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Abstract

Given a geometric hypergraph (or a range-space) H = (V, E), a coloring of its vertices is
said to be conflict-free if for every hyperedge S ∈ E there is at least one vertex in S whose
color is distinct from the colors of all other vertices in S. The study of this notion is motivated
by frequency assignment problems in wireless networks. We study the list-coloring (or choice)
version of this notion. In this version, each vertex is associated with a set of (admissible) colors
and it is allowed to be colored only with colors from its set. List coloring arises naturally in the
context of wireless networks.

Our main result is a list coloring algorithm based on a new potential method. The algorithm
produces a stronger unique-maximum coloring, in which colors are positive integers and the
maximum color in every hyperedge occurs uniquely. As a corollary, we provide asymptotically
sharp bounds on the size of the lists required to assure the existence of such unique-maximum
colorings for many geometric hypergraphs (e.g., discs or pseudo-discs in the plane or points with
respect to discs). Moreover, we provide an algorithm, such that, given a family of lists with the
appropriate sizes, computes such a coloring from these lists.
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1 Introduction and preliminaries

Before introducing our results, let us start with several definitions and notations that will be used
throughout the paper.

Definition 1.1. Let H = (V, E) be a hypergraph and let C be a coloring C : V → N:

• We say that C is a proper coloring if for every hyperedge S ∈ E with |S| ≥ 2 there exist two
vertices u, v ∈ S such that C(u) 6= C(v). That is, every hyperedge with at least two vertices
is non-monochromatic.

• We say that C is a conflict-free coloring (cf-coloring in short) if for every hyperedge S ∈ E
there exists a color i ∈ N such that |S ∩ C−1(i)| = 1. That is, every hyperedge S ∈ E contains
some vertex whose color is unique in S.

• We say that C is a unique-maximum coloring (um-coloring in short) if for every hyperedge
S ∈ E , |S ∩ C−1(maxv∈S C(v))| = 1. That is, in every hyperedge S ∈ E the maximum color
in S is unique in S.

We denote by χ(H), χcf(H), χum(H) the minimum integer k for which H admits a proper, a
conflict-free, a unique-maximum coloring, respectively, with a total of k colors. Obviously, every
um-coloring of H is a cf-coloring of H which is also a proper coloring of H, but the converse is not
necessarily true. Thus, we have: χ(H) ≤ χcf(H) ≤ χum(H).

Conflict-free coloring. The study of cf-coloring was initiated in [17] and [27] and was further
studied in many settings (see, e.g., [1, 2, 5, 6, 10, 11, 12, 18, 22, 25, 26]). The study was initially
motivated by its application to frequency assignment for cellular networks. A cellular network
consists of two kinds of nodes: base stations and mobile clients. Base stations have fixed positions
and provide the backbone of the network; they can be modeled, say, as discs in the plane that
represent the area covered by each base station’s antenna. Every base station emits at a fixed
frequency. If a client wants to establish a link with a base station, it has to tune itself to the base
station’s frequency. Clients, however, can be in the range of many different base stations. To avoid
interference, the system must assign frequencies to base stations in the following way: For any point
p in the plane (representing a possible location of a client), there must be at least one base station
which covers p and with a frequency that is not used by any other base station covering p. Since
frequencies are limited and costly, a scheme that reuses frequencies, where possible, is desirable.
Let us formulate this in the language of hypergraph coloring. Let D be the set of discs representing
the antennas. We thus seek the minimum number of colors k such that one can assign each disc
with one of the k colors so that in every point p in the union of the discs in D, there is at least one
disc d ∈ D that covers p and whose color is distinct from all the colors of other discs containing p.
This is equivalent to finding the cf-chromatic number of a certain hypergraph H = H(D) whose
vertex set is D and whose hyperedges are defined by the Venn diagram of D. Below, we give a
formal definition for H(D).

Geometric hypergraphs. Let P be a set of n points in the plane and let R be a family of
regions in the plane (such as all discs, all axis-parallel rectangles, etc.). We denote by H = HR(P )
the hypergraph on the set P whose hyperedges are all subsets P ′ that can be cut off from P by a
region in R. That is, all subsets P ′ such that there exists some region r ∈ R with r ∩ P = P ′. We
refer to such a hypergraph as the hypergraph induced by P with respect to R.
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For a finite family R of planar regions, we denote by H(R) the hypergraph whose vertex set is
R and whose hyperedge set is the family {Rp | p ∈ R2} where Rp ⊆ R is the subset of all regions
in R that contain p. We refer to such a hypergraph as the hypergraph induced by R.

Consider, for example, the (infinite) family D of all discs in the plane. In [17], it was proved
that for any finite set P of n points, we have χcf(HD(P )) = O(log n). Similar questions can be
asked for other families of geometric hypergraphs where one is interested in bounds on any of the
chromatic numbers defined earlier.

Unique-maximum coloring. Most cf-coloring algorithms in the literature produce unique-
maximum colorings (which are stronger than conflict-free colorings). The main reason for this
approach is that unique-maximum colorings have more structure than conflict-free colorings, and
thus it seems easier to argue about them in proofs. One interesting question is how can a non-
unique-maximum conflict-free coloring improve on a unique-maximum coloring, with respect to the
number of colors used and this line of research has been pursued in [8, 9].

List coloring. Until now, research on cf-coloring was carried out under the assumption that we
can use any color from some global set of colors. The goal was to minimize the total number
of colors used. In real life, it makes sense to assume that each antenna in the wireless network
is further restricted to use a subset of the available spectrum. This restriction might be local
(depending, say, on the physical location of the antenna). Hence, different antennas may have
different subsets of (admissible) frequencies available for them. Thus, it makes sense to study the
list version of conflict-free coloring. That is, assume further that each antenna d ∈ D is associated
with a subset Ld of frequencies. We want to assign to each antenna d a frequency that is taken
from its allowed set Ld. The following problem thus arises: What is the minimum number f = f(n)
such that given any set D of n antennas (represented as discs) and any family of subsets of positive
integers L = {Ld}d∈D associated with the antennas in D, the following holds: If each subset Ld is
of cardinality f , then one can cf-color the hypergraph H = H(D) from L. In what follows, we give
a formal definition of the coloring model.

Definition 1.2. Let H = (V, E) be a hypergraph and let L = {Lv}v∈V be a family of |V | subsets of
positive integers. We say that H admits a cf-coloring from L if there exists a cf-coloring C : V → N
such that C(v) ∈ Lv for every v ∈ V . Analogous definitions apply for the notions of a hypergraph
H admitting a proper or a um-coloring from L.

Definition 1.3. We say that a hypergraph H = (V, E) is k-cf-choosable if for every family L =
{Lv}v∈V such that |Lv| ≥ k ∀v ∈ V , H admits a cf-coloring from L. Analogous definitions apply
for the notions of a hypergraph H being k-choosable or k-um-choosable.

In this paper we are interested in the minimum number k for which a given geometric hypergraph
is k-cf-choosable (respectively, k-choosable, k-um-choosable). We refer to this number as the cf-
choice number (respectively, choice number and um-choice number) of H and denote it by chcf(H)
(respectively, ch(H) and chum(H)). Obviously, if the cf-choice number of H is k then χcf(H) ≤ k,
as one can cf-color H from L = {Lv}v∈V where for every v we have Lv = {1, . . . , k} (the same can
be said for proper and um colorings). Thus,

ch(H) ≥ χ(H), chcf(H) ≥ χcf(H), chum(H) ≥ χum(H). (1)

It is also easy to see that all of those parameters are upper-bounded by the number of vertices of
the underlying hypergraph.
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The study of list coloring for the special case of graphs, i.e., 2-uniform hypergraphs, was initiated
in [16, 30]. List proper coloring of hypergraphs has been studied more recently, as well; see, e.g.,
[21]. We refer the reader to the survey of Alon [4] for more on list coloring of graphs.

Our results. In this paper we study the choice number, the cf-choice number, and the um-choice
number of hypergraphs. We focus mainly on geometric hypergraphs.

Our main result is an asymptotically tight bound of O(log n) on the um-choice number of H(R)
when R is a family of n planar Jordan regions with linear union-complexity. In order to obtain the
above result, in Section 2, we introduce a potential method for list um-coloring hypergraphs that
has also other applications. In Section 3, we apply the potential method in list um-coloring several
geometric hypergraphs of interest. In Section 4, we obtain an asymptotically tight upper bound
on the cf-choice number of hypergraphs consisting of the vertices of a planar graph together with
all subsets of vertices that form a simple path in the graph (see [9] for applications of this class
of hypergraphs); it is not possible to prove a similar upper bound on the um-choice number and
indeed we show that the um-choice number of a hypergraph induced by paths of a planar graph
can be substantially higher. In Section 5, using the list coloring approach, we prove tight upper
bounds on the um-choice number in terms of (a) the number of hyperedges in the hypergraph
or (b) the maximum degree of a vertex. These results extend results of [7, 25]. Moreover, the
list coloring approach allows us to provide a more concise proof. In Section 6, we provide a
general bound on the cf-choice number of any hypergraph in terms of its cf-chromatic number.
We show that for any hypergraph H (not necessarily of a geometric nature) with n vertices we
have: chcf(H) ≤ χcf(H) · lnn + 1. The proof of this fact uses a probabilistic argument, which is
an extension of a probabilistic argument first given in [16]. There, it was proved that the choice-
number of every bipartite graph with n vertices is O(log n). Our argument can be generalized to a
large natural class of colorings (i.e., not just conflict-free), however, we note that such a bound is
not possible for chum. Finally, in Section A of the appendix (due to space considerations), we study
the (proper) choice number of several geometric hypergraphs and show that many of the known
bounds for the proper coloring of the underlying hypergraphs hold in the context of list-coloring as
well.

2 A potential method for list um-coloring

Let us start with a simple example of a hypergraph which can be viewed as induced by points
on the line with respect to all intervals. Let [n] = {1, . . . , n}. For s ≤ t, s, t ∈ [n], we define the
(discrete) interval [s, t] = {i | s ≤ i ≤ t}. The discrete interval hypergraph Hn has vertex set [n] and
hyperedge set {[s, t] | s ≤ t, s, t ∈ [n]}. It is not difficult to prove that χcf(Hn) = blog2 nc+ 1 (see,
e.g., [17, 27]). Therefore, from inequality (1), we have the lower bound chcf(Hn) ≥ blog2 nc+ 1. As
a warmup, we prove that the above lower bound is tight:

Proposition 2.1. For every n ≥ 1, chcf(Hn) ≤ blog2 nc+ 1.

Proof. Assume, without loss of generality, that n = 2k+1 − 1. We will show that Hn is k + 1
cf-choosable. The proof is by induction on k. Let L = {Li}i∈[n], such that |Li| = k+ 1, for every i.
Consider the median vertex p = 2k. Choose a color x ∈ Lp and assign it to p. Remove x from all
other lists (for lists containing x), i.e., consider L′ = {L′i}i∈[n]\p where L′i = Li \ {x}. Note that all
lists in L′ have size at least k. The induction hypothesis is that we can cf-color any set of points of
size 2k − 1 from lists of size k. Indeed, the number of vertices smaller (respectively, larger) than p
is exactly 2k − 1. Thus, we cf-color vertices smaller than p and independently vertices larger than
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p, both using colors from the lists of L′. Intervals that contain the median vertex p also have the
conflict-free property, because color x is used only in p. This completes the induction step and
hence the proof of the proposition.

We now turn to the more difficult problem of bounding the um-choice number. Even for the
discrete interval hypergraph Hn, a divide and conquer approach, along the lines of the proof of
Proposition 2.1 is doomed to fail. In such an approach, some vertex close to the median must be
found, a color must be assigned to it from its list, and this color must be deleted from all other
lists. However, vertices close to the median might have only ‘low’ colors in their lists. Thus, while
we are guaranteed that a vertex close to the median is uniquely colored for intervals containing it,
such a unique color is not necessarily the maximal color for such intervals.

Instead, we use a new approach. Our approach provides a general framework for um-coloring
hypergraphs from lists. Moreover, when applied to many geometric hypergraphs, it provides asymp-
totically tight bounds for the um-choice number. First, we need the definitions of an independent
set and of an induced sub-hypergraph.

Definition 2.2. Given a hypergraph H = (V, E), a subset U ⊆ V is called an independent set in
H if it does not contain any hyperedge of cardinality at least 2, i.e., for every S ∈ E with |S| ≥ 2,
we have S 6⊆ U . Note that each color class of a proper coloring of H is an independent set in H.

Definition 2.3. Let H = (V, E) be a hypergraph. For a subset V ′ ⊆ V , we refer to H[V ′] :=
(V ′, {S ∩ V ′ | S ∈ E}) as the sub-hypergraph of H induced by V ′.

Below, we give an informal description of the approach, which is then summarized in Algo-
rithm 1.

We start by sorting the colors in the union of all lists in increasing order. Let c denote the
minimum color. Let Vc ⊆ V denote the subset of vertices containing c in their lists. Note that
Vc might contain very few vertices, in fact, it might be that |Vc| = 1. We simultaneously color
a suitable subset U ⊆ Vc of vertices in Vc with c. We make sure that U is independent in the
hypergraph H[Vc]. The exact way in which we choose U is crucial to the performance of the
algorithm and is discussed below. Next, for the uncolored vertices in Vc \ U , we remove the color
c from their lists. This is repeated for every color in the union

⋃
v∈V Lv in increasing order of the

colors. The algorithm stops when all vertices are colored. Notice that such an algorithm might run
into a problem, when all colors in the list of some vertex are removed before this vertex is colored.
Later, we show that if we choose the subset U ⊆ Vc in a clever way and the lists are sufficiently
large, then we avoid such a problem.

As mentioned, Algorithm 1 might cause some lists to run out of colors before coloring all vertices.
However, if this does not happen, we prove that it produces a um-coloring.

Lemma 2.4. Provided that the lists associated with the vertices do not run out of colors during
the execution of Algorithm 1, then the algorithm produces a um-coloring from L.

Proof. Consider any hyperedge S ∈ E . Consider the last iteration t of the while loop for which some
vertex of S was colored. Let c denote the color chosen in that iteration. Note that c is a maximal
color in S. We need to prove that it is also unique in S. Let Vc denote the subset of uncolored
vertices (until iteration t) containing c in their lists and let U ⊆ Vc denote the independent set in
H[Vc] chosen to be colored with c. Note that S ∩Vc is a hyperedge in H[Vc]. We need to show that
|S ∩ Vc| = 1. Indeed, assume to the contrary that |S ∩ Vc| ≥ 2. Then, since S∩Vc is a hyperedge in
H[Vc] and U is independent in H[Vc], we must have S ∩ Vc 6⊆ U . Therefore, there must be a vertex
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Algorithm 1 UMColorGeneric(H, L): Unique-max color hypergraph H = (V, E) from family L
while V 6= ∅ do
c← min

⋃
v∈V Lv (∗ c is the minimum color in the union of the lists ∗)

Vc ← {v ∈ V | c ∈ Lv} (∗ Vc is the subset of remaining vertices containing c in their lists ∗)
U ← a “good” independent subset of the induced hypergraph H[Vc]
for x ∈ U do
f(x)← c (∗ color it with color c ∗)

end for
for v ∈ Vc \ U do (∗ for every uncolored vertex, remove c from its list ∗)
Lv ← Lv \ {c}

end for
V ← V \ U (∗ remove the colored vertices ∗)

end while
return f

v ∈ (S ∩ Vc) \ U . This means that such a vertex v ∈ S ∩ Vc is not colored in iteration t. Hence, it
is colored in a later iteration, a contradiction.

The key ingredient, which will determine the necessary size of the lists of L, is the particular
choice of the independent set in the above algorithm. We assume that the hypergraph H = (V, E)
is hereditarily k-colorable for some fixed positive integer k. That is, for every subset V ′ ⊆ V , the
sub-hypergraph H[V ′] induced by V ′ admits a proper k-coloring. This is the case in many geometric
hypergraphs. For example, hypergraphs induced by planar discs, or pseudo-discs, or, more generally,
hypergraphs induced by regions having linear union complexity have such a hereditary colorability
property for some small constant k (see Section 3 for details).

A natural choice of a good independent set would of course be the largest one. Unfortunately,
such a naive approach does not work. Instead, we consider a potential function on subsets of
uncolored vertices at the end of every iteration and in the next iteration, we choose the independent
set with the highest potential. For an uncolored vertex v ∈ V , let dt(v) denote the number of colors
removed from the initial list Lv after the first t iterations of the algorithm. By convention, for every
vertex v, d0(v) = 0. Obviously, the value of dt(v) depends on the particular run of the algorithm.
Let λ > 1 be a fixed constant to be determined later. For a subset of uncolored vertices X ⊆ V
at the end of iteration t, let Pt(X) :=

∑
v∈X λ

dt(v). We define the potential at the end of iteration
t to be Pt := Pt(V t), where V t denotes the subset of all uncolored vertices at the end of iteration
t. Notice that the value of the potential in the beginning of the algorithm is P0 =

∑
v∈V λ

0 = n,
where n is the number of vertices of the hypergraph. Our goal is to show that, with the right choice
of λ and the independent set in each iteration, we can make sure that for every vertex v ∈ V the
inequality dt(v) ≤ logλ n holds for every iteration t. Thus, if |Lv| > logλ n, the algorithm will
never run out of colors.

In order to achieve this, we will show that, with the right choice of the subset of vertices colored
in each iteration, the potential function Pt is non-increasing in t. This will imply that for every
uncolored vertex u ∈ V t and any iteration t we have:

λdt(u) ≤ Pt ≤ P0 = n,

as required.
Assume that the potential function is non-increasing up to iteration t. Let Pt be the value

of the potential function at the end of iteration t and let c be the color associated with iteration
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t + 1. Recall that V t denotes the set of uncolored vertices that are input to iteration t + 1, and
Vc ⊆ V t denotes the subset of uncolored vertices that contain the color c in their lists. Put
P ′ = Pt(V t \ Vc) and P ′′ = Pt(Vc). Note that Pt = P ′ + P ′′. Let us describe the way in which
we find the independent set of vertices to be colored at iteration t+ 1. First, we find an auxiliary
proper coloring of the hypergraph H[Vc] with k colors. Consider the color class U which has the
largest potential Pt(U). Since the vertices in Vc are partitioned into at most k independent subsets
U1, . . . , Uk and P ′′ =

∑k
i=1 Pt(Ui), then by the pigeon-hole principle there is an index j for which

Pt(Uj) ≥ P ′′/k. We choose U = Uj as the independent set to be colored at iteration t+ 1. Notice
that, in this case, the value dt+1(v) = dt(v) + 1 for vertices v ∈ Vc \ U , and all vertices in U are
colored. For vertices in V t \ Vc, there is no change in the size of their lists. Thus, the value Pt+1 of
the potential function at the end of iteration t + 1 is Pt+1 ≤ P ′ + λ(1 − 1

k )P ′′. Choosing λ = k
k−1

we have that Pt+1 ≤ P ′ + P ′′ = Pt, as required. We summarize in Algorithm 2.

Algorithm 2 UMColor(H, L): Unique-max color the hypergraph H = (V, E) from L
Require: H: a hereditarily k-colorable hypergraph
λ := k

k−1
for v ∈ V do
d(v)← 0 (∗ the number of colors removed from Lv is set to 0 ∗)

end for
while V 6= ∅ do
c← min

⋃
v∈V Lv (∗ c is the minimum color in the union of the lists ∗)

Vc ← {v ∈ V | c ∈ Lv}
compute a proper coloring of H[Vc] with at most k colors and color classes U1, . . . , Uk
U ← a color class among U1, . . . , Uk with maxi∈{1,...,k}

∑
v∈Ui

λd(x)

for x ∈ U do
f(x)← c

end for
for v ∈ Vc \ U do
Lv ← Lv \ {c} (∗ remove the color c from all lists of uncolored vertices in Vc ∗)
d(v)← d(v) + 1 (∗ update the number of removed colors from the list Lv ∗)

end for
V ← V \ U (∗ remove the colored vertices ∗)

end while
return f

We thus have:

Theorem 2.5. Let H = (V, E) be a hypergraph, which is hereditarily k-colorable. Let L = {Lv}v∈V .
If for every vertex v ∈ V , |Lv| ≥ log k

k−1
n + 1 ≈ (k − 1) lnn + 1, then Algorithm 2 um-colors H

from L.

Theorem 2.5 has an algorithmic version:

Corollary 2.6. Let H = (V, E) be a hypergraph on n vertices, which is hereditarily k-colorable and
let L = {Lv}v∈V so that |Lv| > (k − 1) lnn for every v ∈ V . Assume that we have an efficient
algorithm for k-coloring every induced subhypergraph of H. Then we also have an efficient algorithm
for um-coloring H from L.
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3 Geometric hypergraphs

As a corollary of Theorem 2.5 we obtain asymptotically optimal bounds on the um-choice number
(hence, also on the cf-choice number) of many geometric hypergraphs.

Corollary 3.1. Let C be some absolute constant. Let R be a (possibly infinite) family of simple
planar Jordan regions such that, for any n and any subset R′ ⊆ R of n regions, the union complexity
of R′ is bounded by Cn. Let H = H(R′) be a hypergraph induced by a subset R′ ⊆ R of n such
regions. Then

chum(H) = O(log n).

This follows from the fact that such a hypergraph has chromatic number O(1) [28] combined
with Theorem 2.5.

Corollary 3.2. Let D denote the (infinite) family of all planar discs.
(i) Let P be a set of n points in the plane and let H = HD(P ) be the hypergraph induced by P

(with respect to D). Then

chum(H) ≤ log4/3 n+ 1 ≈ 2.41 log2 n+ 1.

(ii) Let D′ ⊆ D be a set of n discs. Then

chum(H(D′)) ≤ log4/3 n+ 1.

This follows from combining the fact that such hypergraphs are hereditary 4-colorable [17, 28]
together with Theorem 2.5.

4 List cf-coloring of planar graphs with respect to paths

Given a simple graph G = (V,E), consider the hypergraph

Hpath
G = (V, {S | S is the vertex set of a simple path in G}).

A cf (respectively, um) coloring of Hpath
G is called a cf (respectively, um) coloring of G with respect

to paths. Unique-maximum coloring of a graph G with respect to paths is known in the literature
as vertex ranking or ordered coloring. See e.g., [14, 19].

Theorem 4.1. Let G be a planar graph with n vertices. Then chcf(H
path
G ) = O(

√
n).

Proof. The proof is constructive. Given a planar graph G on n vertices together with a family
L = {Lv}v∈V of sets of size c

√
n where c is some absolute constant to be revealed later, we produce

a cf-coloring C of G with respect to paths with colors from L.
The algorithm is recursive. By the Lipton-Tarjan separator theorem [23] and in particular by

the version of the separator theorem from [15], there exists a partition of the vertex set V = R∪B∪S
such that max(|R|, |B|) ≤ 2n/3 and |S| ≤

√
6n and such that there is no edge connecting a vertex

in R with a vertex in B. Moreover, this partition can be computed efficiently.
We color all vertices in S with distinct colors. This can be done greedily as follows: Arbitrarily

order the vertices in S and for each vertex v in this order choose a color from Lv to assign to v
which is distinct from all colors assigned to previous vertices in S. This is possible if |Lv| = c

√
n ≥√

6n ≥ |S|. Next, for each vertex u ∈ R ∪B modify the lists {Lu}u∈R∪B by erasing all colors used
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for S, namely put L′ = { Lu \ {C(v) | v ∈ S}}u∈R∪B. We recursively color G[B] and G[R] from
L′. Note that the colors assigned to vertices in R ∪B are distinct from all colors used for S. Note
also that if this coloring is indeed a valid cf-coloring of G from L then the function f(n) defined to
be the maximum cf-choice number for a planar graph on n vertices satisfies the following recursive
inequality:

f(n) ≤
√

6
√
n+ f(2n/3) ≤

∞∑
i=0

√
6 ·
(

2
3

)i
n =

√
6
√
n

1−
√

2/3
≈ 13.3485

√
n

Thus, we have f(n) ≤ c
√
n, for c ≈ 13.3485, as claimed.

Remark 4.2. The upper bound O(
√
n) is asymptotically tight, since for the

√
n ×
√
n grid graph

G√n, it was proved in [9] that χcf(H
path
G√n

) = Ω(
√
n) and thus, from inequality (1), also chcf(H

path
G√n

) =

Ω(
√
n).

It is easily seen that an analog of Theorem 4.1 for chum does not hold. For example, consider
the star graph on n > 2 vertices K1,n−1. It is easy to check that χcf(H

path
K1,n−1

) = chcf(H
path
K1,n−1

) =

χum(Hpath
K1,n−1

) = 2. However, consider a family L of lists as follows: Associate the n−1 leaves of the
star with the same list of colors and associate the other vertex with a list of colors which are all lower
than the colors appearing in the lists of the leaves. In a unique-maximum coloring with respect
to paths from L, no two leaves can get the same color, because then we do not have the unique
maximum property for the path that connects these two leaves and hence, chum(Hpath

K1,n−1
) ≥ n− 1.

5 List um-coloring hypergraphs with few edges

In this section we extend upper bounds on χcf from [7, 25], making them hold also for chum. In
other words, we extend the results in two ways making them hold for choice instead of chromatic
number and for unique-maximum colorings instead of conflict-free colorings. Moreover, we provide
a more concise proof. In order to state the results, we need the following definition.

Definition 5.1. For every hypergraph H, define s(H) to be the minimum positive integer s such
that |E(H)| ≤ s(s− 1)/2.

Fact 5.2. For two hypergraphs H and H ′, if |E(H)| ≥ |E(H ′)| and s(H) = s(H ′) > 1, then

|E(H)| − |E(H ′)| < s(H)− 1.

Proof. We have (s(H) − 1)(s(H) − 2)/2 < |E(H ′)| ≤ |E(H)| ≤ s(H)(s(H) − 1)/2, which implies
|E(H)| − |E(H ′)| < s(H)− 1.

Theorem 5.3. Let H = (V, E) be a hypergraph and let L = {Lv}v∈V be a family of lists. If for
every v ∈ V |Lv| ≥ min(degH(v) + 1, s(H)), then H admits a unique-maximum coloring from L.

Proof. Notice that if s(H) = 1, the hypergraph has no hyperedge and thus if |Lv| ≥ 1 for every
v ∈ V , then H admits a unique-maximum coloring from L. The proof is by induction on |V |.
If H has one vertex v, then degH(v) = 0 and s(H) = 1. Hence, if |Lv| ≥ 1, then H admits a
unique-maximum coloring from L.

If |V | > 1 and s(H) > 1, consider the maximum color occurring in the union of all lists, that
is, c = max

⋃
v∈V Lv. Among these vertices which have c in their list, choose the vertex v with
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maximum degree in the hypergraph. Consider the subset of hyperedges Ev ⊆ E that contain v. Put
H ′ = (V ′, E ′), where V ′ = V \ {v}, E ′ = E \ Ev, and define L′ = {L′u}u∈V ′ such that

L′u =

{
Lu \ {c} if u ∈

⋃
S∈Ev S,

Lu if u /∈
⋃
S∈Ev S.

In order to apply the inductive hypothesis on H ′, we prove that for every u ∈ V ′,

|L′u| ≥ min(degH′(u) + 1, s(H ′)), (2)

If |Lu| = |L′u|, that is, when u /∈
⋃
S∈Ev S or c /∈ Lu, then condition (2) holds. Also, if c ∈ Lu,

u ∈
⋃
S∈Ev S, and s(H ′) < s(H), then condition (2) holds, since degH′(u) < degH(u). If c ∈ Lu,

u ∈
⋃
S∈Ev S, and s(H ′) = s(H), then Fact 5.2 implies

s(H) > |E| − |E ′|+ 1 = degH(v) + 1 ≥ degH(u) + 1.

This follows from the fact that degH(v) = |E| − |E ′| and degH(v) ≥ degH(u). Since s(H ′) = s(H)
and degH(u) ≥ degH′(u) + 1, we also have

s(H ′) > degH′(u) + 1.

As a result,

|L′u| = |Lu| − 1 ≥ min(degH(u) + 1, s(H))− 1 = degH(u) + 1− 1
= degH′(u) + 1 = min(degH′(u) + 1, s(H ′)).

Finally, by the inductive hypothesis, H ′ admits a um-coloring from L′. Extend this coloring by
coloring v with c to get a um-coloring of H.

Corollary 5.4. For every hypergraph H, chum(H) ≤ ∆(H) + 1.

Corollary 5.5. For every hypergraph H, chum(H) ≤ s(H).

6 A connection between choosability and colorability in general
hypergraphs

Definition 6.1. We call C ′ a refinement of a coloring C if C(x) 6= C(y) implies C ′(x) 6= C ′(y). A
class C of colorings is said to have the refinement property if every refinement of a coloring in the
class is also in the class.

The class of conflict-free colorings and the class of proper colorings are examples of classes which
have the refinement property. On the other hand, the class of unique-maximum colorings does not
have this property.

For a class C of colorings we can define as usual the notions of chromatic number χC and choice
number chC . Then, we can prove the following theorem for classes with the refinement property.

Theorem 6.2. For every class of colorings C that has the refinement property and every hypergraph
H with n vertices, chC(H) ≤ χC(H) · lnn+ 1.

9



Proof. If k = χC(H), there is a C-coloring C of H with colors {1, . . . , k}, which induces a partition
of V into k classes: V1 ∪ V2 ∪ · · · ∪ Vk. Consider a family L = {Lv}v∈V , such that for every v,
|Lv| = k∗ > k · lnn. We wish to find a family L′ = {L′v}v∈V with the following properties:

1. For every v ∈ V , L′v ⊆ Lv.

2. For every v ∈ V , L′v 6= ∅.

3. For every i 6= j, if v ∈ Vi and u ∈ Vj , then L′v ∩ L′u = ∅.

Obviously, if such a family L′ exists, then there exists a C-coloring from L′: For each v ∈ V , pick
a color x ∈ L′v and assign it to v.

We create the family L′ randomly as follows: For each element in ∪L, assign it uniformly at
random to one of the k classes of the partition V1 ∪ · · · ∪ Vk. For every vertex v ∈ V , say with
v ∈ Vi, we create L′v, by keeping only elements of Lv that were assigned through the above random
process to v’s class, Vi.

The family L′ obviously has properties 1 and 3. We will prove that with positive probability it
also has property 2.

For a fixed v, the probability that L′v = ∅ is at most(
1− 1

k

)k∗
≤ e−k∗/k < e− lnn =

1
n

and therefore, using the union bound, the probability that for at least one vertex v, L′v = ∅, is at
most

n

(
1− 1

k

)k∗
< 1.

Thus, there is at least one family L′ where property 2 also holds, as claimed.

Corollary 6.3. For every hypergraph H, chcf(H) ≤ χcf(H) · lnn+ 1.

Corollary 6.4. For every hypergraph H, ch(H) ≤ χ(H) · lnn+ 1.

The argument in the proof of Theorem 6.2 is a generalization of an argument first given in [16],
proving that any bipartite graph with n vertices is O(log n)-choosable (see also [3]).

We can not have an analog of Theorem 6.2 for unique maximum colorings. Again, as in the
end of Section 4, the counterexample is the hypergraph with respect to paths of the star graph,
Hpath
K1,n−1

, for which χum(Hpath
K1,n−1

) = 2, whereas chum(Hpath
K1,n−1

) ≥ n− 1.

7 Open problems

We consider the following as an interesting problem left open here:

• Let H be a hypergraph induced by n axis-parallel rectangles in the plane. Is it true that
ch(H) = O(log n)? It is known that χ(H) = Θ(log n) [24, 28].
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[9] P. Cheilaris and G. Tóth. Graph unique-maximum and conflict-free colorings. In Proc. 7th
International Conference on Algorithms and Complexity (CIAC), pages 143–154, 2010.
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A Choice number of geometric hypergraphs

In this section, we provide near-optimal upper bounds on the choice number of several geometric
hypergraphs. We need the following definitions:

Definition A.1. Let R be a family of n simple Jordan regions in the plane. The union complexity
of R is the number of vertices (i.e., intersection of boundaries of pairs of regions in R) that lie on
the boundary ∂

⋃
r∈R r.

Definition A.2. Let H = (V, E) be a hypergraph. Let G = (V,E) be the graph whose edges are
all hyperedges of E with cardinality two. We refer to G as the Delaunay graph of H.

Theorem A.3. (i) Let H be a hypergraph induced by a finite set of points in the plane with respect
to discs. Then ch(H) ≤ 5.

(ii) Let D be a finite family of discs in the plane. Then ch(H(D)) ≤ 5.
(iii) Let R be a set of n regions and let U : N → N be a function such that U(m) is the

maximum complexity of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. We assume that U(m)
m

is a non-decreasing function. Then, ch(H(R)) = O(U(n)
n ).

Proof. (i) Consider the Delaunay graph G = G(P ) on P , where two points p and q form an edge
in G if and only if there exists a disc d such that d∩ P = {p, q}. That is, there exists a disc d that
cuts off p and q from P . The proof of (i) follows easily from the following known facts:

1. Every disc containing at least two points of P must also contain a Delaunay edge {p, q} ∈
E(G). (see, e.g., [17]).

2. G is planar (see, e.g., [13]).

3. Every planar-graph is 5-choosable [29].

(ii) The proof of the second part follows from a reduction to three dimensions from [28] and
Thomassen’s result [29].

(iii) For the third part of the theorem, we need the following lemma from [28]:

Lemma A.4. [28] Let R be a set of n regions and let U : N → N be a function such that U(m)
is the maximum complexity of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. Then, the
Delaunay graph G of the hypergraph H = H(R) has a vertex with degree at most cU(n)

n where c is
some absolute constant.

The proof is similar to the proof of [28] of the fact that χ(H(R)) = O(U(n)
n ). We prove that

ch(H(R)) ≤ c · U(n)
n + 1. Let L = {Lr}r∈R be the sets associated with the regions of R. The

proof is by induction on n. Let r ∈ R be a region with at most c · U(n)
n neighbors in G. By the

induction hypothesis, the hypergraph H(R \ {r}) is c · U(n−1)
n−1 + 1 ≤ c · U(n)

n + 1-choosable (by our

monotonicity assumption on U(n)
n ). We need to choose a color (out of the c · U(n)

n + 1 colors that
are available for us in the set Lr) for r such that the coloring of R is valid. Obviously, points that
are not covered by r are not affected by the coloring of r. Note also that any point p ∈ r that is
contained in at least two regions of R \ r is not affected by the color of r since, by induction, the
set of regions in R\ {r} containing such points is non-monochromatic. We thus only need to color
r with a color that is different from the colors of all regions r′ ∈ R \ r, for which there is a point p
that is contained only in r∩ r′. However, by our choice of r, there are at most c · U(n)

n such regions.
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Thus, we can assign to r a color among the c · U(n)
n + 1 colors available to us in Lr and keep the

coloring of R proper. This completes the inductive step.

Corollary A.5. Let P be a family of n pseudo-discs (i.e., a family of simple closed Jordan regions,
such that the boundaries of any two of them intersect at most twice). Then ch(H(P)) = O(1).

The corollary follows immediately from the fact that such a family P has linear union complexity
[20], combined with Theorem A.3.
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