, we address
the problem of computational complexity of existing thermal
simulation methodologies by proposing two key innovations.

The first contribution is the use of modern Graphic Pro-
cessor Units (GPUs). GPUs have become in the recent times
a computing mainstay in many different applications other
than graphics processing. Their massively parallel archi-
tecture makes them a much faster and cheaper alternative
compared to CPUs. This has resulted in the recent years
in their exploitation for a myriad of EDA tools requiring
high-performance computing [6, 7]. However, it is difficult
to structure algorithms in order to fully exploit the GPU
architecture and any new GPU-based EDA tool must be
designed keeping in mind the aspects of GPU-based pro-
gramming [8].

The second contribution of this work is the exploitation of
Neural Networks (NNs) to provide a well-parallelizable ther-
mal modeling approach. Neural Network theory provides a
structurally straightforward programming tool that can be
trained to mimic any mathematical function. In this work,

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147980847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we create and train a NN using 3D-ICE [4, 5], a conventional
compact model-based thermal simulator for liquid-cooled 3D
ICs. Once trained, the properties of large-scale parallel op-
erations and low data transfer overhead of this NN-based
simulator make it an appropriate candidate for implemen-
tation on GPUs. Recently, a NN-based simulator for 3D
ICs has been presented by the authors of [9]. However, they
tackle only the thermal modeling issue of conventional air-
cooled ICs, without considering liquid cooling. In this paper,
we create a NN-based thermal simulator for liquid-cooled 3D
ICs that efficiently runs on GPUs. In a nutshell, the main
contributions of this paper are the following:

1. We present a new transient thermal simulation frame-
work for liquid-cooled 3D ICs based on neural networks
and GPUs.

2. We exploit the physical insights inspired by how heat
flows propagate in microchannels heat sinks to reduce
the complexity of our NN-based simulator, by intro-
ducing an innovative proximity-based reduction. Thus,
the temperature calculation speed is significantly im-
proved while the thermal estimation accuracy is pre-
served.

3. We further improve the reduction techniques to find
the optimal configuration of the NN-based simulator
to maximize the speed-ups. A detailed analysis on
the search for the NN-model configuration is also pre-
sented.

4. The NN-model, once trained, can be reused with dif-
ferent floorplan configurations of the 3D ICs. This
feature is crucial for the acceleration of design-space
exploration of liquid-cooled 3D ICs, where a very large
number of different floorplans must be comparatively
evaluated for thermal and electrical characterization.

The rest of the paper is organized as follows. Section 2
briefly describes the compact modeling tool that is used to
train the NN-based simulator while Section 3 reviews the ba-
sics about the thermal model of conventional air-cooled ICs
based on neural networks. The description of proposed NN-
based thermal simulator is introduced in Section 4 and its
structure and implementation details are discussed in vari-
ous subsections. Experimental results are presented in Sec-
tion 5. Finally, Section 6 summarizes the work with the
conclusions.

2. THERMAL MODELING
FOR LIQUID-COOLED 3D ICS

Interlayer liquid cooling of 3D ICs is accomplished us-
ing microchannels that are etched behind each die that is
stacked in the IC. The cross-section of a typical interlayer
liquid-cooled 3D IC is shown in Figure 1. Cold fluid is in-
jected via a reservoir from one end (the inlet) and warm fluid
exits into another reservoir at the other end (the outlet).

For such a structure, a compact and transient thermal
simulation methodology of liquid-cooled 3D ICs typically
involves the analogy between heat transfer in materials and
electric current. The equivalent RC circuit that models the
liquid-cooled 3D IC is represented by the following ordinary
differential equations:

GX(t) + CẊ(t) = U(t), (1)

Figure 1: Cross-sectional view of a liquid-cooled 3D
IC (taken from [4]).

where G and C are, respectively, the conductance and ca-
pacitance matrices. X(t) is the vector of temperature re-
sponses in the 3D IC, and U(t) is the vector of power traces.
Once the system has been formulated in this manner, it
is solved via numerical integration using backward Euler
method. The solution at the (n+ 1)th time point is written
as follows:

X(tn+1) = PX(tn) + QU(tn+1), (2)

where,

P =
(
G + C

h

)−1 · C
h
, and Q =

(
G + C

h

)−1
.

Here, h is the step size using to discretize time. In order
to reduce the problem size, a modified version of the above
thermal model based on porous mediums [5] was used in this
work. As in [5], Eq. (2) encloses the boundary conditions
of the modeled ICs with microchannels. In our work, we
consider Eq. (2) as the basis for the development of the
proposed NN-based thermal simulator further described in
Section 4.

3. REVIEW OF NN-BASED SIMULATOR
FOR CONVENTIONAL ICS

The NN-based thermal simulator proposed in this paper is
based on the ability of neural networks to learn the thermal
behavior of a liquid-cooled 3D IC and then, based on this
training, to act as a stand-alone thermal simulator. A NN-
based thermal simulator for conventional air-cooled 2D/3D
ICs was proposed in [9]. The authors proposed to train a
neural network to reproduce the dependence in Eq. (2): each
neuron in the model represents the thermal state of a given
point (node or thermal cell) in the volume of the IC. In
particular, it is sufficient to define a neuron for each node in
the layers of the IC where the heat dissipation occurs (active
layers). Therefore, the resulting NN will have a single layer
of neurons sharing the same inputs.

Each neuron in the NN expresses the output as a weighted
sum of the inputs:

yi =
∑
j

wijxj (3)

where wis are coefficients, called weights, that represent the
contribution of the input to the output. To replicate the
thermal evolution in Eq. (2), a neural network performing
the following operation is constructed:

Xi(tn+1) =
∑
j

wijXj(tn) +
∑
k

wikUk(tn+1) (4)

The weights in the above equation are trained to repre-
sent the coefficients of the corresponding matrices P and
Q in Eq. (2). For this training, the neural network must
be given training samples that describe, for each neuron,
the dependencies between the inputs and the corresponding

16

Figure 2: Heat flow and neuron connections for con-
ventional 2D/3D ICs

output. Since the output of each neuron represents a con-
tinuous range of temperatures, all the neurons have a linear
activation function. Once the neural network is trained to
replicate correctly all the training samples, it can be used
as stand alone thermal simulator. The accuracy of the NN-
based simulator depends upon the training algorithm, the
quality of inputs, the approximations involved in the con-
struction of the NN and the error tolerance imposed on the
training process.

Furthermore, the NN-based simulator proposed in [9] ex-
ploits the predominantly vertical heat flow that character-
izes a conventional air-cooled IC as shown in Figure 2. This
implies that there is little lateral spreading of heat, mean-
ing temperatures of nodes in a given layer of IC that are
far apart do not affect each other significantly. This model
then introduces a parameter, called proximity that can be
used to reduce the number of inputs for each neuron and
hence the overall complexity of its implementation. The key
idea in this process is to remove from Eq. (4) all the terms
in both the summations on the RHS that do not contribute
significantly to the output.

Another innovation in this simulator was that instead of
using a training set made with samples representing a real
scenario where a floorplan is used, power traces with random
values between zero and the maximum power density of the
design is fed to the neural network during training. These
samples represent the worst-case scenario, and each neuron
is trained for all possible heat flux distributions and heat
flux levels. Hence, the run-time error of a neural network
so trained will be independent of the configuration of the
floorplan. This enables the NN-based simulator to be used
for design space exploration (floorplanning).

4. PROPOSED NN-BASED SIMULATOR
FOR LIQUID-COOLED 3D ICS

The NN-based simulator for liquid-cooled 3D ICs pro-
posed in this work is trained in a similar manner to the model
described in the preceding section. Thus, neurons represent
the temperatures of nodes in the active layers. The neural
network is constructed as mentioned before and trained to
mimic the behavior of Eq. (2). However, the nature of heat
flow in liquid-cooled 3D ICs is fundamentally different from
conventional ICs and the model must be adapted to capture
these different heat dissipation paths. The aspects of the
proposed NN-based simulator are discussed in the ensuing
subsections.

4.1 Training methodology
There are several algorithms available in the literature

for training neural networks. Since the objective here is to
train the NN weights in Eq. (4) to mimic the behavior of the
deterministic system in Eq. (2) based on a set of inputs and
outputs, a batch training algorithm like RPROP, that was

used in [9], must be used. Also, given that there are as many
unknown weights to be computed per neuron as there are
inputs for it, a minimum number of training samples must be
provided to the training algorithm for accurate estimation
of the weights. As in [9], a randomized heat flux distribution
with random power traces bounded by the maximum heat
flux levels expected during run-time was used to generate the
training data. The use of a random training set is justified by
the need of a model that is independent by the distribution
of power density in the various layers of a 3D IC.

One major difference of the proposed NN-based simulator
from the NN-based simulator for conventional ICs is that the
flow rates of coolant affects the behavior of the system. The
higher the flow rate, the lower the overall thermal resistance
of the system to the heat sink, which in turn means that the
coefficients of the matrices in Eq. (2) are changed. Since it
is common to design a liquid-cooled 3D IC for variable flow
rates, training must be performed for each flow rate value
intended in the final design.

To eliminate errors introduced by the training of the net-
work and to be able to isolate the effect of the various reduc-
tion techniques applied to the proposed model, we replace
the iterative training algorithms with a direct method to
compute the weights as the solution of a linear system. Each
training sample provides one additional equation in the com-
putation of the unknown weights. Since we provide a higher
number of samples than unknowns, we have an overdeter-
mined system. To solve this, we deploy the least-squares
method using QR decomposition in this work.

4.2 Proximity-based reduction
The heat flow patterns in liquid-cooled 3D ICs is funda-

mentally different from conventional air-cooled ICs. Hence,
when proximity-based reduction is applied to the proposed
simulator, these patterns must be taken into account. In
liquid-cooled 3D ICs, there are indeed two major paths of
heat flow as shown in Figure 3: one vertical, from the active
layers towards the microchannel heat sinks, and one along
the microchannels, the path along with heat is carried by the
coolant. As a consequence, the temperature of a given point
on the surface of the IC will be influenced by the thermal
state and the heat dissipation at nodes lying upstream or
downstream along the direction of the channel, in addition
to those nodes which are directly above and below it in the
other active layers. Hence, proximity regions are defined as
rectangular regions in each active layer along the channel as
highlighted in Figure 3.

The width of this rectangle (the “proximity distance”) de-
fines the complexity of our model. In other words, it sig-
nifies how large an area of the IC is assumed to influence
the temperatures in the node under consideration. If this
proximity distance is small, then the complexity of the re-

Figure 3: Heat flow and neuron connections for
2D/3D ICs with liquid cooling

17

Algorithm 1 Solving with constant proximity

1: for ci = 1 ... NC do
2: I ← ExtractInput (TrainSet, Proximity, [1, 1, ci])
3: (Q,R)← QRdecompose (I)
4: for rj = 1 ... NR do
5: for lk = 1 ... NL do
6: O ← ExtractOutput (TrainSet, [lk, rj , ci])
7: (W [lk, rj , ci], Residual)← lssolve (O,Q,R)
8: end for
9: end for

10: end for

sulting neural network is lower, at the expense of potential
loss of accuracy. Two cases are shown in Figure 3: for one
neuron in the bottom-right corner of the IC, the proximity
region is much smaller than the proximity of the neuron in
the top-left corner.

The least squares method used for the calculation of the
weights, as described in Section 4.1, gives as one of the out-
puts the final residual during the calculation of weights. This
residual value serves as an indicator of the run-time accu-
racy of the NN-based simulator that has been constructed.
Hence, depending upon the accuracy and performance re-
quirements of the designer, one can fix a desired proximity
distance during the training of the NN. This is illustrated
in Algorithm 1, where neurons are indexed using a tuple
[layer, row, column] as they belong to a three dimensional
structure having dimensions [NL, NR, NC] (see Figure 3).

Algorithm 1 extracts from each sample in the training set
a matrix containing the training input for the given neuron
(line 2) and executes its QR decomposition (line 3). This
operation is done only for neurons that belong to the first
row and to the first layer because neurons in the same row
on all the layers share the same proximity region. Then,
for all the remaining neurons, it extracts the target training
output (line 6) and computes their weights as the unknowns
of a linear system (line 7). The residual is discarded or
reported as a measure of the accuracy of the NN over the
training set.

4.3 Optimal proximity profile
Due to the sensible heat absorption in microchannel heat

sinks, temperatures increase as the distance from the inlet
increases. Hence, there is a strong thermal gradient form the
inlet to the outlet. In addition to causing nodes (neurons)
near the outlet to be considerably hotter than those near
the inlet, this phenomenon causes unequal lateral spreading
of heat in the ICs from inlet to outlet.

This means that neurons representing temperatures at
nodes closer to the outlet would require a larger proximity
distance than those near the inlet to attain the same level
of accuracy. In other words, for the same value of proximity
used for all neurons in a 3D ICs, the training residuals (or
the run-time errors) for neurons near the outlet would be
larger than those near the inlet.

Using a small constant proximity distances to reduce the
simulator complexity would result in large errors near the
outlet. On the other hand, using extremely large constant
proximity distances to compensate for these errors near the
outlet increases the complexity of the entire simulator, while
being an overkill for neurons near the inlet. Hence, it is pos-
sible to find an optimal proximity distance profile for the
neurons in a 3D IC as a function of the distance from the
inlet, which minimizes the NN complexity, while distributing

the errors fairly uniformly. This proximity distance profile
would reflect the amount of lateral heat spreading that oc-
curs at a particular point in the 3D IC along the microchan-
nel. The residual resulting form the training algorithm can
be used to estimate this optimum proximity distance for
each row of neurons along the microchannel. This modified
training algorithm for optimal proximity is shown in Algo-
rithm 2.

The idea behind this algorithm is to use the given proxim-
ity to compute the weights only for the neurons in the last
row and save the maximum value of the residual found in
this first part (lines 1-10). Then, the proximity is set to a
minimal value (line 11) and weights are computed process-
ing one row (in all the layers) per time. If for any neuron a
residual higher than the maximum found in the last row is
found, then the proximity value is increased and the train-
ing of the row is restarted (line 19-21). This approach allows
to identify, for each row, the minimum proximity value that
will guarantee a run-time error lower than the error in the
last row of neurons.

The value MinLength used in line 11 and 20 to find the
optimal proximity, corresponds to the minimum distance
such that the operation done by ExtractInput extracts a
larger set of inputs. For instance, using Figure 3 as ref-
erence, MinLength is the value that turns the proximity
region of the neuron in the bottom layer into a region as
large as the one that belongs to the neuron in the top layer.
In the setup of our model, we chose to set MinLength as
the length of the thermal cell in the compact model used to
generate the training samples.

4.4 Running the NN-based simulator
Once the proposed NN-based simulator is trained, it can

be used to simulate the temperatures of the target liquid-
cooled 3D ICs using matrix vector multiplications. Essen-
tially, the weights computed during the training are stored
in the form of a sparse matrix in the GPU global memory.
Then, the power traces and the thermal states are sent from
the CPU memory whenever needed. These form the vector

Algorithm 2 Solving for optimal proximity

1: MaxRes← 0
2: for ci = 1 ... NC do
3: I ← ExtractInput (TrainSet, Proximity, 1, NR, ci)
4: (Q,R)← QRdecompose (I)
5: for lk = 1 ... NL do
6: O ← ExtractOutput (TrainSet, lk, NR, ci)
7: (W [lk, NR, ci], Residual)← lssolve (O,Q,R)
8: MaxRes← max (MaxRes, max(|Residual|))
9: end for

10: end for
11: Proximity ←MinLength
12: for ri = 1 ... NR − 1 do
13: for ci = 1 ... NC do
14: I ← ExtractInput (TrainSet, Proximity, 1, 1, ci)
15: (Q,R)← QRdecompose (I)
16: for lk = 1 ... NL do
17: O ← ExtractOutput (TrainSet, lk, ri, ci)
18: (W [lk, ri, ci], Residual)← lssolve (O,Q,R)
19: if max(|Residual|) > MaxRes then
20: Proximity ← Proximity +MinLength
21: restart ci loop
22: end if
23: end for
24: end for
25: end for

18

Table 1: Structural parameters of the Test 3D IC

Parameter Value Parameter Value
Layers per die 2 Channel height 100µm

Die size 14× 15 mm2 Channel width 50µm
Die height 65µm Channel pitch 100µm

CONFIGURATION CCONFIGURATION L CONFIGURATION R

14 mm

1

5

m

m

Crossbar Crossbar

L2 3 L2 3

L2 2 L2 2L2 0 L2 0

L2 1 L2 1

L2 0

L2 1

L2 2

L2 3

Crossbar

C0 C0 C0C2 C4 C6 C2 C4 C6 C2 C4 C6

C1 C3 C5 C7 C1 C3 C5 C7 C1 C3 C5 C7

Figure 4: Niagara floorplan configurations used for
testing

of inputs, which get multiplied by the weights to obtain the
thermal state in the next time step. In our implementation,
we used the cuSPARSE library [11] for these computations
on our GPU platform.

5. EXPERIMENTAL RESULTS
To illustrate the accuracy and the performance of the pro-

posed NN-based simulator we define a Test 3D IC as a
stack made up of three dies interleaved by two cavities. The
structural properties of the stack are shown in Table 1. To
study the effect of cooling effort on the simulator, all experi-
ments were performed using the three flow rates: 24ml/min,
36ml/min, and 48ml/min. A cell size of 500µm×500µm was
used to discretize the structure and the training data for the
NN-based simulator were generated by simulating it using
3D-ICE. This fixes the number of neurons in the network
to 2520, as we define a neuron for each thermal cell in the
three active layers.

During the training phase, data was generated using a
randomized floorplan with random power traces bounded by
a maximum heat flux of 90W/cm2. The number of training
samples generated was set to 20% more than the minimum
number required. On the other side, during the running and
measurement phase, the UltraSPARC Niagara floorplan [10]
is assigned to the active layer of each die. This floorplan
configuration was modified to generate three different test
cases as shown in Figure 4. In the following experiments,
“LLL” refers to the case when all the dies have the floorplan
configuration “L” in Figure 4. Similarly, “LRL” represents a
stack with the floorplans “L” in the bottom and top die, and
“R” in the middle die, etc.

The NN-based simulator is run on the NVIDIA TeslaTM

c2070 (448 CUDA Cores running at 1.15 GHz and 6GB
GDDR5) while the corresponding simulations on CPU based
on 3D-ICE are run on IntelR© CoreTM i7 920 (4 cores running
at 2.67 GHz and 6GB of RAM).

5.1 Computation of Optimal Proximity
We tested the ability of Algorithm 2 to compute the opti-

mal proximity by first training the Test 3D IC using Algo-
rithm 1 with a series of different constant proximity values.
During each training, the maximum value of residuals for
each neuron was stored. Then, the resulting NN was run
to simulate the floorplan configuration CCC and the maxi-
mum run-time error w.r.t. 3D-ICE was measured. Figure 5

Figure 5: Max. residual and max. run-time error
when training with Algorithm 1

Figure 6: Profile of the optimal proximity along the
channel

shows the maximum residual and corresponding the maxi-
mum run-time error for each proximity value.

As can be seen from this figure, the maximum residual
from training and the maximum run-time error show the
same trend. This means that the residual can be effectively
used to compute the optimal profile of the proximity along
the direction of the channel. Figure 6 shows the optimal
proximity profile computed both using Algorithm 2 and us-
ing run-time error. To obtain the optimal proximity using
the run-time error in this figure, we first train the NNs using
Algorithm 1 with different proximity values and 36ml/min
as flow rate. In each case, we measure the maximum run-
time error as a function of distance along the channel. Then
we fix, for each neuron, the minimum proximity value such
that the run-time error remains lower than 0.5◦C. The min-
imum proximity found for the neurons representing the last
row was 2750µm and therefore this value has been given as
input to Algorithm 2 to verify its capability to generate the
same profile.

As Figure 6 shows, the two proximity profiles show the
same trend except for a few values. Even when mismatches
occur, the proximity value obtained using residuals from
training is higher than the one obtained using run-time mea-
surements. Hence, using the former methods results only in
reduced error at run-time at a marginal additional cost of
computation. Hence, we can conclude that Algorithm 2 is
a reliable method to compute the optimal proximity profile
during training and the run-time errors resulting from it is
less than the intended tolerance.

5.2 Error analysis
Figure 7 shows the evolution of the maximum run-time

error incurred by the proposed NN-based simulator (trained
using Algorithm 2), when it is used to simulate Test 3D
IC with CCC configuration. Errors in this figure are re-
ported for the three different flow rates. As can be seen from
these plots, the error decreases in each case with increasing
proximity values. However, given the same proximity value,
simulations with different flow rates result in different er-

19

Figure 7: Maximum run-time error for the floorplan
configuration CCC

Figure 8: Maximum run-time error for different
floorplan configurations

rors. Higher flow rates result in smaller errors than lower
flow rates because coolant at high flow rates carries heat
from the IC quicker, leading not only to lower IC tempera-
tures, but also prevent heat spreading within the silicon by
lowering the net thermal resistance to the heat sink. Hence,
for a given proximity value, the NN-simulator trained for a
higher flow rate better captures the heat spreading effects
than an NN-simulator trained for lower flow rates.

Figure 8 reports the maximum run-time error obtained
when NN-based simulator was used to simulate the Test
3D IC for the same flow rate (36ml/min) but with differ-
ent floorplan configurations. As can be seen, the run-time
independent of the floorplan configuration.

5.3 Performance analysis
To compare the performances of the two training tech-

niques (Algorithms 1 and 2) simulation speed ups of NN-
based simulators trained using both these techniques run-
ning on GPU, against 3D-ICE running on CPU. This exper-
iment was repeated for different maximum proximity values
and flow rates. Figure 9 shows the increase (in percentage)
of speedup obtained with the introduction of the training
Algorithm 2 over the Algorithm 1. As can be seen from this
figure, improvements of up to 25% can be obtained by using
the optimal proximity profiles.

Finally, to illustrate the scalability of our neural network-
based thermal simulator, Figure 10 shows how the GPU
speedup changes with increasing number of dies (in other
words, the problem size), increasing flow rate and trained
for various error tolerances (1.0◦C, 0.5 ◦C and 0.1 ◦C). As
can be seen from this figure, speedups increase with increas-
ing problem size and also with increasing flow rate. In all
these experiments, the dies are interleaved with channel cav-
ities, similar to the Test 3D IC.

6. CONCLUSIONS
In this work we presented a Neural Network-based thermal

model that can be run on massively parallel architectures

Figure 9: Increase (percentage) of the GPU speedup
using Algorithm 2

Figure 10: GPU speedup for different problem sizes,
flow rates and maximum run-time error

like GPUs to accelerate thermal simulations of 3D ICs with
liquid cooling. We also introduced a new training technique
that exploits the horizontal heat flow due to the coolant
passing through the channels to reduce the simulation time
without worsening the run time error. Results show that the
speedups obtained comparing the simulation times against
a compact model running on CPU ranges from 35x, to limit
the run-time error under 0.1◦C, up to 106x if errors lower
than 1.0◦C are accepted.

7. ACKNOWLEDGMENTS
This work was funded in part by the Swiss NSF grant

number 200021-130048 and by the Nano-Tera RTD Project
CMOSAIC (ref. 123618), which is financed by the Swiss
Confederation and scientifically evaluated by SNSF.

8. REFERENCES
[1] “International technology roadmap for semiconductors (ITRS),”

2009 Edition-ERD.

[2] T. Brunschwiler et al., “Interlayer cooling potential in vertical
integrated packages,” Microsystem Technologies: MNSISPS,
vol. 15, no. 1, 2009.

[3] H. Mizunuma et al., “Thermal modeling for 3D-ICs with
integrated microchannel cooling,” Proc. ICCAD, 2009.

[4] A. Sridhar et al., “3D-ICE: Fast compact transient thermal
modeling for 3D ICs with inter-tier liquid cooling”, Proc.
ICCAD, 2010.

[5] A. Sridhar et al., “Compact transient thermal model for 3D ICs
with liquid cooling via enhanced heat transfer cavity
geometries”, Proc. THERMINIC, 2010.

[6] Z. Feng and Z. Zeng, “Parallel Multigrid Preconditioning on
Graphics Processing Units (GPUs) for Robust Power Grid
Analysis”, Proc. DAC, 2010.

[7] Y. Liu and J. Hu, “GPU-based parallelization for fast circuit
optimization”, Proc. DAC, 2009.

[8] J. Croix and S. Khatri ”Introduction to GPU Programming for
EDA”, Proc. ICCAD 09.

[9] A. Sridhar et al., “Neural Network-Based Thermal Simulation of
Integrated Circuits on GPUs”, Transactions on Computer
Aided Design of Integrated Circuits and Systems, vol. 31, no.
1, 2012.

[10] A. Leon et al., “A power-efficient high-throughput 32-thread
SPARC processor”, Proc. ISSCC 2007.

[11] CUDA Sparse Library.

20

