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Abstract. This paper reports on the results of recent experiments performed on the JET tokamak on Alfvén 

Eigenmodes (AEs) with toroidal mode number (n) in the range |n|=3-15. The stability properties of these 

medium-n AEs are investigated experimentally using a set of compact in-vessel antennas, providing a direct and 

real-time measurement of the frequency, damping rate and amplitude for each individual toroidal mode number. 

First, we describe the development of a new algorithm for real-time mode detection and discrimination using the 

Sparse Signal Representation theory. Second, we present measurements of the dependence of the damping rate 

for Toroidal AEs with |n|8 upon various background plasma parameters. Finally, the results of theoretical 

modeling of the damping rate for n=3 Toroidal AEs, performed with the LEMan, CASTOR and TAEFL codes, 

are shown as function of the edge plasma elongation. 

 

1. Introduction and Background: the JET Alfvén Eigenmodes Diagnostic System. 

The stability of Alfvén Eigenmodes (AEs) and the effect of these modes on the energy and 

spatial distribution of fast ions, including fusion generated s, are among the most important 

physics issues for the operation of burning plasma experiments such as ITER. Of particular 

interest are AEs with toroidal mode number (n) in the range |n|~3-20, as these are expected to 

interact most strongly with the s. The stability of these modes is investigated experimentally 

in JET using an active system (the so-called Alfvén Eigenmodes Active Diagnostic, AEAD) 
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based on a set of eight compact in-vessel antennas and real-time detection and discrimination 

of the individual n-components in the measured magnetic spectrum |BMEAS|(n) [1-3]. The 

AEAD system can now provide in real-time a direct measurement of the damping rate (/) 

during the dynamical evolution of the background plasma parameters, separately for all the 

antenna-driven toroidal mode numbers. The AEAD system consists principally of: 

1. the AE exciter, built upon a function generator and a high-power amplifier connected to a 

set of up to eight in-vessel antennas, whose aim is to drive a very small magnetic perturbation, 

max(|BDRIVEN|)~0.1G at the plasma edge, i.e. 105 times smaller than the typical value of the 

toroidal magnetic field in JET, BTOR~(1-3)T; 

2. a receiver, built upon synchronous detection units, which collects signals from various in-

vessel detectors (magnetic pick-up coils, electron cyclotron emission, reflectometry); this 

receiver is also connected to the real-time AE Local Manager (AELM) to allow the detection 

and tracking of antenna-driven plasma resonances with different toroidal mode numbers. 

The antennas are installed in two groups of four closely-spaced units at two toroidally 

opposite positions, at the same poloidal location. Any combination of these eight antennas can 

be chosen with a  relative phasing. Hence, as shown in fig1, a very broad toroidal spectrum 

is excited for any antenna frequency, comprising many components up to |n|~30, of which the 

higher-n ones are more strongly attenuated as the distance from the antennas increases. 

Figure1. An example of the 

antenna-driven, flux-surface 

averaged, radial (<BRAD(n,s)>) 

and poloidal (<BPOL(n,s)>) 

magnetic field for the discharge 

#77790 at time=14.00sec for 

different n-components as 

function of the flux-surface label 

s=N(r), where N(r) is the 

poloidal flux normalized to its 

value at the plasma edge (r=a). 

Note that up to two orders of magnitude difference in the antenna-driven magnetic field is 

seen between its different n-components up to |n|≤30, which makes it an essential requirement 

to be able to discriminate in real-time the different components in the measured |BMEAS|(n) 



spectrum. This observation has motivated the development of a novel method for mode 

detection and n-number discrimination using the Sparse Signal Representation theory and the 

SparSpec algorithm [4, 5], which has now been fully implemented in the AELM [6, 7]. The 

speed and accuracy of this algorithm makes it possible to use it in our plant control software, 

allowing the real-time tracking of many individual modes during the evolution of the plasma 

background, on a 1ms time scale. An example of this real-time detection and discrimination 

for the concurrent Toroidal AEs (TAEs) with 3|n|8 is shown in fig2 for discharge #77788, 

where the excitation system was configured to drive predominantly n-odd modes, with 

max(|BDRIVEN(n)|) in the range |n|~3-7, and producing a negligible drive for components with 

|n|>10. Not only components with different n, but positive and negative n-components, with 

the same |n|, can be discriminated in real-time with our algorithm within a CPU-time of <850s. 

 

Figure2. Real-time discrimination between the different components in the antenna-driven AE 

spectrum for shot #77788; the calculation is performed using a CPU-time of <850s; if high 

(=1), the digital signals (bottom frames) indicate successful detection of that n-component. 



2. Measurements of the Damping Rate for Medium-n Alfvén Eigenmodes in JET. 

The measurements of the frequency and damping rate of medium-n AEs are routinely 

obtained in different JET operating scenarios [3, 8, 9]. An example is shown in fig3 for 

discharge #77417, where the AEAD system was configured to drive an odd-n spectrum 

peaked towards |n|=3-9, with a negligible drive for |n|>10 and |n|<3. The damping rate can be 

measured independently for many different n-components in a single discharge as the plasma 

background evolves, thanks to the successful implementation and exploitation of our 

innovative real-time mode discrimination and tracking algorithm. 

Figure3. Measurement of the damping rate for individual toroidal mode numbers for the 

discharge #77417 as function of the evolution of the main background plasma parameters. 

Due to the large number of available data-points, and the subtle differences between different 

discharges, it is also clear from fig3 that two different approaches need to be used to analyze 

the dependence of /(n) upon background plasma parameters. First, we use a database 

approach, assembling the data for many different discharges [10]: this allows us to identify 



the main dependencies of /(n), but also generates a large scatter in the processed data, due 

to the very sensitive dependence of /(n) on the details of the plasma profiles. Second, we 

compare selected discharges on a one-to-one basis [11]: this allows understanding how subtle 

differences in the background plasma profiles affect the measured /(n). 

 

Figure4. Database approach used to study the dependence of the measured /(n) vs. the 

edge elongation 95 (up to |n|8) and the kinetic parameter  (up to |n|7). 

Figure5. The measured /(n) increases 

with q95/q0 and q95-q0 for the same 95; this 

experimental trend is consistent with the 

theoretical scaling for the electron Landau 

damping (/)ELDn2(q95-q0)
2 and with the 

LEMan modeling for #77788 [8] (where 

damping of a n=3 TAE occurs mostly via 

mode conversion to Kinetic Alfvén Waves, 

then damped by electron Landau damping). 

Two examples of these studies are shown in fig4 for the study of /(n,95) and /(n,), 

where 95 is the edge elongation and (sdq/ds)95Te0/B0 provides for a simple qualitative 



estimate of the radiative damping mechanism [12]. Regarding the /(n,95) dependence, we 

note that the maximum value of 95 for which /(n)<7% can be measured highlights a strong 

effect of the edge shape on the damping rate for medium-n TAEs, which could be used for 

real-time control purposes. Regarding the /(n,) dependence, we note a very clear trend for 

|n|=1: /(|n|=1)0.77, a similar trend for 2|n|4, but only for large >250[eV/T], 

whereas no clear trend is observed for |n|5. Figure5 then shows the comparison of /(95(t)) 

for n=3 TAEs for four different discharges, where 95(t) was very similar, but we had a 

different time evolution of the safety factor q(t). We note that the differences in / for the 

same 95 and n=3 in these four different discharges correlate very well with q95/q0 and q95-q0. 

 

3. Modeling of the Damping Rate of n=3 Toroidal Alfvén Eigenmodes. 

In JET, the edge plasma shape and magnetic shear have been found to be key ingredients for 

increasing the damping rate of both antenna-driven, low-n (n=1, n=2) [13] and fast-ion driven, 

medium-n (n~3-10) [14] TAEs. This has motivated experimental studies on the Alcator C-

mod tokamak where it was found that the damping rate of an n=6 TAE remains essentially 

invariant when the average edge triangularity (95) is varied in the range 0.3<95<0.7 [15]. 

Conversely, the data obtained for the n=3 and n=7 TAEs during the two otherwise similar JET 

discharges presented in fig6 show an almost linear increase of the damping rate as a function 

of the edge elongation 95. In fact, as edge elongation increases, an even stronger increase in 

the damping rate for n=3 and n=7 TAEs is observed than for n=1 and n=2 TAEs, with this 

trend having been confirmed across the n-spectrum up to at least n=7. 

Figure6. The measured damping rate for n=3 and n=7 TAEs vs. the edge elongation 95 for 

the two otherwise similar discharges #77788 and #77790. 



The discharge #77788 has been used for detailed comparisons with theory and models in the 

framework of the ITPA activities [16]. Figure7 shows the damping rate for n=3 TAEs as a 

function of the edge elongation in ohmic plasmas together with the results of simulations 

performed with the LEMan [17, 18], TAEFL [19, 20], CASTOR [21] and LIGKA [22] codes. 

Note that the LEMan, LIGKA and the TAEFL codes model the actual plasma shape using a 

magnetic configuration which is up/down symmetric, but non-circular. 

Figure7. Damping rate data for the n=3 TAE as function of 95, showing a linear dependence 

/=f(95), compared with the results of the LEMan, TAEFL and CASTOR simulations. 

First, it is important to note that, despite the differences between the codes, the radial 

Eigenfunctions computed by LIGKA, CASTOR, TAEFL and LEMan are in sufficiently good 

agreement between each other, indicating a good understanding of the physics mechanisms 

contributing to determining the stability of these medium-n AEs, and of the effect that the 

differences between the various codes and models can have on the predictions for ITER [16]. 

The LEMan [8] and LIGKA results [16] show that the mode frequency and damping rate are 

in good agreement with the measurements (mode frequency within 10%, damping rate within 

~50%), this exercise also demonstrating that a large number of poloidal harmonics needs to be 

used to reproduce quantitatively the measured / even for moderately low-n modes. 

The TAEFL code is a reduced MHD initial value code that uses gyrofluid closure techniques 

for the energetic ions to incorporate the Landau resonance effects that destabilize Alfvén 



modes. Since only unstable modes can be analyzed by TAEFL, the technique used was to 

start with an unstable Alfvén mode, vary the fast ion drive and extrapolate back to zero drive 

in order to determine an effective damping rate. Fast ion profiles/parameters are chosen that 

lead to a mode very close to the frequency excited by the antenna. This model incorporates 

ion/electron Landau damping, continuum damping and radiative damping (due to finite ion 

Larmor radius) effects. It uses Fourier spectral representations in the poloidal and toroidal 

directions and finite differences in the direction normal to the flux surfaces. The TAEFL 

simulations of JET plasmas used 300-400 radial points and 26 Fourier modes (m=025). The 

TAEFL results [9] are in very good agreement with the measurements for relative high values 

of the elongation (95>1.45), whereas the discrepancy at lower values of 95 is larger. 

The CASTOR calculations used 11 poloidal harmonics (m=313), the resistivity was set to 

=110-7, and the radial extent was set to s=00.95. The CASTOR code correctly predicts 

the mode frequency, whereas the large discrepancy with the measured damping rate can be 

due to small uncertainties in the q- and/or density profiles, and to the absence of kinetic 

effects. For instance, slightly different values of q- or density at s~0.55 can make the mode 

intersect the continuum and increase /CASTOR by a factor of 2. In addition to this, kinetic 

effects such as radiative and Landau damping have been shown to play an important role with 

other codes such as LEMan and LIGKA. Hence continuum damping, which is the only 

mechanism included in CASTOR simulations, can only account for a fraction of the measured 

/, indicating that other mechanisms make important contributions to the total damping. 

 

4. Conclusions. 

A new algorithm, based on the Sparse Representation of signals, has been developed and fully 

implemented to discriminate in real-time the different toroidal components in the plasma 

response to the multi-components, frequency-degenerate, magnetic field spectrum driven by 

the AE antennas in JET. The quantitative analysis of damping rate measurements obtained in 

JET for n=3 and n=7 TAEs has confirmed that / increases as the edge elongation (hence the 

edge magnetic shear) is increased. This scaling agrees with previous JET data for low-n 

TAEs, and with theoretical estimates based on mode conversion of TAEs to Kinetic Alfvén 

Waves. These new JET experimental results further confirm the possibility of using the edge 

shape parameters as a real-time actuator for the control of the AE stability in burning plasma 

experiments. Simulations performed with the LEMan, TAEFL, LIGKA and CASTOR codes 

have demonstrated that our general understanding of the AE stability properties is reaching a 



good quantitative level, and in particular that we need to include in the calculations a large 

number of poloidal harmonics, and that continuum damping is not the only mechanism 

accounting for the measured damping rate for these modes. 
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