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Abstract
We apply the code package SCENIC to a two field-period quasi-axisymmetric stellarator. Ion cyclotron resonance
heating (ICRH) is applied both on the high- and low-field side to a 1% 3He minority in a deuterium plasma. It
is shown that due to toroidal variations, the results are considerably different from similar tokamak studies. In
particular, toroidal variations in power deposition and pressure are created and accentuated during radio frequency
heating, such that modifications to the magnetic equilibrium depend on toroidal angle. We demonstrate that due
to enhanced particle loss, low-field side heating is significantly less efficient than high-field side heating, and that
toroidally trapped particles impose upper power limits for efficient radio frequency injection.

(Some figures may appear in colour only in the online journal)

1. Introduction

Quasi-axisymmetric stellarators (QASs) represent feasible
combinations of tokamaks and stellarators, combining the best
features of each configuration. On the one hand, the three-
dimensional geometry allows for a plasma without toroidal
current, thus improving considerably MHD stability and
allowing for disruption free steady state. On the other hand,
and in contrast to conventional stellarators, the magnetic field
strength depends only on two variables, a radial and an angular
variable, such that the particle orbits stay confined tokamak-
like around constant pressure surfaces [1]. Furthermore,
controlling a desired asymmetry in toroidal direction of a
stellarator can be more efficient than trying to suppress
magnetic field ripple and other inhomogeneities in a tokamak,
and it adds one more dimension for plasma stability control [2].

Until now, self-consistent solutions of the wave fields in
the ion cyclotron resonance heating (ICRH) spectrum and
fast particle distribution solvers have been limited mostly
to two-dimensional tokamak plasmas which fail to include
the modifications to the equilibrium state [3–6]. In three-
dimensional magnetically confined plasmas, the TASK/WM
field solver has been coupled with the GNET drift kinetic
equation solver, but the equilibrium modifications have been
excluded from the iterative loop [7].

We apply the unique code package SCENIC [8] to a
two-field period QAS, in order to study ICRH in a three-
dimensional equilibrium. SCENIC generates self-consistent
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three-dimensional solutions, which include varying MHD
equilibrium, radio frequency (RF) wave field and resonant
particle distribution functions, through the guise of an iterative
scheme. To our knowledge, this is the first time such
comprehensive ICRH simulations are performed in a three-
dimensional geometry. In the next section, we will introduce
the numerical setup, before reporting our simulation results in
section 3, and finish with concluding remarks.

2. Numerical model and geometry

2.1. SCENIC

The fully three-dimensional code package SCENIC has been
described extensively in [8], and we will only give a general
overview for the clarity of this work. SCENIC is an iterative
scheme and comprises three codes plus additional modules
required for the iterations. The MHD equilibrium code VMEC
[9, 10] computes a new anisotropic fixed boundary equilibrium
after each iteration. Then, the full-wave code LEMan [11, 12]
reads the newly created equilibrium and updates the RF wave
field. Finally, VENUS [13, 14] advances the distribution
function based on the updated equilibrium and wave field,
and re-creates new inputs for the next iteration of VMEC
and LEMan. Wave–particle interactions are modelled in a
Monte Carlo approach, and the iterative scheme can be run
until convergence is achieved, and total input RF power equals
total power going to the background plasma plus power loss
due to energetic particles crossing the plasma boundary.
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Figure 1. Initial magnetic equilibrium for the two-period QAS. The
magnetic field varies from Bmin = 2.0 T (blue) to Bmax = 3.2 T
(red), with the on axis magnitude of B0 = 2.57 T. The poloidal cuts
are at φ = {0, pi}.

2.2. Quasi-axisymmetric stellarator

We investigate a two-field period QAS of size comparable to
the Joint European Torus (JET). This is a rescaled version of
CHS-qa, a design proposed in Japan [15], and its magnetic
equilibrium studied numerically in [16]. This particular choice
of geometry is motivated by recent work [8, 17], which applies
the SCENIC package to a JET-like two-dimensional torus.
It is interesting to consider a three-dimensional geometry
with as many similar parameters as possible, as it allows for
a more direct comparison between tokamak and stellarator
simulations. Figure 1 illustrates the magnetic field strength,
which varies in the range 2.0 T ! B ! 3.2 T. The toroidal
angle is defined to have its origin to the left of the figure, and
the plasma volume is semi-transparent between φ = 0 and
π = 2π/L, with L = 2 the number of field periods. We chose
to match major (R0 = 2.91 m) and minor (a = 0.89 m) radii
rather than plasma volume (37.3 m3), as well as magnetic field
strength on axis (B0 = 2.57 T). The safety factor varies only
very little around q ≈ 3, and the volume averaged thermal
beta is 〈β〉 = 0.5%. Whereas we could have pushed for higher
thermal beta, there are two good reasons for our choice: first,
as mentioned above, our approach is to take previous results
one step further by adding a third dimension to the studies
performed in [8]. Second, we are mainly interested in fast
(resonant) particle effects, and therefore do not necessarily
need high thermal pressure. As for the geometry, note that the
plasma volume is about half of JET’s plasma volume even with
comparable major and minor radii, which is due to the toroidal
plasma shaping of the QAS. The electron density profile was
chosen n = n0(1 − s4) with n0 = 3 × 1019 m−3, and the
temperature profile T = T0(1 − s) with T0 = 3 keV. Here, s

is the Boozer radial coordinate and is proportional to toroidal
flux. The plasma is composed of 1% helium-3 in a deuterium
background. The choice of helium-3 is motivated by the fact
that it prevents the appearance of a deuterium second harmonic
resonance in the plasma, and for the sake of comparison with
tokamak simulations in [17]. In the latter studies, helium-3
minority was chosen as it is relevant for reactor-like scenarios
(such as ITER).

Figure 2 represents an artist’s view of the QAS, including
stylized magnetic field coils (black), an example particle orbit
(in red), and the magnetic field isosurface corresponding to

Figure 2. Artist’s view of the studied QAS. It features an example
particle orbit, the cold resonant layer (low-field side), and stylized
magnetic field coils. We stress that computations are performed
with fixed boundary, and the field coils added for easier recognition
of the plasma shape.

the cold low-field side (LFS) resonance (B = 2.35 T), which
we will define in more detail later. Note that the field
coils have been added for emphasizing the plasma shape, but
computations are based on a fixed boundary. Enclosed in this
figure is one example of the effects of the three-dimensional
geometry of the device studied: the orbit contains a time frame
where the particle is trapped toroidally on the high-field side
(HFS) of the poloidal plane. Figure 3 zooms in on the relevant
section of figure 2. The particle is indeed trapped between
maxima of the magnetic field when moving along the toroidal
angle. Figure 3(a) focuses on the part of the orbit in which the
toroidal trapping appears. The coloured shading corresponds
to the magnetic field strength along the plasma boundary. One
can see that the particle is trapped between the two regions
of maximum field strength shaded in red in the figure. In
order to prove that the particle is indeed trapped toroidally
and not poloidally, we plot the poloidal and toroidal angles
as a function of time in figure 3(b). The particle emerges
from the inboard midplane (θ = π ), and is then trapped with
θ > π/2 (i.e. on the HFS), before it de-traps and moves on
towards the LFS (θ < π/2). Trapping and de-trapping of
this particular orbit in time is due to the combined effects of
Coulomb collisions and RF interactions, changing the pitch
angle and energy of the particle.

2.3. ICRH setup

We apply external heating at two different frequencies.
SCENIC is restricted to fundamental minority heating, such
that the frequency is uniquely defined by the resonant species
(3He) and the resonant magnetic field strength Bc by ω =
ZeBc/Amp, where Z and A are the atomic charge and mass
of the minority species, and mp the proton mass. We chose
Bc = 2.8(2.35) T for HFS (LFS) heating, such that the cold
resonant layer is about half way between the magnetic axis
and the edge along the midplane, yielding frequencies of
f = 28.5(23.9) MHz, respectively.

For simplicity, the RF antenna is chosen to be localized in
poloidal angle only, and placed on the LFS wall all around the
plasma in the toroidal direction. The antenna is exciting one
simple toroidal mode number n = 17 representing the peak
of a realistic mode spectrum parallel to the toroidal magnetic
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Figure 3. Focus on the part of an orbit where the particle is toroidally trapped on the HFS of the poloidal plane. The particle motion
depicted in (b) starts at (θ = π , φ = 2π ) (upper right) and evolves to (θ < π/2, φ < 4π/5) (lower left) in time.

field. Note that the wave code LEMan is capable of dealing
with interacting toroidal modes in a full three-dimensional
spectrum, but we decided to concentrate on the novelty of
being able to compute self-consistent distribution functions
and equilibria in fully shaped three-dimensional geometries
with SCENIC, keeping all other model extensions as simple as
possible. For the same reason, we start each simulation with a
completely thermalized 3He minority, having the same density
and temperature profiles as the background deuterium. The
only difference under the initial conditions is that the deuterium
density is nD

0 = 0.98n0, whereas helium-3 density is n
3He
0 =

0.01n0, giving the 1% minority concentration. Of course, all
helium-3 profiles can evolve freely once the simulation started.
Note also that the parallel and perpendicular wave numbers are
computed consistently with the wave field within LEMan, and
no approximation is needed, such that e.g. wave number upshift
can be included and no explicit dispersion relation has to be
invoked.

Earlier studies in JET-like two-dimensional tokamaks
revealed that the highly energetic tails of the distribution
function become most important when heating is applied on
the LFS, and diminish steadily when moving towards the
HFS [17]. In these studies, on axis heating results were
somewhere in-between the HFS and LFS cases, and therefore
the main focus lies on the two off-axis positions. Although in
this work we do not provide direct comparisons between the
tokamak and the stellarator results, we will limit our stellarator
studies to scenarios as similar as possible to the tokamak
simulations, and not consider central heating. LFS heating can
be expected to have much more localized effects than HFS,
and as a consequence can drive MHD instabilities through
strongly enhanced pressure gradients [18]. In contrast, HFS
heating can heat the plasma evenly along the resonant layer, and
resonant particles lose more of their energy to the background
plasma, increasing the background plasma heating efficiency.
It is therefore interesting to investigate the RF heating effects
on distribution function, wave field and plasma equilibrium
for both scenarios. We will show here that in the chosen
scenarios, HFS and LFS heating are substantially dissimilar,
and differ from the tokamak studies mostly in the LFS
scenario.

In any stellarator, most physical quantities depend on the
toroidal angle as well as radial position and poloidal angle.
We focus on two different toroidal angles, one at φ = 0,
the other at φ = 2π/2L, where L = 2 is the number of
toroidal periods. These two angles mark the two extremes in
plasma shaping along the toroidal direction, and seem therefore
natural choices. At these toroidal angles, we will show two-
dimensional plots in (R, Z) coordinates wherever possible,
such that all geometric dependencies can be included.

3. ICRH simulations

In all simulations, 4 × 106 markers were followed in VENUS.
Each simulation is stopped if at the end of a given iteration
the power balance shows that fast particle energy content is
stationary. This is determined by the balance between input
RF power (heating), power going from the fast ions to the
background plasma through collisions (cooling), and power
loss due to fast particles crossing the plasma boundary. The
simulations for 6 MW (3 MW) HFS converged after 16 (12)
iterations of 25 ms each, resulting in a total simulation time of
2.7 (2.0) electron slowing down times. The LFS results were
obtained with a total simulation time of three slowing down
times.

3.1. High-field side

The applied RF power is varied between moderate 3 MW
(which would be equivalent to 6 MW in JET due to its
larger plasma volume) and rather high 6 MW (equivalent to
12 MW in a JET sized plasma volume), keeping all other
parameters constant. The main difference is that the 6 MW
runs give a more pronounced picture of the mechanisms at
play, but qualitatively they are very similar. We will therefore
concentrate on the higher power simulations, and only point
out differences where they are non-trivial.

3.1.1. Effective temperature. At 3 MW, in steady state half
of the input power is passed on to the background electrons
and ions, and half is lost through the plasma boundary. About
12% of the helium-3 minority is in the non-Maxwellian tail
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Figure 4. Effective temperatures defined in (1) for the 3 and 6 MW
cases. Whereas they are very similar at energies above 100 keV, they
diverge in the mid-range 10–100 keV. The main difference between
these two regions in energy space is the slowing down, which is
entirely on electrons for high energy, and on ions at lower energies.
Note that a Maxwellian would be represented by a horizontal line in
this plot.

of the distribution function, whereas that fraction increases to
16% for 6 MW heating. For the latter, only about 40 % of the
input power is going to the plasma, and 60 % lost. In order
to investigate the differences in the distribution function, we
define the effective temperature as

Teff(E) = −
[

d ln f (E)

dE

]−1

, (1)

and treat it as a measure of how energetic the tail of the
distribution function is. Note that this is a purely diagnostic
quantity, as it does not consider differences in perpendicular
and parallel directions, and we will apply the derivative not to
the spatially local distribution function, but the real space and
pitch angle integrated distribution function f (E). Figure 4
plots the 3He effective temperatures for the 3 and 6 MW cases
in the non-Maxwellian region above 10 keV. We would like
to point out two features. First, the effective temperatures
for energies higher than 100 keV, where slowing down is
on electrons only, are very similar for both power cases.
This means that even though there is a difference in input
power, the very high energy tails of the distribution function
may be smaller in terms of density, but they assume the
same form, with the same tail temperatures. This would
suggest that the very high energy tail temperatures are not
influenced by the heating power, but rather the electron
density profile (slowing down) and particle losses. Second,
in the intermediate energy range between 10 and 100 keV,
effective temperature differences are very obvious. This is
the region where collisions on background ions are non-
negligible, and increased RF power allows for higher effective
temperatures.

3.1.2. Current density. An important quantity for both
diagnostics and equilibrium computations is the first moment
of the distribution function, the toroidal current density, and is
plotted in figure 5(a) (without any drag current corrections).
In the QAS, ohmic current is zero. In addition, the model
does not include any modifications of the bulk ion and electron
profiles, and therefore bootstrap current modifications arising
from thermal profile changes are not considered here. As

under the initial conditions, bootstrap current was set to zero
as well, this plot represents at the same time the total toroidal
current density in our simulations. Note that we plot here
the total current density, whereas the drag current corrected
density is fed to the equilibrium calculation in the iterative
scheme [8]. As expected, the current is considerably larger in
the 6 MW scenario, yielding a total toroidal current of about
4.5 kA, whereas the integrated toroidal current in the 3 MW
scenario amounts to 1 kA. Note how the current densities are
peaked just inside the cold resonant layer

√
s ≈ 0.5, and that

the higher power case contains a secondary maximum close to
the magnetic axis. We attribute this to non-standard orbits of
highly energetic particles close to the magnetic axis [19]. The
current induced change in the safety factor (figure 5(b)) is of the
order of 0.1–0.5%, and we conclude that the RF driven current
in these scenarios has a rather low impact on the magnetic
equilibrium.

3.1.3. Distribution function and power deposition. We
will now investigate if there are any differences in the
toroidal direction of the QAS. Figure 6 plots and compares
the f (ρc, θ = 0, φ = {0, π/2}, v‖, v⊥) contours of the
distribution function for the more extreme 6 MW case. ρ ≡

√
s

corresponds to r/a in a tokamak, with r local minor and a

maximum minor radii, and ρc is the radial position of the
cold resonant layer on the midplane. The contour plots do not
show important dependencies on φ in the distribution function
if one follows otherwise constant Boozer coordinates. The
resolution in phase space is, however, rather low, due to the
fact that the exact value of the distribution function in phase
space is not needed in the numerical scheme, and is only
computed for diagnostics reasons [8]. However, these plots
confirm the findings of figure 5(a), in that there is an asymmetry
between positive and negative parallel velocities, resulting in
the observed positive (i.e. parallel to the toroidal magnetic
field) toroidal currents. Positive toroidal current generation
is expected, as the wave spectrum is represented by one co-
current toroidal mode number.

Changes in the distribution function discussed above are
induced by wave–particle interactions between the helium-
3 minority and the injected electromagnetic wave. The
spatial distribution of these interactions can be visualized
most conveniently by the help of the three-dimensional power
deposition within the plasma. Figure 7 shows the power
deposition in the Monte Carlo RF operators of SCENIC
(VENUS) in poloidal cuts at six different toroidal positions
along one half field period. The top panel shows the initial
state, where the deposition is rather well distributed along
toroidal angle, with a somewhat distinct maximum near φ = 0
(due to the setup of the numerical diagnostics, it is not possible
to show these plots at exactly φ = 0 or π/2). The situation
is more extreme at the end of the simulation on the bottom
panel, where the absolute maximum near φ = 0 is much
larger, and dominates the power deposition completely. Even
if the antenna is perfectly symmetric in the toroidal direction,
the power deposition assumes a dependence on φ, peaking
around the extremities of each field period, and this dependence
gets stronger as the plasma is heated with RF waves. On the
one hand, heating is strongest where the plasma is thinnest
in terms of major radius, and the RF wave has to propagate
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Figure 5. Toroidal current density and safety factor profiles for the 3 and 6 MW scenarios.

Figure 6. Contour plots for 6 MW HFS heating. The energetic particles make about 16% of the 3He minority. Both plots show very similar
asymmetries for high energies and v⊥ > v‖ > 0, resulting in positive currents.

smaller distances in the plasma before being absorbed at the
resonant layer. This is true for initial as well as the final
state in the simulation. A second geometric effect that could
favour absorption is the large elongation at the φ = (0, π)

planes. As the distribution of the magnetic field strength
is tokamak-like for the configuration examined, the nearly
vertical resonant layer is longest on these respective cross
sections, allowing for more power deposition. On the other
hand, and more importantly, when moving along the toroidal
direction, the magnetic field is strongest around φ = {0, π}
(see figures 1 and 15). As a result, toroidally trapped particles
have their turning points around these aforementioned toroidal
angles. In addition, the turning points are the locations
where wave–particle interaction is strongest as particles stay
in resonance for a longer time. At the turning points,
the perpendicular velocity is much higher than the parallel
velocity, resulting in locally enhanced pressure anisotropy.
We will now examine if this non-uniform absorption
translates into toroidally dependent pressure and magnetic field
strength.

3.1.4. Pressure. Parallel and perpendicular pressures are the
second moments of the distribution function. As we will see,
it is important to treat them separately, as pressure anisotropy
forms in RF heating scenarios and can have important effects
on equilibrium and stability [20, 21]. Figure 8 plots the hot
particle perpendicular and parallel pressure at three different
toroidal locations, going from the above seen maximum power
deposition at φ = 0 to the minimum at φ = π/2. Whereas the
hot parallel pressure does not show any significant variation,
the hot perpendicular pressure maximum is about 6% lower at
φ = π/2 compared with φ = 0. Thus, the above discussed
power deposition induces a toroidally dependent perpendicular
pressure, as the resonant particles are mainly trapped particles
with large perpendicular velocities. These trapped particles
do not propagate as fast and as freely along the toroidal angle
as passing particles do, which is why the parallel pressure
does not show any toroidal dependence. Note also that the
parallel pressure is about one order of magnitude lower than
perpendicular pressure, such that the anisotropy is T⊥/T‖ ≈
10, demonstrating that equilibrium changes are dominated by
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Figure 7. Power deposition along the toroidal angle. The toroidal differences increase between the initial and the final state. In the final state,
almost all power is absorbed around φ = {0, π}. The ring shaped absorption comes from fast passing ions with a large Doppler shift k‖v‖.

perpendicular heating, and that anisotropic pressure models
are imperative to studying RF heating scenarios. The thermal
pressure does not show the toroidal dependence of its hot
counter part, and therefore the variation in hot perpendicular
pressure is decreased when considering total pressure, which
is more important in the equilibrium calculations than the
hot pressure. Figure 9 compares surface plots of the relative
changes of the total perpendicular pressure between φ = 0 and
φ = π/2. The maximum relative change of total perpendicular
pressure during the simulation is an increase of 33% at φ = 0,
and 31% at φ = π/2. Perpendicular pressure is mostly
carried by trapped resonant particles, which tend to align
their turning points with the resonance [19, 22]. Thus, largest
pressure variations are in perpendicular direction, and are
localized along the resonant layer. We can now generalize
these findings from tokamaks to stellarators by stating that the
resonant particles not only align their turning points along the
resonant layer in the poloidal plane, but also in the toroidal
direction. As a result, pressure variations are predominantly
in the perpendicular direction, and localized around regions
of maximum power deposition in the poloidal plane as well
as in toroidal direction. Parallel pressure arises either from
passing particles or trapped particles away from the turning
points. As resonant particles rarely are passing (except non-
standard orbits at high RF power), the latter effect has to
produce most of the hot parallel pressure. As a result, the
maximum changes to the parallel pressure of 7% (not shown)
are found on the opposite side of the resonant layer with respect

to the magnetic axis, and do not show the toroidal dependence
of the perpendicular pressure variations.

This overall increase as well as slight variations along
toroidal angle in total pressure caused by a large increase in
hot perpendicular pressure must result in a local decrease in
magnetic field strength in the MHD equilibrium, and may
affect stability. This occurs because of the diamagnetic effect
of the pressure on the magnetic field. As the pressure builds up
locally, perpendicular pressure gradients become important.
These gradients are expected to influence MHD instabilities
and particle orbits, e.g. through the toroidal drift frequency
[18, 23–25].

The perpendicular pressure has a direct effect on the
magnetic field strength in the MHD equilibrium, which is
illustrated in figure 10. It is still interesting to note that the
decrease in magnetic field strength is larger around φ = 0
than around φ = π/2, as expected from the corresponding
perpendicular pressure variations. However, the magnetic field
variations due to RF heating, of the order of 0.2%, are much
lower than the pressure variations and cannot be expected to
influence particle orbits or wave propagation directly. This is of
course explained with the rather low beta in these simulations.
We note that for our simulations, variations in magnetic field
strength due to hot particle pressure increase are of the same
order as variations to the safety factor coming from induced
current.

The previously mentioned JET simulations [17] suggest
that the effects of heating are locally enhanced by applying the
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Figure 8. Toroidal hot parallel and perpendicular pressure. Parallel pressure shows no significant variations along the toroidal angle,
whereas the hot perpendicular pressure peak is about 6% lower at φ = π/2 compared with φ = 0. Colours are to scale for parallel and
perpendicular pressure separately. Perpendicular pressure is about one order of magnitude larger than parallel pressure, the peak of the
former corresponds to βh

max ≈ 0.2%.

Figure 9. Total perpendicular pressure changes at φ = {0, π/2}. Plotted is (p⊥ − p0
⊥)/p0

⊥[%], where superscript ‘0’ denotes the initial
value (where hot pressure is zero). Colours are to scale, and the peak corresponds to a 33% change. The peak value decreases to about 31%
between φ = 0 and φ = π/2.
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Figure 10. Relative modification of the magnetic field strength (B − B0)/B0) in the HFS 6 MW heating scenario. Superscript 0 denotes the
initial condition (thermal minority), and the scale is in per cent. Negative values are clearly linked to the positive perpendicular pressure
variations of figure 9, including a small toroidal dependence. Positive values are due to the numerical constraint that total toroidal magnetic
flux remains constant during the simulation. Magnetic field strength varies much less than pressure because of the rather low β in these
simulations.

Figure 11. Effective temperatures for the 3 MW HFS and LFS
simulations. Whereas the tail reaches 1.1 MeV for HFS, LFS
heating creates tails of only about 350 keV.

RF power to the LFS instead of the HFS. We will now turn to
LFS heating.

3.2. Low-field side

Other than in the two-dimensional JET scenarios of [17],
LFS heating does not have a greater impact on the magnetic
equilibrium than HFS heating in the QAS. Indeed, already at
3 MW heating, most of the resonant particles are very quickly
leaving the plasma volume, and the helium-3 minority remains
largely thermal. Input power is almost entirely equalized by
particle loss even for 3 MW, and we will not discuss a 6 MW
LFS heating scenario, as the energy content of the minority
distribution cannot be expected to increase. Due to high
energy particle loss, only about 1% of the 3He minority gets
heated to non-thermal energies and remains confined. Not
only is the fraction of highly energetic particles small, but
also the tail temperature is considerably lower, as shown in
figure 11. When plotting the distribution function contour
plots in figure 12, we see that the only high energy particles
confined in the plasma are deeply trapped. These particles
have smaller orbit widths than barely trapped particles, and

are less likely to be lost. In addition, the quasi-axisymmetric
concept has a magnetic field structure in Boozer coordinates
that makes it look like a tokamak from a guiding centre
particle perspective. Small irregularities that cause symmetry
breaking could affect mainly the barely trapped particles to
develop superbanana orbits, while the deeply trapped fraction
would remain unaffected and therefore well confined. This
last point only applies to the QAS, and thus results could
differ in alternate stellarator systems. Interestingly, even if the
percentage of non-thermal minority and the tail temperatures
are lower in the LFS case compared with the HFS, the toroidal
current density is only about a factor of two smaller than in
the HFS scenario (figure 13). As the distribution is dominated
by trapped particles, the current density shows the familiar
dipolar structure, with a negative current towards the axis, and a
positive current further outside [26, 27]. However, the current
is now too low to have a visible effect on the safety factor
profile, and both the smaller tail temperatures and the small hot
particle fraction result in small hot particle pressure, such that
the hot particle contribution to the total pressure is negligible.
The same applies then to the magnetic equilibrium, where
practically no changes are detectable. Instead of considering
the relative pressure variations as for the HFS cases above,
we plot the locations of high power loss in figure 14, and
compare with the magnetic field strength in figure 15. Power
loss has a maximum around the toroidal position φ = 0 and
φ = 2π/L = π , where the curvature and magnetic field are
largest in the plasma. A clear maximum occurs at θ " π/2,
and halfway between the two extremes of the plasma shaping,
around φ ≈ π/4. When moving in the toroidal direction,
any particle feels a minimum magnetic field strength around
φ = N2π/2L = {π/2, 3π/2}, and a maximum around
φ = N2π/L = {0, π}, and can be trapped toroidally, with
turning points around φ = {0, π}. Particle drift across flux
surfaces is largest around the turning points, which explains
why particles are lost mainly around φ = {0, π}. Now, the
trapped particles move parallel to the toroidal magnetic field
on the outer leg of their orbits, and in counter direction on
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Figure 12. Hot particle distribution function contour plots for 3 MW LFS heating. The distribution function is dominated by deeply trapped
particles (|v‖| * v⊥). These particles have smaller orbit width than barely trapped particles, and stay confined in the plasma, whereas more
barely trapped particles are very quickly crossing the plasma boundary.

the inner leg [27]. At the same time, particles are much more
likely to hit the plasma edge on the outer leg of their orbit than
on the inner leg. As a toroidally trapped particle moves on
the inner leg of the orbit, it moves in the negative φ direction,
i.e. from 0 (π) towards −π (0). Once −π/2 (π/2) passed,
the magnetic field strength increases and the particle is more
and more likely to reach its turning point. As the magnetic
field is strongest around −π (0), this will happen before, and
the particle will move onto the outer leg of its orbit, where
it will either continue along its path and complete the orbit,
or be lost before reaching −π/2 (π/2), such that on average,
most particles will be lost around −3π/4 = 5π/4 (π/4). Of
course, this description applies only to particles with finite
orbit width, and thus not to deeply trapped particles. The
latter remain confined, as discussed above (figure 12). We
note also that in the QAS we have explored, the symmetry of
the magnetic field spectrum in the Boozer coordinate frame is
not perfect. This may amplify the effect of the smaller volume
(compared with the reference JET configuration) as a cause
of the poor confinement properties observed with LFS heating
in our simulations and partially explain the difference with
previous axisymmetric JET tokamak computations [17].

In order to push magnetic field strength variations, and
therefore effects on the overall magnetic equilibrium, different
alternatives can be explored. We have tested increasing the
HFS RF power even further to 12 MW (with the same minority
concentration), but found that with such high power, next to
all the resonant particles are crossing the plasma boundary,
as particle orbits become very large, and toroidal trapping
helps fast particles to escape. If we try to increase hot beta
by increasing the initial minority temperature (we tried ten
and one hundred times), particles with large perpendicular
velocities (i.e. trapped particles) are immediately leaving the
plasma volume, thus diminishing hot particle beta and pressure
anisotropy, until the hot particles are slowed down enough to
represent the same solution we showed above. This behaviour
confirms the robustness of our numerical model, as it converges
to similar results with different initial conditions. It also
strengthens the results of these simulations, that due to toroidal
magnetic field variations, much more resonant particles are

Figure 13. Even if the fraction of hot particles is rather small, the
toroidal current density is only about a factor of two smaller in the
LFS compared with the HFS case. As by far the largest part of the
hot particles are trapped, the current density shows now the
characteristic dipolar structure. Other than for the HFS (figure 5),
the current density has no visible effect on the safety factor profile.

lost than in comparable tokamaks. Our simulations suggest
that ICRH in a JET-like plasma is more efficient than in the
here studied QAS configuration.

4. Conclusions

For the first time, the code package SCENIC has been
applied to a three-dimensional geometry. Studying a two-
period quasi-axisymmetric stellarator, we could demonstrate
that self-consistent solutions for ICRH in three-dimensional
plasmas can be obtained, including a variable equilibrium. For
high-field side (HFS) high and moderate power simulations
using 1% helium-3 in deuterium, we found that a high
energy non-Maxwellian tail forms in the distribution function,
accounting for 16% (12%) of the 3He minority for 6 MW
(3 MW) RF power, with tail temperatures reaching 1.4 MeV
(1.1 MeV). The toroidal current is entirely RF induced, and
reaches 4.5 kA (1 kA), resulting in a 0.5% (0.1%) variation
of the safety factor profile, because we have neglected the
bootstrap current. Resonant particles are trapped due to
preferentially perpendicular heating, thus creating important
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Figure 14. Three-dimensional plots of the lost power due to particles hitting the plasma edge. Highest loss occurs on the upper LFS of the
plasma (0 ! θ < π/2), and around φ = 0, 2π/L, where curvature and magnetic field strength is most important. Additional losses occur
around θ = 0 and π/2 < φ < π . Both of these locations coincide with increasing magnetic field strength for toroidally trapped particles
(figure 15).

Figure 15. Magnetic field strength along the plasma edge. As in tokamaks, for any given toroidal angle, the minimum is found around the
midplane θ = 0. In toroidal direction, B has a minimum around φ = π/2, such that toroidally trapped particles are most likely to have their
turning points (and therefore largest drift across flux surfaces) around φ = N2π/L = {0, π}.

pressure anisotropy T⊥ ∼ 10T‖. As opposed to a tokamak,
particles are trapped poloidally and toroidally, introducing a
toroidal dependence of power deposition and perpendicular
pressure. As ICRH is applied, toroidal power deposition
variations cause more resonant particles to become toroidally
trapped, in turn causing larger toroidal power deposition
variations on the one hand and enhanced power loss due to
highly energetic particle leaving the plasma volume on the
other hand. In the HFS heating scenarios, 60% (50%) of
the input power is lost for 6 MW (3 MW), decreasing RF
heating efficiency considerably. Growing hot (perpendicular)
pressure is responsible for increasing total pressure by as
much as 30% (6 MW), and creates a magnetic well around
the resonant layer. This change is of the order of 0.1% in
these low beta simulations, and is of the same order as safety
factor profile modifications due to induced toroidal current.
Higher RF power or higher initial minority temperature leads
to heavily increased particle loss, which is also observed in
3 and 6 MW low-field side (LFS) heating simulations. Here,
nearly all power is lost already at 3 MW, indicating that such
heating scenarios are very inefficient. In contrast to the
JET studies of [17], important fast toroidally trapped particle
loss generates lower tail temperature, current and pressure
for LFS compared with HFS heating, suggesting that low-
field side heating with low minority concentration may not

be appropriate for efficiently heating plasma configurations
similar to the here considered quasi-axisymmetric stellarator.
Confinement properties can be expected to improve markedly
by increasing the helium-3 concentration (but remaining in a
minority scheme) on the one hand, and the plasma volume on
the other hand. In such geometries, effects on the magnetic
equilibrium could be more important than in this work. It
might also be worthwhile including modifications of the
thermal ion and electron profiles, e.g. for adding bootstrap
current modifications in the self-consistent simulations. These
possibilities will be explored in the future.
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