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Abstract—We study a 2-user 2-hop network with 2 relays
in which channel coefficients are independently drawn from
continuous distributions and vary over time. For a broad class of
channel distributions, we characterize the ergodic sum capacity
within a constant number of bits/sec/Hz, independent of signal-
to-noise ratio. Specifically, we characterize the ergodic sum
capacity within 4 bits/sec/Hz for independent and identically
distributed (i.i.d.) uniform phase fading and approximately 4.7
bits/sec/Hz for i.i.d. Rayleigh fading. For achievability, we propose
ergodic interference neutralization in which the relays amplify
and forward their received signals with appropriate delays such
that interference can be neutralized at each destination.

I. INTRODUCTION

In recent years, there has been great progress on under-
standing fundamentals of multi-source wireless networks. One
of the remarkable achievements is an approximate capacity,
which characterizes the capacity within a constant number
of bits/sec/Hz independent of signal-to-noise ratio (SNR) and
channel parameters. It has been proved in [1] that simple
Han–Kobayashi type scheme can achieve the capacity of the
two-user Gaussian interference channel within one bit/sec/Hz.
Approximate capacity has been also characterized for many-
to-one or one-to-many interference channel [2] and two-way
channel [3].

For more than two-user, interference alignment can signif-
icantly improve the overall rate of the Gaussian interference
channel. It has been originally proved in [4] that interference
alignment can achieve the optimal degrees of freedom (DoF)
of K/2 for the time-varying K-user Gaussian interference
channel. The recently proposed ergodic interference alignment
in [5] makes interference aligned in finite SNR and, as a
result, provides significant rate improvement compared to
the conventional time-sharing strategy at finite SNR. Similar
concept has been independently proposed in [6] for finite-field
networks.

In spite of recent achievements on interference channels
or multi-source single-hop networks, understanding of multi-
source multi-hop networks is still in progress. For multi-source
multi-hop networks, interference can not only be aligned,
but it can be cancelled through multiple paths, which is
referred to as interference neutralization. The work in [7]

†He is also with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA, USA.

has exploited interference alignment to neutralize interference
at final destinations, which is referred to as aligned interfer-
ence neutralization, and showed that the optimal 2 DoF is
achievable for 2-user 2-hop networks with 2 relays. Similar
concept of ergodic interference alignment has been proposed
for interference neutralization in [8] showing that ergodic
interference neutralization achieves the optimal DoF of K-
user K-hop networks with K relays in each layer for isotropic
fading. The result in [7] has been recently generalized to 2-
user multi-hop networks [9], [10].

In this paper, we consider fading 2-user 2-hop networks
with 2 relays. Our aim is to characterize the ergodic sum
capacity within a constant number of bits/sec/Hz, independent
of SNR. We notice that the best known capacity character-
ization for these networks is within o(log SNR) [7], which
can be arbitrarily large as SNR increases. For a broad class
of channel distributions including independent and identically
distributed (i.i.d.) Rayleigh fading, we characterize the ergodic
sum capacity within a constant number of bits/sec/Hz. We pro-
pose ergodic interference neutralization that able to completely
neutralize interference at each destination in the finite SNR
regime.

II. SYSTEM MODEL

Throughout the paper, we will use A, a, and A to denote
a matrix, vector, and set, respectively. Let AT (or aT ) and
A† (or a†) denote the transpose and conjugate transpose of
A (or a), respectively. Let NC(µ, σ2) denote the circularly
symmetric complex Gaussian distribution with mean µ and
variance σ2.

A. Fading 2× 2× 2 Networks

We study a 2-user 2-hop network with 2 relays in which
each source wishes to transmit an independent message to its
destination. The input–output relation of the first hop at time
t is given by

yR[t] = H[t]x[t] + zR[t], (1)

where H[t] = [[h11[t], h12[t]]T , [h21[t], h22[t]]T ]T is the com-
plex channel matrix of the first hop at time t, yR[t] =
[yR,1[t], yR,2[t]]T is the received signal vector of the relays
at time t, x[t] = [x1[t], x2[t]]T is the transmit signal vector
of the sources at time t, and zR[t] = [zR,1[t], zR,2[t]]T is the
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noise vector of the relays at time t. Similarly, the input–output
relation of the second hop at time t is given by

y[t] = G[t]xR[t] + z[t], (2)

where G[t] = [[g11[t], g12[t]]T , [g21[t], g22[t]]T ]T is the com-
plex channel matrix of the second hop at time t, y[t] =
[y1[t], y2[t]]T is the received signal vector of the destinations
at time t, xR[t] = [xR,1[t], xR,2[t]]T is the transmit signal
vector of the relays at time t, and z[t] = [z1[t], z2[t]]T is
the noise vector of the destinations at time t. Each source
and relay should satisfy the average power constraint P , i.e.,
E[|xi[t]|2] ≤ P and E[|xR,i[t]|2] ≤ P for i ∈ {1, 2}. The
elements of zR[t] and z[t] are i.i.d. drawn from NC(0, 1).

We assume that channel coefficients are independent of each
other and vary over time. Throughout the paper, we consider
symmetric channel distribution such that the direct channel
coefficients hii[t] and gii[t] are drawn from a continuous
function fd(x), x ∈ C, and the cross channel coefficients
hij [t] and gij [t] are drawn from a continuous function fc(x),
x ∈ C, where i, j ∈ {1, 2}, i 6= j. Without loss of
generality, we assume E[|hii[t]|2] = E[|gii[t]|2] = 1 and
E[|hij [t]|2] = E[|gij [t]|2] = σ2

c ∈ [0, 1]. We further assume
that the sources do not know any channel state information
(CSI) and the relays and the destinations know global CSI.
That is, at time t, each relay and destination know H[t] and
G[t].

Remark 1: Notice that the considered class of channel
distributions includes symmetric Rayleigh fading. In this case,
fd(·) and fc(·) are given by NC(0, 1) and NC(0, σ2

c ), respec-
tively.

B. Setup

Based on the network model, we consider a set of length-n
block codes. Let Wi be the message of source i uniformly
distributed over {1, · · · , 2nRi}, where Ri is the rate of source
i. A rate pair (R1, R2) is said to be achievable if there exists a
sequence of (2nR1 , 2nR2 , n) codes such that the probabilities
of error for W1 and W2 converge to zero as n increases. The
sum capacity Csum is defined as the maximum achievable sum
rate.

III. ERGODIC INTERFERENCE NEUTRALIZATION

Interference can be neutralized by transmitting signals using
a certain pair of H[t1] and G[t2] at the sources and the relays
respectively such that G[t2]H[t1] becomes a diagonal matrix
with non-zero diagonal elements. Although finding a pair of
channel instances having exact prescribed values is impossible,
such a pairing can be done approximately by partitioning the
channel space of each hop. We first explain channel space
partition of each hop and then define the pairing rule of the
partitioned channel spaces in the following subsection.

A. Partitioning and Pairing of Channel Space

We first partition the channel space of each hop, i.e, C2×2

space. Define Q = ∆(Z2×2 + Z2×2), where ∆ > 0 is the

quantization interval. For a quantized channel matrix Q ∈ Q,
define A(Q) as the set of all A ∈ C2×2 whose closest point in
Q is equal to Q. Specifically, A(Q) =

{
A
∣∣− ∆

2 ≤ aij−qij <
∆
2 for all i, j ∈ {1, 2},A ∈ C2×2

}
, where aij and qij denote

the (i, j)th element of A and Q, respectively. We will use
A(Q) for partitioning the first-hop and the second-hop channel
spaces in the next subsection.

Now consider the channel space pairing. For A ∈ C2×2,
define

F (A) =

[
a22 a12

a21 a11

]
,

where aij denotes the (i, j)th element of A. Note that F (Q) ∈
Q for any Q ∈ Q. The relays will choose a certain time t2
and amplify and forward yR[t1] such that H[t1] ∈ A(Q) and
G[t2] ∈ A(F (Q)). Hence the channel subspace A(Q) of the
first-hop will be paired with the channel subspace A(F (Q))
of the second-hop.

B. Ergodic Interference Neutralization

We first divide a length n block into B sub-blocks having
length nB = n

B each. We assume block transmission. At the
first sub-block, the sources transmit their first messages to the
relays (the relays do not transmit). At the bth sub-block, b ∈
{2, · · · , B−1}, the sources transmit their bth messages to the
relays and the relays amplify and forward the received signals
of the (b− 1)th sub-block to the destinations. At the last sub-
block, the relays amplify and forward the received signals of
the (B − 1)th sub-block to the destinations (the sources do
not transmit). Hence, the number of effective sub-blocks is
equal to B − 1. Since we can set both nB and B as large
as possible as n increases, the fractional rate loss 1 − B−1

B
becomes negligible in this case. For simplicity, we describe
the proposed scheme based on the first message transmission
and omit the sub-block index.

For M ∈ Z+, define Q′ = {Q
∣∣|re(qij)| ≤ ∆M, |im(qij)| ≤

∆M for all i, j ∈ {1, 2},Q ∈ Q}, where qij denote the
(i, j)th element of Q and re(·) and im(·) denote the real
and imaginary part of a complex number, respectively. For
Q ∈ Q′, let T1(Q) =

{
t
∣∣H[t] ∈ A(Q), t ∈ {1, · · · , nB}

}
,

which is the set of time indices of the first hop whose
channel instances belong to A(Q). Similarly, let T2(Q) ={
t
∣∣G[t] ∈ A(Q), t ∈ {1, · · · , nB}

}
. The encoding, relaying,

and decoding are as follows.

• (Encoding) The sources transmit their messages using
Gaussian codebook with power P . Specifically, the trans-
mit signal vector of the sources is given by x[t] with
E
[
x[t]x[t]†

]
= P I for t ∈ {1, · · · , nB}, where I denotes

the identity matrix.1

• (Relaying) For all Q ∈ Q′, the relays amplify and
forward their received signals that were received during
T1(Q) using the time indices in T2(F (Q)). Specifically,
the transmit signal vector of the relays is given by

1Since we assume Gaussian codebook, one can achieve a rate of log(1 +
SINR) with arbitrarily small probability of error as nB increases.



xR[t2] = γΛyR[t1], where t1 ∈ T1(Q), and t2 ∈
T2(F (Q)). Here Λ = [[1, 0]T [0,−1]T ]T and the power
amplification factor γ is given by

γ =

√
P

1 + (1 + σ2
c )P

,

which satisfies the average power constraint.

• (Decoding) The destinations decode their messages based
on their received signals for t ∈ {1, · · · , nB}.

Suppose that the sources transmit at time t1 ∈ T1(Q) and
the relays amplify and forward their received signals at time
t2 ∈ T2(F (Q)). For this case, from (1) and (2), the received
signal vector of the destinations is given by

y[t2] = γG[t2]ΛH[t1]x[t1] + γG[t2]ΛzR[t1] + z[t2], (3)

where we use xR[t2] = γΛyR[t1]. Notice that if H[t] /∈ A(Q)
for all Q ∈ Q′, then the corresponding source signals will
not be delivered to the destinations. Also if card(T1(Q)) >
card(T2(F (Q))), then a subset of source signals will not
be delivered to the destinations, where card(·) denotes the
cardinality of a set. Similarly, the relays will not utilize a
subset of time indices if G[t] /∈ A(Q) for all Q ∈ Q′ or
card(T1(Q)) < card(T2(F (Q))). As a consequence, among
the nB received signals at each destination, only a subset of
the received signals contains information about the desired
message. We will show that the fraction of the received signals
that contain no information converges to zero as nB increases
in the next subsection.

C. Achievable Rate

The following theorem shows an achievable rate of ergodic
interference neutralization.

Theorem 1: For the fading 2× 2× 2 network,

Ri = E

[
log

(
1 +

P 2|det(H)|2

1 + P (|hjj |2 + |hij |2 + 1 + σ2
c )

)]
is achievable for i, j ∈ {1, 2} and i 6= j, where the expectation
is over the channel coefficients.2

For convenience, let us denote RIN by the achievable sum
rate of ergodic interference neutralization in Theorem 1.

Example 1 (Achievable Sum Rate): Fig. 1 plots RIN for
i.i.d. uniform phase fading and i.i.d. Rayleigh fading. Since
channel coefficients are i.i.d, Csum is upper bounded by the
ergodic capacity of the multiple-input and multiple-output
(MIMO) channel from the sources to the relays, which is given
by

RMIMO = E
[
log det(I + PHH†)

]
. (4)

2Since the channel coefficients are drawn i.i.d. over time, we omit the time
index for notational simplicity.

Simulation results show that RMIMO −RIN is approximately
4 for i.i.d. uniform phase fading and 4.1 for i.i.d. Rayleigh
fading at high SNR.

The rest of this subsection is the proof of Theorem 1. We
first introduce the following two lemmas.

Lemma 1: For any Q ∈ Q,

P [H[t1] ∈ A(Q)] = P [G[t2] ∈ A(F (Q))] .

Proof: We refer to the full paper [11] in preparation.

Lemma 2: The probability that∣∣∣∣card(T1(Q))

nB
− P[H[t] ∈ A(Q)]

∣∣∣∣ ≤ δ
and ∣∣∣∣card(T2(Q))

nB
− P[G[t] ∈ A(Q)]

∣∣∣∣ ≤ δ
for all Q ∈ Q′ is greater than 1− card(Q′)/(2nBδ2).

Proof: We refer to Lemma 2.12 in [12] for the proof.

For notational simplicity, we use [A]ij to denote the (i, j)th
element of A. Suppose that the sources transmit their messages
at t1 ∈ T1(Q) and the relays amplify and forward their
received signals at t2 ∈ T2(F (Q)), where Q ∈ Q′. Denote
H[t1] = H and G[t2] = F (H) + ∆, where ∆ is the
quantization error matrix with respect to F (H). From (3),

y[t2] = γ(det(H)Λ + ∆ΛH)x[t1]

+ γ(F (H) + ∆)ΛzR[t1] + z[t2],

where we use F (H)ΛH = det(H)Λ. Thus, the received
signal-to-interference-and-noise ratio (SINR) of destination
i is given by (5), where i, j ∈ {1, 2}, i 6= j. Define
Ri(Q) = minA∈A(Q) log(1 + SINRi). Then an achievable
rate of destination i is lower bounded by

Ri ≥
1

nB

∑
Q∈Q′

Ri(Q) min{card(T1(Q)), card(T2(F (Q)))}.

From Lemmas 1 and 2,

card(T1(Q)) ≥ nB(P[H[t] ∈ A(Q)]− δ)

and

card(T2(F (Q))) ≥ nB(P[G[t] ∈ A(F (Q))]− δ)
= nB(P[H[t] ∈ A(Q)]− δ)

for all Q ∈ Q′ with probability greater than 1 − (2M+1)8

2nBδ2
,

where we use card(Q′) = (2M + 1)8. Then

Ri ≥
∑
Q∈Q′

Ri(Q)P[H[t] ∈ A(Q)]− δ(2M + 1)8 max
Q∈Q′

Ri(Q)

is achievable with probability greater than 1− (2M+1)8

2nBδ2
. Notice

that it is possible to set ∆, M , and δ as functions of nB such
that ∆ → 0, ∆M → ∞, δ(2M + 1)8 maxQ∈Q′ Ri(Q) → 0,
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Fig. 1. Achievable sum rates of ergodic interference neutralization.

and (2M+1)8

2nBδ2
→ 0 as nB → ∞. For example, setting ∆ =

n
−1/(3×25)
B , M = n

1/(3×24)
B , and δ = n

−1/3
B satisfies the above

conditions. Hence,

lim
nB→∞

Ri

≥ EH

[
log

(
1 +

γ2P |det(H)|2

1 + γ2(|[H]jj |2 + |[H]ij |2)

)]
= EH

[
log

(
1 +

P 2|det(H)|2

1 + P (|hjj |2 + |hij |2 + 1 + σ2
c )

)]
is achievable for i, j ∈ {1, 2} and i 6= j with probability
approaching one. Here we use the fact that

lim
∆→0

SINRi =
γ2P |det(H)|2

1 + γ2(|[H]jj |2 + |[H]ij |2)
.

Therefore Theorem 1 holds.

IV. APPROXIMATE CAPACITY CHARACTERIZATION

In this section, we show that the proposed ergodic interfer-
ence neutralization achieves the ergodic sum capacity within
a constant number of bits/sec/Hz for a broad class of channel
distributions including i.i.d. Rayleigh fading.

A. Uniform Phase Fading

We first consider i.i.d. uniform phase fading in which
hij [t] = exp(θij [t]), gij [t] = exp(ϕij [t]), and θij [t] and
ϕij [t] are uniformly distributed over [0, 2π). We show that
the proposed ergodic interference neutralization achieves Csum

within 4 bits/sec/Hz for any P ≥ 0. Although uniform phase
fading violates the channel assumption in Section II-A, fd(x)
and fc(x) are continuous functions over x ∈ C, we can
modify channel space partition based on phases and show that
Theorem 1 still holds.

Before characterizing an approximate capacity, we first
introduce the following lemma. This lemma shows the exact
solution of Eφ [log (1− x cosφ)] for |x| ≤ 1, which is useful
for dealing with uniform phase fading throughout the paper.

Lemma 3: Let φ be a random variable uniformly distributed
over [0, 2π). For |x| ≤ 1,

Eφ [log (1− x cosφ)] = log
(

1 +
√

1− x2
)
− 1.

Proof: We refer to the equation (4.224 12) in [13].

Theorem 2: Consider the fading 2 × 2 × 2 network. If
hij [t] = exp(θij [t]), gij [t] = exp(ϕij [t]), and θij [t] and
ϕij [t] are uniformly distributed over [0, 2π), then

RIN = 2 log

(
1 +

2P 2

1 + 4P

)
+2 log

(
1 +

√
1− (C(P ))2

)
−2

and

RMIMO = log(1+4P+2P 2)+log
(

1 +
√

1− (C(P ))2
)
−1,

where C(P ) = 2P 2/(1 + 4P + 2P 2). Furthermore, Csum −
RIN ≤ 4 for any P ≥ 0.

Proof: Let H = [[h11, h12]T , [h21, h22]T ]T and the dis-
tribution of H is equal to that of H[t]. Then hij can be
represented as exp(θij), where θij is uniformly distributed
over [0, 2π).

First consider RIN. We have

RIN
(a)
= 2Eθ

[
log

(
1 +

2P 2(1− cos θ)

1 + 4P

)]
(b)
= 2Eφ

[
log

(
1 +

2P 2(1− cosφ)

1 + 4P

)]
= 2 log

(
1 +

2P 2

1 + 4P

)
+ 2Eφ [log (1− C(P ) cosφ)]

(c)
= 2 log

(
1 +

2P 2

1 + 4P

)
+ 2 log

(
1 +

√
1− (C(P ))2

)
− 2, (6)

where θ = θ11 + θ22 − θ12 − θ21 and φ is a random variable
uniformly distributed over [0, 2π). Here, (a) follows since
σ2
c = 1 and |det(H)|2 = 2(1 − cos θ), (b) follows since θ

mod [2π] is uniformly distributed over [0, 2π), and (c) follows
from Lemma 3 and |C(P )| ≤ 1. Similarly,

RMIMO = Eφ
[
log((1 + 2P )2 − 2P 2(1 + cosφ))

]
= log(1 + 4P + 2P 2) + Eφ [log (1− C(P ) cosφ)]

= log(1 + 4P + 2P 2)

+ log
(

1 +
√

1− (C(P ))2
)
− 1, (7)

SINRi =
P |(−1)i−1γ det(H) + γ[∆ΛH]ii|2

1 + γ2(|[H]jj + [∆]ii|2 + |[H]ij + [∆]ij |2) + P |γ[∆ΛH]ij |2
, (5)
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Fig. 2. Gap from the sum capacity for i.i.d. uniform phase fading.

where φ is a random variable uniformly distributed over
[0, 2π). Lastly, from (6) and (7),

RMIMO −RIN

= log

(
(1 + 4P )2

1 + 4P + 2P 2

)
− log

(
1 +

√
1− (C(P ))2

)
+ 1

(a)

≤ log

(
(1 + 4P )2

1 + 4P + 2P 2

)
+ 1

(b)

≤ 4,

where (a) follows since 0 ≤ C(P ) ≤ 1 for any P ≥ 0 and
(b) follows since

log

(
(1 + 4P )2

1 + 4P + 2P 2

)
≤ log

(
(1 + 4P )2

1 + 2
√

2P + 2P 2

)
= 2 log

(
1 + 4P

1 +
√

2P

)
≤ 3.

Here we use the fact that log
(

1+4P
1+
√

2P

)
is an increasing

function of P ≥ 0 and limP→∞ log
(

1+4P
1+
√

2P

)
= 3

2 . Therefore
Theorem 2 holds.

Example 2 (Capacity Gap: i.i.d. Uniform Phase Fading):
Fig. 2 plots RMIMO − RIN in Theorem 2 with respect to
P for i.i.d. uniform phase fading, which coincides with the
simulation result. As proved by Theorem 2, the proposed
ergodic interference neutralization achieves Csum within
4 bits/sec/Hz for uniform phase fading. Notice that this
theoretic gap is indeed the sum rate gap at high SNR, i.e.,
limP→∞{RMIMO −RIN}, which can be seen in Fig. 2.

B. Uniform Phase Fading with Varying Channel Amplitudes

In this subsection, we consider a class of channel distribu-
tions in which fd(x) = fc(x) is only a function of |x|. That
is, for given channel amplitudes, their phases are uniformly
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Fig. 3. Gap from the sum capacity for i.i.d. Rayleigh fading.

distributed over [0, 2π). We present the main theorem here
and refer to the full paper [11] for the proof.

Theorem 3: Consider the fading 2 × 2 × 2 network. If
fc(x) = fd(x) is only a function of |x|, then

Csum −RIN ≤ 2E

[
log

( √
A(A+B2)

B(A+
√
A2 −G2)

)]
+ 2

for any P ≥ 0, where the expectation is over the channel
coefficients. Here

A = |h11|2|h22|2 + |h12|2|h21|2,
B = |h11|2 + |h21|2 + 2,

G = 2|h11||h12||h21||h22|.

Example 3 (Capacity Gap: i.i.d. Rayleigh Fading): Fig. 3
plots RMIMO − RIN with respect to P and also plot its
upper bound in Theorem 3 for i.i.d. Rayleigh fading. Since
there is no closed form for the upper bound, we numerically
evaluate the bound, approximately given by 4.7 for i.i.d.
Rayleigh fading. Therefore the proposed ergodic interference
neutralization characterizes Csum within approximately 4.7
bits/sec/Hz.

V. DISCUSSIONS

In this paper, we proposed ergodic interference neutral-
ization for fading 2 × 2 × 2 networks and showed that it
characterizes the ergodic sum capacity within 4 bits/sec/Hz for
i.i.d. uniform phase fading and approximately 4.7 bits/sec/Hz
for i.i.d. Rayleigh fading. Although we mainly considered
i.i.d. fading in this paper, the proposed ergodic interference
neutralization can characterize the ergodic sum capacity within
a constant number of bits/sec/Hz for more general class
of channel distributions. We refer to the full paper [11] in
preparation for more general results.

Similar analysis used in this paper can be also applied to
ergodic interference alignment in [5]. Then we can derive an



upper bound on the gap from the ergodic sum capacity of the
fading K-user interference channel assuming no power control
at the sources. We briefly introduce the following theorem.

Theorem 4: Consider the fading K-user interference chan-
nel. Let RIA denote the achievable sum rate of ergodic
interference alignment in [5] and Csum denote the sum ca-
pacity assuming no power control at the sources. If channel
coefficients are i.i.d., then

Csum −RIA

K
≤ 1

2
log

(
3

2

)
+

1

2
E

[∣∣∣∣log

(
|h11|2

|h12|2

)∣∣∣∣]
for any P ≥ 0.

Notice that for i.i.d. Rayleigh fading, the upper bound in
Theorem 4 is given by 1

2 log 6.
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