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Abstract

In their seminal paper on Euclidean minimum spanning trees [Discrete & Computa-
tional Geometry, 1992], Monma and Suri proved that any tree of maximum degree 5 admits
a planar embedding as a Euclidean minimum spanning tree. The algorithm they presented
constructs embeddings with exponential area; however, the authors conjectured that cn×cn

area is sometimes required to embed an n-vertex tree of maximum degree 5 as a Euclidean
minimum spanning tree, for some constant c > 1. In this paper, we prove the first expo-
nential lower bound on the area requirements for embedding trees as Euclidean minimum
spanning trees.
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1 Introduction

A Euclidean minimum spanning tree (MST) of a set P of points in the plane is a tree with a vertex in
each point of P and with minimum total edge length. Euclidean minimum spanning trees have several
applications in computer science and hence they have been deeply investigated from a theoretical point
of view. To cite a few major results, optimal Θ(n log n)-time algorithms are known to compute an
MST of a set of points and it is NP-hard to compute an MST with maximum degree bounded by 2, 3,
or 4 [6, 13, 4], while polynomial-time algorithms exist [1, 11, 2, 8] to compute MST with maximum
degree bounded by 2, 3, or 4 and total edge length within a constant factor from the optimal one.

An MST embedding of a tree T is a plane embedding of T such that the MST of the points where
the vertices of T are drawn coincides with T . In this paper we consider the problem of constructing
MST embeddings of trees. Several results are known related to such a problem. No tree having a vertex
of degree at least 7 admits an MST embedding. Further, deciding whether a tree with degree 6 admits
an MST embedding is NP-hard [3]. However, restricting the attention to trees of degree 5 is not a
limitation since: (i) every planar point set has an MST with maximum degree 5 [12], and (ii) every tree
of maximum degree 5 admits an MST embedding in the plane [12].

Monma and Suri’s proof [12] that every tree of maximum degree 5 admits an MST embedding
in the plane is a strong combinatorial result; on the other hand, their algorithm for constructing MST
embeddings seems to be useless in practice, since the constructed embeddings have 2Θ(k2) area for trees
of height k (hence, in the worst case the area requirement of such drawings is 2Θ(n2)). However, Monma
and Suri conjectured that there exist trees of maximum degree 5 that require cn × cn area in any MST
embedding, for some constant c > 1. The problem of determining whether or not the area upper bound
for MST embeddings of trees can be improved to polynomial is reported also in [3, 10, 7]. Recently,
MST embeddings in polynomial area have been proved to exist for trees with maximum degree 4 [9, 5].

In this paper, we prove that there exist n-vertex trees of maximum degree 5 requiring 2Ω(n) area in
any MST embedding. Our lower bound is achieved by considering an n-vertex tree T ∗, shown in Fig. 1,
composed of a degree-5 complete tree Tc with a constant number of vertices and of a set of degree-5
caterpillars, each one attached to a distinct leaf of Tc. The complete tree Tc forces the angles incident
to an end-vertex of the backbone of at least one of the caterpillars to be very small, that is, between 60

◦

and 61
◦
. Using this as a starting point, we prove that each angle incident to a vertex of the caterpillar

is either very small, that is, between 60
◦

and 61
◦
, or is very large, that is, between 89.5

◦
and 90.5

◦
.

As a consequence, we show that the lengths of the edges of the backbone of the caterpillar decrease
exponentially along the caterpillar, thus obtaining the claimed area bound.

The paper is organized as follows. In Sect. 2 we give some definitions and preliminaries; in Sect. 3
we give some geometric lemmata; in Sect. 4 we argue about the angles and the edge lengths of the MST
embeddings of T ∗; in Sect. 5 we prove the area lower bound; finally, in Sect. 6 we give remarks and
conclusions. Some proofs have been omitted for space limitations and can be found in the Appendix.

2 Preliminaries

A rooted tree is a tree with one distinguished vertex, called root. The depth of a vertex in a rooted tree is
its distance from the root, that is, the number of edges in the path from the root to the vertex. The height
of a rooted tree is the maximum depth of one of its vertices. A complete tree is such that every path from
the root to a leaf has the same number of vertices and every vertex has the same degree. A caterpillar is
a tree such that removing the leaves yields a path, called the backbone of the caterpillar.

A minimum spanning tree MST of a set of n points in the plane is a tree spanning the n points and
having minimum total edge length. Given a tree T , the MST embedding problem asks for a mapping of
the vertices of T to points in the plane such that the MST of such points is isomorphic to T . Such a
mapping provides a straight-line drawing of T , that is called an MST embedding of T .
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Figure 1: A tree T ∗ requiring 2Ω(n) area in any MST embedding.

The area of an MST embedding is the area of a rectangle enclosing such an embedding. The concept
of area of an MST embedding only makes sense once a resolution rule is fixed, i.e., a rule that does
not allow vertices to be arbitrarily close (vertex resolution rule), or edges to be arbitrarily short (edge
resolution rule). In fact, without any of such rules, one could just construct MST embeddings with
arbitrarily small area. In the following we will hence suppose that any two vertices have distance at least
one unit. With such an assumption, in order to prove that an n-vertex tree T requires f(n) area in any
MST embedding, it suffices to prove that the ratio between the longest and the shortest edge of any MST
embedding is f(n), and that both dimensions have at least constant size.

Consider any MST embedding of a tree T rooted at a node r. The clockwise path Cl(u) of a vertex
u ̸= r of T is the path v0, v1, . . . , vk such that v0 = u, (vi, vi+1) is the edge following the edge from
vi to its parent in the clockwise order of the edges incident to vi, for i = 0, . . . , k−1, and vk is a leaf.
The counterclockwise path Ccl(u) of a vertex u ̸= r of T is defined analogously. Denote by d(a, b) the
Euclidean distance between two vertices a and b (or between two points a and b) and denote by |e| the
length of an edge e. Further, k(c, r) denotes the circle centered at a point c and having radius r.

Next, we define an n-vertex tree T ∗ that requires Ω(2n) area in any MST embedding. Let Tc be a
complete tree of height six and degree five. Let r be the root of Tc. Augment Tc by inserting a degree-five
caterpillar at each leaf of Tc. That is, for each leaf l of Tc, insert a caterpillar Cl whose every non-leaf
vertex has degree five, such that l is an end-vertex of the backbone of Cl, the parent of l in Tc is a leaf of
Cl, and Cl and Tc do not share any other vertex. Denote by T ∗ the resulting tree.

3 Geometric Lemmata

In this section we give some properties for MST embeddings. The first four lemmata are well-known.

Lemma 1 A straight-line drawing of a tree T is an MST embedding of T if and only if, for each pair of
vertices u and v of T , d(u, v) ≥ |e|, for each edge e in the path connecting u and v in T .

Lemma 2 In any MST embedding of a tree, any angle between two adjacent segments is at least 60◦.
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Lemma 3 Consider any MST embedding Γ of a tree T . Consider any subtree T ′ of T . Then, Γ restricted
to the vertices and edges of T ′ is an MST embedding of T ′.

Lemma 4 Any MST embedding of a tree T is planar.

The next lemma bounds the length of an edge in an MST embedding in terms of the length of an
adjacent edge and of the size of the angle between them.

Lemma 5 Let e1 and e2 be two edges consecutively incident to the same vertex and let α ≤ 90◦ be the
angle they form. Then, 2|e1| cos(α) ≤ |e2| ≤ |e1|

2 cos(α) .

Proof: Refer to Fig. 2(a). Let e1 = (u, v) and e2 = (u, z). If |e1| < 2|e2| cosα, then |(v, z)| <
|(u, z)|, thus contradicting Lemma 1. Hence, |e1| ≥ 2|e2| cosα. Analogously, |e2| ≥ 2|e1| cosα. �

Consider an edge e = (u, v) in an MST embedding of a tree T . Let e1 = (u, p) be the edge following
e in the counterclockwise order of the edges incident to u and e′1 = (v, q) be the edge following e in the
clockwise order of the edges incident to v. Let α (β) be the angle defined by a counterclockwise (resp.
clockwise) rotation of e around u (resp. around v) bringing e to coincide with e1 (resp. with e′1). See
Fig. 2(b). The next lemma, that establishes a strong lower bound on β provided that α is sufficiently
small, is one of our main tools for the remainder of the paper.

Lemma 6 Suppose that α ≤ 80◦. Then, β ≥ 120◦ − α/2.

Proof: First, we determine restrictions on the region where q lies, once the drawings of e and e1 are
fixed. Refer to Figs. 3(a) and 3(b). By Lemma 1, d(q, u) ≥ d(u, v) holds. Then, q is outside k(u, |e|).
Still by Lemma 1, d(p, q) ≥ d(p, u) and d(p, q) ≥ d(u, v) hold. Then, q is outside k(p,m), where
m = max{|e|, |e1|}. Again by Lemma 1, d(p, q) ≥ d(v, q) holds. Denote by l

|
pv the line orthogonal to

pv passing through the midpoint of pv; then, q is in the half-plane delimited by l
|
pv and not containing

p. Suppose, w.l.o.g. up to a rotation, a reflection, and a translation of the drawing, that e is horizontal,
that u is at point (0, 0), that v is to the right of u, and that both p and q are above the horizontal line
through u and v. We can suppose that q is to the left of the vertical line lv through v, since otherwise
β ≥ 90◦ ≥ 120◦ − α/2, where the last inequality holds by Lemma 2, and there is nothing to prove.

Second, we discuss about the intersections of k(p,m) with lv. The distance from p to lv is less than
|e|, because p is to the right of the vertical line through u, given that α ≤ 80◦. It follows that k(p,m)
has exactly two intersections with lv, given that m ≥ |e|. Moreover both of such intersections lie not
below v as the distance between p and v is at least m, by Lemma 1, and hence the distance between p
and any point of lv below v is strictly greater than m, while k(p,m) has radius exactly m. Denote by h
and b the highest and the lowest of such two intersections, respectively.

Third, we prove the claimed lower bound for β. We distinguish the case in which the intersection of
l
|
pv with lv is not higher than h (Case 1), as in Fig. 3(a), or is higher than h (Case 2), as in Fig. 3(b).

We discuss Case 1. The region R1 of the plane in which q can lie is bounded by lv from the
right, by k(u, |e|) from the left, and either by k(p,m) or by l

|
pv from above (depending on whether the

e1
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uv

z

α

e1

β

e
′

1

u v

q

α

e

p

(a) (b)

Figure 2: (a) Illustration for the proof of Lemma 5. (b) The setting for Lemma 6.
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Figure 3: Illustration for the proof of Lemma 6. In (a) and (b) the shaded region is R1 and R2, resp.

intersection point of l|pv with lv is higher or lower than b). Hence, such a region is a subset of the region
bounded by lv from the right, by k(u, |e|) from the left, and by k(p,m) from above. Then, denoting
by s the intersection point between k(p,m) and k(u, |e|), we have β ≥ ûvs. Namely, the line through
v and s has R1 to its right. Hence, we assume that q lies at s. Denote by γ the angle v̂us. Then, we
have s ≡ (|e| cos γ, |e| sin γ) and β = 180◦−γ

2 , where the last equality uses the fact that |us| = |uv|.
Observe also that p ≡ (|e1| cosα, |e1| sinα). We further distinguish two cases, namely the one in which
|e| ≥ |e1| (Case 1a) and the one in which |e1| ≥ |e| (Case 1b).

Suppose that we are in Case 1a. Then, s is one of the intersection points of k(u, |e|) and of
k(p, |e|), that has equation (x − (|e1| cosα))2 + (y − (|e1| sinα))2 = |e|2. From the equation of
k(p, |e|) we get x2 − 2x|e1| cosα + |e1|2 cos2 α + y2 − 2y|e1| sinα + |e1|2 sin2 α = |e|2. Then, since
the equation of k(u, |e|) is x2 + y2 = |e|2 and since k(u, |e|) and k(p, |e|) pass through s, we get
|e|2 − 2(|e1||e| cosα cos γ + |e1||e| sinα sin γ) + |e1|2 = |e|2. Thus, 2|e|(cos(α − γ)) = |e1|, hence
γ = α − arccos

(
|e1|
2|e|

)
. Since |e| ≥ |e1|, we have |e1|

2|e| ≤ |e|
2|e| = 1

2 , hence arccos
(
|e1|
2|e|

)
≥ 60◦ and

γ ≤ α− 60◦. Using β = (180◦ − γ)/2, we get β ≥ 180◦−(α−60◦)
2 = 120− α/2.

Case 1b is analogous to Case 1a. Namely, from the equations x2+y2 = |e|2 and (x−(|e1| cosα))2+
(y − (|e1| sinα))2 = |e1|2 of k(u, |e|) and k(p, |e1|) and from the fact that k(u, |e|) and k(p, |e1|)
pass through s, analogously to Case 1a we get γ = α − arccos

(
|e|

2|e1|

)
. Since |e1| ≥ |e|, we get

arccos
(

|e|
2|e1|

)
≥ 60◦, hence γ ≤ α− 60◦, and finally β ≥ 120− α/2.

We discuss Case 2. In this case, q lies either in region R1, defined as in Case 1, or in the region
R2 bounded by lv from the right, by k(p,m) from below, and by l

|
pv from above. If q is inside R1,

the proof is the same as in Case 1. If q is inside R2, the minimum value of β is achieved when q

is at the intersection point t between k(p,m) and l
|
pv. Namely, the line through v and t has R2 to

its right. We prove that in Case 2 it holds |e1| < |e|. Suppose, for a contradiction, that |e1| ≥ |e|.
Consider a segment vw parallel to e1 such that |e1| = |vw|. Observe that pw = |e|. Then, l|pv crosses
polygon (u, v, w, p) on segments up and vw, and the intersection of l|pv with lv is inside (u, v, w, p).
On the other hand, h is above the line through p and w, thus contradicting the assumptions of Case 2.
Moreover, since the slope of l|pv increases while decreasing the length of |e1|, the smaller is |e1|, the
smaller is ûvt. Hence, by Lemma 5, we can assume that |e1| = 2|e| cosα. Since |e1| < |e|, k(p, |e|)
has equation (x − (|e1| cosα))2 + (y − (|e1| sinα))2 = |e|2. Observe that |tv| = |e|. Namely, the
distance of every point of l|pv from p and from v is the same, and the distance of t from p is |e|, given
that t belongs to k(p, |e|). Then, β can be computed by assuming that q is at one of the intersections
of k(p, |e|) and k(v, |e|). Observe that k(v, |e|) has equation (x − |e|)2 + y2 = |e|2, that is x2 −
2x|e| + y2 = 0. Subtracting the last one from the equation of k(p, |e|) we get −x2 + 2x|e| − y2 +
x2 + y2 − 2x|e1| cosα − 2y|e1| sinα + |e1|2 cos2 α + |e1|2 sin2 α = |e|2. From such a formula we
get 2x|e| − 2x|e1| cosα − 2y|e1| sinα + |e1|2 = |e|2. Then, using |e1| = 2|e| cosα and using t ≡

5



u0

α0

α
′

0 β
′

1

β1

α
′

1

α1

u3

u2u1

β
′

2

β2

β3

β
′

3
=α

′

3α2

α
′

2

α3

β
′

4

β4 α4

u4

e0 e1

e2

e3

α
′

4

β5

β
′

5

α5

α
′

5

u5

e4

Figure 4: An embedding of C∗.

(|e| − |e| cosβ, |e| sinβ), where the coordinates of t descend from the fact that |tv| = |e|, we get
2(|e|−|e| cosβ)|e|−2(|e|−|e| cosβ)(2|e| cosα) cosα−2(|e| sinβ)(2|e| cosα) sinα+(2|e| cosα)2 =
|e|2. Hence, 2|e|2−2|e|2 cosβ−4|e|2 cos2 α+4|e|2 cos2 α cosβ−4|e|2 cosα sinα sinβ+4|e|2 cos2 α =
|e|2. Thus we get cosβ − 2 cosα (cosα cosβ − sinα sinβ) = 1

2 and hence cosβ − 2 cosα cos(α +

β) = 1
2 . Manipulating the last equation we get cosβ − 2 cos

(
(2α+β)−β

2

)
cos

(
(2α+β)+β

2

)
= 1

2 . Using

cos θ cosϕ = cos(θ+ϕ)+cos(θ−ϕ)
2 , we get cosβ − (cos(2α + β) + cos(β)) = 1

2 , hence cos(2α + β) =
−1
2 . Since α, β ≥ 60◦ by Lemma 2, we have that 2α + β ≥ 180◦. By the assumptions on α and
β, 2α + β ≤ 280◦. It follows that cos(2α + β) = −1

2 is achieved with 2α + β = 240◦. Hence,
β = 240◦ − 2α ≥ 120◦ − α

2 , where the last inequality holds for all α ≤ 80◦. �

4 Angles and Edge Lengths in MST Embeddings

In this section we consider the MST embeddings of T ∗ and argue about the angles and the edge lengths
in each of such embeddings. We start by providing a lemma about the complete tree Tc .

Lemma 7 In any MST embedding of T ∗ there exists a vertex u of Tc with depth five such that two angles
consecutively incident to u and not adjacent to the edge from u to its parent sum up to at most 121◦.

Consider any MST embedding of T ∗; by Lemma 7, there exists a caterpillar C∗ such that one of the
end-vertices u0 of the backbone of C∗ is incident to an edge of Tc that is adjacent to two angles α0 and
α′
0 summing up to at most 121

◦
. Denote by u0, u1, u2, . . . , uk the vertices of the backbone of C∗ and by

ei the backbone edge connecting ui and ui+1, for i = 0, . . . , k − 1. We call outgoing angles αi and α′
i

the angles adjacent to ei and incident to ui; we call incoming angles βi+1 and β′
i+1 the angles adjacent

to ei and incident to ui+1. An edge e incident to ui that is not the incoming edge of ui is in position
j ∈ {1, 2, 3, 4} if e is the j-th edge in the clockwise order of the edges incident to ui starting at ei−1.
Note that, if ei+1 is in position 1 (respectively 4), the incoming angle βi+1 and the outgoing angle αi+1

(respectively the incoming angle β′
i+1 and the outgoing angle α′

i+1) coincide. See Fig. 4.
First, we prove that the outgoing and the incoming angles incident to a vertex of the backbone of C∗

are either small angles, that is, between 60
◦

and 61
◦
, or large angles, that is between 89.5

◦
and 90.5

◦
.

More precisely, the incoming angles are always large, while the outgoing angles are either both small or
one large and one small. Indeed, observe that the outgoing angles of u0 are both small by Lemma 7.

Suppose that a backbone edge ei is in position 2 or 3 and that the incoming angles of ui are at least
89.5

◦
. By Lemma 2, each of the outgoing angles of ui is at most 61

◦
(recall that ei is in position 2 or 3).

Then, by Lemma 6, the incoming angles of ui+1 are at least 89.5
◦
. Hence, if ei is in position 2 or 3 and

the incoming angles of ui are at least 89.5
◦
, the incoming angles of ui+1 are also at least 89.5

◦
.

If ei is in position 1 or 4, Lemma 6 is not useful to provide lower bounds on the values of both the
incoming angles of ui+1. Namely, one of the outgoing angles of ui, say αi, coincides with one of the
incoming angles of ui, say βi. Hence, αi=βi is large and no lower bound for βi+1 can obtained by
Lemma 6. However, we can prove that even if the outgoing angle αi of a backbone vertex ui is large,
the incoming angle βi+1 of the next backbone vertex ui+1 is large, provided that the following condition
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Figure 5: The setting for Lemmata 8–12. The dark-shaded region is Ri. To improve the readability,
angles and edge lengths in the illustration do not correspond to actual angles and edge lengths.

is satisfied: The clockwise path Cl(ui) of ui is contained in a bounded region Ri that is a subset of a
wedge Wi with angle 1

◦
centered at ui. We will later prove (in Lemma 13) that, if such a condition is

satisfied by a node ui incident to a large outgoing angle αi, then βi+1 is large and moreover Cl(ui+1)
is contained in a bounded region Ri+1 that is a subset of a wedge Wi+1 with angle 1

◦
centered at ui+1.

However, before that, we have to prove that such a condition is satisfied by a node ui if αi−1 is small.
Suppose, w.l.o.g. up to a rotation, a reflection, and a translation of the drawing, that ei−1 is horizon-

tal, with ui to the right of ui−1, and that ei is in position 1. Denote by e = (ui−1, v) (by e∗ = (ui+1, w))
the edge following ei−1 in the counterclockwise (resp. clockwise) order of the edges incident to ui−1

(resp to ui+1). Denote by l(αi) (by l(αi)) the half-line with slope 90.5
◦

(resp. with slope 89.5
◦
) starting

at ui. Finally, denote by Wi the closed wedge with angle 1
◦

delimited by l(αi) and l(αi). See Fig. 5.
We will bound the region in which Cl(ui) lies from the right, from the left, and from above. Let

m = max{|e|, |ei−1|}. Concerning the bound from the left, we can prove that the intersection point s of
the circles k(v,m) and k(ui−1, |ei−1|) is not to the left of l(αi), as stated in the following.

Lemma 8 Suppose that αi−1 ≤ 61
◦
. Then, s is not to the left of l(αi).

We continue with the bound from the right.

Lemma 9 Suppose that β′
i ≥ 89.5

◦
. Then vertex ui+1 is not to the right of l(αi).

In order to derive the bound from above, we first prove that k(v,m) intersects l(αi) twice and we
then argue about the distance between ui and the highest intersection point hαi of k(v,m) with l(αi).

Lemma 10 Suppose that αi−1 ≤ 61
◦
. Then, k(v,m) intersects l(αi) twice.

Lemma 11 The distance between ui and hαi is at least 1.604|ei−1|.

We are now ready to state the following:

Lemma 12 Suppose that αi−1 ≤ 61
◦
, that β′

i, β
′
i+1 ≥ 89.5

◦
, and that |ei| ≤ |ei−1|

10 . Then, Cl(ui) is
inside a bounded region Ri that is a subset of Wi.

Proof: Let Ri be the bounded region delimited by l(αi) from the left, by l(αi) from the right, and
by k(v,m) from above. We prove that Cl(ui) is inside Ri.
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First, we prove that ui+1 is in Ri. By the assumption that αi−1 ≤ 61
◦

and by Lemma 6, ui+1

is not to the left of l(αi). By the assumption that β′
i ≥ 89.5

◦
and by Lemma 9, ui+1 is not to the

right of l(αi). Hence, ui+1 is in Wi. By the assumption that αi−1 ≤ 61
◦

and by Lemma 10, k(v,m)
intersects l(αi). Moreover, v is to the left of l(αi). Namely, v ≡ (|e| cosαi−1, |e| sinαi−1). Further,
if y = |e| sinαi−1, then the x-coordinate of l(αi) is x = |ei−1| − (|e| sinαi−1)/ tan 89.5

◦
. Since

|ei−1| ≥ 2|e| cosαi−1 (by Lemma 5) and 60
◦ ≤ αi−1 ≤ 61

◦
(by assumption and by Lemma 2), we

have |ei−1| − |e| sinαi−1/ tan 89.5
◦ ≥ 2 cos 61

◦ |e| − |e| sin 61◦
/ tan 89.5

◦ ≥ 0.96|e| > |e| cos 60◦ ≥
|e| cosαi−1. Since v is to the left of l(αi) and since k(v,m) intersects l(αi), there exists a bounded
region Fi of Wi, delimited by k(v,m) from above and from below, by l(αi) from the left, and by l(αi)
from the right, in which ui+1 can not lie, as otherwise Lemma 1 would be violated. By Lemma 11, the
distance between ui and every point above Fi is at least 1.604|ei−1| cos 0.5

◦
> 1.4|ei−1|. Hence, by the

assumption that |ei| ≤ |ei−1|/10, ui+1 is not above Fi. It follows that ui+1 is in Ri.
Next, we prove that w is in Ri. Observe that βi+1 ≤ 90.5

◦
, by the assumption that β′

i+1 ≥ 89.5
◦

and since the three angles incident to ui+1 and different from βi+1 and β′
i+1 sum up to at least 180

◦
(by

Lemma 2). Hence, e∗ can not cross l(αi). Since βi, βi+1 ≤ 90.5
◦
, the angle defined by a clockwise

rotation bringing a horizontal line to coincide with e∗ is at most 1
◦
. Since the x-coordinate of ui+1 is at

most |ei−1|+ |ei−1| sin 0.5
10 , the y-coordinate of the line through e∗ if x = |e| cosαi−1 is at most |ei−1|

10 +

tan 1
◦
(|ei−1| + |ei−1| sin 0.5

10 − |e| cosαi−1) ≤ |e|
20 cos 61

◦ + tan 1
◦
( |e|
2 cos 61

◦ + |e| sin 0.5

20 cos 61
◦ − |e| cos 61◦

) <

0.112|e| < |e| sinαi−1, since αi−1 ≤ 61
◦
, by assumption, and 2|ei−1| cosαi−1 ≤ |e|, by Lemma 5.

Then, the line through e∗ crosses the vertical line through v below v. Since the y-coordinate of every
point above Fi is at least 1.4|ei−1|, by Lemma 11, e∗ can not cross k(v,m). Further, the region Si

bounded by e from the left, by ei−1 from below, by l(αi) from the right, and by the horizontal line
through v from above entirely belongs to k(v,m)∪k(ui−1, |ei−1|), by Lemma 8; since the y-coordinate
of w is at most 0.112|e| < |e| sinαi−1, if e∗ crosses l(αi), then either w is in Si, thus violating Lemma 1,
or e∗ crosses an edge of T ∗, thus violating Lemma 4. Hence, w is in Ri.

Finally, consider the rest of Cl(ui). The angle defined by a clockwise rotation bringing an edge g1
of Cl(ui) to overlap with the next edge g2 of Cl(ui) is at most 120

◦
, since the four other angles incident

to the vertex shared by g1 and g2 sum up to at least 240
◦

(by Lemma 2). Hence, no edge of Cl(ui)
crosses l(αi) or k(v,m), as otherwise such an edge crosses an edge of T ∗, thus violating Lemma 4.
Moreover, no edge of Cl(ui) crosses l(αi), as otherwise either one end-vertex of such an edge is in Si,
thus violating Lemma 1, or the edge crosses an edge of T ∗, thus violating Lemma 4. �

Lemma 12 assumes that |ei| ≤ |ei−1|
10 . The reason why we can assume such a ratio will be made

clear at the end of the section and then exploited in the inductive proof presented in Section 5.
We can now prove that the condition that the clockwise path of each vertex is inside a bounded

region propagates along the vertices of the backbone. Refer to Fig. 6(a).

Lemma 13 Suppose that αi ≥ 89.5
◦
, that β′

i+1 ≥ 89.5
◦
, and that Cl(ui) is in a bounded region Ri

that is a subset of a wedge Wi centered at ui with angle 1
◦
. Then, βi+1 ≥ 89.5

◦
. Moreover, Cl(ui+1) is

in a bounded region Ri+1 that is a subset of a wedge Wi+1 centered at ui+1 with angle 1
◦
.

Proof: Since Cl(ui) is in Ri, it follows that ui+1 is in Ri. Then, w is not inside k(ui, |ei|), as
otherwise Lemma 1 would be violated. Hence, the minimum value of ̂uiui+1w = βi+1 is achieved if
w is on k(ui, |ei|), inside Ri, and hence inside Wi. If w is on k(ui, |ei|), then triangle ∆(uiui+1w) is
isosceles. Since ̂ui+1uiw ≤ 1

◦
, then βi+1 ≥ 89.5, thus proving the first part of the lemma.

Next, let l(βi+1) (l(βi+1)) be the half-line starting at ui+1 such that a 89.5
◦

(resp. 90.5
◦
) clockwise

rotation around ui+1 brings ei to overlap with l(βi+1) (resp. with l(βi+1)). Define Ri+1 as the inter-
section of Ri and the wedge delimited by l(βi+1) and l(βi+1). Then Ri+1 is bounded as Ri is; further,
Ri+1 is a subset of a wedge Wi+1 centered at ui+1 with angle 1

◦
. We prove that Cl(ui+1) is in Ri+1.
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Figure 6: (a) Illustration for Lemma 13. The dark-shaded region is Ri+1. (b) Illustration for Lemma 14.
The dark-shaded region is R1. To improve the readability, angles and edge lengths in the illustrations do
not correspond to actual angles and edge lengths.

Since β′
i+1≥89.5

◦
and the three angles incident to ui+1 and different from βi+1 and β′

i+1 sum up to
at least 180

◦
, it holds βi+1≤90.5

◦
. Since Cl(ui) is in Ri and the angle defined by a clockwise rotation

bringing an edge g1 of Cl(ui) to overlap with the next edge g2 of Cl(ui) is at most 120
◦
, as the four other

angles incident to the vertex shared by g1 and g2 sum up to at least 240
◦

(by Lemma 2), then every vertex
of Cl(ui+1) is not to the right of l(βi+1), as otherwise an edge of such a path crosses ei or (ui+1, w),
thus contradicting Lemma 4. The region delimited by ei from below, by l(βi+1) from the right, and by
l(αi) from above is a subset of k(ui, |ei|) since the line through ui+1 and through the intersection point
of k(ui, |ei|) and l(αi) forms with ei an angle which is at least 89.5

◦
. Hence, if an edge of Cl(ui+1)

crosses l(βi+1), then either a vertex of Cl(ui+1) is in k(ui, |ei|), thus violating Lemma 1, or an edge of
Cl(ui+1) crosses ei or (ui+1, w), thus violating Lemma 4. It follows that Cl(ui+1) is in Ri+1. �

We now deal with the edge lengths in any MST embedding of T ∗. Consider a backbone edge
ei=(ui, ui+1) such that the outgoing angle αi is small. Assume w.l.o.g. up to a rotation, a reflection,
and a translation of the drawing, that ei is horizontal with ui+1 to the right of ui. Assume that ui has
coordinates (0, 0). Let e∗ = (ui+1, q) (e = (ui, p)) be the edge following ei in the clockwise (resp.
counterclockwise) order of the edges incident to ui+1 (resp. to ui). Let αi and βi+1 be the angles
delimited by ei and e and by ei and e∗, respectively. Let m = max{|e|, |ei|}. Further, let l(ui+1) be the
vertical line through ui+1 and l

|
pui+1 the line orthogonal to pui+1 through the midpoint of such a segment.

Let b and h be the lowest and the highest intersection point of k(p,m) and l(ui+1), respectively. Let s
be the rightmost intersection point of k(p,m) and k(ui, |ei|). Refer to Fig. 6(b). We have the following:

Lemma 14 Suppose that αi ≤ 61
◦

and that βi+1 ≤ 90.5
◦
. Then, it holds |e∗|

|ei| ≤ 0.073.

Proof: We distinguish two cases, namely the one in which βi+1 ≤ 90
◦

and the one in which
90

◦
< βi+1 ≤ 90.5

◦
. By assumption, no other values of βi+1 have to be considered to prove the lemma.

Suppose that βi+1 ≤ 90
◦
. We claim that the maximum value of |e∗| is achieved when q is either at

b or at s. Namely, by Lemma 1, we have that: (i) q is outside k(p,m); (ii) q is in the half-plane that
is delimited by l

|
pui+1 and that does not contain p; and (iii) q is outside k(ui, |ei|). Further, q is not to

the right of l(ui+1) since βi+1 ≤ 90
◦
. Hence, as long as l

|
pui+1 intersects l(ui+1) below h, q is in the

region R1 bounded by l(ui+1) from the right, by k(p,m) from above, and by k(ui, |ei|) from below.
Such a region is a subset of triangle ∆(ui+1, s, b), since sb is a chord of k(p,m) and ui+1s is a chord of
k(ui, |ei|). Hence, the farthest point from ui+1 inside R1 is either b or s.

Claim 1 The intersection of l|pui+1 and l(ui+1) is below h.
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We now further distinguish the two cases in which |e∗| = |ui+1b| and |e∗| = |ui+1s|.
Suppose that the farthest point from ui+1 inside R1 is b. We compute |ui+1b|. The equation of

k(p,m) is (x− |e| cosαi)
2 + (y − |e| sinαi)

2 = m2. Setting x = |ei| into such an equation we get the
y-coordinate of b, that is y = |e| sinαi −

√
m2 − |ei|2 + 2|ei||e| cosαi − |e|2 cos2 αi = |ui+1b|.

First, suppose that |ei| ≥ |e|. Then, |ui+1b|=|e| sinαi−
√

2|ei||e| cosαi − |e|2 cos2 αi ≤ |e| sinαi−√
2|e|2 cosαi − |e|2 cos2 αi ≤ |ei|(sinαi−

√
2 cosαi − cos2 αi). Studying the derivative of 2 cosαi−

cos2 αi, we get that such a function is monotonically decreasing with αi, hence |ui+1b| ≤ |ei|(sin 61
◦ −√

2 cos 61◦ − cos2 61◦) < 0.0176. Second, suppose that |e| ≥ |ei|. Then |ui+1b| = |e| sinαi −√
|e|2 − |ei|2 + 2|ei||e| cosαi − |e|2 cos2 αi ≤ |e| sinαi−

√
2|ei||e| cosαi − |e|2 cos2 αi ≤ |e| sinαi−√

3|e|2 cos2 αi = |e|(sinαi −
√
3 cosαi) ≤ |ei| sinαi−

√
3 cosαi

2 cosαi
, where we used twice |ei| ≥ 2|e| cosαi,

which holds by Lemma 5. Since tanαi is monotonically increasing with αi between 60
◦

and 61
◦
, we

get |ui+1b|
|ei| ≤ tan 61

◦

2 −
√
3
2 = 0.036.

Suppose that the farthest point from ui+1 inside R1 is s. We have that s ≡ (|ei| cos γ, |ei| sin γ),
where γ = ûi+1uis. Exactly as in the proof of Lemma 6, we derive γ ≤ αi − 60◦ ≤ 1

◦
. Hence,

|ui+1s| =
√

(|ei| sin γ)2 + (|ei| − |ei| cos γ)2 = |ei|
√
2− 2 cos γ ≤ |ei|

√
2− 2 cos 1◦ < 0.0175|ei|,

where we used the fact that cos γ is monotonically decreasing between 0
◦

and 1
◦
.

Suppose that 90
◦
< βi+1 ≤ 90.5

◦
. We claim that |e∗| is at most |ui+1t|, where t is the intersection

point of k(p,m) and the line ltan 89.5◦ through ui+1 with slope tan 89.5
◦
. First, p is to the left of

l(ui+1), since |e| cosαi < 2|e| cosαi ≤ |ei|, which holds by Lemma 5; further, by Lemma 10 (where
αi, k(p,m), and ltan 89.5◦ replace αi−1, k(v,m), and l(αi), resp.), ltan 89.5◦ intersects k(p,m) twice.
Denote by l

|
pui+1 the line orthogonal to pui+1 through the midpoint of pui+1. We have the following:

Claim 2 The distance between ui+1 and the intersection point h|(p, ui+1, tan 89.5
◦
) of l

|
pui+1 and

ltan 89.5
◦ is at most 0.66|ei−1|.

By Lemma 11 (where ui+1, k(p,m), and ltan 89.5◦ replace ui, k(v,m), and l(αi) ) the distance
between ui+1 and the highest intersection point of k(p,m) and ltan 89.5◦ is at least 1.604|ei−1|. Hence,
q is not above k(p,m), as otherwise it is above l

|
pui+1 , thus contradicting Lemma 1, and is not inside

k(p,m), again by Lemma 1. Then q is below k(p,m), and hence |e∗| is at most |ui+1t|. Then, we have:

Claim 3 If |e| ≥ |ei|, it holds |ui+1t|
|ei| < 0.056; if |ei| ≥ |e|, it holds |ui+1t|

|ei| < 0.0723.

Such a claim concludes the proof of the lemma. �
Next, we present a lemma asserting that if βi and β′

i are large enough, then all the edges incident to
ui have about the same length. Denote by ei−1, e1i , e2i , e3i , and e4i the clockwise or the counterclockwise
order of the edges incident to ui, where βi and β′

i are both incident to ei−1.

Lemma 15 Suppose that βi, β′
i ≥ 89.5◦. Then max{e2i , e3i , e4i } ≤ |e1i |

2 cos(240◦−(βi+β′
i))

≤ 1.032|e1i |.

Corollary 1 Suppose that αi−1 ≤ 61
◦

and that β′
i ≥ 89.5

◦
. Then, all the edges incident to ui and

different from ei−1 have length at most 0.1|ei−1|.

5 The proof of the area bound

In this section we prove that any MST embedding of T ∗ is such that, for each backbone vertex ui of C∗,
the outgoing angles of ui are either both small or one small and one large. As a consequence, we derive
a 2Ω(n) lower bound on the area requirements of any MST embedding of T ∗. Refer to the same notation
as in Section 4. Let k be the number of backbone vertices of C∗.
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Lemma 16 For each 0 ≤ i ≤ k−2, one of the following holds: (Condition 1): αi, α
′
i ≤ 61

◦
; (Condition

2): αi ≥ 89.5
◦
, α′

i ≤ 61
◦
, and Cl(ui) is in a bounded region Ri that is a subset of a wedge Wi with

angle 1
◦

centered at ui; (Condition 3): α′
i ≥ 89.5

◦
, αi ≤ 61

◦
, and Ccl(ui) is in a bounded region Ri

that is a subset of a wedge Wi with angle 1
◦

centered at ui.

Proof: The proof is by induction on i. In the base case i = 0 and, by Lemma 7, α0, α
′
0 ≤ 61

◦
, thus

Condition 1 holds. Next we discuss the inductive case.
Suppose that Condition 1 holds for i. By Lemma 6, we have βi+1, β

′
i+1 ≥ 89.5

◦
. By Corollary 1,

all the edges incident to ui+1 and different from ei have length at most |ei|/10. By Lemma 2, each of
the angles incident to ui+1 and different from βi+1 and β′

i+1 is at most 61
◦
. Hence, if ei+1 is in position

2 or 3, then Condition 1 holds for i+ 1. If ei+1 is in position 1 (that is αi+1 = βi+1), then α′
i+1 ≤ 61

◦
.

Moreover, by Lemma 6, β′
i+2 ≥ 89.5

◦
. Then, all the conditions of Lemma 12 are satisfied, namely

αi ≤ 61
◦
, β′

i+1, β
′
i+2 ≥ 89.5

◦
, and |ei+1| ≤ |ei|/10. Hence, Cl(ui+1) is in a bounded region Ri+1 that

is a subset of Wi+1 and thus Condition 2 holds for i+ 1. If ei+1 is in position 4, then a proof analogous
to the one for the case in which ei+1 is in position 1 shows that Condition 3 holds for i+ 1.

Suppose that Condition 2 holds for i (the case in which Condition 3 holds for i can be discussed
symmetrically). By Lemma 6, β′

i+1 ≥ 89.5
◦
. Hence, all the conditions of Lemma 13 are satisfied,

namely αi ≥ 89.5
◦
, β′

i+1 ≥ 89.5
◦
, and Cl(ui) is in a bounded region Ri that is a subset of a wedge Wi

with angle 1
◦

centered at ui. It follows that βi+1 ≥ 89.5
◦

and Cl(ui+1) is in a bounded region Ri+1 that
is a subset of a wedge Wi+1 with angle 1

◦
centered at ui+1. By Lemma 2, each angle incident to ui+1

and different from βi+1 and β′
i+1 is at most 61

◦
. Thus, if ei+1 is in position 2 or 3, then Condition 1 holds

for i+1, and if ei+1 is in position 1, then Condition 2 holds for i+1. Suppose that ei+1 is in position 4.
Since each angle incident to ui+1 and different from βi+1 and β′

i+1 is at most 61
◦
, it holds αi+1 ≤ 61

◦

and then, by Lemma 6, βi+2 ≥ 89.5
◦
. Since βi+1, β

′
i+1 ≥ 89.5

◦
, by Corollary 1 all the edges incident

to ui+1 and different from ei have length at most |ei|/10. Then, all the conditions of the symmetric of
Lemma 12 are satisfied, namely α′

i ≤ 61
◦
, βi+1, βi+2 ≥ 89.5

◦
, and |ei+1| ≤ |ei|/10. Hence, Ccl(ui+1)

is in a bounded region Ri+1 that is a subset of Wi+1 and thus Condition 3 holds for i+ 1. �

Theorem 1 Any MST embedding of T ∗ has 2Ω(n) area.

Proof: Since the complete tree Tc has constant degree and constant height, then each caterpillar,
and in particular C∗, has k = Ω(n) backbone vertices. By Lemmata 6, 13, and 16, the incoming angles
βi and β′

i are both larger than 89.5
◦
, for each 1 ≤ i ≤ k − 1. By Corollary 1, |ei+1| ≤ |ei|

10 , for each
0 ≤ i ≤ k − 1. Hence |e1|

|ek| ≥ 10k−1 = 2Ω(n). The theorem follows by observing that, in any MST

embedding of the root of Tc and of its children, both dimensions have size at least sin 30
◦
= 0.5. �

6 Conclusions

In this paper we have shown trees requiring exponential area in any MST embedding, thus settling a
20-years-old problem proposed by Monma and Suri [12]. The actual conjecture of Monma and Suri
states that both coordinate directions of any MST embedding of certain trees have exponential length.
However, we believe that some further geometric considerations on the tree T ∗ we presented in this paper
can lead to completely settle the Monma and Suri’s conjecture. Observe that the area requirements of
the MST embeddings constructed by the algorithm presented by Monma and Suri is 2Ω(n2), while no
2O(n)-area MST embeddings are known to exist for all n-vertex degree-5 trees. We believe that such a
gap can be closed by further improving our exponential lower bound, as in the following.

Conjecture 1 Every MST embedding of T ∗ has 2Ω(n2) area.
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Appendix: Omitted Proofs

In this Appendix we present proofs that have been omitted in the main text.
We start with the proof of Lemma 7. In order to do that, we first need the following auxiliary lemma.

Lemma 17 There exists two consecutive angles τ1 and τ2 incident to r such that τ1 + τ2 ≤ 150◦ and
τ1, τ2 ≤ 80◦.

Proof: If two among the angles incident to r are greater than 80◦, then the other three angles sum
up to less than 200◦. Hence, by Lemma 2, each of them is at most 80◦ and any two of them sum up to at
most 140◦. Since two of such three angles are consecutive, the lemma follows.

If at most one among the angles incident to r is greater than 80◦, then the other four angles are each
at most 80◦ and, by Lemma 2, they sum up to at most 300◦. Such four angles can be subdivided into two
pairs of consecutive angles; since one of such pairs has angles summing up to at most 150◦, the lemma
follows. �

Lemma 7. There exists a vertex u of Tc with depth five such that two angles consecutively incident to u
and not adjacent to the edge from u to its parent sum up to at most 121◦.

r

τ1

τ2
δ2

δ1

γ2

γ1 v6v5v4v3v2

v1

Figure 7: Tree Tc.

Proof: Refer to Fig. 7. Given an edge (u, v), where both u and v are not leaves of Tc, consider the
edge (u, u1) that immediately precedes (u, v) in the clockwise (counterclockwise) order of the edges in-
cident to u. Consider the edge (v, v1) that immediately precedes (v, u) in the counterclockwise (clock-
wise, resp.) order of the edges incident to v. Then, û1uv is opposite to v̂1vu with respect to (u, v).
By Lemma 17, there exists two consecutive angles τ1 and τ2 incident to r such that τ1 + τ2 ≤ 150◦

and τ1, τ2 ≤ 80◦. Denote by v1 the neighbor of r such that edge (r, v1) is adjacent to τ1 and τ2. By
Lemma 6, the angles opposite to τ1 and τ2 with respect to (r, v1), say δ1 and δ2, satisfy δ1 ≥ 120◦−τ1/2
and δ2 ≥ 120◦ − τ2/2. Hence, δ1 + δ2 ≥ 240◦ − (τ1 + τ2)/2 ≥ 240◦ − 75◦ = 165◦. Denote by γ1,
γ2, and γ3 the angles incident to v1 different from δ1 and δ2 in this clockwise order. Then, we have
γ1 + γ2 ≤ 135◦, since γ1 + γ2 + γ3 ≤ 195◦ and γ3 ≥ 60◦. Observe that, since γ1, γ2 ≥ 60◦, we have
γ1, γ2 ≤ 75◦. Next, consider the edge (v1, v2) adjacent to γ1 and γ2. The two angles incident to v2 and
opposite to γ1 and γ2 sum up to at least 240◦ − 135◦/2 = 172.5◦. Hence, any two angles consecutively
incident to v2 and not adjacent to (v1, v2) sum up to at most 127.5◦. Such an argument propagates along
any path from v1 to a leaf. Thus, there exists a path (r, v1, v2, v3, v4, v5, v6) such that the two angles
incident to v1, v2, v3, v4, and v5 adjacent to edge (v1, v2), (v2, v3), (v3, v4), (v4, v5), and (v5, v6), resp.,
sum up to at most 135◦, 127.5◦, 123.75◦, 121.875◦, and 120.93875◦, respectively. The lemma follows
with u = v5. �

Next, we prove the auxiliary lemmata for Lemma 12, that is, we prove Lemmata 8–11.

Lemma 8. Suppose that αi−1 ≤ 61
◦
. Then, s is not to the left of l(αi).

Proof: The statement can be proved using exactly the same considerations as in the proof of
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Lemma 6. Namely, a lower bound of 120
◦ − αi−1

2 for the slope of the line through ui and s can be
computed exactly as in Lemma 6. Since αi−1 ≤ 61

◦
, the statement follows. �

Lemma 9. Suppose that β′
i ≥ 89.5

◦
. Then vertex ui+1 is not to the right of l(αi).

Proof: By Lemma 2 the three angles incident to ui and different from βi and β′
i sum up to at least

180
◦
. The lemma follows by the assumption that β′

i ≥ 89.5
◦
. �

Lemma 10. Suppose that αi−1 ≤ 61
◦
. Then, k(v,m) intersects l(αi) twice.

Proof: We prove that l(αi) intersects k(v,m) twice. Suppose, w.l.o.g. up to a translation of the
coordinate system that ui−1 has coordinates (0, 0). Then k(v,m) has equation (y − |e| sinαi−1)

2 +
(x − |e| cosαi−1)

2 = m2 and l(αi) has equation y = tan 89.5
◦
(x − |ei−1|). Substituting the second

equation into the first one, we get that the x-coordinates of the intersections of k(v,m) and l(αi) satisfy
x2 tan2 89.5

◦
+ |ei−1|2 tan2 89.5

◦
+ |e|2 sin2 αi−1 − 2|ei−1|x tan2 89.5

◦ − 2|e|x tan 89.5◦
sinαi−1 +

2|ei−1||e| tan 89.5
◦
sinαi−1 + x2 + |e|2 cos2 αi−1 − 2|e|x cosαi−1 = m2. Simplifying the previous

equation we get (tan2 89.5
◦
+ 1)x2 − 2(|ei−1| tan2 89.5

◦
+ |e| tan 89.5◦

sinαi−1 + |e| cosαi−1)x +
|ei−1|2 tan2 89.5

◦
+2|ei−1||e| tan 89.5

◦
sinαi−1+ |e|2−m2 = 0. Thus l(αi) intersects k(v,m) twice if

and only if (|ei−1| tan2 89.5
◦
+|e| tan 89.5◦

sinαi−1+|e| cosαi−1)
2−(tan2 89.5

◦
+1)(|ei−1|2 tan2 89.5

◦
+

2|ei−1||e| tan 89.5
◦
sinαi−1 + |e|2 −m2) ≥ 0. To prove that the last inequality holds, we distinguish

two cases, namely the one in which |e| ≥ |ei−1| and the one in which |ei−1| ≥ |e|.
First, suppose that |e| ≥ |ei−1|, that is, m = |e|. Then, we have to prove that (|ei−1| tan2 89.5

◦
+

|e| tan 89.5◦
sinαi−1+|e| cosαi−1)

2−(tan2 89.5
◦
+1)(|ei−1|2 tan2 89.5

◦
+2|ei−1||e| tan 89.5

◦
sinαi−1)

≥ 0, that is, |ei−1|2 tan4 89.5
◦
+|e|2 tan2 89.5◦

sin2 αi−1+|e|2 cos2 αi−1+2|ei−1||e| tan3 89.5
◦
sinαi−1+

2|ei−1||e| tan2 89.5
◦
cosαi−1+2|e|2 tan 89.5◦

sinαi−1 cosαi−1−|ei−1|2 tan4 89.5
◦−|ei−1|2 tan2 89.5

◦−
2|ei−1||e| tan3 89.5

◦
sinαi−1 − 2|ei−1||e| tan 89.5

◦
sinαi−1 ≥ 0. Simplifying the previous one and us-

ing |e| ≥ |ei−1| and 2|e| cosαi−1 ≤ |ei−1| (by Lemma 5), we get that, in order to prove the previous in-
equality, it suffices to prove that |ei−1|2 tan2 89.5

◦
sin2 αi−1+|ei−1|2 cos2 αi−1+2|ei−1|2 tan2 89.5

◦
cosαi−1+

2|ei−1|2 tan 89.5
◦
sinαi−1 cosαi−1 − |ei−1|2 tan2 89.5

◦ − 4|ei−1|2 tan 89.5
◦
sinαi−1 cosαi−1 ≥ 0.

Moreover, since sin 60
◦ ≤ sinαi−1 ≤ sin 61

◦
and cos 61

◦ ≤ cosαi−1 ≤ cos 60
◦

(by hypothesis and by
Lemma 2), we get that the previous inequality is implied by |ei−1|2(tan2 89.5

◦
sin2 60

◦
+ cos2 61

◦
+

2 tan2 89.5
◦
cos 61

◦
+2 tan 89.5

◦
sin 60

◦
cos 61

◦−tan2 89.5
◦−4 tan 89.5

◦
sin 61

◦
cos 60

◦
) > 9345|ei−1|2 >

0. Thus, if |e| ≥ |ei−1| then l(αi) intersects k(v,m) twice.
Second, suppose that |ei−1| ≥ |e|, that is, m = |ei−1|. Then, we have to prove that (|ei−1| tan2 89.5

◦
+

|e| tan 89.5◦
sinαi−1+|e| cosαi−1)

2−(tan2 89.5
◦
+1)(|ei−1|2 tan2 89.5

◦
+2|ei−1||e| tan 89.5

◦
sinαi−1+

|e|2 − |ei−1|2) ≥ 0, that is, |ei−1|2 tan4 89.5
◦
+ |e|2 tan2 89.5◦

sin2 αi−1 + |e|2 cos2 αi−1 +
2|ei−1||e| tan3 89.5

◦
sinαi−1 + 2|ei−1||e| tan2 89.5

◦
cosαi−1 + 2|e|2 tan 89.5◦

sinαi−1 cosαi−1 −
|ei−1|2 tan4 89.5

◦ −|ei−1|2 tan2 89.5
◦ −2|ei−1||e| tan3 89.5

◦
sinαi−1−2|ei−1||e| tan 89.5

◦
sinαi−1−

|e|2 tan2 89.5◦ − |e|2 + |ei−1|2 tan2 89.5
◦
+ |ei−1|2 ≥ 0. Simplifying the previous one and using |e| ≤

|e1| and |e| ≥ 2|e1| cosαi−1 (by Lemma 5), we get that, in order to prove the previous inequality, it suf-
fices to prove that 4|ei−1|2 tan2 89.5

◦
sin2 αi−1 cos

2 αi−1+4|ei−1|2 cos4 αi−1+4|ei−1|2 tan2 89.5
◦
cos2 αi−1+

8|ei−1|2 tan 89.5
◦
sinαi−1 cos

3 αi−1−|ei−1|2 tan2 89.5
◦−2|ei−1|2 tan 89.5

◦
sinαi−1−|ei−1|2 tan2 89.5

◦−
|ei−1|2+ |ei−1|2 tan2 89.5

◦
+ |ei−1|2 ≥ 0. Moreover, since sin 60

◦ ≤ sinαi−1 ≤ sin 61
◦

and cos 61
◦ ≤

cosαi−1 ≤ cos 60
◦

(by hypothesis and by Lemma 2), we get that the previous inequality is implied by
|ei−1|2(4 tan2 89.5

◦
sin2 60

◦
cos2 61

◦
+4 cos4 61

◦
+4 tan2 89.5

◦
cos2 61

◦
+8 tan 89.5

◦
sin 60

◦
cos3 61

◦−
tan2 89.5

◦ − 2 tan 89.5
◦
sin 61

◦
) ≥ 8363|ei−1|2 > 0. Thus, even if |ei−1| ≥ |e| then l(αi) intersects

k(v,m) twice. �

Lemma 11. The distance between ui and hαi is at least 1.604|ei−1|.
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Proof: By the proof of Lemma 10, we have that the intersection points of k(v,m) with l(αi) satisfy
(tan2 89.5

◦
+1)x2−2(|ei−1| tan2 89.5

◦
+ |e| tan 89.5◦

sinαi−1+ |e| cosαi−1)x+ |ei−1|2 tan2 89.5
◦
+

2|ei−1||e| tan 89.5
◦
sinαi−1 + |e|2 − m2 = 0. To lower bound the distance between ui and hαi we

distinguish two cases, namely the one in which |e| ≥ |ei−1| and the one in which |ei−1| ≥ |e|.
First, suppose that |e| ≥ |ei−1|. By the computation in the proof of Lemma 10, the discrimi-

nant of the equation describing the x-coordinates of the intersections of k(v,m) with l(αi) is at least
9345|ei−1|2. Hence, since sin 60

◦ ≤ sinαi−1 ≤ sin 61
◦

and cos 61
◦ ≤ cosαi−1 ≤ cos 60

◦
(by hy-

pothesis and by Lemma 2) and since |e| ≥ |ei−1| and 2|e| cosαi−1 ≤ |ei−1| (by Lemma 5), we get that

hαi has x-coordinate which is at least |ei−1| tan2 89.5
◦
+|ei−1| tan 89.5

◦
sin 60

◦
+|ei−1| cos 61

◦
+|ei−1|

√
9345

tan2 89.5
◦
+1

>

1.014|ei−1|. Plugging such a lower bound into the equation y = tan 89.5
◦
(x − |ei−1|) of l(αi) we get

that the y-coordinate of hαi is at least 1.604|ei−1|. Hence, the distance between hαi and ui is at least
|ei−1|

√
(1.604)2 + (0.014)2 > 1.604|ei−1|.

Second, suppose that |ei−1| ≥ |e|. By the computation in the proof of Lemma 10, the discrimi-
nant of the equation describing the x-coordinates of the intersections of k(v,m) with l(αi) is at least
8363|ei−1|2. Hence, since sin 60

◦ ≤ sinαi−1 ≤ sin 61
◦

and cos 61
◦ ≤ cosαi−1 ≤ cos 60

◦
(by hypothe-

sis and by Lemma 2) and since |e| ≤ |ei−1| and |e| ≥ 2|ei−1| cosαi−1 (by Lemma 5), we get that hαi has

x-coordinate which is at least |ei−1| tan2 89.5
◦
+2|ei−1| tan 89.5

◦
sin 60

◦
cos 61

◦
+2|ei−1| cos2 61

◦
+|ei−1|

√
8363

tan2 89.5◦+1
>

1.014|ei−1|. Again, this yields a 1.604|ei−1| lower bound for the y-coordinate of hαi and to a 1.604|ei−1|
lower bound for the the distance between hαi and ui. �

Next, we prove the claims formulated in the proof of Lemma 14.

Claim 1. The intersection of l|pui+1 and l(ui+1) is below h.

Proof: As computed in the proof of Claim 2, l|pui+1 has equation y − |e| sinαi

2 = |ei|−|e| cosαi

|e| sinαi
(x −

|e| cosαi+|ei|
2 ). Intersecting such a line with l(ui+1), that has equation x = |ei|, we get y = |e| sinαi

2 +
|ei|2

|e| sinαi
− |ei||e| cosαi

|e| sinαi
− |ei||e| cosαi

2|e| sinαi
− |ei|2

2|e| sinαi
+ |e|2 cos2 αi

2|e| sinαi
+ |ei||e| cosαi

2|e| sinαi
. Simplifying the previous for-

mula, the y-coordinate of the intersection of l|pui+1 with l(ui+1) is y = |e|2+|ei|2−2|ei||e| cosαi

2|e| sinαi
. Next, we

compute the intersection of k(p,m) with l(ui+1). The equation of k(p,m) is (x− (|e| cosαi))
2 + (y−

(|e| sinαi))
2 = m2. Intersecting such a curve with x = |ei| we get y2 − 2|e|y sinαi + |e|2 + |ei|2 −

2|ei||e| cosαi = m2, that is, the y-coordinate of h is y = |e| sinαi +√
|e|2 sin2 αi − |e|2 − |ei|2 +m2 + 2|ei||e| cosαi. Suppose that |e| ≥ |ei|, that is, m = |e|. Then,

in order to prove that l|pui+1 intersects l(ui+1) below h, we have to show that |e|2+|ei|2−2|ei||e| cosαi

2|e| sinαi
<

|e| sinαi +
√

|e|2 sin2 αi − |ei|2 + 2|ei||e| cosαi. Since |e| ≥ |ei| and 2|e| cosαi ≤ |ei| (by Lemma 5)
and since sinαi ≥ sin 60

◦
and cosαi ≥ cos 61

◦
(by hypothesis and by Lemma 2), we get |e|2+|ei|2−2|ei||e| cosαi

2|e| sinαi
≤

|e|2+|e2|−4|e|2 cos2 αi

2|e| sinαi
= |e|−2|e| cos2 αi

sinαi
≤ |e|1−2 cos2 61

◦

sin 60
◦ < 0.61189|e|. On the other hand, |e| sinαi +√

|e|2 sin2 αi − |ei|2 + 2|ei||e| cosαi ≥ |e| sinαi+
√

|e|2 sin2 αi − |e|2 + 4|e|2 cos2 αi ≥ |e| sin 60◦
+√

|e|2 sin2 60◦ − |e|2 + 4|e|2 cos2 61◦ = |e|(sin 60◦
+

√
sin2 60◦ − 1 + 4 cos2 61◦ > 1.6967|e|. Thus,

if |e| ≥ |ei| then l
|
pui+1 intersects l(ui+1) below h. Next, suppose that |ei| ≥ |e|, that is, m = |ei|. Then,

in order to prove that l|pui+1 intersects l(ui+1) below h, we have to show that |e|2+|ei|2−2|ei||e| cosαi

2|e| sinαi
<

|e| sinαi +
√

|e|2 sin2 αi − |e|2 + 2|ei||e| cosαi. Since |ei| ≥ |e| and 2|ei| cosαi ≤ |e| (by Lemma 5)
and since sinαi ≥ sin 60

◦
and cosαi ≥ cos 61

◦
(by hypothesis and by Lemma 2), we get |e|2+|ei|2−2|ei||e| cosαi

2|e| sinαi
≤

|ei|2+|ei|2−4|ei|2 cos2 αi

4|ei| cosαi sinαi
= |ei|−2|ei| cos2 αi

2 cosαi sinαi
≤ |ei| 1−2 cos2 61

◦

2 cos 61◦ sin 60◦
< 0.6311|ei|. On the other hand, |e| sinαi+√

|e|2 sin2 αi − |e|2 + 2|ei||e| cosαi ≥ 2|ei| sinαi cosαi+
√

4|ei|2 cos2 αi sin
2 αi − |ei|2 + 4|ei|2 cos2 αi ≥

2|ei| sin 60
◦
cos 61

◦
+

√
4|ei|2 sin2 60◦ cos2 61◦ − |ei|2 + 4|ei|2 cos2 61◦ = |ei|(2 sin 60

◦
cos 61

◦
+
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√
4 sin2 60◦ cos2 61◦ − 1 + 4 cos2 61◦) > 1.643|ei|. Thus, even if |ei| ≥ |e| then l

|
pui+1 intersects

l(ui+1) below h. �

Claim 2. The distance between ui+1 and the intersection point h|(p, ui+1, tan 89.5
◦
) of l|pui+1 and

ltan 89.5
◦ is at most 0.66|ei−1|.

Proof: First, we derive the equation of l|pui+1 . Such a line passes through the midpoint of pui+1,
that has coordinates ( |e| cosαi+|ei|

2 , |e| sinαi

2 ). Moreover, l|pui+1 is orthogonal to the line through v and

ui+1, that has equation y = x|e| sinαi−|ei||e| sinαi

|e| cosαi−|ei| . Hence, the slope of l
|
pui+1 is |ei|−|e| cosαi

|e| sinαi
. Then,

l
|
pui+1 has equation y − |e| sinαi

2 = |ei|−|e| cosαi

|e| sinαi
(x− |e| cosαi+|ei|

2 ). Second, the equation of l(αi) is y =

tan 89.5
◦
(x−|ei|). Intersecting such two lines we get tan 89.5

◦
(x−|ei|) = |e| sinαi

2 + |ei|−|e| cosαi

|e| sinαi
(x−

|e| cosαi+|ei|
2 ), that is x =

tan 89.5
◦ |ei|+

|e| sinαi
2

+
(|ei|−|e| cosαi)(−|e| cosαi−|ei|)

2|e| sinαi

tan 89.5
◦
+

|e| cosαi−|ei|
|e| sinαi

=
tan 89.5

◦ |ei|+
|e| sinαi

2
+

|e|2 cos2 αi−|ei|
2

2|e| sinαi

tan 89.5
◦
+

|e| cosαi−|ei|
|e| sinαi

.

Suppose that |e| ≥ |ei|. Then, by Lemma 5, e ≤ |ei|
2 cosαi

. Using the last two inequalities we get

x ≤
tan 89.5

◦ |ei|+
|ei| sinαi
4 cosαi

+
|ei|

2

4 −|ei|
2

|ei| sinαi
cosαi

tan 89.5
◦
+

|ei| cosαi−|ei|
|ei| sinαi

=
tan 89.5

◦
+

tanαi
4

− 3
4 tanαi

tan 89.5◦− 1−cosαi
sinαi

|ei|. Next, exploiting sin 60
◦ ≤ sinαi ≤

sin 61
◦
, tan 60

◦ ≤ tanαi ≤ tan 61
◦
, and cos 61

◦ ≤ cosαi ≤ cos 60
◦

(which hold by assumption

and by Lemma 2), we get x ≤
tan 89.5

◦
+ tan 61

◦

4
− 3

4 tan 61
◦

tan 89.5◦− 1−cos 61
◦

sin 60
◦

|ei| < 1.0056|ei|. Hence, the y-coordinate

of h|(v, ui+1, αi) is y ≤ tan 89.5
◦
(1.0056|ei| − |ei|) < 0.642|ei|. Finally, the distance between

h|(v, ui+1, αi) and ui+1 is at most
√

(0.642)2 + (0.0056)2|ei| < 0.6421|ei|, thus proving the claim
in the case in which |e| ≥ |ei|.

Suppose that |e| ≤ |ei|. Then, by Lemma 5, e ≥ 2|ei| cosαi. Using the last two inequalities we

get x ≤
tan 89.5

◦ |ei|+
|ei| sinαi

2
+

|ei|
2 cos2 αi−|ei|

2

2|ei| sinαi

tan 89.5◦+
2|ei| cos2 αi−|ei|
2|ei| sinαi cosαi

. Next, exploiting sin 60
◦ ≤ sinαi ≤ sin 61

◦
, tan 60

◦ ≤

tanαi ≤ tan 61
◦
, and cos 61

◦ ≤ cosαi ≤ cos 60
◦

(which hold by assumption and by Lemma 2),

we get x ≤
tan 89.5

◦
+ sin 61

◦

2
− 1−cos2 60

◦

2 sin 61
◦

tan 89.5◦− 1−2 cos2 61
◦

2 sin 60
◦

cos 61
◦

|ei| < 1.0057|ei|. Hence, the y-coordinate of h|(v, ui+1, αi) is

y ≤ tan 89.5
◦
(1.0057|ei| − |ei|) < 0.654|ei|. Finally, the distance between h|(v, ui+1, αi) and ui+1 is

at most
√

(0.654)2 + (0.0057)2|ei| < 0.655|ei|, thus proving the claim in the case in which |e| ≤ |ei|.
�

Claim 3. If |e| ≥ |ei|, it holds |ui+1t|
|ei| < 0.056; if |ei| ≥ |e|, it holds |ui+1t|

|ei| < 0.0723.

Proof: Suppose that |e| ≥ |ei|. Then we have m = |e|. The x-coordinate of t satisfies (tan2 89.5
◦
+

1)x2−2(|ei| tan2 89.5
◦
+|e| tan 89.5◦

sinαi+|e| cosαi)x+|ei|2 tan2 89.5
◦
+2|ei||e| tan 89.5

◦
sinαi+

|e|2 − |e|2 = 0 (see the proof of Lemma 10), that yields x = |ei| tan2 89.5
◦
+|e| tan 89.5

◦
sinαi+|e| cosαi

tan2 89.5◦+1
±

√
(|ei| tan2 89.5◦+|e| tan 89.5◦ sinαi+|e| cosαi)2−(tan2 89.5◦+1)(|ei|2 tan2 89.5◦+2|ei||e| tan 89.5◦ sinαi)

tan2 89.5
◦
+1

. Simplifying
the last equation and observing that the x-coordinate of t is the smallest of the two x-coordinates solving

such an equation, we get x = |ei| tan2 89.5
◦
+|e| tan 89.5

◦
sinαi+|e| cosαi

tan2 89.5
◦
+1

−
√

|e|2 tan2 89.5◦ sin2 αi+|e|2 cos2 αi+2|ei||e| tan2 89.5◦ cosαi+2|e|2 tan 89.5◦ sinαi cosαi−|ei|2 tan2 89.5◦−2|ei||e| tan 89.5◦ sinαi

tan2 89.5
◦
+1

.

Using |ei| ≤ |e| ≤ |ei|
2 cosαi

, cos 61
◦ ≤ cosαi ≤ cos 60

◦
, sin 60

◦ ≤ sinαi ≤ sin 61
◦
, and tan 60

◦ ≤
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tanαi ≤ tan 61
◦

we get x ≤ |ei| tan2 89.5
◦
+

|ei| tan 89.5
◦

tan 61
◦

2
+

|ei|
2

tan2 89.5
◦
+1

−
|ei|

√
tan2 89.5◦ sin2 60◦+cos2 61◦+2 tan2 89.5◦ cos 61◦+2 tan 89.5◦ sin 60◦ cos 61◦−tan2 89.5◦−tan 89.5◦ tan 61◦

tan2 89.5
◦
+1

<
13234.420437−96.637136

13131.5587 |ei| < 1.00048|ei|. Hence, the y-coordinate of t is at most tan 89.5
◦
(1.00048|ei|−

|ei|) < 0.055|ei|. It follows that |ui+1t|
|ei| ≤

√
0.000482 + 0.0552 < 0.056.

Suppose that |ei| ≥ |e|. Then we have m = |ei|. The x-coordinate of t satisfies (tan2 89.5
◦
+1)x2−

2(|ei| tan2 89.5
◦
+|e| tan 89.5◦

sinαi+|e| cosαi)x+|ei|2 tan2 89.5
◦
+2|ei||e| tan 89.5

◦
sinαi+|e|2−

|ei|2 = 0 (see the proof of Lemma 10). Solving with respect to x, observing that the x-coordinate
of t is the smallest of the two x-coordinates solving the previous equation, and using |e| ≤ |ei| ≤

|e|
2 cosαi

, cos 61
◦ ≤ cosαi ≤ cos 60

◦
, sin 60

◦ ≤ sinαi ≤ sin 61
◦
, and tan 60

◦ ≤ tanαi ≤ tan 61
◦
,

analogously to the case in which |e| ≥ |ei| we get x < 1.00063|ei|. Hence, the y-coordinate of t is
at most tan 89.5

◦
(1.00063|ei| − |ei|) < 0.0722|ei|. It follows that |ui+1t|

|ei| ≤
√
0.000632 + 0.07222 <

0.0723. �
Finally, we prove Lemma 15.

Lemma 15. Suppose that βi, β′
i ≥ 89.5◦. Then max{e2i , e3i , e4i } ≤ |e1i |

2 cos(240◦−(βi+β′
i))

≤ 1.032|e1i |.

Proof: Denote by γ1, γ2, and γ3 the angles delimited by edges e1i and e2i , by edges e2i and e3i ,
and by edges e3i and e4i , respectively. Observe that βi + β′

i ≥ 179◦, by the lemma’s hypotheses, hence
γ1+γ2+γ3 ≤ 181◦. By Lemma 2, γ1, γ2, γ3 ≥ 60◦, hence we have βi+β′

i ≤ 180◦, γi ≤ 240
◦−(βi+β′

i),
with i ∈ {1, 2, 3}, and γi+γj ≤ 300

◦ − (βi+β′
i), with i, j ∈ {1, 2, 3} and i ̸= j. Further, by Lemma 5,

we have |e2i | ≤
|e1i |

2 cos γ1
, |e3i | ≤

|e1i |
4 cos γ1 cos γ2

, and |e4i | ≤
|e1i |

8 cos γ1 cos γ2 cos γ3
.

The second inequality directly comes from the fact that cos(240◦ − (βi + β′
i)) ≥ cos 61◦ > 0.484,

hence |e1i |
2 cos(240

◦−(βi+β′
i))

≤ 1.032|e1i |.

We prove the first inequality. First, |e2i | ≤
|e1i |

2 cos(240◦−(βi+β′
i))

directly comes from |e2i | ≤
|e1i |

2 cos γ1
and

from γ1 ≤ 240
◦ − (βi + β′

i).

Second, to prove |e3i | ≤
|e1i |

2 cos(240
◦−(βi+β′

i))
, we use |e3i | ≤

|e1i |
4 cos γ1 cos γ2

and we argue that |e1i |
4 cos γ1 cos γ2

≤
|e1i |

2 cos(240◦−(βi+β′
i))

. Observe that |e1i |
4 cos γ1 cos γ2

≤ |e1i |
2 cos(240◦−(βi+β′

i))
is equivalent to 2 cos γ1 cos γ2 ≥

cos(240
◦ − (βi + β′

i)). Hence, we study the minimum value of cos γ1 cos γ2. Observe that cos γi is a
function decreasing with γi when 0 ≤ γi ≤ 90

◦
, hence, in order to minimize cos γ1 cos γ2, we can as-

sume that γ3 = 60
◦

and thus γ2 = (300−βi−β′
i)−γ1. The derivative of cos γ1 cos((300−βi−β′

i)−γ1)
with respect to γ1 is − sin γ1 cos((300−βi−β′

i)−γ1)+cos γ1 sin((300−βi−β′
i)−γ1) = sin((300−

βi − β′
i) − 2γ1). Hence, such a derivative is positive when 60

◦ ≤ γ1 <
300−βi−β′

i
2 , is null when

γ1 =
300−βi−β′

i
2 , and is negative when 300−βi−β′

i
2 < γ1 ≤ (240 − βi − β′

i). Thus, the minimum of
cos γ1 cos γ2 is achieved either when γ1 = 60

◦
and γ2 = 240−βi−β′

i or when γ1 = 240−βi−β′
i and

γ2 = 60
◦
. Thus, we get 2 cos γ1 cos γ2 ≥ cos(240

◦ − (βi + β′
i)).

Third, to prove that |e4i | ≤ |e1i |
2 cos(240

◦−(βi+β′
i))

, we use |e4i | ≤ |e1i |
8 cos γ1 cos γ2 cos γ3

and we argue

that |e1i |
8 cos γ1 cos γ2 cos γ3

≤ |e1i |
2 cos(240◦−(βi+β′

i))
. Similarly to the previous proof, it suffices to show that

4 cos γ1 cos γ2 cos γ3 ≥ cos(240
◦−(βi+β′

i)). Hence, we study the minimum value of cos γ1 cos γ2 cos γ3.
Suppose that γ3 is fixed to be any angle such that 60

◦ ≤ γ3 ≤ 240
◦−(βi+β′

i). Then, analogously to the
previous proof, it can be shown that the minimum value of cos γ1 cos γ2 is achieved when one between
γ1 and γ2, say γ1, is 60◦, while the other one, say γ2, is 300− βi − β′

i − γ3. Hence, cos γ1 cos γ2 cos γ3
is minimized when cos γ2 cos γ3 is minimized. Then, analogously to the previous proof, it can be shown
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that the minimum value of cos γ2 cos γ3 is achieved when one between γ2 and γ3, say γ2, is 60◦, while
the other one, say γ3, is 240− βi − β′

i. Thus, we get 4 cos γ1 cos γ2 cos γ3 ≥ cos(240
◦ − (βi + β′

i)). �
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