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Identification and Analysis of Queue Spillovers
in City Street Networks
Nikolas Geroliminis and Alexander Skabardonis

Abstract—We propose a methodology for identifying queue
spillovers in city street networks with signalized intersections
using data from conventional surveillance systems, such as counts
and occupancy from loop detectors. The key idea of the proposed
methodology is that when spillovers from a downstream link block
vehicle departures from the upstream signal line, queues discharge
at rates smaller than the saturation flow. The application of the
methodology on an arterial site and the comparison with field data
show that it consistently identifies spillovers in urban networks
with signal-controlled intersections. The method is extended to
account for the variations in vehicle lengths. We also investigate
the significant effect of spillovers in congestion and show that a
macroscopic diagram that connects spillovers with vehicle density
exists in large-scale congested urban networks.

Index Terms—Arterial networks, performance measures,
queues, spillbacks, traffic congestion.

I. INTRODUCTION

SUBSTANTIAL research has been devoted to developing
accurate and reliable techniques for estimating perfor-

mance measures such as queue lengths and travel times on
arterials and networks controlled by traffic signals. In addition,
several studies have been undertaken for the traffic control and
queue management of oversaturated arterials (e.g., [1]–[4]).
However, the literature is limited in methods for identifying
queue spillovers in city street networks with signal-controlled
intersections. Spillovers occur when growing queues at the
downstream signal block the arrivals from the directly upstream
signal and vehicles cannot depart, although the signal phase is
green. Spillovers may also occur when turning vehicles fill up
the available storage length of turn bays and block the through
movements. When these physical queues exceed the link length,
departures from the upstream link are blocked and lead the
entire system to restricted mobility and service inefficiency.

Spillovers are the result of oversaturated conditions but,
simultaneously, are the cause of intensely increasing queued
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traffic and the creation of additional congestion. It is already
known, for example, that spillovers past merges can lead
to gridlocks on ring roads and other networks with closed
loops [5]. Modeling of congestion dynamics and spillovers for
pedestrians has attracted interest from a microscopic trajectory
prospective [6] or using queuing theory tools [7]. Osorio and
Bierlaire [8] developed an analytic finite-capacity queuing net-
work model to capture blocking traffic for roads with signalized
intersections. Recently, a model for travel times estimation in
signalized arterials [9], which integrates the effect of spillovers
in link capacity, has observed that when spillovers occur, the
travel delay can increase by 50%–100% for short distance links
between successive intersections. The practical implications of
identifying spillovers in a consistent and fast way are important;
for example, it can be a smart approach to preempt congestion
by predicting congestion locations/times and have remedial
strategies in place to restrict access to highly congested areas
(as opposed to the current state of the art, where traffic manage-
ment strategies react to congestion). It can also be integrated
in real-time traffic management schemes, either at intersection
scale (actuated control, e.g., [10]) or at larger complex urban
systems (e.g., [11]).

This paper presents the development and application of a
robust method for identifying spillovers on arterials based on
surveillance data. The proposed methodology can readily be
applied in large urban areas and provides important information
with regard to oversaturated links and active bottlenecks in
city street networks. Another main novelty of this paper is
the investigation of the macroscopic effect of spillovers in
urban mobility at the network level. We observe that spillovers
are not only local system disturbances, but they might spread
as well. We also observe that spillovers influence the spatial
distribution and magnitude of congestion pockets in a network
and significantly decrease the overall system performance,
as this expressed by network flows and speeds. We address
these questions based on a network-based approach, motivated
by recent findings in the macroscopic modeling of traffic in
cities [12], [13]. We show that the total number of vehicles
at spillovers is a key variable of urban congestion in a city
network, which reveals clear functional relationships rather
than having qualitative descriptions of congested traffic.

In this paper, Section II describes the methodology for
predicting spillovers in city street networks with signalized
intersections and the extension of the methodology for pop-
ulations of vehicles with different vehicle lengths. Next, we
present the results from the application of the method on a real-
world arterial in Section III. Section IV analyzes the effect of
spillovers in congestion by providing results from a simulation
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of the San Francisco downtown network. Finally, we discuss the
study findings and propose ideas for future work in Section V.

II. METHODOLOGY

Loop detectors are the predominant sensor technology for
surveillance and control along signalized arterials and net-
works. Data from single inductive loop detectors include ve-
hicle count and occupancy (the proportion of time that the
loop is occupied). The raw data are typically reported back
to a transportation management center (TMC) at 20- or 30-s
intervals. The average speed of vehicles can be obtained from
the count and occupancy data using (1) [14]

ūsi
=

Ni · Leff

T · oi
(1)

where ūsi
is the space mean speed for a time interval i, Ni and

oi are the measured volume and occupancy in i, respectively,
T is the length of time interval (20 or 30 s), and Leff is the
average effective vehicle lengths (EVLs) of the traffic stream
(the average vehicle length plus the detector length).

In practice, Leff has been assumed to have a constant value;
for example, the Washington State Department of Transporta-
tion uses Leff = 20 − 25 ft [15]. In reality, Leff varies as the
average EVL changes with vehicle composition. Hellinga [16]
proposed an algorithm that uses dual-loop measured vehicle
lengths to calculate Leff and applied that value to estimate
speed at adjacent single-loop stations. Wang and Nihan [17]
studied the relationship between lane occupancy and speed and
concluded that Leff can be considered constant only when all
vehicle lengths were approximately equal.

Loop detectors for traffic surveillance along arterials are usu-
ally sufficiently placed upstream from the intersection stop line
(system detectors) so that measured flows and occupancies are
not affected by the presence of queues at the traffic signal. This
assumption is violated in cases of heavy traffic or oversaturated
conditions, because growing queues extend past the detector
location. We present a method of predicting spillovers in city
street networks with signal-controlled intersections by using the
detectors’ count and occupancy data. The analysis is based on
the selection of data in time intervals of one cycle but can be
applied for more disaggregated data.

We estimate the queue dynamics according to the kinematic
wave [Lighthill–Whitham–Richards (LWR)] theory, which was
originally proposed by Lighthill and Whitham [18], [19]
and Richards [20], to explicitly consider the temporal and
spatial formation of queues. We assume a piecewise linear
flow–density relationship (fundamental diagram) with parame-
ters uf (free-flow speed), kj (jam density), and u (congested
wave speed). According to the LWR theory, shock waves are
generated by the traffic signal, which cause congested condi-
tions to develop near the stop line during the red interval and
capacity conditions to occur in the period during which the
queue discharges at the saturation flow rate. When the queue
has dissipated, the rest of the platoon that arrives during the
green time crosses the intersection stop line with no interfer-
ence from the traffic signal. Fig. 1 shows the shockwaves at
an isolated signal under the assumed form of the flow–density

Fig. 1. Shockwaves in an isolated signal.

relationship. Because the system detector is placed at distance
Ld upstream the stop line, the effect of the red phase and queues
is identified with a time lag.

The key idea of the developed methodology is that, when
spillovers from the downstream signal block vehicle arrivals
from the upstream signal line, the queue discharges at rates
smaller than the saturation flow during the green phase. The
first part of this section sets out the relation between growing
queues and high values of occupancy, whereas the second
part explicates the threshold values of occupancy for which
spillovers occur.

A. Identification of Growing Queues

When queues extend past the detector location, the platoon
arrivals are not known, and for an amount of time (interval
t2 in Fig. 1), the measured vehicle count is zero, and the
detector occupancy is close to 1. Under the assumed triangular
flow–density relationship, drivers arrive from the upstream
signal and reach the detector at free-flow speed uf if they are
not constrained by queues. Based on (1), the critical value of
occupancy ōcr for which the queue length extends past the
detector is given by (2), where q̄ is the average flow measured
by the detector

ōcr =
Leff · q̄

uf
. (2)

The importance of this simple formula is that if the variations
of the free-flow speed between drivers are small, this value is
stable, independent of the time interval at which the data are
collected.

The cycle time c is divided into four time intervals by using
the detector position as a reference space point. Interval t1 is
the time that queues do not reach the detector, whereas vehicles
arrive during the red phase, t2 is the time that the detector is
occupied because of the congested conditions developed near
the stop line during the red phase, t3 is the time that the queue
discharges at the saturation flow, and t4 is the remaining green
time that platoons cross the stop line with no interference from
the traffic signal. Ld is the distance between the detector and
the stop line, and Lq is the maximum queue length.

When the average occupancy ō is greater than ōcr, growing
queues extend past the detector (t2 > 0), and the average
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occupancy ō is given by (3). The first term is the free-flow
occupancy, whereas the second term expresses the congested
conditions at the detector. The term ostop is the jam occupancy
with a value close to 1, and N is the vehicle count during that
cycle. The free-flow speed uf can be obtained from data under
undersaturated conditions, and the EVL is approximately equal
to the average vehicle length plus the detector length (about
20–25 ft). We have

ō =

∑
i=1,3,4

ti
Leff qi

uf
+ t2 · ostop

c
=

Leff

uf
· N + t2 · ostop

c

=
Leff · q̄

uf
+

t2 · ostop

c
. (3)

The time interval t2 that the detector is occupied, assuming
ostop ≈ 1, is

t2 =
c

ostop
·
(

ō − Leff · q̄
uf

)
∼= c ·

(
ō − Leff · q̄

uf

)
. (4)

The estimation of t2, which is based only on values of
observable quantities, is an important tool for identifying
traffic states. First, when t2 takes negative values, queues do
not reach the detector at any point in the cycle, i.e., the link is
uncongested, and the vehicle accumulation in that link never
exceeds the value Ld · kj , where Ld is the distance between
the detector and the stop line, and kj is the jam density.
Furthermore, as t2 > 0 increases, queue reaches the detector,
and the arrival rate during that cycle is more intense. Thus, the
rate that queues grow in that link is faster, as expressed by the
average shockwave speed w̄ in Fig. 1. Note that (2)–(4) hold,
although the arrivals at the traffic signal are not homogeneous
in time. In the following section, we present the methodology
for spillover identification from the estimated value of t2 using
the detector count and occupancy data.

B. Identification of Spillovers

Spillovers are a result of oversaturated conditions but, simul-
taneously, are the cause of increasing intensely queued traffic
and the creation of more congestion as a “chain reaction.”
This case is illustrated in Fig. 2, which shows a time–space
diagram for three consequent signals. Vehicles arrive at the
first upstream signal at rate A, and during the red phase for
the through movements of all signals, turning traffic enters the
through direction with rate B < A. It is easily recognizable that
the upstream signal operates at undersaturated conditions, be-
cause residuals queues do not occur. However, growing queues
at the downstream signal block the arrivals from the middle
signal, and after two cycles, the spillover reaches the upstream
undersaturated signal. Spillovers may also occur when turning
vehicles fill up the available storage length of turn bays and
block the through movements.

The key concept in spillover identification is the observation
that the queue discharges at a lower rate than the saturation flow
s. Thus, the methodology focuses on simultaneously recogniz-
ing the presence of queues and discharging rates smaller than
saturation flow s. To achieve this goal, the time interval t2 is
considered, as described in (4). If there is no blocking traffic,

Fig. 2. Time–Space diagram for three successive traffic signals.

then the maximum value of t2 is equal to the duration of the
red phase r, because the maximum speed of the shockwave is
the congested wave speed u, which occurs when the arrival rate
is equal to the saturation flow s. By applying this observation
(t2 = r) to (3), we estimate the critical value for the “blocking
occupancy” osp as

osp =
Leff · q̄

uf
+

r

c
. (5)

Therefore, if the measured occupancy is greater than the
critical value osp, we conclude that spillovers from the down-
stream link block the departures from the first link upstream.
This condition is sufficient for the occurrence of spillovers
but is not necessary. It is a way of identifying the spillovers
when oversaturated conditions take place and the queues extend
past the detector location. Consequently, the aforementioned
methodology captures the existence of “active” spillovers, i.e.,
spillovers that result in congestion problems and the under-
utilization of the green phase. Such spillovers cause a drastic
decrease in vehicle speeds and a possible extension of spillovers
to more links upstream if the demand continues to be high. For
example, if the aforementioned methodology is applied in the
traffic conditions presented in Fig. 2, blocking traffic for the
middle signal is identified with a delay of one signal cycle. The
use of more disaggregated data can identify spillovers without
the delay described in the previous example.

C. Extension of the Method for Different Vehicle Lengths

The aforementioned methodology predicts the existence of
spillovers, assuming a constant EVL Leff . In this section, we
extend the methodology to account for the variation in vehicle
lengths. Higher values of detector occupancies are obtained not
only because of long queues that pass the detector location
but because of LVs that travel in free-flow speed and occupy
the detector more time because of their length as well. Our
analysis shows that the effect of vehicle length variation in the
estimation of osp is not significant.

The distribution of vehicle lengths generally follows a bi-
modal distribution with two separated peaks: one higher peak
for passenger cars and a smaller peak for long vehicles (LVs),
e.g., trucks and buses, as shown in Fig. 3.
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Fig. 3. Histogram of vehicle length distribution for U.S. 101 (the horizon-
tal axis refers to the length (in meters), and the vertical axis refers to the
frequency) [1].

Yeo et al. [21] found that both small-vehicle (SV) and
long-vehicle (LV) lengths are normally distributed. Therefore,
SV lengths are assumed to follow the N(μ1, σ

2
1) distribu-

tion (called x1), and LV lengths are assumed to follow the
N(μ2, σ

2
2) distribution (called x2), where μ1 and σ1 are the

mean and standard deviation of SV lengths, and μ2 and σ2 are
the mean and standard deviation of LV lengths, respectively. We
can approximate the vehicle length density function π as

π = ξx1 + (1 − ξ)x2 (6)

where ξ is the Bernoulli distribution with probability of success
p, where p is the proportion of SVs. Assuming that ξ, x1, and
x2 are independent, the average vehicle length is simply pμ1 +
(1 − p)μ2. With respect to the variance of π, we have

var [ξx1 + (1 − ξ)x2]
= var [ξx1] + var [(1 − ξ)x2] + 2cov (ξx1, (1 − ξ)x2)
= var[ξx1] + var [(1 − ξ)x2]

+ 2cov(ξx1, x2) − 2cov(ξx1, ξx2)
= var[ξx1] + var [(1 − ξ)x2] − 2cov(ξx1, ξx2). (7)

Using statistical analysis and after some manipulations, for
i = 1, 2, we have

cov(ξx1, ξx2) = E[ξ2x1x2] − E[ξx1] · E[ξx2]
= E[ξ2]E[x1x2] − E2[ξ] · E[x1x2]
= (p − p2)μ1μ2 (8)

var[ξxi] = E
[
ξ2x2

i

]
− E2[ξxi]

= E[ξ2] · E[x2
i ] − E2[ξ] · E2[xi]

= E[ξ] ·
(
E2[xi] + var[xi]

)
− E2[ξ] · E2[xi]

= p ·
(
μ2

i + σ2
i

)
− p2 · μ2

i . (9)

Using (7)–(9), the variance of the vehicle length distribution
π is

var [ξx1 + (1 − ξ)x2]

= p ·
(
μ2

1 + σ2
1

)
− p2 · μ2

1 + (1 − p) ·
(
μ2

2 + σ2
2

)
− (1 − p)2 · μ2

2 − 2(p − p2)μ1μ2

= p ·
(
σ2

1 − σ2
2

)
+ σ2

2 + (p − p2) · (μ1 − μ2)2. (10)

TABLE I
CRITICAL BLOCKING OCCUPANCY WITH OR WITHOUT VARIATIONS

IN VEHICLE LENGTHS FOR DIFFERENT VALUES OF p AND

g/c (μ1 = 6 m, σ1 = 0.7 m, μ2 = 13 m, σ2 = 2 m,
uf = 15.65 m/s = 35 mi/h, q̄ = (0.5 veh/s) · (g/c))

Fig. 4. Schematic of the study site (Lincoln Avenue, Los Angeles).

Table I shows the estimated value of “blocking occupancy”
with or without variation in Leff . In the first case, (5) was
applied using average values for Leff . In the second case,
the 95th percentile value of vehicle length was used for Leff .
The results show that the variation in vehicle lengths is not
critical for estimating the blocking occupancy (the absolute
error is less than 2% in most of the cases); therefore, the
proposed methodology can be applied in cases where vehicle
lengths vary. Note that, in arterials with higher speed limits or
grades, the free-flow speed of LVs may be smaller than the
free-flow speed of SVs. In this case, we suggest applying the
aforementioned equations per lane using the free-flow speed
of LVs for the rightmost lane and the speed of SVs for the
remaining lanes.

III. METHOD VERIFICATION USING REAL-WORLD DATA

The selected test site is a 1.42-mi-long stretch of Lincoln
Avenue, which is a major urban arterial near the Los Angeles
International Airport (see Fig. 4). The study section includes
seven signalized intersections, with the link lengths varying
from 500 ft to 1600 ft. The number of lanes for the through
traffic per link is three lanes per direction. Additional lanes
for turning movements are provided at intersection approaches.
The free-flow speed is 40 mi/h. Traffic signals are all multiphase
operating as coordinated under the traffic-responsive control.
The system cycle length ranges from 100 s early in the analysis
period (6:00–6:30 A.M.) to a maximum of 150 s during the
periods of the highest traffic volumes (7:30–8:30 A.M.). System
loop detectors are located on each lane approximately 250 ft
upstream the intersection stop line. Detector data every 30 s
(vehicle count and occupancy) and signal timing data for the
study period were obtained from the Los Angeles Automated
Traffic Surveillance and Control central traffic control system
database. Floating-car runs were performed at 7-min headways.
Vehicle location and speed were recorded on each second using
Global Position System (GPS) units. The study period enabled
us to obtain data for a wide range of traffic conditions (from
low-volume off-peak conditions to peak-period conditions). For
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Fig. 5. Time series of measured and blocking occupancy at the Washington
intersection (left axes) and the average speed of floating cars (right axes).

more information about the field study, the reader should refer
to [22].

Traffic demand is high, particularly during the peak hour.
Traffic volumes are heavily directional, with the higher volumes
in the northbound direction. The average travel speeds on the
test section are 25 mi/h during the off-peak times and drop
to about 10 mi/h during the peak hour in the heavily traveled
northbound direction. The proposed methodology is applied to
the aforementioned site by using the occupancy and count data
to spatially and temporally identify the spillovers. In addition,
average speeds per cycle for each link are calculated using
the GPS data from floating cars for comparison. The results
show that spillovers cause very low observed speeds during the
peak hour (7:00–9:00). Because cameras were not available to
spatiotemporally identify spillover occurrences, the floating car
data were utilized.

Fig. 5 illustrates the following three factors: 1) values of the
measured occupancy from the detectors; 2) critical occupancy
that was estimated from (5) at the Washington intersection; and
3) average speeds of probe vehicles. We observed that floating-
car average speeds at this intersection were measured less than
9 mi/h when spillovers identified. In addition, we observed that
floating cars repetitively stopped during the green phase of the
signal for cycles with spillovers.

Fig. 6(a) plots different traffic states in the Lincoln site for
the 4-h study period. The green color indicates the existence
of spillovers, whereas blue indicates the opposite. The inter-
esting result is that locations of spillovers are very clearly
presented. By considering the effect of spillovers in delays and
the decrease of mobility, the aforementioned method detects the
critical congested intersections in a network. An intervention in
these critical points could result in the avoidance of long queues
and the efficient operation during the peak hour. As shown in
Fig. 6(b), a simple contour plot of occupancies in the study site
contains significant noise and cannot give reliable information
about blocking traffic.

IV. EFFECT OF SPILLOVERS IN URBAN TRAFFIC

One interesting question that arises is the following: How
important is the effect of intersection queue spillovers at the

Fig. 6. (a) Spillover plot in space and time. (b) Occupancy contour plot in the
study site.

network level. In addition, are spillovers local system distur-
bances, or do they spread and decrease the overall system per-
formance, and if yes, how? We address these questions based
on a network-based approach, motivated by recent findings in
the macroscopic modeling of traffic in cities.

Recent research findings indicate that we can model traffic
in large urban areas at an aggregate level if the area can
be partitioned into regions that are uniformly congested (see
[12] and [13]). The findings that are based on a microsimu-
lation of downtown San Francisco and a field experiment in
downtown Yokohama, Japan, show the following: 1) Congested
city centers approximately exhibit a well-defined macroscopic
fundamental diagram (MFD) that relates the number of vehicles
(accumulation) in the region to the region’s average flow or
speed, and 2) there is a linear relation between the region’s
average flow and its total output (rate vehicles reach their
destinations). It was also found that the average network flow is
maximum for the same value of vehicle density, independent of
the origin–destination tables, and that the average trip length for
the study area is about constant with time, i.e., the total output
versus the density curve is a scaled-up version of the average
network flow versus the density curve. Further analysis of the
San Francisco simulations is presented here to investigate the
effect of spillovers in network traffic.

This test network is a 2.5-mi2 portion of the San Francisco
downtown area (financial district and south of the market area),
including about 100 intersections, with link lengths varying
from 400 ft to 1300 ft (see Fig. 7). The number of lanes for
through traffic varies from two to five lanes, and the free-flow
speed is 30 mi/h. Traffic was simulated for a period of
4 h with time- and space-dependent traffic demands, start-
ing from low flows and increasing to higher flows until
the system reaches a gridlock. Several simulation runs were
made with different demand profiles. Note that the total
output increased with accumulation up to a critical value
(∼3500 vehicles) and then decreased to a gridlock state with
almost zero output (each scenario is shown with different colors
in Fig. 8).

Our conjecture is that the existence of spillovers is highly
related to the decrease in the system output. If the sys-
tem reaches a congested state in the decreasing part of the
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Fig. 7. View of the San Francisco network.

Fig. 8. Output versus accumulation pairs for different runs in the
San Francisco network aggregated every two cycles [12].

output-accumulation curve and the demand continues to be
high, then accumulation increases, and this case can lead the
system to a gridlock. To validate this conjecture, the number
of spillovers is calculated in each cycle during the simulation.
To investigate the effect (if any) of the travel demand in a
macroscopic relation between performance network variables
and spillovers, we analyze two different scenarios, as presented
in Fig. 9. This figure shows the spatial distribution of the total
number of trips originated and terminated in the study region.
Note that, in scenario 2, most of the trip origins are external
from the southwest corner of the city, whereas in scenario 1,
the trips uniformly originated in the periphery and a substan-
tial internal portion (∼30%). With regard to destinations, in
scenario 1, trip terminations are almost uniformly distributed
among the city, whereas in scenario 2, most trip termina-
tions are external, and cars exit from the boundaries of the
network.

We now quantitatively describe how the number of spillover-
blocked vehicles St in every cycle t is estimated. This value
is the number of vehicles that could get served if queues
from the downstream link did not spill back and block the
arrivals. If c is the signal cycle duration, s is the satura-
tion flow, qit and git are the output and the duration of the
green phase at link i during cycle t, respectively, and xit

is a binary variable with a value equal to 1 if phase fail-
ures occur (when vehicles queued at a signal are not all dis-

Fig. 9. Output versus spillovers pairs for two scenarios in the San Francisco
network.

charged in one cycle during the phase that serves the queue),
then

St =
∑

i

(sgit − qitc) · xit. (11)

Fig. 10 shows the system output (in vehicles per minute),
average network speed (in kilometers per hour), and system
accumulation (in number of vehicles) versus the number of
spillover-blocked vehicles St (in vehicles per cycle) aggregated
per two cycles for scenarios 1 and 2. It is clear that, when
the number of spillovers increases above a threshold, the per-
formance of the system drastically decreases, because fewer
vehicles reach their destinations. Note that the output increases
for small values of St, which might be counterintuitive at a first
look. This case is because demand increases and more links
operate close to capacity. Thus, there are a few instances that
spillovers occur but with no significant effect in the overall
network performance (note the distribution of link occupancy in
Fig. 12). Although it is difficult to estimate the rate that vehicles
reach their destinations (system output) without monitoring
equipment in every vehicle, the space–mean speed is an easily
observable quantity, even by utilizing loop detector data. There
is a clear functional relationship between the space–mean speed
and the number of spillovers, which is insensitive to vastly
different origin–destination tables [see Fig. 10(b)]. Note that,
although St remains small (< 250) for values of accumulation
below the critical accumulation, it increases with an almost-
constant rate (one additional spillover per cycle for every two
additional cars in the network) until the system reaches a
state of gridlock [see Fig. 10(c)]. These results suggest that,
by keeping the number of spillover-blocked vehicles below
specific thresholds, we can guarantee efficient service for the
network users.
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Fig. 10. Effect of spillovers in system performance measures for two different demand scenarios in the San Francisco network. (a) Output versus spillovers.
(b) Average network speed versus spillovers. (c) Spillovers versus accumulation.

Fig. 11. Time series of the number of spillovers, the number of vehicles in
residual queues, the total number of vehicles in the network (accumulation),
and the total number of intersection crossings per cycle.

One interesting observation is that the system output is
maximized for a value of spillovers higher than zero (∼250),
which means that the topology of the network and the trip
distribution do not allow an even and deterministic spatial
distribution of vehicles in the network, i.e., it is not possible
that all links perform at capacity. This condition can be verified
by calculating the sum of flows from all links and noticing that
this value is smaller than

∑
i s · git/c.

To have a better understanding of congested traffic conditions
at the network level and explain the significant decrease in the
system output and space–mean speed, we distinguish the num-
ber of vehicles in every link i for every cycle t between the
following three categories: 1) vehicles that exit the link from the
downstream end by crossing the stop line; 2) vehicles that join
a residual queue at the upstream end of the link and cannot get
served in the same cycle at which they arrived; and 3) vehicles
that could be served in the same cycle if spillovers did not occur.
We then estimate in every cycle the total number of vehicles
for each category. The number of intersection crossings (total
circulating flow in one cycle) is ICt =

∑
i qit; the number of

vehicles in residual queues is RQt =
∑

i max{0, nit − sgit},
where nit is the number of vehicles in link i in cycle t;
and the number of spillover-blocked vehicles St is given
by (11).

Fig. 11 shows the number of vehicles in each category with
time for scenario 1. The maximum system output occurs at

Fig. 12. Spatial distribution of link occupancy from four network snapshots
at different congestion levels.

approximately 60 time units when St = 250 veh/cycle and the
system is at the critical accumulation (ncr ≈ 3500 veh). The
circulating flow is the maximum for the same value of accumu-
lation. Note that, when St and RQt are small, the circulating
flow in one cycle is larger than the number of vehicles in
the system, because each vehicle travels more than one link
and crosses more than one intersection per cycle. However, as
queues become longer and vehicles join residual queues, some
vehicles need more than one cycle to travel one link. Note
that, for highly congested conditions, the sum of these three
quantities is equal to the number of vehicles. When RQ further
increases, residual queues spill back in the upstream links, and
spillovers are created.

In general, the relationship between RQ and S depends
on the length of the links and the cycle duration. For very
short links with length l < Leff · g · s, RQ is always zero, and
spillbacks can occur very fast after a demand increase, whereas
for long links, several cycles of high demand are needed.

In our experiment, we note that, when the number of vehicles
n is higher than the critical accumulation, the sum of inter-
section crossings plus spillovers is smaller than the maximum
value of circulating flow, which occurs at the critical accumula-
tion, i.e., ICt + St < ICmax ∀t : n(t) > ncr. This case hap-
pens because the spatial distribution of vehicles in the network
changes with the level of congestion. For highly oversaturated
conditions, vehicles concentrate in a smaller number of links in
the network, and even for links without blocking traffic from
downstream, the total circulating flow decreases because of
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residual queues. Fig. 12 provides a quantitative evidence for
the aforementioned point. It plots histograms of link occupancy
oit = nitLeff/l (each column represents a 10% range) for
network snapshots with space–mean speeds of 3, 9, 14, and
23 km/hr (14 km/hr is the speed when the circulating flow
is maximum). By comparing histograms for speed equal to
14 km/hr with 9 and 3 km/hr, we notice that the fraction of
empty and full links increases, whereas the fraction of links
with no residual queues decreases. This condition results in
a significant decrease in the circulating flow, which is much
higher than the number of spillovers.

These results illustrate that simple control strategies can
enhance the traffic performance. These strategies should focus
on reducing the variability of the vehicle densities by avoiding
spillovers and a large number of vehicles in residual queues.
This type of research is under way.

V. CONCLUSION

We have presented and validated a methodology of iden-
tifying queue spillovers in urban networks with signalized
intersections and have shown the significant effect of spillovers
in the system output and efficiency. The practical implications
of the models, after sufficient validation and fine-tuning, can
be important; for example, it is a smart approach to preempt
congestion by predicting congestion locations/times and have
remedial strategies in place (as opposed to the current state
of the art, where traffic management strategies react to con-
gestion). This paper has also provided some evidence that
control for equalizing density throughout the network can be
beneficial for network performance. Ongoing and future re-
search involves the development of strategies for monitoring
traffic in congested urban networks using different types of
monitoring equipment (e.g., loop detectors, cameras, and GPS
technology).

Effective monitoring is essential for developing observation-
based control. New technologies of wireless sensors (for exam-
ple, see the work of Kwong and others) can provide substantial
improvement in accurate measures of flow and occupancy,
which are needed for different performance measures, includ-
ing spillovers. Avoiding spillovers in congested parts of a city
can lead to better utilization of the system and an increase
in mobility and accessibility. This condition is possible by
prioritizing critical vehicle queues (for example, see the work
of Lammer and Helbing) or restricting access to regions that
exceed certain density thresholds (for example, see the work of
Geroliminis and Daganzo). Recently, Helbing and Mazloumian
have proposed a signal control strategy that explains the slower-
is-faster effect when the utilization of a road section is very
small such that it requires extra time to collect enough vehicles
for an efficient “platooning” service during the green phase.
Similarly, the slower-is-faster strategy would suggest restricting
the inflow to congested areas to keep the number of spillovers
low. At the local control level, further modeling is required,
because decisions should be made before the queues reach the
critical length of the link. The application of methodology to
different types of signal control and networks (e.g., adaptive,
pretimed, and mixed) should also be investigated.
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