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Abstract— This paper extends the quotient method proposed
in [1] and applies it to stabilize a “ball-on-a-wheel” system.
The quotient method requires a diffeomorphism to obtain the
normal form of the input vector field and uses canonical pro-
jection to obtain the quotient. However, the whole process can
be done without computing the normal form, which requires
defining a quotient generating function and a quotient bracket.
This paper presents the steps necessary to apply the quotient
method without obtaining the normal form. Furthermore, a
Lyapunov function is introduced to prove stability. This paper
also presents the experimental implementation of the quotient
method to stabilize a ball-on-a-wheel system.

I. I NTRODUCTION

There are many nonlinear systems used for pedagogical
purposes. These systems serve not only as hands-on experi-
ments for teaching purposes but also as test benches for new
control laws. A good example is the inverted pendulum [2],
[3], on which various nonlinear control methodologies such
as approximate feedback linearization [4], adaptive backstep-
ping [5], immersion and invariance [6], and quotient method
[7] have been demonstrated. Other well-known pedagogical
systems are the acrobot [8], [9], the ball-on-beam and the
ball-on-a-wheel.

In this paper, the quotient method proposed in [1] is
implemented and validated on a ball-on-a-wheel system. The
setup consists of a wheel driven by an electric motor and a
ball rolling in a groove on the periphery of the wheel. The
objective is to keep the ball balanced on the wheel. This
system is nonlinear, under-actuated, and open-loop unstable.
The control strategies that have been demonstrated on this
system includeH∞ PID control [10], flatness-based control
[11] and full-state feedback linearization [12].

The particularity in this paper is that the the quotient
method is implemented without resorting to a diffeomor-
phism. The algorithmic method includes two stages: in the
forward stage, the quotients are defined by choosing 1-forms
and are then used to obtain the required control law during
the backward stage. The stability of the closed-loop system
is proven by the existence of a Lyapunov function.

The paper is organized as follows. Section II develops the
theory required by the algorithm. Section III briefly intro-
duces the model used for control design, while Section IV
designs the controller. A stability proof is given in Section V,
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while Section VI presents the experimental results. Finally,
concluding remarks are given in Section VII.

II. T HEORICAL DEVELOPMENT

Consider a system defined onRn. The tangent bundle
and the cotangent bundle are given byTR

n = R
n × R

n

and T ∗
R
n = R

n × R
n, respectively. Next,consider the

exact1−form ω (a section of the cotangent bundle) and the
vector field (a section of the tangent bundle)g such that
ω(g)|p 6= 0 ∀p ∈ R

n. Hereafter, for simplicity of notation,
a 1-form acting on the vector fieldω(g) will be written
asωg. Consider the subspace defined by the1−form ω as
the collection of all vector fieldsp such thatωp = 0. A
projection can be define for the arbitrary vector fieldm on
the subspace defined byω alongg as

Definition 1 (ω-projection): Consider the two arbitrary
vector fieldsm and g and the1-form ω such thatωg 6= 0.
Then, the projection ofm alongg on ω is given by

Prω,g(m) = m−
ωm

ωg
g.

Based on this definition, we can define an equivalence
relationship as

Definition 2: The two vector fieldsm1 andm2 are equiv-
alent(m1 ∼ m2) for the given vector fieldg and the1-form
ω such thatω g 6= 0 if and only if Prω,g(m1) = Prω,g(m2).
It can be shown that the relation defined above is an
equivalence relation as it satisfies the following properties:

• Reflexivity: m1 ∼ m1. Since, Prω,g(m1) =
Prω,g(m1).

• Symmetry: if m1 ∼ m2, then m2 ∼ m1. Since,
if Prω,g(m1) = Prω,g(m2), then Prω,g(m2) =
Prω,g(m1).

• Transitivity: if m1 ∼ m2 andm2 ∼ m3, thenm1 ∼ m3.
Since, if Prω,g(m1) = Prω,g(m2) andPrω,g(m2) =
Prω,g(m3), thenPrω,g(m1) = Prω,g(m3).

Equivalence between the two vector fieldsm1 andm2 can
also be identified ifm1 − m2 = αg, whereα is a scalar
function:

Prω,g(m+ αg) = (m+ αg) −
ω(m+ αg)

ωg
g

= m−
ωm

ωg
g + αg −

αωg

ωg
g

= m−
ωm

ωg
g + αg − αg

= Prω,g(m).

Hence, ifm2 −m1 = αg, thenPrω,g(m2) = Prω,g(m1 +
αg) = Prω,g(m1), which impliesm1 ∼ m2 .
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The representative of the equivalence class is chosen to
be the vector field that belongs to the subspace defined by
ω. Hence, the quotient is the subspace defined byω and the
equivalence class is defined as:

[m1] = {m|m = m1 + αg∀α and m1ω = 0}.

For the quotient method, it is required to compute the Lie
bracket of the representatives from the members of the
equivalence class. To this effect, the Müllhaupt bracket was
defined in [13], with the definition repeated here.

Definition 3 (M̈ullhaupt (quotient) bracket):The
Müllhaupt bracket of the two arbitrary vector fields
m1 and m2, for the given input vector fieldg and the
chosen integrable1-form ω such thatωg 6= 0, is given by:

< m1,m2 >ω,g= [m1,m2] +
ωm2

ωg
[g,m1] −

ωm1

ωg
[g,m2].

In the above definition, sinceω appears both in the numerator
and denominator, the 1-formω can be assumed to be
exact without any repercussion. Moreover, in the control
design stage, exactness will play an important role. Next,
the following theorem allows computing the Lie bracket of
the representatives.

Theorem 1:Projection of the Müllhaupt bracket of two
vector fieldsm1 and m2 gives the Lie bracket of the
projection of individual vector fields, that is,

Prω,g(< m1,m2 >ω,g) = [Prω,g(m1), P rω,g(m2)]
Proof: Consider

Prω,g(< m1,m2 >ω,g)

= Prω,g([m1,m2] +
ωm2

ωg
[g,m1] −

ωm1

ωg
[g,m2])

= [m1,m2] + α2[g,m1] − α1[g,m2]

−
ω([m1,m2] + α2[g,m1] − α1[g,m2])

ωg
g (1)

where
α1 :=

ωm1

ωg
, α2 :=

ωm2

ωg
.

Also,

ω([m1,m2] + α2[g,m1] − α1[g,m2])

= ω[m1,m2] + α2ω[g,m1] − α1ω[g,m2].

For the two arbitrary vector fieldsζ1 and ζ2 and the exact
1-form ω, one has:

ω[ζ1, ζ2] = Lζ1ωζ2 − Lζ2ωζ1.

Hence,

ω[m1,m2] + α2ω[g,m1] − α1ω[g,m2] (2)

= Lm1
(ωm2) − Lm2

(ωm1) + α2Lg(ωm1)

− α2Lm1
(ωg) − α1Lg(ωm2) + α1Lm2

(ωg). (3)

Next, consider

Lm1
(ωm2) − α2Lm1

(ωg)

= Lm1
(ωm2) −

ωm2

ωg
Lm1

(ωg)

= ωg
ωgLm1

(ωm2) − ωm2Lm1
ωg

(ωg)2

= ωgLm1
α2, (4)

as well as

Lm2
(ωm1) − α1Lm2

(ωg) = ωgLm2
α1, (5)

and

α2Lg(ωm1) − α1Lg(ωm2)

= α2Lg(ωm1) − α2α1Lg(ωg)

− α1Lg(ωm2) + α2α1Lg(ωg)

= α2(Lg(ωm1) − α1Lg(ωg))

− α1(Lg(ωm2) − α2Lg(ωg))

= α2(ωg)Lg(α1) − α1(ωg)Lg(α2). (6)

Substituting (4), (5) and (6) into (3) modifies the LHS as

Prω,g(< m1,m2 >ω,g)

= [m1,m2] + α2[g,m1] − α1[g,m2]

−
ωgLm1

α2 − ωgLm2
α1

ωg
g

−
α2(ωg)Lg(α1) − α1(ωg)Lg(α2)

ωg
g

= [m1,m2] + α2[g,m1] − α1[g,m2]

− (Lm1
α2 − Lm2

α1 + α2Lgα1 − α1Lgα2)g. (7)

Next, consider the RHS,

[Prω,g(m1), P rω,g(m2)]

= [m1 − α1g,m2 − α2g]

= [m1,m2] − [m1, α2g] − [α1g,m2] + [α1g, α2g]

= [m1,m2] − α2[m1, g] − (Lm1
α2)g − α1[g,m2]

+ (Lm2
α1)g + α1α2[g, g] + α1(Lgα2)g − α2(Lgα1)g

= [m1,m2] + α2[g,m1] − α1[g,m2]

+ (−Lm1
α2 + Lm2

α1 + α1Lgα2 − α2Lgα1)g. (8)

Comparing (7) and (8) shows that

Prω,g(< m1,m2 >ω,g) = [Prω,g(m1), P rω,g(m2)],

which proves the theorem.

Next, if Prω,g is considered as apush forwardoperator for
vector fields, then there exists a correspondingpull back
operator for the1−form defined on the dual of the quo-
tient obtained using theω-projection. The following lemma
defines such anpullbackoperator

Lemma 1:The pullback of the 1-formωN defined on the
dual of the quotient generated usingPrω,g for the 1-formω
and the vector fieldg with ωg 6= 0 is given by:

Pr∗ω,g(ωN ) = ωN −
ωNg

ωg
ω. (9)

Proof: A 1-form acting on a vector field gives a scalar
function invariant under mapping. Hence, for the arbitrary
vector fieldm, Pr∗ω,g must satisfy

Pr∗ω,g(ωN )m = ωNPrω,g(m).

Using (9), the LHS gives

Pr∗ω,g(ωN)m = (ωN −
ωNg

ωg
ω)m

= ωNm−
ωNg

ωg
ωm. (10)



Next, substituting the definition ofPrω,g in the RHS gives

ωNPrω,gm = ωN (m−
ωm

ωg
g)

= ωNm−
ωm

ωg
ωNg. (11)

Comparing (10) and (11) shows that (9) represents the
pullback of the 1-form defined on the quotient.

It is interesting to note thatPrω,g is an anchor and that the
Müllhaupt bracket satisfies the axioms required to define a
Lie Algebroid [14], [15]. However, due to space limitation,
the proof is not included in this paper. The next section
briefly introduces the model of the system.

III. B ALL -ON-A-WHEEL MODEL

The system consists of a ball running on a grooved wheel.
The states of the system are the angular position of the
ball with respect to the vertical axisθ1, the corresponding
velocity θ̇1, the wheel position and the wheel velocity (θ2
and θ̇2), as shown in Figure 1. A model was derived

α

θ1
θ2

Rb
rb

Fig. 1. Schematic representation of the ball-on-a-wheel system

using analytical mechanics. The results of [12] were slightly
modified to include the influence of the groove angle (α as
shown in Figure 1), leading to the following equation:

ẋ =









x2

ax4 + bsinx1

x4

px4 + qsinx1









+









0
c
0
r









u, (12)

with the states defined as:








x1

x2

x3

x4









=









θ1
θ̇1
θ2
θ̇2









.

The model parameters are given in Table I, and the physical
parameters in Table II.

a −i2m
2rwK

2

m

Ra(rb+rw)Itot
p −i2m

K2

m(5 cos(α)2+2)
RaItot

b g(5Iw+2r2wmb)
(rb+rw)Itot

q 2grwmb

Itot

c im
2rwKm

Ra(rw+rb)Itot
r im

Km(5 cos(α)2+2)
RaItot

Itot Iw(5cos(α)2 + 2) + 2r2wmb

TABLE I

MODEL PARAMETERS

rw Wheel radius [m]
rb rolling ball radius (rb = cos(α)Rb) [m]
Rb Ball radius [m]
α Groove angle [rad]
mb Ball mass [kg]
Iw Wheel inertia [kgm2]
Km Motor torque constant [Nm/A]
Rm Motor winding resistance [Ω]
im Gearbox transmission ratio [-]
g Gravitational acceleration [m/s2]

TABLE II

PHYSICAL PARAMETERS

Note that the coefficients are not completely independent of
each other, as for example:

ar = cp. (13)

It can be shown that the system model is feedback linearis-
able [12] with one of the feedback linearising output being

h(x) = rx1 − cx3,

in the domain

Ω =
{

x ∈ R
4| −

π

2
< x1 <

π

2

}

. (14)

This domain is inherent to the system because beyondΩ
there is no force to keep the ball sticking to the wheel. Hence,
it is impossible to design a control law that could stabilize
beyondΩ.

IV. CONTROLLER DESIGN

The quotient method is an algorithmic method to design
control laws for nonlinear systems [1]. It consists of two
stages. The forward stage determines a diffeomorphism that
reduces the effect of the control input on the last state. The
last state is then removed from the system and considered
as a new virtual control input to the remaining subsystem.
Then the process is repeated until the dimension is reduced
to 1.

The backward stage then starts with the simplest subsys-
tem and designs a control law for the virtual control input,
which is trivial for a scalar system. This control law is then
extended to the next subsystem obtained in the forward stage.
This step is repeated until a stabilising control law is obtained
for the full system.



A. Differences from the quotient method with diffeomorphism

In this paper, the quotient method will be applied without
resorting to diffeomorphisms. All previous applications of
the quotient method [8], [7] required diffeomorphisms to
achieve the normal form of the input vector field. The main
characteristic of the quotient method with diffeomorphismis
that dimension reduction is achieved at each iteration. This
is possible because achieving the normal form of the input
vector field and using the canonical projection automatically
defines a natural quotient on the base manifoldR

n with the
integral of the input vector field as the equivalence class.

Evidently, this is not possible if diffeomorphism is not
used. There is no dimension reduction since at every it-
eration the dimension remainsn. However, computing the
diffeomorphism requires integrating a system ofn 1- forms
at each iteration, which in itself could be a complicated task
for some input vector fields. Taking dimension reduction
in account, the diffeomorphism version requires integrating
(n(n + 1)/2 − 1) 1-forms for ann-dimensional system. In
case of the present algorithm, onlyn 1-forms are required
to be integrated. Moreover, the 1-forms that need to be inte-
grated are chosen by the user. Hence, this algorithm greatly
reduces the effort required in obtaining the control law.
The theoretical contribution of this paper is to demonstrate
the methodology, whereby solving the system of 1-form is
avoided using Müllhaupt bracket and Theorem 1.

Although the steps are demonstrated for the ball-on-a-
wheel system, the algorithm is generic and can be applied
to any feedback linearizable system.

B. Forward stage

We begin with the model of the system

f1 :=









x2

ax4 + b sinx1

x4

px4 + q sinx1









g1 :=









0
c
0
cp
a









which givesfg1 := [f1, g1] =









−c
−c p
− c p

a

− c p2

a









.

Iteration 1:

• The process begins with choosing the exact1-form ω1,
which satisfiesω1g1 6= 0. The chosenω1 must also
satisfy Lemma 3 of [1] in order to have affine system on
the quotient. This lemma states that the chosen 1-form
must satisfyLg1ω1g1 = ω1g1κ1,2. κ1,2 is given by the
equation[g1, [f1, g1]] = κ1,1g1 + κ1,2[f1, g1]. Clearly,
it requires the distribution∆ =span{g1, [f1, g1]} to be
involutive. Substituting forf1 andg1 results inκ1,2 =
0, which qualifiesω1 = (0, 1, 0, 0). This implies the
integral ofω1 is γ1 = x2+constant. Since convergence
to the origin is required, all the integrals must preserve
the origin. This implies that the constant is 0 andγ1 =
x2.

• The quotientQ1 is the subspace defined byω1, and the
representative off1 on the quotient is

f2 := Prω1,g1(f1) =









x2

0
x4

sin(x1) (a q−b p)
a









.

• Since Lemma 2 and Lemma 3 of [1] are satisfied by
the choice ofω1, Lemma 4 of [1] can be used to define
the input vector field of the quotient system:

g2 :=
−1

ω1g1
Prω1,g1(fg1) =









1
0
p
a

0









.

• The quantities required for the next iteration are[f2, g2]
and[g2, [f2, g2]]. To this effect, Theorem 1 will be used:

fg2 := [f2, g2] = [Prω1,g1(f1),−
1

ω1, g1
Prω1,g1(fg1)]

= Prω1,g1 < f1,−
1

ω1, g1
fg1 >ω1,g1

=









0
0
0

− cos(x1) (a q−b p)
a









.

Similarly,

gfg2 := [g2, [f2, g2]]

= Prω1,g1 <
−1

ω1, g1
fg1, < f1,

−1

ω1g1
fg1 >ω1,g1>ω1,g1

=









0
0
0

sin(x1) (a q−b p)
a









.

Note that all the vector fields are inQ1 and further
iterations are carried out inQ1.

Iteration 2:

• The equationgfg2 = κ2,1g2 + κ2,2fg2 yields κ2,2 =
tan(x1). This restricts the choice ofω2 such that
Lg2(ω2g2) = ω2g2 tan(x1). Solving this equation
yields ω2g2 = cos(x1), which in turn implies that
ω2 = (cos(x1) 0 0 0). The pullback ofω2 gives
ω2,1 := Pr∗ω1,g1

(ω2) = (cos(x1) 0 0 0). Now, ω2,1

is exact and the corresponding integral isγ2 = sin(x1).
The constant of integration is zero to preserve the origin.

• For this iteration, the quotientQ2 ⊂ Q1 is the inter-
section of the subspace defined byω2 and the subspace
defined byω1. The representative off2 is

f3 = Prω2,g2(f2) =









0
0

x4 −
px2

a
sin(x1) (a q−b p)

a









.



• The new input vector field is

g3 =
−1

ω2g2
Prω2,g2fg2 =









0
0
0

q − b p
a









.

• For the next iteration,[f3, g3] needs to be computed
using Theorem 1:

fg3 := [f3, g3] = [Prω2,g2f2,
−1

ω2g2
Prω2,g2fg2]

= Prω2,g2 < f2,
−1

ω2g2
fg2 >ω2,g2

= Prω2,g2([f2,
−1

ω2g2
fg2] −

ω2fg2
(ω2g2)2

[g2, f2]

−
ω2f2
ω2g2

[g2,
−1

ω2g2
fg2]).

The individual terms can be calculated as:

[f2,
−1

ω2g2
fg2] =

[Prω1,g1f1,
−1

ω2g2
Prω1,g1 < f1,−

1

ω1, g1
fg1 >ω1,g1 ]

= Prω1,g1 < f1,
−1

ω2g2
< f1,−

1

ω1, g1
fg1 >ω1,g1>ω1,g1

[g2, f2] = −fg2

[g2,
−1

ω2g2
fg2] =

[
−1

ω1g1
Prω1,g1fg1,

−1

ω2g2

Prω1,g1 < f1,−
1

ω1, g1
fg1 >ω1,g1 ]

= Prω1,g1 <
−1

ω1, g1
fg1,

−1

ω2g2

< f1,−
1

ω1, g1
fg1 >ω1,g1>ω1,g1 .

Substituting these term gives

fg3 =









0
0

b p
a

− q
0









.

Iteration 3:
• Since computing[g3, [f3, g3]] through Müllhaupt brack-

eting is a tedious task, we will resort to another method
to find κ3,2. To this effect, if we can find the exact
1-form ω33 (i.e. Pr∗ω1,g1

(Pr∗ω2,g2
(ω33)) is exact) such

thatω33g3 = 0, then it follows:

[g3, [f3, g3]] = κ3,1g3 + κ3,2[f3, g3]

⇒ ω33[g3, [f3, g3] = κ3,1ω33g3 + κ3,2ω33[f3, g3]

⇒ ω33[g3, [f3, g3]] = κ3,2ω33[f3, g3]

⇒ Lg3ω33[f3, g3] − L[f3,g3]ω33g3

= κ3,2(Lf3ω33g3 − Lg3ω33f3)

⇒ Lg3Lf3ω33g3 − L2
g3
ω33f3 = −κ3,2Lg3ω33f3

⇒ L2
g3
ω33f3 = κ3,2Lg3ω33f3.

This equation is now used to determineκ3,2. For
simplicity of notation, we define:

ω33,2 := Pr∗ω2,g2
(ω33)

ω33,1 := Pr∗ω1,g1
(Pr∗ω2,g2

(ω33)).

One suchω33 is ω33 = (0 0 1 0), since ω33g3 =
0 and ω33,1 = (−p/a 0 1 0) is exact. For
Prω2,g2(Prω1,g1(g3)) = g3, we can directly compute:

Lg3(ω33f3) = Lg3(x4 −
p x2

a
) = q −

bp

a
⇒ L2

g3
(ω33f3) = 0

⇒ κ3,2 = 0

ComputingLg3ω33f3 in this manner is also possible
since any element from the equivalence class

[g3] = {g3 + α2g2 + α1g1, ∀α1 andα2},

satisfies

L[g3]ω33f3 = L(g3 + α2g2 + α1g1)ω33f3 = Lg3ω33f3,

for Lg2ω33f3 = 0 andLg1ω33f3 = 0.
Lemma 2: For any exact 1-formω33 such thatω33g3 =
0, then

Lg2ω33f3 = 0

Lg1ω33f3 = 0
Proof: For anyω33 , it can be shown that

ω33g2 −
ω2g2
ω2g2

ω33g2 = 0

⇒ ω33g2 −
ω33g2
ω2g2

ω2g2 = 0

⇒

(

ω33 −
ω33g2
ω2g2

ω2

)

g2 = 0

⇒ ω33,2 g2 = 0.

It follows from

ω33 g3 = 0

that

ω33,2[f2, g2] = 0

sinceg3 = − 1
ω2g2

Prω2,g2[f2, g2]

⇒ Lf2ω33,2g2 − Lg2ω33,2f2 = 0

⇒ Lg2ω33,2 f2 = Lg2ω33 f3 = 0.

Similarly, it can be shown thatω33,1g1 = 0 and
ω33,1[f1, g1] = 0. Using these two results, it is easy
to show thatLg1ω33f3 = 0

A suitable choice forω3 is ω3 = (0 0 0 1),
since it satisfies Lg3(ω3g3) = κ3,2ω3g3 and
Pr∗ω1,g1

(Pr∗ω2,g2
(ω3)) = (0 −p/a 0 1) is exact. Hence,

the integral isγ3 = −p
a
x2 + x4, which preserves the

origin.



• f4 := Prω3,g3f3 =









0
0

x4 −
px2

a

0









.

• g4 := −1
ω3g3

Prω3,g3fg3 =









0
0
1
0









.

It only remains to chooseω4 such thatω4g4 6= 0 and
Pr∗ω1,g1

(Pr∗ω2,g2
(Pr∗ω3,g3

(ω4))) is exact. Forω4 = (0 0 1 0),
Pr∗ω1,g1

(Pr∗ω2,g2
(Pr∗ω3,g3

(ω4))) = (−p/a 0 1 0), which is
exact and the corresponding integral isγ4 = −p

a
x1 + x3.

Note that substituting (13) inγ4 yields−h(x), the feedback
linearizing output, which is clearly seen in the algorithm with
diffeomorphism [1].

C. Backward stage

In this stage, the quantities obtained during the forward
stage will be used to design a stabilizing control law. The
philosophy is the same as in [1]. Consider the diffeomor-
phism defined as









z1
z2
z3
z4









=









γ4

γ3

γ2

γ1









=









x3 −
px1

a

x4 −
px2

a

sin(x1)
x2









.

This diffeomorphism converts the system into the strict
feedback form









ż1
ż2
ż3
ż4









=









z2
(−((bp)/a) + q)z3

√

1 − z2
3 z4

az2 + bz3 + pz4 + cu









. (15)

Since the backward stage designs a control law that will
asymptotically stabilize (15) to the origin, it is required
to preserve the correspondence between the origins of the
z−coordinates and thex−coordinates while choosing the
γ’s. The idea behind the backward stage is to use the first
equation to computez2 that stabilizes the first equation of
(15) assumingz2 as input. Then, we use iteratively the2nd,
3rd and4th equations to determine stabilizingz3, z4 andu,
respectively. For details, please refer to [1].
Iteration 1:

• Definee1 := γ4 = x3 −
p x1

a
.

• Compute the desired function forγ3 as

γ3,d =
−k1e1 − ω4f4

ω4g4
+ γ3 = −k1

(

x3 −
p x1

a

)

,

wherek1 is a positive constant gain.
• Definee2 := γ3 − γ3,d = x4 + k1 x3 −

p (x2+k1 x1)
a

.

• Compute γ2,d =
−k2e2+Lf1

(γ3,d)−ω3f3
ω3g3

+ γ2 =

−a k2 x4+a k1 x4−k2 p x2−k1 px2+a k2 k1 x3−k2 k1 px1

a q−b p
,

wherek2 is a positive constant gain.
• Define e3 := γ2 − γ2,d = sin(x1) +

a k2 x4+a k1 x4−k2 px2−k1 p x2+a k2 k1 x3−k2 k1 p x1

a q−b p
.

• Compute γ1,d =
−k3e3+Lf1

(γ2,d)−ω2f2

ω2g2
+ γ1 =

− ψ(x)
a q cos(x1)−b p cos(x1)

where ψ(x) = a k3 k2 x4 +

a k3 k1 x4 + a k2 k1 x4 − k3 k2 p x2 − k3 k1 p x2 −
k2 k1 p x2 + a k3 q sin(x1) − b k3 p sin(x1) +
a k2 q sin(x1) − b k2 p sin(x1) + a k1 q sin(x1) −
b k1 p sin(x1) + a k3 k2 k1 x3 − k3 k2 k1 p x1, andk3 is
a positive constant gain.

• Definee4 := γ1 − γ1,d = x2 + ψ(x)
a q cos(x1)−b p cos(x1)

• Computeu =
−k4e4+Lf1

(γ1,d)−ω1f1
ω1g1

= KTX , where

K =

























1
k1 + k2 + k3

k4

k1k2 + k1k3 + k2k3

(k1 + k2 + k3)k4

k1k2k3

(k1k2 + k1k3 + k2k3)k4

k1k2k3k4

























and

X =





























−a
c
x4 −

b
c
sin(x1)

−x2

ccos(x1)2

−x2

c

−
sin(x1)(rx2

2
−cx4x2+cos(x1)(br−cq))

c(br−cq)cos(x1)2

−sin(x1)
ccos(x1)

− rx2−cx4−cx2x3tan(x1)+rx1x2tan(x1)
c(br−cq)cos(x1)
cx4−rx2

c(br−cq)cos(x1)
cx3−rx1

c(br−cq)cos(x1)





























, (16)

wherek4 is a positive constant gain.

This concludes the design of control law. The stability of the
closed-loop system is discussed in the following section.

V. D ISCUSSION ONSTABILITY

It is much easier to establish stability if the closed-loop
system is transformed using the diffeomorphism









ǫ1
ǫ2
ǫ3
ǫ4









= Φe(x) =









e1
e2
e3
e4









,

which uses the definitions ofe1 to e4 obtained during the
backward stage. The closed-loop system becomes:









ǫ̇1
ǫ̇2
ǫ̇3
ǫ̇4









= fe =









−k1ǫ1 + ǫ2
−k2ǫ2 + C2ǫ3
−k3ǫ3 + C3ǫ4

−k4ǫ4









, (17)

where C2 =
(

q − bp
a

)

and C3 =

cos(x1), which in ǫ−coordinates is C3 =
√

1 − (a(k12(−ǫ1)+k1ǫ2+k2ǫ2−qǫ3)+bpǫ3)2

(bp−aq)2 . This implies
that |C3| ≤ 1. Next, consider the Lyapunov function

V = ǫ21 +
1

k1k2
ǫ22 +

2C2
2

k1k2
2k3

ǫ23 +
8C2

2

k1k2
2k

2
3k4

ǫ24.



Computing the directional derivative alongfe gives

V̇ = −2k1ǫ
2
1 + 2ǫ1ǫ2 −

2k2

k1k2
ǫ22 +

2C2

k1k2
ǫ2ǫ3 −

4C2
2k3

k1k2
2k3

ǫ23

+
4C2

2C3

k1k2
2k3

ǫ3ǫ4 −
16C2

2k4

k1k2
2k

2
3k4

ǫ24

≤ −2k1ǫ
2
1 + 2|ǫ1||ǫ2| −

2

k1
ǫ22 +

2|C2|

k1k2
|ǫ2||ǫ3| −

4C2
2k3

k1k2
2k3

ǫ23

+
4C2

2 |C3|

k1k2
2k3

|ǫ3||ǫ4| −
16C2

2k4

k1k2
2k

2
3k4

ǫ24.

Using Young’s inequality for the cross terms, i.e. for any
p > 0, |a||b| ≤ a2

2p + pb2

2 , yields:

2|ǫ1||ǫ2| ≤ k1ǫ
2
1 +

ǫ22
k1

here,p =
1

k1
,

2|C2|

k1k2
|ǫ2||ǫ3| ≤

|C2|

k1k2
ǫ22

(

k2

2|C2|

)

+
|C2|

k1k2
ǫ23

(

2|C2|

k2

)

=
1

2k1
ǫ22 +

2C2
2

k1k2
2

ǫ23 here,p =
2|C2|

k2
,

4C2
2 |C3|

k1k2
2k3

|ǫ3||ǫ4| ≤
4C2

2

k1k2
2k3

|ǫ3||ǫ4| since,|C3| ≤ 1

≤
2C2

2

k1k2
2k3

ǫ23

(

k3

4

)

+
2C2

2

k1k2
2k3

ǫ24

(

4

k3

)

=
C2

2

2k1k2
2

ǫ23 +
8C2

2

k1k2
2k

2
3

ǫ24 here,p =
4

k3
.

Substituting inV̇ gives:

V̇ ≤ −2k1ǫ
2
1 + k1ǫ

2
1 +

ǫ22
k1

−
2

k1
ǫ22 +

1

2k1
ǫ22 +

2C2
2

k1k2
2

ǫ23

−
4C2

2

k1k2
2

ǫ23 +
C2

2

2k1k2
2

ǫ23 +
8C2

2

k1k2
2k

2
3

ǫ24 −
16C2

2k4

k1k2
2k

2
3k4

ǫ24

= −k1ǫ
2
1 −

1

2k1
ǫ22 −

C2
2

k1k2
2

ǫ23 −
8C2

2k4

k1k2
2k

2
3k4

ǫ24.

Hence, sinceV̇ is negative definite, the error system (17) is
globally asymptotically stable(GAS). However, the original
closed-loop system is not GAS since the diffeomorphism
Φe is not defined everywhere. The determinant of∂Φe

∂x
is

cos(x1), which indicates thatΦe is only valid inΩ as defined
in (14). Hence, the controller is expected to work only inΩ.

VI. EXPERIMENTS

In order to test the control law experimentally, a ball-
on-a-wheel setup was built. It consists of a wheel driven
by a DC motor as shown in Figure 2. The main challenge
was to find a sensor capable of measuring the position of
the ball on the wheel. Existing systems described in the
literature seem to use either a contactless distance sensor
that measures the horizontal displacement of the ball or a
potentiometer-like setup that uses resistive wires over which
the ball rolls. The former only works for small angles (i.e.
for linear control), while the latter leads to practical problems
such as measurement noise.

Fig. 2. Setup of the ball-on-a-wheel system

The solution chosen was to use computer vision. The
main limitation is of course the sampling frequency. Normal
webcams turned out to be too slow. We opted for the Sony
PS3 Eye camera, which allows reaching up to 180 frames per
second at a resolution of 320x240 pixels. The camera was
mounted above the wheel (as shown in Figure 2) in order to
see the movement of the ball on one single line of pixels,
which simplified image processing considerably.

A. Results

The numerical values of the model parameters for the test
setup are shown in the Table III.

a b c p q r
-2.63 133.57 20.23 -4.75 4.94 36.49

TABLE III

MODEL PARAMETERS FOR THE EXPERIMENTAL SETUP

Quotient control led to the experimental results shown in
Figure 3. The ball was initially placed at45◦ angle. The
controller was able to bring the ball to the equilibrium po-
sition. It also successfully rejected a perturbation introduced
after 3.5s. Obtaining such relatively large angles was possible
due to the high friction between the rubber ball running on
a PVC wheel, which reduced slipping. Because, the camera
was mounted on the top, there was a significant reduction
in resolution for the angles measured beyond45◦, which
prevented stabilization when starting beyond that point. To
be able to measure larger angles, efforts are being made to
reduce the image processing time and to use the camera at
different angle.

VII. C ONCLUSIONS

This paper has extended the formulation of the quotient
method to be used without resorting to normal forms of
the input vector field. A projection function is introduced
to define quotients and obtain the representative of a given
vector field. Also, in order to compute the Lie bracket of the



Fig. 3. Experimental swing-up and perturbation rejection with the quotient
controller

representatives, the concept of Müllhaupt bracket is used.
The development of the control law is done for a ball-on-a-
wheel system. Furthermore, a Lyapunov function is proposed
to prove the stability of the controlled system. These results
are then verified experimentally. The setup that was built
for this purpose includes a camera to detect the position of
the ball. This turned out to be a reliable and inexpensive
solution. The experimental region of attraction includes large
ball angles, and stabilization from initial conditions of up to
45◦ was achieved.
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