
OptiMoS: Optimal Sensing for Mobile Sensors
Zhixian Yan⇤, Julien Eberle†⇤, Karl Aberer⇤

⇤ EPFL, Switzerland
† Nokia Research Center, Lausanne, Switzerland

E-mail: zhixian.yan@epfl.ch, julien.eberle@nokia.com, karl.aberer@epfl.ch

Abstract—Both sensor coverage maximization and energy cost

minimization are the fundamental requirements in the design of
real-life mobile sensing applications, e.g., (1) deploying environ-
mental sensors (like CO2, fine particle measurement) on public
transports to monitor air pollution, (2) analyzing smartphone
embedded sensors (like GPS, accelerometer) to recognize people
daily activities. However sensor coverage and energy cost con-
tradict each other: the higher frequency mobile sensing takes,
the more energy is used; and vise versa.

In this paper, we design a novel two-step mobile sensing
process (“OptiMoS”) to achieve optimal mobile sensing that can
effectively balance sensor coverage and energy cost. In the first
step, OptiMoS divides the continuous mobile sensor readings into
several segments, where the readings in one segment are highly-
correlated rather than readings amongst different segments. In
the second step, OptiMoS identifies optimal sampling for the
sensor readings in each segment, where the selected readings can
guarantee reasonably high sensor coverage with limited sampling
rate. Various greedy & near-optimal segmentation and sampling

methods are designed in OptiMoS, and are evaluated using real-
life environmental data from mobile sensors.

I. INTRODUCTION

Wireless sensor networks (WSN) and publishing of sen-
sor data on the Internet bear the potential to substantially
increase public awareness and involvement in environmental
sustainability. Air quality monitoring in urban areas is a prime
example of these applications as common air pollutants have
direct effects on the human health. Traditional WSN based
environmental monitoring systems (like SensorScope [12] and
MacroScope [26]) typically deploy sensors on some pre-
selected positions, monitor these fixed sensors, and analyze
their measurements. These traditional environmental monitor-
ing systems based on static WSN using fixed sensors have a
couple of obvious limitations, e.g.,: (a) the system is inflexible
for monitoring location-varying environment as the sensor
placement is pre-fixed; (b) it is expensive to deploy and
maintain a large set of static sensors; (c) for monitoring a
very large area, it is impossible to get enough static sensors
to cover the complete area.

To overcome such limitations of using static WSN for
environmental sensing, researchers recently start to build WSN
with mobile sensors. There are a lot of emerging mobile
sensing platforms, e.g.,: (a) the OpenSense project in Switzer-
land builds sensors and deploys them on public transports
like buses and trams [2]; (b) the floating sensor network
project at UC Berkeley builds a water monitoring system using
drift sensors to analyze water contaminant [1]; (c) mobile
phones are used to establish a community seismic network

to detect earthquakes and rare events [9]. These projects use
mobile sensors and bring public involvement in environmental
monitoring to a reality, which poses today substantial research
and technical challenges for the communication and infor-
mation systems infrastructure, to scale up from isolated well
controlled systems to an open and scalable infrastructure.

For traditional static WSN applications (e.g., environmental
monitoring and others), we need to find the best places to fix
these limited sensor resources (e.g., the number of sensors)
that can maximize sensor coverage. This is the fundamental
sensor placement problem of WSN; and a good placement
can guarantee the coverage and reflects how well an area
is monitored by sensors. Determining an optimal sensing
placement in an arbitrary sensor field is a kind of art gallery
problem, which is NP-hard [18] and requires near-optimal
solutions like the submodularity method [15].

Regarding mobile sensors based environmental monitoring,
sensor placement is even more challenging compared to static
WSN; this is because mobile sensors have varying coverage
due to their mobility. In the OpenSense project, we deploy
environmental sensors on moving buses to monitor air quality
(using sensors to measure CO2, CO, NO2 etc.), which are
mobile sensors as the buses are regularly running on the road.
In OpenSense, there are two levels of objectives for optimal
sensor placement: the first one is to build the optimal mobile
sensing for each individual bus line, i.e., determining when
and where the bus should take a measurement; the second one
is to build global optimal sensing, which provides optimal
sensing for all bus lines, where individual sensing on one bus
line should consider nearby bus lines. For example, Fig. 1
shows optimal mobile sensing of four bus lines, where the
times symbol (“⇥”) indicates the sensing points when and
where the bus pass by. In such mobile sensing planning, Bus 3
only has two sensing points (blue “⇥”), as there are several
overlapping sensing points with other buses. In this paper, we
focus on the first mobile sensing objective of OpenSense, i.e.,
the optimal sensing strategy for each individual moving bus.

Research Questions: We seek to design an optimal mobile
sensing strategy, which offers an appropriate tradeoff between
“sensing coverage maximization” and “sensing cost (sampling)
minimization” of an individual moving sensor. This raises two
key research questions:

a) For a short sequence of mobile sensing (e.g., a moving
bus in 2 hours), how to find an optimal sensing (or
sampling) protocol which can guarantee required sensor
coverage using limited sensing cost (or sampling rate)?

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bus$1
Bus$2

Bus$4
Bus$3

sensing$point$
onthebus

Fig. 1: Mobile sensing via moving buses with environmental sensors

b) For a long sequence of mobile sensing (e.g., a moving
bus in one month or several days), how to find optimal
sensing? Do we need to do segmentation first? Can
segmentation help to make better sensing (sampling)?

Key Contributions: To address these questions, this paper
utilizes real-life mobile sensing data of environmental monitor-
ing from the OpenSense project. We propose a model-driven
optimal sensing strategy for mobile sensors. The detailed
contributions of this paper are as follows:

a) We design “OptiMoS”, a two-tier optimal sensing frame-
work for mobile sensors, using model-driven data regres-
sion (e.g., linear model, support vector regression). In
the first tier, a long sequence of mobile sensing (e.g.,
the complete route of a bus line) is divided into several
non-overlapping segments, where the data points in each
segment are homogeneous in terms of modeling and
prediction. In the second tier, OptiMoS chooses optimal
sampling points for each segment, as these data points
can provide maximum sensor coverage.

b) For segmenting sensing data from mobile sensors, we
design and compare several different segmentation algo-
rithms, from the optimal exhaustive search using dynamic
programming, to the binary top-down segmentation, to
the near-optimal error-based heuristic segmentation.

c) For sampling the sensor readings in each segment, we
design and compare several sampling algorithms, includ-
ing the uniform, random, error-based entropy sampling,
and the near-optimal mutual-information sampling.

d) To validate such optimal mobile sensing method of Opti-
MoS, all of these segmentation and sampling algorithms
are exhaustively evaluated using real-life environmental
sensing data from the moving buses.

The detailed structure of this paper is organized as follows:
after the introduction, Section II summarizes existing related
works; Section III describes the preliminaries and the two-tier
optimal sensing framework of OptiMoS; Section IV presents
different segmentation algorithms for dividing mobile sensing
stream; whereas Section V proposes different sampling strate-
gies for individual segment; in Section VI, we experimentally
evaluate the OptiMoS. Finally, Section VII includes conclud-
ing remarks and points to future works.

II. RELATED WORK

There are three main topics related to this paper: (1) optimal
sensor placement in static WSN; (2) mobile sensing; and (3)
sensor data segmentation.

Sensor Placement in WSN: Sensor placement has a signif-
icant influence in building an efficient wireless sensor network
for environment monitoring. An optimal sensor placement
should be able to maximize the sensor coverage and in the
meanwhile to minimize the number of sensors required. For
placing K sensors optimally in an arbitrary sensor field, this
work is known to be NP hard; thus a couple of efficient near-
optimal algorithms are provided [17][20][7][21]. In Andreas’
works like [17], a greedy solution is designed by using mutual
information when selecting next sensor point; this has better
performance than traditional random solution or other basic
entropy-based sensor selection. In [20], the sensor placement is
modeled as a min-max optimization problem, and a simulated
annealing based algorithm is provided. In [7], the method
supports imprecise sensor detection like terrain properties,
which can support sensor placement with probabilistic guar-
antee in a polynomial time. The work of regions sampling in
[21] studies local aggregation on sensor network and builds
adaptive sampling for each partial region. All of these works
are not designed for mobile sensors. Nevertheless, relevant
optimization formulation and greedy solutions can be adopted
in OptiMoS, to achieve optimal sensing of an individual
moving bus with deployed environmental sensors.

Sensing from Mobile Sensors: Recently, there has been
emerging a number of mobile sensing applications, particularly
in urban computing, such as OpenSense for air quality mon-
itoring [2], floating sensors for water contaminants analytics
[1], and community sensing for road traffic monitoring [16].
One recent work similar to our optimal sensing objective in
OpenSense is the Ear-Phone [25], which provides an end-
to-end participatory urban noise mapping system and gener-
ates a noise map from a small set of sensor readings at a
sparse spatio-temporal sensing field. Similarly, our objective in
OpenSense is to provide a time-varying air pollution map from
limited mobile sensor readings using a small number of mov-
ing buses with deployed environmental sensors (e.g., CO2).
However, our work in OpenSense has additional challenges:
(a) the monitoring area in OpenSense is not 1D road line like
[25], but a 2D map and even 3D earth; and (b) OpenSense is
real mobile sensing that deploy sensors on the moving buses,
whilst Ear-Phone fixes mobile phones aside the road.

Sensor data segmentation: Segmentation is largely stud-
ied in time series [14][13][11] and GPS-alike mobility data
[27][5]. Segmentation methods are divided into three cate-
gories, i.e., sliding window, top-down and bottom-up. Sliding
window algorithms can work online and efficiently, but the re-
sults are poor and sensitive to parameters; whilst top-down and
bottom-up methods have better segmentation results but not for
real-time applications. To balance both offline high-accuracy
and online efficient-computation, a couple of combination
algorithms are proposed, such as SWAB (Sliding Window
And Bottom-up) [13], amnesic functions [23], piecewise linear
segmentation (mixing both constant and linear function) [19],
FSW (Feasible Space Window) & SFSW (Stepwise FSW)
[22], SwiftSeg (a polynomial approximation of a time series
in either sliding or growing windows) [10]. In this paper,

we study different segmentation methods, test them with the
combination of different sampling strategies, and evaluate the
optimal sensing proposal of OptiMoS.

III. TWO-TIER OPTIMAL MOBILE SENSING

This section presents our two-tier optimal mobile sensing
proposal (i.e., OptiMoS) and its problem formulation. Fig. 2
sketches the framework of OptiMoS for achieving the optimal
sensing, as well as the data flow in this procedure.

Sensor
Readings

Optimal
Segmentation

Optimal
Sampling

S1 S2 S3 S4 S5

Layer&I.&Op+mal&Segmenta+on&
(Modeling*by*Linear,*Polynomial,*SVM*Regression,*ARIMA*modeling*etc.*)*

Layer&II.&Op+mal&Sampling&
(Op?mal*sampling*on*each*segment)*

Fig. 2: OptiMoS’s two-tier optimal sensing framework

In the lower tier of OptiMoS, initial input is the raw sensor
readings collected by moving sensors, i.e., multiple dimen-
sional spatio-temporal time series data. Each reading record
is the “⇥” symbol in Fig. 2 (i.e., Ri = ht, l, x1, · · · , xmi),
which includes sensing time t, sensing location l (typically
hlongitude, latitudei from GPS), and environmental mea-
surements x1 to xm

1. The objective of this tier is to find
the optimal (or near-optimal) segmentation based on data
modeling on these raw readings. OptiMoS can support all
kinds of modeling methods, e.g., simple linear regression,
polynomial regression, SVM (Support Vector Machine) based
regression, time series ARIMA (Auto-Regressive and Moving
Average) modeling. As the result of the first tier, we can
achieve an optimal (or near optimal) segmentation, e.g., five
segments (from S1 to S5 in Fig. 2).

In the upper tier of OptiMoS, we focus on studying indi-
vidual segments that are computed from the lower tier. For
each segment, the objective is to find the best sampling from
the mobile sensor readings, i.e., to select only a subset of
sensor readings (“⇥” symbols in Fig. 2 in the top layer). This
subset can keep enough modeling information for regression
of the whole segment and for prediction of non-selected sensor
readings. Taking Fig. 2 for example, from segment S1 to S5,
we respectively keep only 1, 3, 3, 2, 3 readings to achieve
reasonably enough sensing. For this optimal sensing example,
OptiMoS only requires 12 sensing points instead of the initial
21 points. The sampling rate is 12/21, i.e., 57%.

A. Problem Statement

As mentioned, the OpenSense project has two levels of
optimal sensing objectives, i.e., local optimal sensing for

1Taking air quality monitoring using environmental sensors for example,
x1 is the measurement of CO2, x2 is of CO, x3 is of NO2, etc.

individual bus line, and global optimal sensing for multiple bus
lines. In this paper, we focus on the first objective and design
OptiMoS (the two-tier optimal sensing) for mobile sensors in
terms of a single bus line.

This optimal sensing problem can be formulated as fol-
lows: Given a sequence of initial mobile sensor readings
R = {R1, · · · , RN} of size N from continuously mov-
ing sensors, where each record Ri = ht, l, x1, · · · , xM i
consists of M types of sensor readings (from x1 to xM)
together with the timestamp (t) and the location (l =
hlongitude, latitude, altitudei), the objective of OptiMoS is
to identify the best sampling of such sequence of sensor
readings that can guarantee the majority of sensor reading
information (i.e., sensor coverage maximization) at the mini-
mum sampling rate (i.e., energy cost minimization).

As shown in Fig. 2, our solution for this problem is to
provide a two-tier optimization framework. We will compare
this with traditional one-tier sampling without segmentation,
and further details will be provided in Section VI.

B. Optimal Segmentation
As the first tier of OptiMoS, optimal segmentation on

the initial reading sequence (i.e., R) is to find the best
K segments (i.e, R1,R2, · · · ,RK) such that the sum of
the model errors for individual segment is minimized. A
model M on a segment Ri can be linear, polynomial, SVM
regression, ARIMA etc. In this paper, we empirically study
linear and SVM regression, and evaluate their performances;
other models could have similar principle. We apply the RSS
(Residual Sum of Squares) to quantify the error for modeling
a sequence R = {R1, R2, · · · , RN} (see Formula 1). The
residual res(Ri) of a reading Ri is the difference between
real value in Ri and the approximation R̂i that learnt by the
model M(R).

RSS(M(R)) =
NX

i=1

(res(Ri))
2 =

NX

i=1

(|Ri � R̂i|)2

where R̂i = M(R)|Ri (1)

Finding the best K segments is equivalent to identifying the
best K-1 division points: Rd1 , Rd2 , · · · , RdK�1 ; then, for each
segment Ri, we have a sub sequence of readings between two
division points, i.e, Ri = {Rdi�1 , Rdi�1+1, · · · , Rdi}. For the
first segment (R1), Rd0 indicates the first reading R1. Now,
this optimal segmentation problem becomes an unconstrained
optimization problem (see Formula 2).

argmin
d1,d2,··· ,dK�1

KX

i=1

RSS(M({Rdi�1 , · · · , Rkdi
})) (2)

Ideally, the segment number (K) is not known in advance,
which needs to be discovered automatically as a part of the
optimization problem, as shown in Formula 3.

argmin
K,d1,d2,··· ,dK�1

KX

i=1

RSS(M({Rdi�1 , · · · , Rkdi
})) (3)

For simplicity, in the first step of this work, we can assume
K is given and we will test a reasonably small set of different
K values (e.g., K  10 in our experiment), to analyze the
convergence of segmentation algorithms and to test a near-
optimal segmentation.

C. Optimal Sampling

After getting the optimal segmentation, OptiMoS needs to
identify the best sampling of mobile sensing/readings for each
individual segment. To quantify whether a sampling reading
sequence Rsub is good or not, we define “information loss”
L(R,Rsub), i.e., the RSS increase ratio between Rsub and
the complete readings R.

L(R,Rsub) =
RSS(M(Rsub ! R))�RSS(M(R))

RSS(M(R))
⇥ 100(%)

=

NX

i=1

(Rk �M(Rsub)|Rk)
2 �

NX

i=1

(Rk �M(R)|Rk)
2

NX

i=1

(Rk �M(R)|Rk)
2

(4)

where, RSS(M(Rsub ! R)) means the RSS error for the
approximation of the complete sequence R by using the model
M(Rsub) that learnt from the sub sequence Rsub.

Similar to reformulating the sensor placement problem in
static WSN, there are two ways to represent the optimal
sampling problem in OptiMoS: (1) Given a limited sampling
rate �, find the best sampling set Rsub that has minimum
information loss L(R,Rsub); and (2) Given an acceptable
information loss threshold ✏ between sampling sub-sequence
Rsub and the complete sequence R, find the best sampling
points that has the minimal sampling rate. They are formulated
as the following two optimization problems respectively.

argmin
Rsub

L(R,Rsub) s.t. |Rsub|/|R|  � (5)

argmin
Rsub

|Rsub|/|R| s.t. L(R,Rsub) � ✏ (6)

The sampling rate |Rsub|/|R| is the sensing frequency, as a
kind of mobile sensing cost. Thus, the optimal mobile sensing
needs to balance the information loss (i.e., sensor coverage)
with the sampling frequency (i.e., the energy cost). The pre-
vious two constraint optimization problems in Formula 5 and
Formula 6 can be rewritten as an unconstrainted optimization
in Formula 7, by using a balance coefficient �.

argmin
Rsub

L(R,Rsub) + �|Rsub| (7)

IV. SEGMENTATION OF MOBILE SENSING

This sections present various segmentation strategies in
OptiMoS, from optimal segmentation by exhaustive search like
dynamic programming, to top-down binary segmentation, to
error-based heuristic and near-optimal segmentation. This is
to solve the optimization problem in Formula 2.

A. Optimal Segmentation
The segmentation problem in Formula 2 has optimal so-

lution using exhaustive search, where the algorithm is recur-
sively searching the best point to divide i segments into i+1
segments. This can be computed by dynamic programming
(DP) [4][11], with the complexity of O(KN2) where K is the
segment number and N is the number of points in R. With
such quadratic complexity, DP is impractical for segmenting
real-life large scale mobile sensing data. Nevertheless, we can
apply DP to segment a short sequence using small K( 5),
and evaluate other segmentation methods using the optimal
modeling error from DP. The recursive function of using DP
for segmenting the mobile sensor readings is summarized in
Alg. 1. Thus, we can use segmentDP (R, 1, N,K) to solve
Formula 2. To speed up the exhaustive search in DP, our
experiment provides an extra condition of “bestRSSBound”
(recording the best RSS error at each recursive step) to filter
out some useless recursions of invoking segmentDP .

Algorithm 1: segmentDP (R, i, j, k)
input : R = {R1, R2, · · · , RN} // mobile sensor readings

i, j // to make next segmentation in hRi, Rji
k // the number of segments

output: optimalRSS // model error by optimal segmentation
1 /* find the optimal segment */
2 if k = 1 and j > i then
3 print i, j; // print optimal sub-segments
4 return RSS(R, i, j); // compute model error RSS hRi, Rji
5 /* impossible to find the optimal segment */
6 if j � i < k then
7 return 1;

8 /* recursive segmentation (from k to k-1) */
9 optimalRSS 1; // initial the optimal RSS found so far

10 foreach id 2 [i+ 1, j � 1] do
11 firstSegRSS RSS(R, i, id);
12 restSegRSS segmentDP (R, id, j, k � 1);
13 totalRSS firstSegRSS + restSegRSS;
14 optimalRSS min{optimalRSS, totalRSS};

15 return optimalRSS;

It is worth noting that our objective is to find a segmentation
that is not only the optimal for the training sequence, but
also applicable to the similar sequences (as testing data). For
example, OpenSense deploys environmental sensors (including
CO2, CO, temperature, humidity etc.) on the top of buses,
for continuously monitoring air quality in the motion context.
The segmentation result on one day of Bus-line-1 should be
generally consistent with sensing data from others days on this
same line. Therefore, the optimal segmentation from training
day might not be the best for testing days. This is the over-
fitting issue which needs to be avoided in OptiMoS. In the
experiment, we will show such experimental evidences.

B. Top-down Binary Segmentation

As the optimal segmentation by DP is impractical for real-
life long sequence of mobile sensing data because of its high
complexity, researchers proposed many greedy segmentation
methods, such as the top-down binary split method [13]. The
idea is to hierarchically split the sequence with maximum error
into two sub-sequences, until the number of segments reaches
K. We call this traditional top-down binary segmentation
algorithm as Binary.

In Binary, the algorithm always choose a segment with
the maximum model-based regression error (RSS) to make
further segmentation, which may cause the division is only in
one segment and its subsegments. As a result, the segmentation
result could be totally unbalanced. This is similar to the worst
case of a binary tree, where the tree is completely un-balanced
and becomes a linked list. To overcome this problem, we
design an extended algorithm of Binary, noted as Binary+.

In Binary+, we design a new RSS error measurement that
has two types of penalties to prevent Binary from always
choosing the top RSS error: (1) how much error can be
reduced after such segmentation; (2) what is the length size
for the new segments (noted length), as shown in Formula
8, where ↵ is the penalty coefficient. The first penalty is to
evaluate the new segments in advance; and the second penalty
is to avoid too short segments because of possible outliers.
Alg. 2 provides the procedure of the Binary+ algorithm.

newRSS = RSS(M(Rleft)) +RSS(M(Rright))

[RSS = RSS(M(R))� newRSS + ↵⇥ length (8)

Algorithm 2: segmentBinary+ (R,K)
input : R = {R1, R2, · · · , RN} // mobile sensor readings

K // the number of segments
output: segOrderQueue // list of segments

1 /* initial the segment result */
2 segOrderQueue Ø;
3 /* insert the first segment to the sorted queue */
4 segOrderQueue.insert(R, 1, N);
5 foreach id 2 [2,K] do
6 /* retrieve & remove top error segment from the queue */
7 topErrorSeg segOrderQueue.poll();
8 /* divide the segment into two subsegments */
9 S1 (R, topErrorSeg.begin, topErrorSeg.division);

10 S2 (R, topErrorSeg.division, topErrorSeg.end);
11 /* add the two new sub segments into two the sorted list*/
12 calculate [RSS for S1 and S2;
13 segOrderQueue.insert(S1);
14 segOrderQueue.insert(S2);
15 segOrderQueue.resort(); // resort for next segmentation

16 return segList;

C. Heuristic Segmentation

The Binary and Binary+ methods focus on finding the
maximum error segment (either RSS or [RSS) to identify next
segment to make division; but for the division point in the
segment, they only apply the middle point, which is trivial.
Therefore, we additionally design error-based greedy methods
that use the model residual of each record to identify segment

division. The residual is computed with the Formula 1. For
such heuristic method, a simple greedy strategy is using the
top error point as the division point for the segmentation.
Recursively, we recompute the new models for new segments,
and find the next top error point as the new division point, until
reach K segments. This segmentation is called “Heuristic”.

Similar to Binary that always pick top error segment to
make next segmentation, Heuristic does the same strategy
that always picks top error point as division point. Thus, we
design an extended version called “Heuristic+” that also
uses the penalty function in Formula 8 to avoid that two
division points are too close, i.e., the segment is too short.
In addition, Heuristic+ doesn’t look for the largest error,
but for the longest contiguous sequence of error exceeding a
certain threshold (e.g. the error median) and then randomly
choose one of its ending. This way it can isolate segments
that have a bias in M(R).

The Binary and Binary+ methods study on finding the
next segment and make division; whilst the Heuristic and
Heuristic+ methods study on finding the next division points
to make segmentation. The last segmentation method we
propose in OptiMoS is B+H+ that combines Binary+ and
Heuristic+. The idea is to consider both “the maximum error
segment to build segmentation” but also “the maximum error
point to make division”. The combination is done as follows:
the segment to divide is chosen by Binary+ and then, inside
this segment, Heuristic+ is applied to find the segmentation
point. This way we ensure that the segments have a better
distribution, like in Binary+, but also that the segmentation
points is put in a region where the current model has its
worst performance and thereby a certain improvement can be
expected.

V. SAMPLING OF MOBILE SENSING

In this section, we study the second tier of OptiMoS, i.e.,
data sampling for each segment from the first tier. OptiMoS
needs to balance the sensor coverage (i.e., minimizing mod-
eling errors from mobile sensing samples) and the sensing
cost (i.e., the size of samples). This is to solve the optimiza-
tion problem in Formula 7, balancing the information loss
L(R,Rsub) and the sampling cost |Rsub|/|R|.

A. Optimal Sampling
The optimal sensor placement (or sampling) in an arbitrary

sensing field is a NP hard problem [17][20][7]. For a simplified
problem with a limited number of mobile sensing points (N),
the optimal sampling at the sampling rate � requires exhaustive
search amongst all possible subsets of readings. This needs
to consider all combination of �N points from the initial N
points, which has the complexity of O(N �N) and is still NP-
complete. Therefore, we seek to near-optimal greedy solutions
for optimal sampling in OptiMoS.

B. Distribution based Sampling
Intuitive greedy solutions for sampling the mobile sensor

readings for each individual segment are using some statistical

distributions, e.g., uniform and normal. In this paper, we
evaluate the uniform sampling and the random sampling.

• Uniform Sampling – To uniformly select the � percentage
of mobile reading points in the segment, the algorithm
selects the sensing point at each interval �N . We can
apply such uniform sampling with �N�1 times, and each
time has different offset. The final accuracy of uniform
sampling is the average of several trials.

• Random Sampling – In this method, we randomly select
�N points from the segment, and make certain number
of trials. Similar to uniform sampling, the final accuracy
of random sampling is the average of several trials.

C. Entropy based Heuristic Sampling
In distribution based sampling, selecting sensing points

only considers position distribution. Actually for the uniform
sampling and the random sampling, each sensing point has the
same chance to be selected. There is no bias in general.

To provide better sampling, we design error-based entropy
sampling. Similar to the heuristic segmentation methods using
modeling errors, we apply the residual res(Ri) as the entropy
for the selection of sensor readings. For example in Fig. 3, the
segment initially has 25 sensor readings, i.e., the blue times
symbol (“⇥”) at the bottom. We plot the modeling residuals
for each sensor reading in black line. By using these residuals,
we can pick top 7 sensors as the red circles (“�”), where three
of them are mostly at the beginning of the segment and the
four others are mostly at the end; therefore, the sampling looks
not good and are bias to the absolute modeling errors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

25 sensor readings in a segment

re
si

du
al

 fo
r e

ac
h

re
ad

in
g

all readings
raw residuals
leave one out
new residules
sampling 1
sampling 2

Fig. 3: Entropy based sensor readings sampling

Our improved solution in OptiMoS is to design an entropy
value using a relative residual rather than the absolute value.
The idea is using a leave-one-out basic model to approximate
the residual and check how much is the gap between real
residual and the approximated one (see Formula 9). To ap-
proximate the residual of point Ri, the leave-one-out model
uses the residuals of nearby points (in window size 2w, i.e. w
for left and w for right) and builds simple interpolation (e.g.,
using basic mean, linear, Gaussian). In Fig. 3, the “leave-one-
out” approximation is cumulated using the mean model with
window size 2w=4, and it is plotted in the gray dot-dashed line.
Afterward, the gaps (i.e., ˆres(Ri)) are calculated and plotted
in the blue dashed line; and finally the new 7 sensor readings
are selected as the new sampling in the red rectangle (“⇤”).
We observe that the new sampling has more selections in the

middle with a better distribution. In our experiment, we note
such relative-error based entropy sampling as “Entropy”.

ˆres(Ri) = res(Ri)� leaveOneOutAppr(Ri, w) (9)

D. Mutual Information based Heuristic Sampling
Both the absolute error res and the relative error ˆres in the

entropy based mobile sampling are calculated in advanced.
They are not recomputed during the sampling process. How-
ever, the entropy of sampling points actually are varying after
each sampling step. Such information change can be modeled
using the mutual information that can measure the mutual
dependence of two random variables (in our case the candidate
point to be selected and the points already been selected).
Mutual information can reduce information dependency, there-
fore it has been largely used in many topics such as feature
selection [24] and traditional static sensor placement [17].
Therefore, we additionally design mutual information based
sampling method in OptiMoS.

Different from the previous entropy-based sampling method
that directly selects points with top ranking relative residuals
(ˆres in Formula 9), we redesign a loop procedure that can
recursively recompute the new fres of the candidate sensor
readings. Such new fres needs to remove the mutual informa-
tion from sensor readings already selected (see Formula 10).

fres(Ri;Rsub) = ˆres(Ri|Rsub)� ˆres(Ri) (10)

where, Rsub is a set of sampling points already selected so far,
Ri is a candidate reading for adding to Rsub, ˆres(Ri|Rsub) is
the relative residual computed only using the selected readings
Rsub, and ˆres(Ri) is the relative residual computed by all of
the sensor readings R without sampling.

Algorithm 3: samplingMutualInfo (R, �)
input : R = {R1, R2, · · · , RN} // mobile sensor readings

� // the percentage of sampling
output: Rsub // sampling set, with size �N

1 /* initialization */
2 Rsub Ø; // initial empty sampling set
3 M int(�N); // the size of the final sampling set
4 /* get the first sample with pure entropy */
5 foreach Ri 2 R do
6 compute the entropy ˆres(Ri); // by Formula 9

7 firstSample argmax
Ri

ˆres(Ri)

8 Rsub.add(firstSample);
9 /* get the following samples with mutual information */

10 while |Rsub| < M do
11 foreach Ri 2 R�Rsub do
12 compute fres(Ri;Rsub); // by Formula 10

13 nextSample argmax
Rj

fres(Rj)

14 Rsub.add(nextSample);

15 return Rsub;

Alg. 3 sketches the main procedure of using mutual in-
formation for getting near-optimal sampling. First, we apply
relative error based entropy to pick up the first sampling point;
then, we recursively compute the mutual information between
candidate data reading and the selected data readings, and

choose the sensing point with the maximum new residual that
removes the redundancy from existing sampling points. This
procedure is stopped until the total sampling rate reaches �.

VI. EXPERIMENTAL EVALUATIONS

This section presents our experimental results of the two-tier
optimal mobile sensing in OptiMoS. We evaluate OptiMos’
different segmentation strategies and various sampling meth-
ods using real-life environmental data from mobile sensors.

A. Experimental Setup

To evaluate and compare the performances of these algo-
rithms, we utilize the real-life mobile sensing data from the
environmental monitoring project OpenSense [2]. OpenSense
investigates informative air quality sensing in terms of de-
ploying sensors on top of several public transport vehicles
such as buses and trams in Switzerland, to achieve a large
coverage of the city area. The longterm objective is to raise
additional community sensing in the environmental sensing
campaign, using enhanced smartphone/pocket sensors [8] and
private vehicles [16].

In OpenSense, public transport vehicles are deployed with
location sensor (GPS) and several environmental measure-
ment sensors including temperature, humidity, CO, CO2,
NO, NO2, fine particles etc. In current deployment, the
measurement frequency of these mobile sensors are fixed at
1
60Hz, i.e., one sensing record Ri per minute. Fig. 4 shows
the distribution of CO2 measurements from several bus lines
in the Lausanne city area during two weeks, where the points
are the mobile sensing locations and the colors indicates the
level of CO2 value. This is our early experimental Web
interface for querying and visualizing such mobile sensing
data from the OpenSense project. This Web implementation
applies OpenStreetMap [3] as the embedded map interface.

Fig. 4: Distribution of CO2 measurements from moving buses

To take a concrete look at various mobile sensor measure-
ments, Fig. 5 plots one day mobile sensing of several sensors
deployed on a bus line in Lausanne; the environmental sensors
include temperature, humidity, CO, NO2, CO2. From Fig.
5, we observe that CO2 has large variance compared to other
environmental sensors readings (i.e., CO and NO2). Due
to its large variance for data prediction, modeling on CO2

could be more interesting and challenging; therefore, in our
experimental study, this paper focuses on investigating the
optimal mobile sensing of the CO2 measurement.

6.6

6.65

6.7

longitude

 a)

46.5

46.6 latitude

 b)

0

20
temperature

 c)

40

60
humidity

 d)

0

2 CO

 e)

0

5
NO2

 f)

00:00 06:00 12:00 18:00 24:00400

450
CO2

One day measurement of a bus line (hour)

 g)

Fig. 5: One day mobile sensing with various measurements

The mobile sensing objective in OpenSense is to find an
optimal sampling strategy to replace current OpenSense’s
uniform sampling. This obviously will reduce sensing cost and
save energy. The longterm goal is designing a global optimal
sensing for multiple bus lines in the city area, as previously
shown in Fig. 1 with five bus lines. In this paper, we target
an optimal sensing solution for each individual bus line.

B. Data Model Implementation

There is no model restriction in our two-tier optimal sensing
framework. As sketched in Fig. 2 and discussed in Section III,
OptiMoS supports all kinds of models such as linear model,
polynomial model, SVM regression, time series ARIMA
model etc. At the moment, our experiments test two types of
models, i.e., the basic linear model and the SVM regression.
Linear model is simple and efficient to compute; whilst SVM
can achieve high accuracy but requires more computing cost.
For SVM implementation, we use the LibSVM package [6],
which is largely applied in the literature because of its high
computing efficiency. All the input data (e.g., CO2 values)
were also linearly scaled to [0, 1] for normalization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.2

0.3

0.4

0.5

0.6

0.7

0.8

One day measurement of a bus line (hour)

No
rm

ali
ze

d C
O2

 V
alu

es

Raw CO2 Readings
Linear Regression
SVM Regression

Fig. 6: Regression for the whole segment

Fig. 6 shows the regression results using the two models
(i.e., Linear Regression and SVM Regression) compared
to the raw complete sensor readings at 1

60Hz; this is a 24-
hour mobile sensing without any segmentation. By visual
comparison in Fig. 6, the approximation by SVM regression is

close to the ground truth values, which is better than the linear
model; more precisely, the total model error RSS(M(R))
using SVM is 0.0802, whilst RSS(M(R)) from the linear
model is 0.1004. As shown in Fig. 6, the approximation is not
very good (particularly at the duration of 0am-10am), and we
will show better approximation results by using segment-based
regression in the next subsection.

C. Segmentation Results
To evaluate various segmentation methods proposed in

Section IV and make comparison, we define a metric for
quantifying the model error reduction by segmentation (from
the initial non-segment sensor readings R to the K segments
Ri), i.e., the ratio of modeling errors called “RSS Ratio”.

RSS Ratio =

PK
i=1(RSS(Ri))

RSS(R)
⇥ 100(%) (11)

Fig. 7 presents the RSS Ratio achieved using SVM regres-
sion on one-day mobile sensing as the training data. The six
segmentation methods (i.e., Binary, Binary+, Heuristic,
Heuristic+, B+H+, Optimal) are experimented with dif-
ferent segment numbers, from 2 to 10. Clearly, with more
segments (i.e., larger K), the error ratio can decrease more.
Initially, such error decrease is significant at small K, but later
it becomes more stable when K becomes larger.

Fig. 7: Training on Day-1 by SVM

For individual segmentation methods on the training
RSS Ratio errors, we observed that the Heuristic+ (or
B+H+) method is better than other segmentation methods.
We additionally compare them with the optimal solution
(Optimal) using dynamic programming when the segment
number is small (i.e., K  5). We omit such optimal solution
for larger K, as the computation time is indeed expensive
for dynamic programming. The RSS Ratio achieved by the
Heuristic+ (or B+H+) method is closer to the optimal
solution compared to other methods. Therefore, error-based
heuristic method is good for model-driven segmentation.

To further evaluate the segmentation results learned from
one day training data, we test them on mobile sensing data
from other days at the same bus line. This test can evaluate
the robustness of our segmentation results. Fig. 8 shows such
testing errors of RSS Ratio. We observe that Heuristic+

is clearly better than other methods, and even better than the

Optimal for most cases (K = 3, 4, 5). This is the over-fitting
problem, i.e., the optimal segmentation for training data is not
necessarily the best for the testing data.

Fig. 8: Testing on Day-2 using SVM-inferred segments

Fig. 7 and Fig. 8 presented the segmentation results using
the SVM regression model. For linear regression, we observe
similar trends amongst different segmentation methods. Addi-
tionally, the optimal segmentation using linear model in the
training data works even worse on the testing data. Linear
model has more prominent over-fitting problems compared to
the SVM modeling. Therefore, in future, we need to further
study more robust optimal segmentation that works not only
for training data but also for the test ones.

In contrast to Fig. 6 about regression without segmenta-
tion, Fig. 9 shows regression with segmentation (learnt by
Heuristic+ when K=5). We observe better regression results
by using segmentation, particularly at the duration of 0am-
10am. In terms of the concrete modeling errors, RSS(M(R))
using SVM regression is 0.070 and RSS(M(R)) by linear
model is 0.081; the two models respectively have model error
decrease 12.7% and 19.3% compared to their modeling errors
without segmentation shown in Fig. 6. Therefore, segmentation
can gain more error reduction for simpler model (e.g., linear)
compared to an advanced one (e.g., SVM).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.2

0.3

0.4

0.5

0.6

0.7

0.8

One day measurement of a bus line (hour)

No
rm

al
iz

ed
 C

O
2

Va
lu

e

Raw CO2 Readings
Linear (5 Segments)
SVM (5 Segments)

Fig. 9: Regression in segments (Heuristic+, K = 5)

D. Sampling Results
To evaluate different sampling methods that we presented

in Section V, we can use the metric of information loss (see
Formula 4). However, for a very long sequence of mobile
sensor readings without segmentation, the information loss can

be negative, as the initial regression on the complete sequence
can be worse than a modeling with a good subsequence of
sampling points. Therefore, we modify the definition of the
exact information loss (L) and apply bL(R,Rsub) (i.e., the
direct RSS ratio) to evaluate different sampling methods (see
the following Formula 12).

bL(R,Rsub) = RSS Ratio =
RSS(M(Rsub ! R))

RSS(M(R))
⇥ 100(%)

=

PN
i=1(Rk �M(Rsub)|Rk)

2

PN
i=1(Rk �M(R)|Rk)

2
(12)

Fig. 10 presents the experimental results of using four
sampling methods, i.e., Uniform, Random, Entropy and
Mutual Information, when using various sampling rates
(i.e., � = 1/2, 1/3, 1/4, 1/5). In the plot, the RSS Ratio
from the Uniform and Random sampling methods are the
average over 10 runs. It is interesting to notice that the uniform
sampling on the average has better performance than the
random sampling. Both Entropy and Mutual Information
sampling methods have quite good results. There is almost no
error increase compared to the original data sequence when
using Entropy and Mutual Information based samplings
at high sampling rate (� � 1/4). Their RSS Ratio are
almost 100%. At sampling rate � = 1/5, we clearly see that
Mutual Information performs better than Entropy.

Fig. 10: RSS Ratio by different sampling methods (SVM)

To further study the performance of Entropy and
Mutual Information methods at smaller sampling rate
(� < 1/5), Fig. 11 shows the results of sampling using linear
model. We observe the similar trend with SVM model in
Fig. 10 at � � 1/5, i.e. Mutual Information is the best
for all cases. It is worth noting that Entropy has better
performance at high sampling rate (� � 1/5), almost the
same as Mutual Information when (� � 1/4), but it goes
to significantly worse when the sampling rate is too small
(� < 1/5). This is because Entropy sampling is always
choosing the top-ranking error points, without consideration of
current selected points. This can work well for large sampling
rate, but for small sampling rate, the data points will be very
bias and have poor performance.

We already see with sampling rate � � 1/4 in Fig. 11 and
Fig. 10, both Entropy and Mutual Information sampling
methods can guarantee almost 100% RSS ratio, i.e., minimal
informational loss using sampling data compared to using
the complete data. To further study how much sampling is

Fig. 11: RSS Ratio by different sampling methods (Linear)

requested for achieving such minimal informational loss, we
study the convergence of RSS Ratio w.r.t. the sampling rate.
Fig. 12 shows the RSS Ratio convergence for sampling
the one-day mobile sensing measurement (totally 1440 points
in 24 hours with one record per minute). We observe that
both linear and SVM regression can achieve almost 100%
RSS ratio from 128 sampling points, i.e., the sampling rate
at � = 128/1440 ' 1/11. In such case, the sampling rate
at 1/11 can guarantee almost zero information loss modeling
(around 110% RSS ratio), which is very effective sampling.

2 4 8 16 32 64 128 256 512

100

1000

the number of sampling points from 1440 points

RS
S

Ra
tio

 (%
)

Linear Regression
SVM Regression

Fig. 12: RSS Ratio convergence using Mutual-Information sampling

E. Near-Optimal Combination

The final experiment is to study the exhaustive strate-
gies of mobile sensing in OptiMoS, i.e., combining different
segmentation and sampling methods. Due to the limitation
of space, we do not show all possible combinations. In
addition, for segmentation, previous experimental results al-
ready showed the good performance of Heuristic+ (B+H+

is not always better than Heuristic+); for sampling, the
performance of Entropy based sampling is as good as
Mutual Information when sampling rate is reasonably
high (� � 1/4). Therefore, Fig. 13 shows the 4⇥3 mobile sens-
ing strategies in OptiMoS, i.e., combining four segmentation
methods (i.e., Binary, Binary+, Heuristic, Heuristic+)
with three sampling methods (Uniform, Random, Entropy)
using SVM regression.

For each combination in Fig. 13, the plot shows the con-
vergence of RSS Ratio w.r.t. the segment number (K) at
different sampling rate (�). All plots present the decrease
trend of RSS Ratio with more segments (from 1 to 10), and
with larger sampling ratio (from 1/4 to 1/1). The Entropy
sampling with heuristic segmentation (both Heuristic and

1 2 3 4 5 6 7 8 9 10

90
100
110

Bi
na

ry
Uniform Sampling

1 2 3 4 5 6 7 8 9 10

90
100
110

Random Sampling

1 2 3 4 5 6 7 8 9 10

90
100
110

Entropy

1 2 3 4 5 6 7 8 9 10

90
100
110

Bi
na

ry+

1 2 3 4 5 6 7 8 9 10

90
100
110

1 2 3 4 5 6 7 8 9 10

90
100
110

1 2 3 4 5 6 7 8 9 10

90
100
110

He
ur

ist
ic

1 2 3 4 5 6 7 8 9 10

90
100
110

1 2 3 4 5 6 7 8 9 10

90
100
110

1 2 3 4 5 6 7 8 9 10

90
100
110

He
ur

ist
ic+

Number of Segments (K)
1 2 3 4 5 6 7 8 9 10

90
100
110

Number of Segments (K)
1 2 3 4 5 6 7 8 9 10

90
100
110

Number of Segments (K)

b=1/1
b=1/2
b=1/3
b=1/4

b=1/1
b=1/2
b=1/3
b=1/4

Fig. 13: RSS Ratio at different combinations of segmentation and sampling (SVM)

Heuristic+) show good convergence when segment number
K  3. The combination of Entropy and Heuristic+ keeps
the best RSS Ratio convergence, even � is small (say 1/4).

VII. CONCLUSION

In this paper, we proposed a novel two-tier framework,
namely OptiMoS, that enables an optimal mobile sensing
strategy. As far as we know, this is the first paper that
studies the problem of optimal sensing for mobile sensors.
We studied both segmentation and sampling of mobile sen-
sor readings, and designed several methods for segmentation
(e.g., Optimal, Binary, Binary+, Heuristic, Heuristic+,
B+H+) and sampling (e.g., Uniform, Random, Entropy,
Mutual Information). We analyzed real-life environmental
monitoring sensors deployed on moving buses, built exhaustive
empirical studies to validate this optimal mobile sensing
strategy, and showed its good performance.

Our future work is to further extend OptiMoS for global
optimal sensing on multiple bus lines in a large city area.
In addition, we will study the co-sensing strategy amongst
various environmental sensors such as CO2, CO and NO.

REFERENCES

[1] Floating Sensor Network. http://lagrange.ce.berkeley.edu/fsn/.
[2] OpenSense. http://opensense.epfl.ch.
[3] OpenStreetMap. http://www.openstreetmap.org/.
[4] R. Bellman. On the Approximation of Curves by Line Segments Using

Dynamic Programming. Communications of the ACM, 4(6):284, 1961.
[5] M. Buchin, A. Driemel, M. J. van Kreveld, and V. Sacristan. Segment-

ing Trajectories: a Framework and Algorithms Using Spatiotemporal
Criteria. J. Spatial Information Science, 3(1):33–63, 2011.

[6] C.-C. Chang and C.-J. Lin. Libsvm: a Library for Support Vector
Machines. ACM TIST, 2(3):27, 2011.

[7] S. Dhillon and K. Chakrabarty. Sensor Placement for Effective Coverage
and Surveillance in Distributed Sensor Networks. In WCNC, pages
1609–1614, 2003.

[8] P. Dutta, P. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and
A. Woodruff. Common Sense: Participatory Urban Sensing Using a
Network of Handheld Air Quality Monitors. In SenSys, pages 349–350,
2009.

[9] M. Faulkner, M. Olson, R. Chandy, J. Krause, K. Chandy, and A. Krause.
The Next Big One: Detecting Earthquakes and Other Rare Events from
Community-Based Sensors. In IPSN, pages 13–24, 2011.

[10] E. Fuchs, T. Gruber, J. Nitschke, and B. Sick. Online Segmentation of
Time Series Based on Polynomial Least-Squares Approximations. IEEE
Trans. Pattern Anal. Mach. Intell., 32(12):2232–2245, 2010.

[11] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki, and H. Toivonen.
Time Series Segmentation for Context Recognition in Mobile Devices.
In ICDM, pages 203–210, 2001.

[12] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange. SensorScope: Application-Specific Sensor Network for
Environmental Monitoring. TOSN, 6(2):17:1–17:32, 2010.

[13] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting Time Series: A
Survey and Novel Approach. In Data mining in Time Series Databases.
Published by World Scientific, pages 1–22, 2004.

[14] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An Online Algorithm
for Segmenting Time Series. In ICDM, pages 289–296, 2001.

[15] A. Krause and C. Guestrin. Optimizing Sensing: From Water to the
Web. IEEE Computer, 42(8):38–45, 2009.

[16] A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward Community
Sensing. In IPSN, pages 481–492, 2008.

[17] A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements
in Gaussian Processes: Theory, Efficient Algorithms and Empirical
Studies. Journal of Machine Learning Research, 9:235–284, 2008.

[18] D. T. Lee and A. K. Lin. Computational Complexity of Art Gallery
Problems. IEEE Trans. on Information Theory, 32(2):276–282, 1986.

[19] D. Lemire. A Better Alternative to Piecewise Linear Time Series
Segmentation. In SDM, pages 545–550, 2007.

[20] F. Lin and P. Chiu. A Near-Optimal Sensor Placement Algorithm to
Achieve Complete Coverage-Discrimination in Sensor Networks. IEEE
Communications Letters, 9(1):43 – 45, 2005.

[21] S. Lin, B. Arai, D. Gunopulos, and G. Das. Region Sampling:
Continuous Adaptive Sampling on Sensor Networks. In ICDE, pages
794–803, 2008.

[22] X. Liu, Z. Lin, and H. Wang. Novel Online Methods for Time Series
Segmentation. IEEE Trans. Knowl. Data Eng., 20(12):1616–1626, 2008.

[23] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and W. Truppel.
Online Amnesic Approximation of Streaming Time Series. In ICDE,
pages 339–349, 2004.

[24] H. Peng, F. Long, and C. Ding. Feature Selection Based on Mutual
Information: Criteria of Max-Dependency, Max-Relevance, and Min-
Redundancy. IEEE PAMI, 27(8):1226 –1238, aug. 2005.

[25] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. Ear-
Phone: an End-To-End Participatory Urban Noise Mapping System. In
IPSN, pages 105–116, 2010.

[26] G. Tolle, J. Polastre, R. Szewczyk, D. E. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
Macroscope in the Redwoods. In SenSys, pages 51–63, 2005.

[27] Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid Model
and Computing Platform for Spatio-semantic Trajectories. In ESWC,
pages 60–75, 2010.

