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Quotient method for stabilizing a ball-on-a-wheel system —
Experimental results

S. S. Willson, Killian Daly, Philippe Mullhaupt and Domipie Bonvin

Abstract— This paper extends the quotient method proposed while Sectiol Ml presents the experimental results. Fnall
in [1] and applies it to stabilize a “ball-on-a-wheel” systen.  concluding remarks are given in SectignVII.
The quotient method requires a diffeomorphism to obtain the
normal form of the input vector field and uses canonical pro- 1. THEORICAL DEVELOPMENT

jection to obtain the quotient. However, the whole processan . .
be done without computing the normal form, which requires Consider a system defined di". The tangent bundle

defining a quotient generating function and a quotient braclet. ~and the cotangent bundle are given BR" = R" x R"
This paper presents the steps necessary to apply the quotien and 7*R" = R" x R", respectively. Next,consider the
method without obtaining the normal form. Furthermore, @  exactl—form w (a section of the cotangent bundle) and the
Lyapunov function is introduced to prove stability. This paper o401 field (a section of the tangent bundlg)such that
also presents the experimental implementation of the quagint n . s .
method to stabilize a ball-on-a-wheel system. w(g)lp # 0 Vp € R™. Hereafter, for simplicity of notation,
a 1-form acting on the vector fields(g) will be written
. INTRODUCTION aswg. Consider the subspace defined by theform w as
. .thle collection of all vector field® such thatwp = 0. A
There are many nonlinear systems used for pedagogical . = .. , : )
rojection can be define for the arbitrary vector fieldon
purposes. These systems serve not only as hands-on expgri- '
. e subspace defined hyalongg as
ments for teaching purposes but also as test benches for ne

control laws. A good example is the inverted pendulum [2]\,/:?;?”}:2? dnsiz ghpdrzje;r:g?%:e?ggrsrfg StlT(?h m:mzritroéry

[3], on which various nonlinear control methodologies sucq.hen the projection ofn along g on w is given by
as approximate feedback linearization [4], adaptive begks ’
ping [5], immersion and invariance [6], and quotient method Pry, g(m) =m — —g.
[7] have been demonstrated. Other well-known pedagogicgl

systems are the acrobot [8], [9], the ball-on-beam and th(gase.d on this definition, we can define an equivalence
rélationship as
ball-on-a-wheel.

In this paper, the quotient method proposed in [1] | Definition 2: The two vector fieldsn; andms are equiv-

Sé\lent(ml ~ mg) for the given vector fieldy and thel-form

implemented and validated on a ball-on-a-wheel system. Trﬁuesuch thato g # 0 if and only if Pro, o (m1) = Pro, o (ms)
w,g - w,g .

Eet”up ﬁ_ons!sts of a wheel (j:lven t_)yhan elicttrzlc mﬁto'; a}ﬂ?l can be shown that the relation defined above is an
all rofing In a groove on the peripnery ot the wheet. e_equivalence relation as it satisfies the following progetti
objective is to keep the ball balanced on the wheel. This L .

o Reflexivity: mqy ~ mq. Since, Pry4(mi) =

system is nonlinear, under-actuated, and open-loop uestab

The control strategies that have been demonstrated on this gr“’»g(ml): i h Si

system includeH . PID control [10], flatness-based control  * _fymmetry. Fmy ~ my, then :‘2 ~ mi. SINce,

[11] and full-state feedback linearization [12]. IP PTE’>9(7)nl) = Prog(ma), then Pryg(ma) =
Tw,g\My1).

The particularity in this paper is that the the quotient
method is implemented without resorting to a diffeomor- ) :
phism. The algorithmic method includes two stages: in the ~ >"C&: if Pro.g(m1) = Pryg(m2) and Pry, g(m2) =
forward stage, the quotients are defined by choosing 1-forms _Prw=g(m3)' then Pre, q(mi1) = PT“’>.9(m3)‘
and are then used to obtain the required control law duri,gquwale_nce between the two vector fields andm, can
the backward stage. The stability of the closed-loop syste@is0 be identified ifim; — m, = a g, wherea is a scalar

o Transitivity: if my ~ mo andms ~ mgs, thenmy ~ ms.

is proven by the existence of a Lyapunov function. function:

The paper is organized as follows. Secfidn Il develops the B w(m + ag)
theory required by the algorithm. Sectibnl Ill briefly intro- Progm+ag) = (m+ag) - wg g
duces the model used for control design, while Sedfidn 1V wm awg

= m—-—g+ag———g
wg wg

wm

designs the controller. A stability proof is given in Seaoild,
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phi | i ppe. nuel | haupt @pf1 . ch Hence, ifma — my = a g, then Pry, g(m2) = Pry,g(m1 +

domi ni que. bonvi n@pfl.ch ag) = Pry 4(m1), which impliesm, ~ msg .
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The representative of the equivalence class is chosen
be the vector field that belongs to the subspace defined
w. Hence, the quotient is the subspace defined tand the
equivalence class is defined as:

[m1] = {m|m = m1 + ag¥Va and miw = 0}.

For the quotient method, it is required to compute the Lie
bracket of the representatives from the members of the

equivalence class. To this effect, the Mullhaupt brackas w

defined in [13], with the definition repeated here.
Definition 3 (Millhaupt (quotient) bracket)The

Mullhaupt bracket of the two arbitrary vector fields

my and mgy, for the given input vector fieldy and the

chosen integrablé-form w such thatug # 0, is given by:

wmso

wmi
< mi, M2 >w,g: [mlam2]+ [gaml]_—[gamQ]'

w
In the above definition, since appears both in t%e numerator
and denominator, the 1-formy can be assumed to be

exact without any repercussion. Moreover, in the control
design stage, exactness will play an important role. Next,
the following theorem allows computing the Lie bracket of

the representatives.

Theorem 1:Projection of the Mullhaupt bracket of two
vector fieldsm; and ms gives the Lie bracket of the
projection of individual vector fields, that is,

Pry g(<mi,mg >y ) = [Pry,g(mi), Pry, g(ma)]
Proof: Consider

Prw,g(< my,mso >w,g)

wma wmi
Pry ¢([m1, ma] + w—g[gaml] - w—g[gﬁnz])
[m1,ma] + azlg, m1] — aa[g, ma]

w([m1, ma] + azlg, m1] — al[gamﬂ)g
wg

(1)

where
wmi

7wg

wmso

y a9 . .

wg

a7
Also,

w([m1, ma] + aalg, m1] — aalg, ma))

wlmy, ma] + aswlg, m1] — a1wlg, mol.

For the two arbitrary vector field§; and ¢, and the exact
1-form w, one has:
w[glaCQ] = LC1W<2 - LngCL
Hence,
w[mlv mQ] + agw[g, ml] - alw[ga mQ] (2)

L, (wmg) — Ly, (wmi) + aaLg(wmq)

@2 Ly, (wg) — a1 Lg(wma) + a1 L, (wg).  (3)

Next, consider
2) — aglim, (wg)
wmso
2) — w—ngl (wg)
WG L, (wma) — wma Ly, wg
(wg)?

Loy, (wm
Loy, (wm

wg

(4)

ngm1a27

de well as
Y Loa(wm) = Ly (wg) = wgLasan, (5)
and
asLg(wmi) — a1 Lg(wma)

= agLly(wmi) — azar Ly(wg)

— o1Lg(wms) + agan Ly(wg)

= az(Lg(wmi) — arLy(wg))

= ai(Lg(wms) — azLy(wg))

= az(wg)Lg(ar) — a1(wg)Lg(az). (6)

Substituting [4),[[6) and16) intdd(3) modifies the LHS as
Pry (< mi,me >y 4)
[m17 mQ] + 062[9, ml] - [gv mQ]
WgLpm, a0 —wgLp,, 01
wg

az(wg)Lg(a1) — a1(wg)Ly(az)

wg g
[m1, ma] + az[g, m1] — a1lg, mo]

(L, 02 — Lypya1 + agLgon — a1 Lgas)g.  (7)

Next, consider the RHS,

[m1 — a1g, ma — aag]
[m1, ma] — [m1, aag] — [a1g, ma] + [1g, aag]
[

mi, mz] - az[mhg] - (Lm1a2)9 - Ofl[g,mz]

+  (Lm,1)g + ar02(g, g + a1 (Lgaz)g — az(Lgon)g

= [m1,ma] + azg,m1] — a1 g, mo]

+ (=Lp,a2 + Ly,01 + a1 Lo — aaLgan)g. (8)
Comparing [¥) and{8) shows that

Pry o(<mi,ma >4 4) = [Prog(mi), Pry g(ms2)],
which proves the theorem. ™

Next, if Pr, 4 is considered as push forwardoperator for
vector fields, then there exists a correspondiudl back
operator for thel—form defined on the dual of the quo-
tient obtained using the-projection. The following lemma
defines such apullbackoperator

Lemma 1:The pullback of the 1-forrwy defined on the
dual of the quotient generated usifly,, , for the 1-formw
and the vector fielgy with wg # 0 is given by:

WwWNg
=WwN — —w.

Prg, o(wn) 9)
Proof: A 1-form acting on a vector field gives a scalar
function invariant under mapping. Hence, for the arbitrary
vector fieldm, Pr;, , must satisfy

Pr;g(wN)m = wnPry q(m).

Using [3), the LHS gives

w
Prag(w]v)m = (wny— wiggw)m
= wym - 2N (10)
wg



Next, substituting the definition aPr,, , in the RHS gives

.9 2r, K2, 2 K2 (5cos(a)?+2)
wnProgm = wy(m—22g) a ~lm Rt ra) T S Y TR
. w9 ]
g(51 4215 my) 2gr.,m
= wNm — wng. (11) b (ro+7w) Itot q Tiot :
w
’ c p— TS € - r g, Km(5cos(@)®+2)
Comparing [[ID) and[T11) shows thdil (9) represents the Ra(ruwtro)lior Ralior
pullback of the 1-form defined on the quotient. m Lot Tuw(5cos(a)? +2) + 2r2m,

It is interesting to note thaPr,, , is an anchor and that the
Mullhaupt bracket satisfies the axioms required to define
Lie Algebroid [14], [15]. However, due to space limitation,

the proof is not included in this paper. The next section

briefly introduces the model of the system.

Ill. BALL-ON-A-WHEEL MODEL

The system consists of a ball running on a grooved wheel.
The states of the system are the angular position of the

ball with respect to the vertical ax#, the corresponding
velocity 6, the wheel position and the wheel velocit (

and 6,), as shown in Figurdll. A model was derived

Fig. 1. Schematic representation of the ball-on-a-whestesy

using analytical mechanics. The results of [12] were shght
modified to include the influence of the groove angleas
shown in Figurd1l), leading to the following equation:

€2

ary + bsinx
Ty

pxy + qsinxy

, (12)

3 OO0 O

with the states defined as:

1 91
T2 | 91
I3 o 92
T4 6‘2

TABLE |

a MODEL PARAMETERS

re  Wheel radius [m]

b rolling ball radius ¢, = cos(a)Ry) [M]

R,  Ball radius [m]

Q Groove angle [rad]

my  Ball mass [kg]

I, Wheel inertia kgm?]

K,, Motor torque constant [Nm/A]

R,, Motor winding resistance(}]

im  Gearbox transmission ratio [-]
Gravitational acceleratiomf/s?]

TABLE Il
PHYSICAL PARAMETERS

Note that the coefficients are not completely independent of
each other, as for example:

ar = cp. (13)

It can be shown that the system model is feedback linearis-
able [12] with one of the feedback linearising output being

h(x) = rx; — cxs,
in the domain
_ 4_ T f}
Q—{xeR| s <T<z}. (14)
This domain is inherent to the system because bey@nd
there is no force to keep the ball sticking to the wheel. Hence

it is impossible to design a control law that could stabilize
beyond(.

IV. CONTROLLERDESIGN

The quotient method is an algorithmic method to design
control laws for nonlinear systems [1]. It consists of two
stages. The forward stage determines a diffeomorphism that
reduces the effect of the control input on the last state. The
last state is then removed from the system and considered
as a new virtual control input to the remaining subsystem.
Then the process is repeated until the dimension is reduced
to 1.

The backward stage then starts with the simplest subsys-
tem and designs a control law for the virtual control input,
which is trivial for a scalar system. This control law is then
extended to the next subsystem obtained in the forward .stage

The model parameters are given in Table I, and the physicahis step is repeated until a stabilising control law is otsd

parameters in TabElIl.

for the full system.



A. Differences from the quotient method with diffeomonphis  «

In this paper, the quotient method will be applied without
resorting to diffeomorphisms. All previous applications o
the quotient method [8], [7] required diffeomorphisms to
achieve the normal form of the input vector field. The main
characteristic of the quotient method with diffeomorphism
that dimension reduction is achieved at each iterations Thi
is possible because achieving the normal form of the input «
vector field and using the canonical projection automdsical
defines a natural quotient on the base manifdfdwith the
integral of the input vector field as the equivalence class.

Evidently, this is not possible if diffeomorphism is not
used. There is no dimension reduction since at every it-
eration the dimension remains However, computing the
diffeomorphism requires integrating a systemnol- forms
at each iteration, which in itself could be a complicated tas
for some input vector fields. Taking dimension reduction
in account, the diffeomorphism version requires integaati
(n(n +1)/2 — 1) 1-forms for ann-dimensional system. In
case of the present algorithm, only 1-forms are required
to be integrated. Moreover, the 1-forms that need to be inte-
grated are chosen by the user. Hence, this algorithm greatly
reduces the effort required in obtaining the control law.
The theoretical contribution of this paper is to demonstrat
the methodology, whereby solving the system of 1-form is
avoided using Mullhaupt bracket and Theorgm 1.

Although the steps are demonstrated for the ball-on-a-
wheel system, the algorithm is generic and can be applied
to any feedback linearizable system.

B. Forward stage

We begin with the model of the system

X9 0
1= ary + bsinzy | e
L= Ty g1-= 0

pT4 + gsinzy

—ep
cp
a ]
_cp®

a

which givesfg, := [f1, 1] =

Iteration 1:

o The process begins with choosing the exatbrm wy,
which satisfiesw;g; # 0. The chosenuv; must also
satisfy Lemma 3 of [1] in order to have affine system on
the quotient. This lemma states that the chosen 1-form
must satisfyL,, wig1 = wigik1,2. K1,2 IS given by the
equation(g1, [f1,91]] = k1,191 + k1,2[f1, 91]. Clearly, .
it requires the distributiod\ =span{gs, [f1,91]} to be
involutive. Substituting forf; andg; results ink, 2 =
0, which qualifiesw; = (0,1,0,0). This implies the
integral ofw; is y; = xo4constant. Since convergence
to the origin is required, all the integrals must preserve
the origin. This implies that the constant is 0 apd=
ZIo.

The quotientQ; is the subspace defined by, and the
representative of; on the quotient is

X2
0
T4

sin(z,) (a g—bp)

f2 = Prwlwgl(fl) =

Since Lemma 2 and Lemma 3 of [1] are satisfied by
the choice ofv;, Lemma 4 of [1] can be used to define
the input vector field of the quotient system:

1

—1
g2 = Fglprwl,gl(fgl) =

Oelv O

« The quantities required for the next iteration &fg g-]

and|ge, [f2, g2]]. To this effect, Theoreffd 1 will be used:

f92 = [f2,92] = [Prwhgl (f1)7 _L‘Prwhgl (fgl)]

w1, 91
= Prwhgh < flv_ fgl >UJ1-,91
1,91
0
0
- 0

_cosz1) (ag—=bp)

Similarly,

9fg2 = [92,[f2, g2]]

-1 -1
—f917 < f17 megl >UJ1791 >UJ1;.(]1

w1, g1

=Pry, g <
0
0
0

sin(z1) (ag—bp)

a

Note that all the vector fields are i@; and further
iterations are carried out i@;.

Iteration 2:

The equationg fge = k2,192 + k2.2fge Yields kg 2 =
tan(zq). This restricts the choice ofvs; such that
Ly, (w2g2) = wagotan(zy). Solving this equation
yields wogs cos(z1), which in turn implies that
we = (cos(z1) 0 0 0). The pullback ofw, gives
wa,1 = PT:],g] ((.UQ) = (COS(SEl) 00 O) Now, w21

is exact and the corresponding integralis= sin(x1).
The constant of integration is zero to preserve the origin.
For this iteration, the quotien@s C Q; is the inter-
section of the subspace defineddsy and the subspace

defined byw;. The representative of; is

0
0
Ty —

sin(1) (a qbp)

f3 = Png,gg(fQ) =

bx2



« The new input vector field is

o O

g3 = Eprwz g2f92 0

- F
« For the next iteration[fs, g3] needs to be computed
using Theoreni1:

fg3 = [f3ag3] [Prwz,qu27 Prwz,qugﬂ
_Prw2g2<f27 ng >wa,92
1 wgfgg
= Pruy g ([fs, ——fga] - ==L (g5,
T 2792([.][‘2 292f92] (w292)2 [92 f2]
wa f;
- = 2[ —fgz])
u}QgQ w g

The individual terms can be calculated as:

[.f27 fg]
-1 1
[Prwh‘hfla Prwhgl < f17_—fgl UJ1791]
w1, 91
= Prwl,ql < f17 flu fgl >w1,91 > w,91
w1, g1
[92, f2] = — fg2

-1
[927 —fgz] =
w292
-1

-1
—p L
[ngl Twi,g fo W2

PTWl;gl < flv_ fgl >w1,g1]

1,

-1 -1

fgla
w1, 91 w292

= PTW1791 <

1
< flv _ﬁfgl Zwi,01 7 wi,91 -

1,

Substituting these term gives
0

f93= bp

Iteration 3:

« Since computindgs, [f3, gs]] through Mullhaupt brack-
eting is a tedious task, we will resort to another method
to find k3. To this effect, if we can find the exact
1-form wsz (i.e. Pry, , (Pry, 4, (w33)) is exact) such
thatwssgs = 0, then it follows:

[93: [f3, 93] = k3,193 + K3,2[f3, 93]

= w3393, [f3, 93] = K3,1w3393 + K3 2wW33[f3, 93]
= ws3(g3, [f3, 93]] = K3,2ws3[f3, 93]

= Lg,wss[fs, 93] — Lifs,95) w3393

= k32(Lfw3zgs — Ly,wss f3)

2
= Ly, Lfwssgs — Ly,wssfs = —k32Llg,wss f3

2
= Ly wssf3 = k3 2Lg,wss3 f3.

This equation is now used to determing . For
simplicity of notation, we define:

PT:& g2 (W33)

w33,1 = Prwl g1 (PTW g2 (w33))-

w332

One suchwss is w3z = (0 0 1 0), sincewssgs =

0 and w331 = (—p/a 0 1 0) is exact. For
Pry, ¢,(Pru, ¢.(g3)) = g3, we can directly compute:
P2 bp
Lga(w33f3) = Lga(‘r‘l - T) =q— ;
= Lgs ((U33f3) =0
= K32 = 0

Computing Ly, w33 f3 in this manner is also possible
since any element from the equivalence class

[93] = {93 + 292 + a191, Va1 andas},

satisfies

Lig,wss f3 = L(gs + azga + a191)wss f3 = Lg,wss f3,

for ngw:;gfg =0and Lglw:;gfg =0.
Lemma 2: For any exact 1-formuss such thatvssgs =
0, then

Ly,w33fs =0
Lg,w3zfs =0
Proof: For anywss , it can be shown that

wag2
w3392—@w3392 =0

w3392
= w3392 — woge = 0

w
j<w33— " gw2)92 = 0
0.

= w332092 =

It follows from

w3zgs = 0

that
waz2[f2,92] = 0
sincegs = — - Pru, g2[f2, 92]

= Lj,wsz g2 — Lg,wsz 2 f2
= Lg,ws32 fo = Lg,ws3 f3 =

Similarly, it can be shown thatuss 191 = 0 and
wss.1[f1,91] = 0. Using these two results, it is easy

to show thatL,, wss f3 =0 [ |
A suitable choice forws is w3 = (0 0 0 1),
since it satisfies Ly, (w3gs) = kK3owsgs and

Pry o (Prw2 5 (ws3)) = (0 —p/a 0 1) is exact. Hence,
the integral isys = —fx» + x4, which preserves the
origin.



akskizy + akokixy — kskapro — k3kipxe —

o f1:=Pro, g fs= . _0& ko klp:fcg + aksq sinﬁxl) — Dbksp sip(:vl) +
a akyqsin(zy) — bkepsin(xy) + akyqsin(z) —
0 bklpsin(x1)+ak3k2k1x3—kgkgklpxl,andk3 is
0 a positive constant gain.
— =1lp i « Defineey :=v — =z + cded)
© 9= g Prosgfos=| AT LT 2 Gy o) ~bp coden)
0 . Computey = —Featlnna=wih _ fT p where
w191
It only remains to chooses, such thatwsgs # 0 and - ] -
Pri, o (Pry, o (Pry. . (wa))) is exact. Fow, = (0 01 0)_, S,
Pry  (Pry, o (Pry. . (wa))) = (=p/a 0 1 0), which is I
exact and the corresponding integralyis = —2x; + 3. bk 4 & z ok
Note that substitutind{13) in4 yields —h(x), the feedback K= Lova T AL T 2R

linearizing output, which is clearly seen in the algorithrithw (ko + Ko + ks )by

: : k1koks
diffeomorphism [1].
phism [1] (kaks + kks + koks)ka
C. Backward stage L k1kokska
In this stage, the quantities obtained during the forward and
stage will be used to design a stabilizing control law. The
philosophy is the same as in [1]. Consider the diffeomor- [ —%x4 — %sz’n(wl) 1
phism defined as ﬁ
21 Y4 xg — 2L -
_ & _sin(ml)(rm%7cz4zg+cos(m1)(brfcq))
%2 — 3 — T4 a c(br—cq)cos(x1)?
z3 Yo sin(x1) ' X = —sin((acl)) , (16)
Z4 71 T2 _TIQ*CI47CE2£E3tan(:1E1)+T11$2tan(11)
. . . . . c(br—cq)cos(x
This diffeomorphism converts the system into the strict (CI4—quz( V
feedback form C(bTC;CSq_)i(;si(ml)
. L c(br—cq)cos(xz1) J
<1 z2
2o (—=((bp)/a) + q)z3 wherek, is a positive constant gain.
X = 5 . (15 _ ) N
3 VI—25 2 This concludes the design of control law. The stability &f th
Z4 azy + bzg + pza + cu closed-loop system is discussed in the following section.
Since the backward stage designs a control law that will
asymptotically stabilize[{15) to the origin, it is required V. DISCUSSION ONSTABILITY

to preserve the correspondence between the origins of theIt is much easier to establish stability if the closed-loop

z—coordinates and th&—coordinates while choosing the : . . :
~’'s. The idea behind the backward stage is to use the fir§¥8tem 's transformed using the diffeomorphism

equation to compute, that stabilizes the first equation of €1 e
(3) assuming; as input. Then, we use iteratively th&<, e |_q | e
374 and4t" equations to determine stabilizing, z4 andu, s | T e(x) = es |
respectively. For details, please refer to [1]. €4 e4
Iteration 1:
. Definee; := v4 = x5 — 221 which uses the definitions af; to e, obtained during the
« Compute the desired fuﬁction for, as backward stage. The closed-loop system becomes:
—kie; — : _
yad = 1€1 W4f4+73:_k1 (xg—pxl), 6'1 kie1 + €2
7 W4g4 a €2 | _ | —hoea+ Caeg
: iy : | =Te= i c : (17)
wherek; is a positive constant gain. €3 —haes + O

o Defineey i=v3 — v3.q = x4 + ky g — LE2RIm) €4 —kyeq

a
. Compute o g = —eetlnbeazeshs o _

_ bp
_aksxytaky za—kopxo—ky sz-l—tz«g]gzgkl z3—ko ki pxy where  C - " and Cs
. L. @g=bp . ’ cos(z1), which in e—coordinates is Cj =
whgrekQ is a positive constant gain. ( )(a(k12(—el)+k162+k262—q€3)+bp63)2 . o
o Define e3 = 9o — g = sin(z) + \/1 - (bp—aq)® ) This _|mpI|es
akszataks 14—7€2p12;;€1_;§;2+0«/€2 kizs—kykipzi that |Cs| < 1. Next, consider the Lyapunov function
—kzes+Ly (v2,4) —w2 f2
. Compute v14 = o +mn = 1, 203 8C5

b (x) _ V=6 + + :
T E TXTECH) where ¢(x) = akskazs + €] k1k262 k1k§k3€3 k1k§k§k464



Computing the directional derivative alorfg gives

Power Sources
2
2ko 2 2Cy 4-02k3 2 Motor LED

ke 2 ks P T Tklhs
4020 16C2ks

) €3€4 — 57.2 €4
k1k2k3 k1k2k3k4

V = —2I€16% + 26162 —

2 2|Cy| 4C3 ks
< k12 12 _ 42 _ 2 2
— 161 + |61||62| kl 62 + kle |62||€3| k1k§k3 63
4022|Og,|Ie leal - 16C3ks_
kikZks | O T Bk2RZR,

Using Young's inequality for the cross terms, i.e. for an
2 2 .
p >0, |allb] < & + &, yields:

2
1
2|e|[ea] < kil + 2 herep = —,

ks ks Fig. 2. Setup of the ball-on-a-wheel system
2|C2||6 lles| < [Cal o (k2 ) | 1Cof 5 (21C]
k1ko 2IEsl = k1ko 2 2|Cz| k1ko 3 ko
1, 203, 2|0y | The solution chosen was to use computer vision. The
= —€+ here,p = , in limitation i i
2% 2 Fkd Ky main limitation is of course the sampling frequency. Normal
2 2 webcams turned out to be too slow. We opted for the Sony
%ﬁk{gﬂéﬂ < %kg”ed since,|C3| <1 PS3 Eye camera, which allows reaching up to 180 frames per
1haR3 ! 223 ) second at a resolution of 320x240 pixels. The camera was
< 205 & (@) 205 e2 (i) mounted above the wheel (as shown in Figre 2) in order to
= kik3ks 4 kyk3ks ks see the movement of the ball on one single line of pixels,
C2 8C2 4 which simplified image processing considerably.
=5 2k2e§ +7 k22k26‘2* here,p = . P gep g Y
172 1h2"3 3 A. Results
Substituting inV gives: The numerical values of the model parameters for the test
P ER - 1 . 202 setup are shown in the TalIellll.
ST R TR o T g ® T
402 2 8C2 1602k, -2.63 13357 20.23 -4.75 4.94 36.49
- e§ + e§ + ei - ei
kik2 3T 2k k23 T ki k2RZE Y Kak2k3Zky TABLE Il
k 62 1 62 022 ) 8022k4 ) MODEL PARAMETERS FOR THE EXPERIMENTAL SETUP
- —h1€ — 2

2k 2 TkZ T kikkZky

L ) o ~ Quotient control led to the experimental results shown in
Hence, sincd/ is negative definite, the error systefnl(17) ISFigure[3. The ball was initially placed as° angle. The
globally asymptotically stable(GAS). However, the or@in qniroller was able to bring the ball to the equilibrium po-

closed-loop system is not GAS since the _d'ﬁeoamorph's@ition. It also successfully rejected a perturbation idtrced
®. is not defined everywhere. The det_er_mlnantgf_ IS after 3.5s. Obtaining such relatively large angles wasiptess
cos(z1 ), which indicates thab, is only valid in{2 as defined 4, to the high friction between the rubber ball running on
in (I4). Hence, the controller is expected to work onlydn 5 pyc wheel, which reduced slipping. Because, the camera
was mounted on the top, there was a significant reduction
in resolution for the angles measured beyotid, which

In order to test the control law experimentally, a ballprevented stabilization when starting beyond that poiot. T
on-a-wheel setup was built. It consists of a wheel drivepe able to measure larger angles, efforts are being made to

by a DC motor as shown in Figuf@ 2. The main challenggeduce the image processing time and to use the camera at
was to find a sensor capable of measuring the position gffferent angle.

the ball on the wheel. Existing systems described in the

literature seem to use either a contactless distance sensor VII. CONCLUSIONS

that measures the horizontal displacement of the ball or aThis paper has extended the formulation of the quotient
potentiometer-like setup that uses resistive wires ovaclivh method to be used without resorting to normal forms of
the ball rolls. The former only works for small angles (i.ethe input vector field. A projection function is introduced
for linear control), while the latter leads to practical plems to define quotients and obtain the representative of a given
such as measurement noise. vector field. Also, in order to compute the Lie bracket of the

VI. EXPERIMENTS



L ! L L L L L

4
Time [s]

Fig. 3. Experimental swing-up and perturbation rejectigthvihe quotient
controller

representatives, the concept of Mullhaupt bracket is .used
The development of the control law is done for a ball-on-a-
wheel system. Furthermore, a Lyapunov function is proposed
to prove the stability of the controlled system. These tssul
are then verified experimentally. The setup that was built
for this purpose includes a camera to detect the position of
the ball. This turned out to be a reliable and inexpensive
solution. The experimental region of attraction includegé

ball angles, and stabilization from initial conditions gf to

45° was achieved.
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