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Abstract— Because of their low weight, cost and energy
consumption, optic-flow sensors attract growing interest in
robotics for tasks such as self-motion estimation or depth
measurement. Most applications require a large number of
these sensors, which involves a fair amount of calibration work
for each setup. In particular, the viewing direction of each
sensor has to be measured for proper operation. This task is
often cumbersome and prone to errors, and has to be carried
out every time the setup is slightly modified.

This paper proposes an algorithm for viewing direction
calibration relying on rate gyroscope readings and a recursive
weighted linear least square estimation of the rotation matrix
elements. The method only requires the user to realize random
rotational motions of its setup by hand. The algorithm provides
hints about the current precision of the estimation and what
motions should be performed to improve it. To assess the
validity of the method, tests were performed on an experimental
setup and the results compared to a precise manual calibration.
The repeatability of the gyroscope-based calibration process
reached ±1.7◦ per axis.

I. INTRODUCTION

Optic-flow sensors such as the ones typically found in
computer mice are increasingly used in robotics because they
are light-weight and require very little processing power. Off-
the-shelf mouse sensors with an adapted optics are often
used in the literature [1], [2], [3], [4], [5], [6], along with
other types of small vision chips [7], [8], [9]. These sensors,
generally lighter than 1g, directly provide the optic-flow
information in pixel counts per time unit and several of them
can be interfaced by a single microcontroller, making them
very attractive for low-weight/low-power applications.

Several applications in robotics require many optic-flow
sensors to cover a wide field of view, such as optic-flow-
based self-motion estimation or obstacle avoidance. In [10],
[11], [12], several solutions for self-motion estimation are
presented, which depend on wide field of view for good
results. Experiments in [8] showed a flying robot estimate
its own speed and yaw angle thanks to 6 optic-flow sensors
looking in all lateral directions (see fig. 1(a)). In [1], 16 optic-
flow sensors (see fig. 1(b)) allowed to estimate the precise
rotations and direction of motion of a platform moving in 3D.
In the case of depth or nearness measurement for obstacle
avoidance, the field of view must be large enough so that
the obstacles all around the robot can be detected. In the
experiments from [2], a plane is able to avoid obstacles
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Fig. 1. Typical setups including several optic-flow mouse sensors used
for self-motion estimation or obstacle avoidance. (a) shows the ring from
[8] that comprises 6 sensors, (b) shows half of the setup from [1] that uses
a total of 16 optic-flow sensors and (c) shows the front-end from [2] that
contains 7 sensors (Image courtesy of the Autonomous Vehicle Laboratory
at the University of Maryland, the Cognitive Neurosciences group at the
University of Tübingen and the Laboratory of Intelligent Systems at EPFL,
respectively).

thanks to the nearness measurements provided by 7 optic-
flow sensors arranged around a 90◦ forward-facing view cone
(see fig. 1(c)). Other experiments showed flying or ground
robots avoid obstacles thanks to a centering behavior [8], [4]
or a regulation of the optic-flow divergence [7].

All the applications presented before require to know
in what direction the optic-flow sensors are looking. In
addition, some applications are based on translational optic-
flow [2], [3], [4], [5], [6], [7], [9], which means that the raw
optic-flow is processed to cancel the rotational component
using angular speed measurements (usually provided by on-
board rate gyroscopes). Such processing (called de-rotation)
requires the precise viewing direction of the sensor to be
known. One solution to this problem is to align each sensor
so that it faces a target in the surroundings and to compute the
viewing directions from the feature’s and sensor’s positions
and orientations. This method was used in [2] but proved to
be imprecise and cumbersome.

As large numbers of optic-flow sensors are often used
to cover the wide field of view needed in the applications
described before, there is a demand for an easy procedure
for viewing direction calibration. As described in [1], it is in
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Fig. 2. Flow chart of the calibration process, that includes the following
parts: 1) a calibration run where the setup is randomly rotated by hand, 2)
a linear least squares algorithm that extracts some rotation matrix elements
and 3) a polar decomposition that allows to find the closest rotation matrix
that describes the sensor’s orientation.

principle possible to recover elements of the sensor’s rotation
matrix by correlating sensor readings and known rotations.
The approach in [1] proposes to strap the setup to a motor-
controlled rotating shaft and make 3 measurements for each
of the 3 rotation axes. The parameters are then obtained
by comparing the integrated optic-flow to the motor steps.
This method has the advantage that it provides an automatic
calibration of several sensors at the same time. On the other
hand, it requires a relatively complicated installation and a
precise alignment of the setup with the rotating shaft for each
of the 3 measurements.

We therefore propose a simpler calibration procedure that
relies on a 3-axis angular rate sensor and random rotational
motions realized by hand. The outcome of the algorithm
is the sensors’ orientations with respect to the gyroscope
axes. This method does not require any special environment,
the ability to access the sensor’s captured image or any
complicated installation. Finally, a rate gyroscope is a very
simple and cheap sensor to integrate to a calibration setup,
when it is not already part of the robotic platform.

This paper is organized as follows: section II presents the
algorithm, section III and IV present the experimental setup
and the manual calibration used to validate the concept, and
finally the results are shown in section V.

II. CALIBRATION ALGORITHM

We present in this section an algorithm that estimates
the orientation of an optic-flow sensor with respect to the
gyroscope reference frame. The three sub-chapters of this
section correspond of the three main steps of the algorithm,
shown in the flow-chart of fig. 2.

A. Calibration run

The optic-flow vector p is given by the following equation
[13]:

p = −ω × d− v − (v · d)d

D
(1)

Where d is a unit vector pointing toward the viewing direc-
tion of the sensor, ω the rotation vector, v the translational

Fig. 3. The three vectors involved in the optic-flow equation p = −ω×d
when no translational motion is realized (v = 0). Expressing these vectors
in the sensor frame Xs, Ys, Zs (with the sensor pointing in the direction
along Zs) allows to greatly simplify this equation.

speed and D the distance to the object seen by the sensor. p
can be expressed in two parts, namely the ’rotational’ optic-
flow prot and ’translational’ optic-flow ptrans:

p = prot + ptrans (2)

where:

prot = −ω × d (3)

ptrans = −v − (v · d)d

D
(4)

We assume that all the sensors to be calibrated are on a
single vantage point, and that only pure rotations around this
point are realized during the calibration run. This assumption
remains valid if the sensor positions are not exactly centered
on the rotation point but the distance to the surroundings
is relatively large while performing the rotations. We can
therefore set v = 0, implying ptrans = 0, reducing equation
1 to:

p = prot = −ω × d, (5)

which can be expressed in the sensor coordinate system
(Xs, Ys, Zs) shown in fig. 3:

ps = −ωs × ds (6)

where :

ps =

pxpy
0

 , ds =

0
0
1


and ωs = Rsω =

rs,11 rs,12 rs,13
rs,21 rs,22 rs,23
rs,31 rs,32 rs,33

ω1

ω2

ω3

 (7)

with Rs being the rotation matrix from the reference frame
(or gyroscope frame) to the sensor frame. Note that ds is
normal to the sensor image plane, therefore the optic-flow
vector ps = −ωs×ds is parallel to the image plane and its
third element is zero. px and py are the two components of
the optic-flow vector that are typically given by optic-flow
sensors. Note also that vector d is collinear with Zs and can
thus be expressed as d =

[
rs,31 rs,32 rs,33

]T
.
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Equation 6 can be rewritten as:[
px
py

]
=

[
−ωs,2

ωs,1

]

⇔
[
−px
py

]
=

[
rs,21 rs,22 rs,23
rs,11 rs,12 rs,13

]ω1

ω2

ω3

 (8)

Assuming a calibration run providing N measurements[
px py ω1 ω2 ω3

]
1..N

, it is clear from equation 8 that
the coefficients rs,1:2,1:3 can be estimated, and thus the
orientation of the sensor too. The six coefficients rs,1:2,1:3
describe the orientation of the sensor in an over-constrained
manner, as only three independent variables are necessary
to express an orientation. Non-linear techniques can be used
to fit quaternions or Euler angles to the dataset, but trials
showed inconsistent results and recurrent failures to converge
in the case of non-linear least squares. This is why we
suggest to use two independent linear least square regressions
to find the best fit for each row of rs,1:2,1:3 independently and
to constrain the estimates to a rotation matrix at a later stage.
Using linear least squares allows to guarantee a convergence
toward a solution, and provides a useful feedback during
the calibration run that tells which is the axis that should be
rotated to decrease the remaining uncertainty of each rotation
matrix component.

B. Iterative linear weighted least squares

The aim is to solve the over determined observation
equation z = Hx + u where x is the unknown parameter
vector of length l, z =

[
z1; ...; zN

]
the vector of all N

measurements, H =
[
h1; ...; hN

]
the N × l design matrix

that describes the linear relation between measurements and
parameters and u the measurement noise that is assumed to
follow a Gaussian distribution with zero mean: u ∼ N(0,Q)
(where Q is a covariance matrix). The weighted least squares
estimate is given by [14]:

x̂ = (HTQ−1H)−1HTQ−1z (9)

However, we suggest to use the iterative form of the linear
weighted least squares algorithm, solving for x̂n iteratively
as the measurements zn are sampled. The iterative form of
the algorithm has the advantage that it provides real-time
feedback to the user about the on-going parameter estimation
and is more adapted to microcontroller implementation.

Assuming that all measurements are independent (Q is di-
agonal), the iterative expression of the algorithm is expressed
as [14]:

kn = Pn−1hT
n(hnPn−1hT

n + qn)−1 (10)
x̂n = x̂n−1 + kn(zn − hnx̂n−1) (11)
Pn = (I − knhn)Pn−1 (12)

Where P is the covariance matrix of x̂, and kn an internal
gain that determines the relative influence of the previous
estimate x̂n−1 and the new measurement zn. Each new
measurement zn is weighted thanks to qn, the diagonal
elements of Q, that describe the noise of each measurement

as a variance σ2
zn . The state is usually initialized at x̂0 = 0

with a covariance matrix P0 = I.
To solve for the parameters of equation 8, two linear

least square estimations have to be applied to the following
variables:

x̂ =

r̂s,21r̂s,22
r̂s,23


hn =

ω1,n

ω2,n

ω3,n

T

zn = −px,n

and



x̂ =

r̂s,11r̂s,12
r̂s,13


hn =

ω1,n

ω2,n

ω3,n

T

zn = py,n

(13)

The real-time feedback of the calibration is obtained by
looking at P. The diagonal elements Pii,n = σ2

r1:2,i describe
the remaining error on the parameter x̂ at step n and their
evolution gives an idea about the error remaining on the
estimation of each rs,1:2,i. If the error σ2

r1,i or σ2
r2,i remains

high, it means that the algorithm needs more data with
rotations around the ith axis. The estimation can be stopped
once all variances σ2

r1:2,1:3 go below a threshold, or after
a fixed number of iterations. Typically, the calibration run
should contain data of rotations around all axes to produce
good estimates. The measurement standard deviation σzn
corresponds here to the standard deviation of the optic-flow
measurements σpn

.

C. Polar decomposition

The vectors of a rotation matrix must, by definition,
be perpendicular to each other and have unity norm. The
estimated vectors r̂s,1 and r̂s,2 are affected by noise and
thus don’t fulfill these constraints.

In a first place, we suggest to reconstruct a non-orthogonal
matrix A such that:

A =

aT
1

aT
2

aT
3

 , a1 =
r̂s,1
||r̂s,1||

, a2 =
r̂s,2
||r̂s,2||

and a3 = a1 × a2

Then, we use the polar decomposition to reconstruct the
orthogonal matrix R̂s closest to A, as proposed in [15]:

R̂s = A(ATA)−
1
2 (14)

R̂s is the calibrated rotation matrix describing the orien-
tation of the sensor with respect to the gyroscope axes.

III. SETUP

To test the proposed calibration procedure, the setup
shown in fig. 4 is used. We will automatically calibrate
all six ADNS95001 mouse chip sensors that are fixed to
the platform and point in various directions. The setup
is designed for experiments on self-motion extraction, for
which the viewing direction of each sensor has to be known.
The wide field of view and numerous sensors make it a
perfect setup to gather experimental data for the research
presented in this paper. The optic-flow measurements are

1from Avago: www.avagotech.com
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(a)

(b)

Fig. 4. Sensor head that will be used in this paper to validate the calibration
algorithm. It is equipped with six ADNS9500 sensors, an IG500-N 9-DOF
IMU, and a microcontroller board for SD data logging. Fig. (a) shows the six
optic-flow sensors mounted on the platform and fig. (b) shows a schematics
of the electrical wiring.

recorded at 25Hz, while rate gyroscope data from a 9-DOF
IG-500N IMU2 is recorded at 100Hz on a microSD card.

Each ADNS9500 sensor samples a 30x30 pixel image up
to 11,750 times/s and increments the image displacement
counts in a 16 bits register (which is reset to zero when
it is read). The sensors are equipped with Philips CAY046
lenses that have a 4.6mm focal length, providing a 20◦

field of view, chosen to maximize the amount of light the
sensor receives to enable indoor use in low-light conditions
(tested down to 25 lumen). The exposure time is automat-
ically adjusted by the chip to adapt to the external light.
The ADNS9500 provides the 2D optic-flow vector praw

corresponding to the image displacement on the sensor in
counts per time unit. Some other information is provided,
such as the squal value which gives the number of valid
features that are seen by the sensor and is therefore a good
indicator of the quality of the optic-flow measurement. To
convert the optic-flow counts to rad/s, the following formula
can be used:

p =
praw

K · f ·∆t ·Res
(15)

where K is a chip-specific constant (0.694rad−1 in the case
of the ADNS9500, see section V for a method to measure
this constant), f is the focal length, ∆t is the sampling period
(40µs in our case) and Res is the sensor’s resolution (1.6 ·
105 counts/m in our case). The resolution of the optic-flow

2from SBG: www.sbg-systems.com. IMU includes a 3-axis ac-
celerometer, 3-axis rate gyroscope and 3-axis magnetometer

Fig. 5. Setup used for the manual calibration of the sensor head: The laser
of a Leica TS30 precision tracking system is pointed at a white wall. It is
then moved so as to align the laser with two spots on the sensor image. The
two positions of the laser pointer are then recorded in order to geometrically
reconstruct the sensor orientation (the position and orientation of the sensor
head are recorded as well).

measurements is therefore of 0.049rad/s. The resolution can
be improved by decreasing the sampling rate (at the cost of
slower response) or increasing the focal length (at the cost
of brighter environment requirements).

The sensor can also be used in camera mode, and send
each pixel value to make possible an image reconstruction.
This is useful to adjust the focus or for other calibration
tasks.

IV. MANUAL CALIBRATION

To validate the proposed automatic calibration method, its
results are compared to a more conventional manual calibra-
tion. As explained in the introduction, manually calibrating
the viewing direction of optic-flow sensors is cumbersome
and often imprecise. It consists in looking at the image
captured by each sensor to infer where it is pointing at
from geometric calculations. This section presents how we
performed the manual calibration to be the most precise
possible in order to compare it to our automatic calibration
procedure.

For this task, the Leica TS303 tracking system is used.
This expensive piece of equipment is usually used for envi-
ronment or construction monitoring and is able to measure
precisely (< 1mm error) the 3D position of any feature
thanks to a laser mounted on a pan-tilt head.

The sensor head of fig. 4 was installed in the middle of
a room, its position and orientation measured respectively
by the TS30 and the on-board IMU. The laser of the TS30
was then aligned with the center and the right border of
the image of each optic-flow sensor and these positions
recorded (see fig. 5). The orientation of each sensor with

3from Leica Geosystems: www.leica-geosystems.com
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respect to the ENU (East-North-Up) frame was computed
from these position measurements. These orientations were
then expressed in the IMU frame.

The good precision of the Leica TS30 allows to minimize
the geometry errors. However, the alignment of the optic-
flow sensor image with the laser point remains difficult
because of the low resolution of the camera. Considering
all error sources, we estimate the precision of this manual
calibration technique to be around ±2◦. Needless to say that
this error would be much higher without the use of the Leica
TS30.

V. EXPERIMENTAL RESULTS

Ten calibration sequences were logged on the SD card for
offline analysis on Matlab. The sensor head was rotated man-
ually around many different axes several times during each
log, each between 1 and 2 minutes long. The experiments
were performed in a standard well-lit office space, without
any modification to the surroundings.

Before starting the calibration process, it is important that
the angular rate readings and optic-flow readings are cor-
rectly synchronized. To achieve that, the gyroscope readings
are first integrated between each new optic-flow reading since
they are not recorded at the same frequency. Then, to analyze
if there is a delay between the angular speed and optic-flow, a
cross-correlation was performed between all angular speeds
and optic-flow readings. A 20ms delay was found between
the angular rate and optic-flow readings, which is taken into
account in the rest of the calibration procedure.

The optic-flow standard deviation σpn
(see section II-

B) is not easy to determine for the ADNS9500 readings.
Typically the precision of the optic-flow value depends on the
environment, the luminosity, etc. We observed a correlation
between the squal value (number of features tracked by the
mouse chip, see chapter III) and the quality of the optic-
flow readings. Hence we suggest to use σpn

= k
squal where

k is a constant chosen so that the estimation error converges
at the desired rate. This expression for σpn

implies that
the measurements where the squal is higher will have more
impact in the estimation process. k was set to 100 after a
quick tuning procedure and the obtained convergence rate is
reasonable (the standard deviation - or error - of the state
estimation decreases by 90% in less than 60s for most logs).
Finally, to avoid spurious data to influence the estimation, all
measurements with squal < 50 are discarded, which showed
to be a good way of rejecting most outliers.

An example of a 2 minutes calibration procedure is shown
in figure 6. It can be seen that the coefficient errors (or stan-
dard deviations) decrease as soon as a rotation is performed
along the corresponding axis. For example, a rotation around
the x axis will provide valuable information to estimate r11
and r21 so their corresponding errors will decrease (e.g. at
t = 20s in fig. 6 a rotation around the x axis is started
and provokes a drop in the error of r11 and r21). In the
example of fig. 6, all coefficient errors are fairly low after
60s (standard deviation below 0.1). Note that if the constant
K described in section III is correct, the norm of r̂s,1 and

Fig. 6. Example of a 2 minutes calibration procedure where the sensor head
is rotated by hand multiple times around all axes. The standard deviations
of the matrix elements is plotted in transparency and decreases as long as
sufficient measurements are provided for the estimation and the squal value
is higher than the threshold. The standard deviations allow to know which
types of motion are missing in order to achieve the estimation (see text for
details) and can therefore provide a useful feedback to the user during the
calibration process. For example, it can be seen that the error on r̂11 and
r̂21 decreases when the sensor is rotated around the x axis (when ω1 varies)

r̂s,2 should be 1. If K is unknown or wrong, it can be found
by using first K = 1 and then averaging the norms of r̂s,1
and r̂s,2: K = 0.5(|r̂s,1| + |r̂s,2|). The polar decomposition
is then used to obtain the final rotation matrix. The elements
of this matrix can directly be used to de-rotate an optic-flow
signal thanks to equations 6 and 7.

To illustrate the results of the calibration procedure, the
orientations of the 6 sensors estimated thanks to the 10
datasets are plotted in 3D in fig. 7. The calibrated orientations
of the sensors are then statistically compared to the manual
calibrations obtained in section IV. To this end, the triplet of
Euler angles corresponding to the small rotation errors be-
tween the automatically and manually calibrated orientations
are then analyzed. Fig. 8 shows the boxplot representations
of these Euler angles. The average root mean square (RMSE)
and the average standard deviation (STD) of each error angle
are reported below:

RMSE = 2.38◦ (16)

STD = 1.79◦ (17)
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Fig. 7. The viewing direction of the six sensors of the setup from fig.
4 were calibrated using 10 different datasets. These orientations (in red,
blue, green) are plotted next to the manually calibrated orientations (in
black) for comparison. It can be seen that the automatically estimated sensor
orientations are very close to the orientations obtained manually.

Fig. 8. Boxplot representation of the angular errors between the auto-
matically and manually calibrated sensor viewing directions (expressed in
Euler angle triplets). The boxplots show the results from the ten calibration
runs. The baseline corresponds to the manual calibration. It can be seen that
most error angles remain inside a ±2◦ margin, which corresponds to the
uncertainty of the manual calibration (see chapter IV).

The fact that the RMSE is larger than the average STD
shows that the error angles are not distributed around zero,
which can also be seen on fig. 8. However, the baseline being
the manual orientations, this error can be explained by the
uncertainty of the manual calibration (estimated to be around
±2◦, as explained in chapter IV). On the other hand, the low
standard deviation of the automatic calibration results (1.79◦)
shows that the calibration procedure is very repeatable. These
results indicate that the automatic calibration procedure is at
least as precise as the manual one. Without having the data
to prove it (we would need an extremely precise ground-
truth to do so), we suggest that this might even indicate that
the automatic calibration is more reliable than the manual
calibration performed in chapter IV. Overall, this shows

that the proposed calibration procedure gives very satisfying
results while providing at the same time a much simpler and
reliable solution to the viewing direction calibration problem
(especially when high-tech equipment is not available for
manual calibration).

VI. CONCLUSION
The calibration procedure described in this paper is a very

useful tool for all roboticists working with optic-flow sensors.
Not only is it very simple, fast, does not require any special
setup or to access the sensor image, but it also proved to be
very reliable, with a repeatability of ±1.7◦ per axis in our
particular case.
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