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Abstract 

Daylight is a dynamic source of illumination in 
architectural space, creating diverse and ephemeral 
configurations of light and shadow within the built 
environment.  It can generate contrasting levels of 
brightness between distinct geometries or it can highlight 
smooth gradients of texture and color within the visual field.  
Although there are a growing number of studies that seek to 
define the relationship between brightness, contrast, and 
lighting quality, the dynamic role of daylight within the 
visual field is underrepresented by existing metrics. This 
study proposes a new family of metrics that quantify the 
magnitude of contrast-based visual effects and time-based 
variation within daylit space through the use of time-
segmented daylight renderings.  This paper will introduce 
two new annual metrics; Annual Spatial Contrast and 
Annual Luminance Variability.  These metrics will be 
applied to a series of abstract case studies to evaluate their 
effectiveness in comparing annual contrast-based visual 
effects. 
 
1. INTRODUCTION 

Perceptual qualities of daylight, such as contrast and 
temporal variability, are essential to our appreciation of 
architectural space.  Natural illumination adds depth to 
complex geometries and infuses otherwise static interior 
spaces with shifting compositions of light and shadow. 
Architectural space is greatly altered by the ephemeral 
qualities of daylight, yet there is a lack of metrics that 
address these perceptual factors on a dynamic scale. 

 
Over the past several decades, there have been 

significant improvements in our understanding of daylight 
as a dynamic source of interior illumination. Illuminance-
based methods of daylight analysis have developed from 
static metrics such as Daylight Factor (Moon and Spencer 

1942) to annual climate-based metrics such as Daylight 
Autonomy (Reinhart et al. 2006) and Useful Daylight 
Illuminance (Nabil & Mardaljevic 2006) to account for a 
more statistically accurate method of quantifying internal 
illuminance levels (Mardaljevic et al. 2009).  While these 
annual illuminance-based metrics represent a significant 
improvement in our understanding of climate-based lighting 
levels across the year, they still experience many of the 
same limitations as daylight factor in their static 
representation of performance through a single surface. 
(Reinhart et al. 2006).  As occupants perceive space from a 
three-dimensional vantage point, illuminance-based metrics 
such DA and UDI cannot express the dynamic nature of 
sunlight from a human perspective.   
  

Luminance-based methods of daylight analysis are 
more appropriate for determining the compositional impacts 
of contrast as they can evaluate renderings and/or 
photographs taken from an occupant’s point-of-view 
(Newsham et al. 2005).  Existing luminance-based metrics 
can be organized into two main categories:  those that 
predict glare-based discomfort due to high ratios of contrast 
within the visual field, and those that evaluate luminance 
ratios or ranges to infer human preferences to brightness and 
composition. 

 
Those metrics that quantify luminance-based sources of 

glare are fragmented among no less than seven established 
metrics (Kleindienst and Andersen 2009).  The most 
ubiquitous of these metrics, Daylight Glare Probability DGP 
(Weinhold and Christofferson 2006), establishes that high 
levels of contrast within our field of view negatively impact 
visual comfort.   Although glare-based metrics are capable 
of quantifying contrast ratios and anticipating sources of 
luminance-based discomfort within a perspectival view, they 
do not provide a method for quantifying the positive aspects 
of brightness, contrast, or daylight variability. 
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The second category of luminance-based analysis 
methods relies on existing scenes and/or digital images to 
identify the relationship between brightness, contrast, and 
occupant preferences toward the luminous environment.  
Two dimensions that are widely accepted to impact the field 
of view are average luminance and luminance variation 
(Veitch and Newsham 2000). The former has been directly 
associated with perceived lightness and the latter with visual 
interest (Loe et al. 1994).  As brightness is subjectively 
evaluated by the human brain, contrast is often regarded as a 
qualitative indicator of performance, making it difficult to 
quantify in universal terms.  Occupant surveys of existing 
interior spaces were once the primary method of data 
collection, but digital photographs have become a useful 
alternative for practical purposes (Cetegen et al. 2008). One 
such study engages subject surveys to establish a direct 
correlation between the average luminance across an HDR 
image and its perceived ‘pleasantness’ or relative   
‘excitement’ (Cetegen et al. 2008).  Another example is 
Claude Demer’s daylight classification system which 
categorizes images of interior architecture by plotting the 
mean brightness of each composition against the standard 
deviation of its luminance values (Demers 2007).  Although 
this method is useful in creating an early schematic design 
tool for comparing contrast-driven architectural types, and 
survey-based methods provide us with comparative data on 
the luminous composition of a single space under varied 
lighting conditions, neither can account for the complexity 
of variations that occur over time.  Furthermore, these 
methods that assess average luminance values or overall 
luminance range cannot distinguish between compositions 
that vary in the density and location of local contrast values.   

 
This paper will propose a compositionally-dependent 

method of analyzing contrast through the use of matrices so 
that local pixel values may be quantified within their spatial 
framework.  Using this method, we will introduce two new 
annual metrics; Annual Spatial Contrast and Annual 
Luminance Variability.  These metrics will analyze a set of 
annual images so that dynamic conditions of contrast and 
luminosity may be represented across the year.     
 
2. SPATIAL CONTRAST 

In order to introduce the concept of spatial contrast, we 
must first consider the distinction between two images that 
contain a similar distribution in overall brightness, yet 
varied densities in the composition of dark and light values.  

Figure 1a shows a dense pattern of light and shadow, with 
each small cluster of light pixels surrounded by a tight 
perimeter of darker ones, whereas Figure 1b, though similar 
in overall brightness, shows fewer distinct boundaries 
between light and dark pixels.  If we look at the RGB 
histograms, we see that each composition contains roughly 
the same distribution of pixels, with a peak between RGB 
50-100.  Figure 1a has a mean brightness of 120 with a 
standard deviation of 18 while Figure 1b has a mean 
brightness of 132 with a standard deviation of 22.  Despite 
the obvious differences in compositional density between 
the two images, they are similar in contrast typology 
according to Claude Demers’ system of classification 
(Demers 2007).   

 

a.   
 

b.   
Figure 1. Mean brightness: a) 120, b) 132; Standard deviation: a) 18, b) 22. 
 
2.1.   Quantitative Approach 

Rather than compute the standard deviation between 
luminance values, spatial contrast describes the difference 
between each pixel and that of its neighbor, computing the 
sum of all local boundaries within a given image.  Figures 
2a and 2b reiterate this concept through a diagrammatic 
representation of circles.  The thickness of each circle 
represents the brightness of its underlying pixel, with the 
thickest circles representing RGB 255 (white) and the 
thinnest circles representing RGB 0 (black).  Figure 2a 
shows a composition with several distinct boundaries 
between dark and light pixels.  The abstraction of this image 
shows a topography of hard peaks between light and dark 
pixels.  Figure 2b, on the other hand, shows a composition 
with few distinct tonal variations.  This smooth gradient of 
tones shows pixels fading gradually in strength, whereas the 
density and magnitude of peaks represented in Figure 1b 
show a strong difference between light and dark pixels, 
increasing its spatial contrast across the image. 

 



 
 
 
 
 
a.   
 
 

 
 
b.   
Figure 2.  Rendering and representation of a) contrast ‘peaks’ (shown in 
red circles whose thickness corresponds to the brightness of underlying 
pixels), b) tonal ‘gradient’ 
 

In order to compute spatial contrast across an image of 
higher resolution, we use matrices to find the local 
difference between each pixel and that of its neighbors.  We 
then take the sum of all local differences across the resulting 
matrix to find the total cumulative contrast.  As this number 
is dependent on the pixel density of the image, we must 
convert the cumulative sum of spatial contrast into a relative 
quantity or ratio.  To do this, we divide the total spatial 
contrast by the hypothetical ‘maximum contrast’ that could 
be achieved by a corresponding image of the same 
dimension.  Figure 3a shows a sample image (5 x 6) with 
local contrast values shown in red, while Figure 3b shows a 
corresponding checkerboard of maximum spatial contrast 
for an image of the same dimension.  The spatial contrast is 
found by dividing the sum of all local values in Figure 3a by 
the sum of all local values in 3b.  
 

    
a.          b.          
Figure 3. a) Sample image (5 x 6 pixels) with a cumulative spatial contrast 
of 1,212 (the sum of all values shown in red ) b)   Hypothetical maximum  
(5 x 6)  with a cumulative spatial contrast of 12,495 (the sum of all values 
shown in red). 
 

2.2.  Annual Spatial Contrast 
In order to understand the dynamic impacts of sunlight 

on our perception of spatial contrast over time, we must 
apply the method described in Section 2.1 to a series of 
images that capture the same view of space at several key 
moments across the year.  Using a method of time 
segmentation that was originally developed for Lightsolve, a 

simulation platform for climate-based analysis and time-
based visualization of daylight performance (Andersen et al. 
2008, Andersen et al. 2011), we divide the year into a series 
of 56 symmetrical moments with 8 monthly and 7 daily 
intervals to generate a set of renderings for analysis.  Figure 
4 shows a sample set of images for a top-lit space in Boston, 
MA.  The application of spatial contrast to this set of annual 
renderings allows us to calculate the cumulative Annual 
Spatial Contrast for a given view as well as plot individual 
instances across a temporal map to visualize daily and 
seasonal variations.  

 
Spatio-Temporal Irradiation Maps (STIMAPS) were 

developed to represent annual data across a single graph, 
showing days of the year across a horizontal scale, and 
hours of the day across the vertical (Glaser 1999).  Figure 5 
shows how each of the 56 moments generated through the 
time segmentation method can be simultaneously 
represented in a temporal map.  In lightsolve, these maps are 
used with a goal-based color scale to represent the degree to 
which the designer’s objectives are fulfilled across the year.   

 

 
Figure 4.  Sample set of 56 annual images produced using the time 
segmentation method developed for Lightsolve. 
 

 
 Figure 5.  Temporal map showing the location of plotted values for each 
of the 56 renderings pictured in figure 4.  Hours of the day are represented 
on the vertical scale, while days of the year are on the horizontal. 



Annual Spatial Contrast adopts the 56 moments supported 
by the lightsolve method, but uses a CIE sunny sky model 
for all 56 renderings.  This simplification allows for a 
consistent set of luminance maps that can be analyzed for 
relative changes in luminosity while creating an upper 
boundary for contrast and luminance variability. 
  
2.3.  Analysis and Graphical Representation 

To calculate and visualize Annual Spatial Contrast, 
each of the 56 renderings shown in Figure 4 is processed to 
produce a matrix of local spatial contrast as well as a 
cumulative sum that represents the total spatial contrast 
across each image.  Two sample matrices of local spatial 
contrast can be seen beneath their corresponding rendering 
in Figures 6a & 6b.   

 
     a. 1/13, 7:52                          b. 5/30, 6:59    
Figure 6.  Renderings and corresponding spatial contrast maps for a 
selection of dates and times. 

 
Annual Spatial Contrast takes the sum of all 56 

instances to compare the magnitude and composition of 
spatial contrast over time.  To visualize where this contrast 
occurs throughout the space, each of the 56 instances are 
combined to produce a cumulative matrix or image map.  
Figure 7a shows an example of this cumulative image map 
for a dramatic top-lit space in Boston, MA.  The spatial 
contrast for each individual moment is then plotted on a 
temporal map to visualize when the space experiences the 
most dramatic contrast-based effects, and how abruptly it 
changes across the course of a day or season (shown in 
Figure 7b). 

 
Annual Spatial Contrast provides the designer with a 

more holistic understanding of when and where sunlight 
impacts the composition of light and shadow within our 
field of view.  The cumulative image map displays a 
dynamic range of information, highlighting both redundant 

and residual zones of contrast while the temporal map 
allows us to compare its strength and variation over time.  
This method of visualization challenges the static 
representation of contrast in daylit architecture, allowing us 
to represent its inherently dynamic characteristics. 

 
The scale associated with Figure 7b has been adjusted to 
accommodate appropriate minimum and maximum spatial 
contrast values as determined by a series of case studies 
introduced in Section 4.  As a result, Spatial contrast values 
between 0 and 0.33 should be considered low, values 
between 0.34 and 0.66 moderate, and between 0.67 and 1 
are considered high.  Those values exceeding 1 would 
represent very high spatial contrast in the context of the 
spaces studied.  In order to create a truly universal scale for 
this metric, a large sample of existing architectural spaces 
would need to be modeled and analyzed to produce 
appropriate upper and lower thresholds for spatial contrast. 

 
 

 
 
 
 
 
 
 
 
 
a.               b. 
Figure 7.   a) Cumulative image map of annual spatial contrast b) 
Temporal map showing spatial contrast values across each of the 56 annual 
moments.  The vertical scale represents sunrise to sunset while the 
horizontal scale represents January to December.  

 
3. LUMINANCE VARIABILITY 

The second metric presented by this paper describes the 
annual variation in luminance values across a rendered 
view, highlighting areas of temporal instability.  Whereas 
Spatial Contrast identifies compositional contrast 
boundaries between pixel values within an image, and 
Annual Spatial Contrast maps the accumulation of those 
contrast boundaries over time, Annual Luminance 
Variability accounts for the cumulative difference in pixel 
values as they vary between images across the year.  This 
metric is useful in describing the intensity of variation that 
occurs across a perspectival view of space as a product of 
time and dynamic natural lighting conditions.  Many spaces 
that measure low in Annual Spatial Contrast may still 
measure high in Annual Luminance Variability as dramatic 
variations in luminosity may occur in smooth gradients or 
fractured patterns of contrasting light and shadow. 



3.1.  Quantitative Approach 
The quantitative approach for this metric relies on the 

same 56 annual renderings introduced in Section 2.2, 
however it quantifies the difference between each rendering 
rather than treating each moment as an autonomous matrix 
of information.  Annual Luminance Variability converts 
each of the 56 images into a matrix of RGB values and then 
computes the cumulative difference that each pixel 
experiences as it changes from one moment to the next.  The 
resulting image matrix represents the cumulative sum of 
difference across all 56 annual moments, highlighting areas 
of high temporal variation. 
 

When we use this method to quantify the variation in 
luminance values across a year, we must account for both 
daily and seasonal changes in the strength and orientation of 
sunlight.  We must account for the difference between two 
renderings that occur sequentially throughout the day as 
well as those that occur across the seasons.  In Figure 8 we 
see 42 data points that represent the absolute difference 
between neighboring moments, shown in green.  This 
reduction of data points from 56 down to 42 occurs because 
we do not calculate the difference between sunrise and 
sunset of any given day, nor do we account for the 
difference between December and January of the same year.  

 

 
 
Figure 8.  Reduction in data points from 56 down to 42    
    

Annual Luminance Variability is numerically defined 
by the sum of all 42 annual instances and represents the total 
cumulative variation in luminance across a rendered view.  
Similar to Annual Spatial Contrast, the resulting cumulative 
variation cannot be compared to images that vary in pixel 
density until it is converted into a relative value.  In order to 
achieve this, the total sum of luminance variation across all 
42 intervals is divided by the total pixel density of the input 
images.  The current method relies on 8-bit images to 
accommodate a wide range of image production techniques, 
yet future versions would also accommodate a more 

dynamic range of pixel data through the integration of HDR 
images.   
 

3.2.  Representing Annual Luminance Variability 
The following images illustrate a full set of results for 

Annual Luminance Variability; Figure 9a shows a 
cumulative image of all 42 frames of variation which 
graphically represent the spatial location of luminance 
variability across the space and Figure 9b shows a temporal 
map that interpolates the 42 annual data points.  The 
temporal map shows us when dynamic variations in natural 
light occur throughout the year and how abruptly they vary 
while the associated cumulative image map shows us where 
these variations occur throughout the rendered view.  The 
maximum value for luminance variability at any one 
instance was found to be 8,000,000 or 8 x 106, established 
from a range of case studies in Section 4.  This value 
represents an upper threshold in context of this study and 
was used to scale all subsequent data. 

 
The temporal map shows that variations in luminance are 
most extreme in the summer, when the sun is moving 
directly overhead.  The cumulative image shows the most 
dramatic variation occurring on the floor, as direct light 
moves across the roof, casting dynamic patterns of light and 
shadow down into the space.  Some variation can also be 
seen on the walls, with minimal variation occurring across 
the roof, where uniform levels of brightness create spatial 
contrast, but not high levels of luminance variability.  This 
method of visualization engages our understanding of daylit 
space as a dynamic composition of light and shadow, 
showing us where and when it transforms. Both annual 
spatial contrast and annual luminance variability account for 
distinct, yet related attributes of visual performance and help 
contribute to a more holistic understanding of architectural 
space as it is transformed by dynamic shifts in sunlight 
across the day and year.  
 

 
a.                                       b. 
Figure 9.   a) Cumulative image of annual luminance variability. b) 
Temporal map showing luminance variability values across each of the 42 
data points. 



4.    PRODUCTION OF CASE STUDY IMAGES 
In order to evaluate these new annual metrics across a 

series of architectural conditions, 10 case study spaces were 
generated to represent a gradient of natural lighting 
conditions, from low to high contrast and temporal 
variability.   

 
4.1.  Development of Case Study Spaces 

The evolution of these case studies, their typological 
ordering, and the development of a new contrast taxonomy 
will be presented elsewhere.  These 10 case studies 
represent a compact version of a larger matrix, which was 
composed of 74 architectural spaces across 15 categories.  
Figure 10 shows the compact matrix which represents the 
authors’ hypothesized gradient of visual effects (before the 
application of each metric) from high spatial contrast and 
luminance variability on the left to low spatial contrast and 
luminance variability on the right. Although these abstract 
spaces cannot possibly cover the full spectrum of daylit 
architectural typologies, this linear gradient is meant to 
present a range of examples against which alternate spaces 
can be compared and contextualized.   

 
 4.2.  Production of Annual Renderings 

Radiance, an industry standard rendering software 
based on backwards ray-tracing (Ward 1994) that embeds 
tone mapping algorithms, was used to generate images 
consistent with a human’s perceptual view of space, in 
combination with the DIVA plugin for Rhinoceros  (Lagios 
et al. 2010) to export geometry directly to Radiance.   

 
Each of the 10 case studies was modeled in Rhinoceros 

with the same floor area, ceiling height, and camera location 
so that results could be accurately compared.  Cameras were 
positioned to face South, centered in the East-West 
direction, and offset ten feet from the back wall to ensure an 
even distribution of wall, floor, and ceiling surfaces within 
each rendering.  The Diva-for-Rhino toolbar was then used 
to export the camera view to Radiance, where materials 
were set to default reflectance values for floor, wall, and 
ceiling surfaces (0.3, 0.7, 0.9 respectively).  The resolution 
of each images was rendered at ‘high quality’ (a present in 
DIVA) to accommodate adequate detail with a 640 x 480 
pixel aspect ratio and a rendering was generated for each of 
the 56 dates and times determined by the time-segmentation 
method (described in Section 2.2) for clear sky conditions.  
Boston, Massachusetts was set as the location for all case-

study renderings (latitude 42 N, Longitude 72 W).  When 
the spaces were rendered under overcast sky conditions, the 
contrast and temporal diversity was minimized, making it 
difficult to compare relative changes between each space.  
In order to compare the impacts of contrast over time, it is 
necessary to use a sky condition that allows for maximized 
visual effects.  Once a set of renderings has been produced 
from this method, it is imported into Matlab and analyzed 
for annual spatial contrast and luminance variability. 
 
5.  CASE STUDY RESULTS 
Figure 11a and 11b show a linear gradient of results across 
each of the two annual metrics for the 10 case studies 
presented in Figure 10.  Annual Spatial Contrast results are 
shown in Figure 11a and Annual Luminance Variability 
results are shown in Figure 11b.  Each row of images has 
been re-ordered from left to right to display a relative 
gradient of cumulative annual results, with those case 
studies located on the left side of each figure representing 
the high end of the spatial contrast or variability spectrum 
and those on the right representing the low end. The value 
beneath each image in Figure 11a represents a cumulative 
sum of spatial contrast for each of the 56 time-segmented 
instances. The value beneath each image in Figure 11b 
represents the sum of all 42 instances of luminance 
variability described in Section 3.2.  These values are 
ordered in a linear gradient to show the relative presence of 
cumulative spatial contrast and luminance variability within 
each case study. 

 
When compared to the hypothesized gradient in Figure 10, 
the results for each annual metric maintain the overall 
pattern of anticipated results, with most case study spaces 
shifting no more than one position to the left or right.  
Because the hypothesized gradient did not differentiate 
between the two metrics, the results across each individual 
metric produce a distinct relative order.  For example, case 
study 1 produced a maximum relative value for annual 
luminance variability but placed third in annual spatial 
contrast.  Likewise, case study 10 produced a minimum 
relative value for annual luminance variability, but place 6th 
in annual spatial contrast.  These results support the need for 
a multitude of quantitative indicators when we discuss the 
relative perceptual impacts of natural light on factors of 
visual interest.  

 
 



 

 
 

.  

 

 
 
 
 

 
 
 
Figure 10.  10 case study models in a hypothesized linear gradient from high contrast & variability on the left          
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b. 
 
Figure 11.  Analysis of all case studies re-ordered in terms of a) Annual Spatial Contrast and b) Annual Luminance Variability  

 
A more detailed look at the temporal maps for case 

studies 4 and 9 (the full spectrum be presented elsewhere) 
show the annual variation in each metric as a product of 
time.  The cumulative images in Figure 12 and 13 provide a 
spatial snapshot of results for each metric, highlighting 
areas of contrast or variability within each renderings, but 
the temporal maps represent a dynamic view of when those 
values change across the year.  The temporal map for annual 
spatial contrast in Figure 12 shows peaks of spatial contrast 
in the winter months as low sun angles penetrate the 
louvered façade of case study 4, driving sharp shadows onto 
the walls and floor.  This pattern can also be seen in the 
temporal map for annual luminance variability as dynamic 
patterns move across the space in the winter, while 
remaining relatively static in the summer months.  Figure 13 
shows an indirect top-lit space with low annual spatial 
contrast.  The temporal map for luminance variability, 
however, shows peaks of variation in the early morning and 
late afternoon as low sun angles penetrate the north-facing 
roof monitors.  This map is particularly intriguing as it 
illustrates an atypical condition that dramatically impacts 
our perception of interior space at key moments.  Future 
avenues of research would address a climate model to 
compare the effects of cloud cover and weather on these 
patterns of contrast. 
 

 
 
 
 
 
 
 
a. 
 
 
 
 
 
 
b. 
Figure 12.  Cumulative image and temporal maps for case study 4:  a) 
annual spatial contrast, b) annual luminance variability. 
 
 
 
 
 
 
a. 
 
 
 
 
 
 
b. 
Figure 13.  Cumulative image and temporal maps for case study 9:  a) 
annual spatial contrast, b) annual luminance variability. 



DISCUSSION & CONCLUSION 

The metrics proposed by this paper present a new and 
novel approach to the dynamic analysis and visualization of 
contrast within architecture.  Due to the spatial impacts of 
light and shadow on our perception of contrast and the 
inherent variability of daylit as a source of illumination, 
Annual Spatial Contrast and Luminance Variability evaluate 
the compositional and temporal impacts of daylight on our 
perception of interior space.  While Annual Spatial Contrast 
quantifies the sum of all local contrast boundaries across a 
given view, Annual Luminance Variability accounts for the 
total change in luminance levels over time.  The method of 
visualization for these metrics combines a cumulative image 
with a complimentary temporal map to identify when and 
where these dynamic variations occur.  This approach 
moves beyond static representations of contrast and seeks a 
more specific method of quantifying compositional 
variations in brightness. 
  

Each of these metrics is currently limited by the 
compression of annual data into a set of interpolated values.  
Future research will need to address a broader range of 
annual instances to fully validate the time-segmentation 
method used in this approach.  Additional limitations 
include the time-intensive method of automated image 
production.  A rigorous study and application of these 
metrics to existing architectural models will help to define a 
more appropriate numerical scale for resulting data.  Future 
research must also investigate the relationship between 
compositional patterns of light and their impacts on our 
perception of contrast.  An important vein of research would 
relate the proposed metrics to recommendations for contrast 
and temporal variation in programmed space.  

 
A method of quantifying daily spatial contrast and 

luminance variability is currently underway using HDR 
time-lapse photography.  This method (to be presented 
elsewhere) quantifies the dynamic changes in light across a 
much smaller interval of time.  This increase in time-based 
resolution does raise new challenges, as moving subjects 
and objects within the scene provide sources of error, but it 
also allows designers to analyze existing buildings.   

 
In conclusion, annual spatial contrast and luminance 

variability represent a shift toward dynamic luminance-
based metrics that evaluate the relative impacts of contrast 
on our perception of architectural space over time.  These 

metrics, although still preliminary in their development, 
seeks to understand the relationship between the 
composition and variability of daylit space.  This research 
will help designers to contextualize positive aspects of 
daylit variability and compare contrast typologies on a 
dynamic scale.   
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