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Below the Sun above the ground,
inside a cloud that’s where I’m found.
Then thunder rolling, lightning flashes,

breaking free in downward dashes.
Falling quickly to Earth,

flying the way the wind blows.
While off in the distance
arise sparkling rainbows.

Then suddenly stopping with a splashing sound,
softly bathing the Earth and all around.

Rushing together in puddles we lay,
as the children come out to play.

Jumping, splashing, swishing,
making waves and ripples ever so neat.

As we caress and wash over their tiny feet.
Then the Sun begins to heat the day
and our puddles start to fade away.

A vapor, a mist as upward we begin to soar,
gathering together again in the sky as before.

Below the Sun above the ground
inside a cloud once again I’m found.

— Robert Renfro (2010)

To my parents, my friends and the love of my life . . .
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Abstract
Precipitation is an important component of the Earth’s water cycle and needs to be
carefully monitored. Its large variability over a wide range of spatial and temporal
scales must be taken into account. For example, hydrological models require accurate
rainfall estimates at high spatial and temporal resolutions (e.g., 1 km and 5 min or
higher). Obtaining accurate rainfall estimates at these scales is known to be difficult. So
far, the only instruments capable of measuring rainfall over extended domains at such
resolutions are weather radars. Their estimates are, however, affected by large errors
and uncertainties partly due to the spatial and temporal variability of the drop size
distribution (DSD). Major progress in the field is slowed down by the lack of knowledge
about the spatial and temporal variability of DSD at scales that are relevant in remote
sensing. This lack of reference data can be addressed through two different methods : (1)
experimental investigations and (2) stochastic simulation.
In this thesis, a comprehensive framework for the stochastic simulation of DSD fields at
high spatial and temporal resolutions is proposed. The method is based on Geostatistics
and uses variograms to describe the spatial and temporal structures of the DSD. The
simulator’s ability to generate large numbers of DSD fields sharing the same statistical
properties provides a very useful theoretical framework that nicely complements experi-
mental approaches based on large networks of weather sensors. To illustrate its potential,
the simulator is applied to different rain events and validated using data from a network of
disdrometers at EPFL. The results show that the simulator is able to reproduce realistic
spatial and temporal structures that are in adequacy with ground measurements.
The second part of this thesis focuses on the simulation and parametrization of intermit-
tency (i.e., the alternating between dry/rainy periods). Simple scaling functions that can
be used to downscale/upscale intermittency at different spatial and temporal resolutions
are proposed and used to parametrize a new disaggregation method that includes the
DSD as an output. Finally, different methods to identify dry and rainy periods and to
quantify rainfall intermittency using telecommunication microwave links are proposed.
The false dry/wet classification error rates of each method are estimated using data from
a new and innovative experimental set-up located in Dübendorf, Switzerland. The results
show that the dry/wet classification is significantly improved when data from multiple
channels are used.
Keywords : precipitation microphysics, raindrop size distributions, stochastic simulation,
intermittency, telecommunication microwave links.
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Résumé
La pluie est une importante composante du cycle hydrologique sur Terre et doit être
mesurée avec grande précision. Sa grande variabilité à plusieurs échelles spatiales et
temporelles doit être prise en compte. Pour l’instant, seuls les radars météo sont capables
de mesurer la pluie sur de grands domaines à des échelles pertinentes en hydrologie (e.g.,
1 km et 5 min ou davantage). Leurs estimations sont cependant affectées par de grandes
erreurs et incertitudes dues à la variabilité de la microstructure des précipitations (DSD
ci-dessous). L’ordre de grandeur de ces erreurs est difficile à quantifier à cause du manque
d’information sur la variabilité de la DSD à ces échelles. Ce manque d’information peut
être comblé (1) à l’aide d’une approche expérimentale ou (2) à l’aide une approche basée
sur la simulation.
Dans cette thèse, un cadre théorique pour la simulation stochastique de champs de DSD
est proposé. La méthode se base sur des Géostatistiques et utilise des variogrammes
pour décrire la structure spatiale et temporelle de la DSD. La capacité du simulateur de
générer de grandes quantités de champs de DSD avec les mêmes propriétés statistiques
constitue un cadre théorique très utile qui complète des approches plus expérimentales
basées sur de larges réseaux de capteurs météo. Afin d’illustrer le potentiel de l’approche,
le simulateur est appliqué à différents événements pluvieux et évalué à l’aide de données
issues d’un réseau de disdromètres à l’EPFL. Les résultats montrent que le simulateur est
capable de reproduire des structures spatiales et temporelles réalistes qui sont cohérentes
avec des mesures prises au sol.
La seconde partie de cette thèse se concentre sur la simulation et la paramétrisation
de l’intermittence (i.e., l’alternance de périodes sèches/pluvieuses). Des modèles de
changement d’échelle permettant de représenter l’intermittence à différentes échelles
spatiales et temporelles sont proposés et utilisés pour paramétrer une nouvelle méth-
ode de désagrégation qui fournit la DSD en sortie. Finalement, différentes méthodes
permettant d’identifier des périodes sèches/pluvieuses à l’aide de faisceaux hertziens de
télécommunication sont proposées. Les erreurs de classification sont évaluées pour chaque
méthode grâce aux données d’un nouveau dispositif expérimental installé à Dübendorf.
Les résultats montrent que la classification peut être améliorée si les données de plusieurs
canaux sont combinées.
Mots clés : microphysique des précipitations, DSD, simulation stochastique, intermit-
tence, faisceaux hertziens de télécommunication.
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1 Introduction

1.1 Motivation

There is probably nothing better than drinking a cup of hot tea (or coffee if you prefer)
while listening to the sound of the raindrops falling against the window during a rainy
Sunday afternoon. Watching millions of tiny drops, so small they can hardly be seen,
landing onto leaves, splashing on the streets, flowing into rivers and gathering in boundless
seas. Imagining them, rising to the sky only to fall again, continuing their endless journey
on ever changing paths. A journey always beginning, yet without start. A journey
with many ends, yet no real end. The sheer complexity of the hydrological cycle: a
never ending movement of water on, above and below the surface of the earth. And
precipitation is a key component of it.

From the scientific point of view, precipitation is a very difficult process to model
and predict. It results from a combination of many different physical mechanisms
(e.g., nucleation, diffusional growth, collisional growth, evaporation and breakup) that
are all fairly well understood on their own (Pruppacher and Klett, 1997), but remain
poorly documented as a whole, dynamical interacting system (Khain et al., 2000).
It is a fundamentally discrete process, consisting of a (very) large number of falling
hydrometeors (e.g., raindrops, snow flakes or ice crystals) with different positions, sizes,
shapes and fall speeds. Unfortunately, modeling and simulating such an interacting
particle system at its highest level of detail remains largely infeasible, even for the fastest
state-of-the-art supercomputers. In fact, the only reasonable approach for efficiently
describing precipitation at larger scales is by considering statistics and average properties
over sufficiently large volumes and time intervals. Knowledge of the exact positions,
sizes and fall speeds of the individual hydrometeors is then no longer necessary. Small
scale characteristics and variabilities are summarized and represented by means of
probability distributions and stochastic processes in space and time. This process is
called parameterization.
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Chapter 1. Introduction

For hydrologists, the major parameter of interest is the rain rate R , i.e., the average mass
flux density of water (expressed in mmh−1) falling over a certain area. The total rain
amount (expressed in mm) is then obtained by integrating the rain rate in time. Although
it is very important in many applications, the rain rate is not the only and not necessarily
the most suitable quantity to represent rainfall at the macroscopic level. In soil erosion
problems for example, the average kinetic energy of rainfall (Rosewell, 1986), a quantity
closely related to the size and speed of the raindrops impacting the soil, can be more
important than the rain rate. In remote sensing of precipitation, precise knowledge of the
number, shape and size distributions of the raindrops (which determine the interactions
between rainfall and electromagnetic waves) is also more important than the the rain rate.
Because of this wide range of applications and interests, it can sometimes be preferable
to work with alternative, more general and more detailed descriptions of rainfall, such as
the (rain)drop size distribution (DSD hereinafter).

The DSD is a statistical description of the microstructure of rainfall. It describes the
expected number of drops with equivolume spherical diameters between D and D + dD

per unit volume (m3) of air, independently of the positions, shapes and fall speeds
of the considered drops. More specifically, it involves a combination of two different
quantities: (1) the spatial concentration of the raindrops in the sampling volume and (2)
the probability distribution of the raindrop sizes. The spatial concentration of raindrops is
very variable and covers several orders of magnitude, from 0 (no rainfall) to more than 104

per m3. Similarly to the drop concentration, drop sizes also exhibit significant variability
in space and time. Their size distribution depends both on the local climatology and the
type of precipitation. Most of the drops observed in temperate regions have diameters
between 0.1 and 3 mm. Larger drops are possible (up to 6 or 7 mm in diameters) but
very rare and usually associated to strong convective rainfall events. It is also important
to mention that because of the physical mechanisms responsible for drop formation, there
are always significantly more small drops than large ones (Marshall and Palmer, 1948).

Because it reflects the fundamental microphysical processes involved in the formation
of rain, knowledge of the drop size distribution is essential in many hydrological and
meteorological applications. It is, for example, intensively used in remote sensing of
precipitation using ground based weather radars (e.g., Battan, 1973; Wilson and Brandes,
1979; Jameson, 1989; Bringi et al., 1990; Ulbrich and Atlas, 1998; Krajewski and Smith,
2002) and spaceborne weather satellites like TRMM (Simpson et al., 1988; Iguchi et al.,
2000; Robertson et al., 2003) and the upcoming global precipitation measurement mission
GPM (http://gpm.nasa.gov). Its importance has also been acknowledged in other research
areas like cloud and precipitation microphysics (Srivastava, 1971; Sauvageot and Lacaux,
1995; Testud et al., 2001), soil detachment, landslides and erosion problems (Rosewell,
1986; Finlay et al., 1997; Van Dijk et al., 2002; Kinnell, 2005), aerosol scavenging and
atmospheric deposition processes (Radke et al., 1980; Beier and Hansen, 1993; Chate
et al., 2003), and rainfall estimation using microwave links (Rincon and Lang, 2002;
Rahimi et al., 2003; Krämer et al., 2005; Messer et al., 2006; Leijnse et al., 2007b).
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1.1. Motivation

The fundamental problem with rainfall (and with DSD) is its large variability across
a wide range of different spatial and temporal scales (Koster and Suarez, 1995; Roe,
2005). This variability is a significant source of uncertainty in hydrological and remote
sensing applications and needs to be carefully investigated. At the synoptic scale (several
hundreds of kilometers), the variability of precipitation is relatively low. At this scale, the
rainfall process mostly depends on large storm systems and weather fronts determined
by well-known global circulation patterns. Rainfall that is observed at the meso-scale
(5-50 km) exhibits much higher variability and spatial heterogeneity. At this scale, the
rainfall process is mostly characterized by the birth, growth and decay of individual rain
cells and rain bands with different lifetimes, possibly enhanced by orographic effects.
The largest variabilities, however, are at the microscale. At this scale, rainfall is “patchy”
and chaotic and mostly controlled by turbulence and complex microphysical processes
(Jameson and Kostinski, 2001; Lovejoy and Schertzer, 2008). At very small scales (in the
order of a few m3 and a few seconds), the large sampling uncertainties (due to the discrete
nature of rainfall) further enhance this variability and make it particularly difficult to
obtain reliable rainfall estimates.

Unfortunately, there is currently no perfect method for accurately measuring rainfall
at scales that are relevant for most hydrological and meteorological applications (e.g.,
between the microscale and the meso-scale). Rain gauges and disdrometers provide good
point estimates but are not representative over larger domains. High density rain gauge
networks provide good spatial estimates but they are relatively expensive and difficult
to set up in highly populated areas or complex terrain. Microwave radiometers and
microwave links provide interesting measurements at the path scale, but their estimates
are affected by large uncertainties and do not capture the full spatial variability either.
So far, only weather radars are capable of providing rainfall estimates over large domains
at (relatively) high spatial and temporal resolutions. Quantitative estimation of rainfall
from radar observations is, however, a very difficult process that involves a large number
of issues (Krajewski and Smith, 2002). For hydrological and meteorological applications
based on weather radar, it is essential to characterize these different sources of uncertainty
and to quantify their impact on the quality (i.e., bias and random errors) of the final
rainfall products.

One way to assess the uncertainties associated to radar rainfall estimation is by comparing
radar rain-rate estimates to surface data collected using nearby rain gauges (Collier,
1986). Such comparisons are interesting but suffer from several fundamental limitations
(e.g., scale incompatibility and vertical variability) discussed in detail in Zawadzki (1975).
Another, more theoretical way to study the error structure and contributions related
to radar rainfall estimation is to use simulation. The motivation behind the simulation
approach is that most of the progress in hydrological modeling and radar remote sensing
of precipitation is slowed down by the lack of accurate reference data at relevant scales.
Simulation is capable of addressing this problem by providing large amounts of known
reference data at high spatial and temporal resolutions. It also offers the advantage of
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reproducibility, i.e., the fact that alternative realizations and rain events with similar
statistical properties can be generated. This is a clear advantage over direct observations
for which only a single realization is usually available. In particular, reproducibility allows
to investigate important issues related to rainfall scaling and nonlinear error propagations
in hydrological and climatic models.

Many different models and techniques for the simulation of synthetic rainfall with given
statistical and physical properties are reported in the literature (see Section 1.4.2 for a
brief review). Most of them focus on the simulation of rain rate values. Recently, there
has been an increased interest in a new class of stochastic rainfall simulators that are
capable of generating rainfall fields with a higher level of detail, for example by including
the drop size distribution. Such DSD simulators are more difficult to implement but offer
unprecedented advantages over traditional rainfall simulators, especially for applications
involving polarimetric weather radars for which most quantities of interest (e.g., the
radar reflectivity, the path-integrated attenuation and the phase shift) explicitly depend
on the DSD or its weighted moments. So far, however, only a few, very simple DSD
simulators are available. Most of them are limited to spatial or temporal range profiles
and do not include rainfall intermittency. Their utility in remote sensing applications is
therefore very limited and a lot of improvements can be expected if more realistic DSD
fields can be generated.

In the remaining of this chapter, a more detailed description of the most important
concepts and topics that are needed to understand this thesis are provided. Section 1.2
provides more details about the microstructure of rainfall and its importance in remote
sensing applications. More information about remote sensing instruments like weather
radars and microwave links are provided in Section 1.3. For a brief overview of stochastic
rainfall simulation techniques, see Section 1.4. Finally, the outline of the thesis is given
in Section 1.5.

1.2 The microstructure of rainfall

1.2.1 The drop size distribution (DSD)

The drop size distribution is a very general and detailed statistical description of the
microstructure of rainfall. Its purpose is to efficiently summarize (using probability
theory and statistics) the huge amount of information about the drops contained in a
given volume of air (typically, 1 m3). A schematic illustration of this very important
concept is showed in Figure 1.1. In its traditional definition, the DSD is used to describe
the expected number of drops with equivolume spherical drop diameters between D and
D + dD per unit volume (m3) of air. Note that because raindrops can have different
shapes depending on their sizes, the raindrop diameter D is always described by the
equivolume spherical diameter, i.e., the diameter of a sphere with equal volume.
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Figure 1.1: Visual illustration of the concept of drop size distribution (DSD)

On average, 1 m3 of air usually contains 102-103 raindrops with various diameters between
0.1 and 6 mm. The average distance between two raindrops is in the order of 10 cm.
Although this is rather large compared to the average drop size, it is not sufficient to
prevent the raindrops from occasionally colliding with each other. When this happens,
the two raindrops can either coalesce and form a new and bigger drop (collisional growth),
bounce off and continue their way separately or break up into many different and smaller
drops (collisional breakup). If for any reason (e.g., diffusional or collisional growth) a
drop becomes too big, it gets unstable and rapidly breaks up into smaller and more
stable droplets. Very small drops on the other hand can evaporate or can be caught by
small updrafts or turbulences. The raindrop size distribution is a very valuable piece of
information because it contains the signature of the major microphysical processes (e.g.,
nucleation, diffusional growth, collisional growth, evaporation and breakup) at work in
the formation and evolution of rain in the atmosphere. Its properties and dynamics must
therefore be studied carefully.

Since the early work by Marshall and Palmer in 1948, many efforts have been devoted
to improving our understanding of the physical and mathematical properties of DSD’s.
Because of instrumental limitations, DSD was originally modeled using an exponential
size distribution (Marshall and Palmer, 1948):

N(D) = N0 exp(−ΛD) (1.1)

where N0 [mm−1 m−3] is a drop concentration parameter and Λ [mm−1] a scale parameter.
Applications of this model can be found (among many others) in Sekhon and Srivastava
(1971); Waldvogel (1974); Austin (1987) and Uijlenhoet et al. (1999a). The values of
concentration N0 and scale Λ characterizing the raindrop size distribution have been
shown to fluctuate in space and time depending on the rain rate R and the type of
rainfall (stratiform vs convective). Because of this natural variability, it is common to
consider N0 and Λ as two (correlated) stochastic processes in space and time. Of course,
other models and parameterizations of the DSD have been proposed in the literature.
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Popular alternative DSD models are given by the log-normal distribution (Bradley and
Stow, 1974), the Weibull distribution (Assouline and Mualem, 1989) and the Gamma
distribution (Ulbrich, 1983; Willis, 1984).

Nowadays, the most common representation of the DSD in the literature is the Gamma
model, possibly normalized or transformed in order to minimize the scale-dependency
of the parameters (Sempere-Torres et al., 1994; Testud et al., 2001; Lee et al., 2004).
This choice is supported by a large amount of theoretical and experimental results for
different climatological regimes, types of rainfall, instruments and space-time resolutions.
In its simplest formulation, the Gamma DSD model is given by:

N(D) = αNtD
µ exp(−ΛD) (1.2)

where N(D)dD [m−3] denotes the number of drops per unit volume with diameters
between D [mm] and D + dD, µ > −1 [-] is a shape parameter, Λ > 0 [mm−1] a rate
parameter, Nt > 0 [m−3] a concentration parameter and α = (

∫Dmax
Dmin

Dµe−ΛD dD)−1 [-]
a normalization factor taking into account the finite range of possible drop sizes between
Dmin and Dmax . Note that the Exponential DSD model given in Equation (1.1) is a
particular case of the more general Gamma model with shape parameter µ = 0.

Similarly to the parameters of the Exponential model, µ, Λ and Nt also fluctuate in space
and time and can therefore be interpreted as (correlated) stochastic processes describing
the natural variability of the DSD.

1.2.2 Important quantities related to the DSD

Knowledge of the DSD in a given volume of air is very useful. It allows to derive
characteristic drop sizes like the mean and median drop diameter (which are related to
the type of precipitation) and many other important physical quantities like the average
drop speed, the average kinetic energy and the rain rate. Most importantly, the DSD
can also be used to derive most of the quantities related to remote sensing of rainfall
(e.g., reflectivity, attenuation and phase shift).

The average drop diameter Dm [mm] is given by:

Dm =
∫Dmax
Dmin

DN(D)dD∫Dmax
Dmin

N(D)dD
(1.3)

Note that because DSDs are skewed distributions, Dm is often slightly larger than the
mode of the size distribution (i.e., the diameter with the highest density). Also, for
remote sensing applications, other quantities like the median volume diameter D0 that
are more representative of higher order moments are usually preferred. The median
volume diameter, i.e., the diameter D0 [mm] which divides the distribution of the rain
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volume over all raindrop sizes in two equal parts is given by:∫ D0

Dmin

D3N(D)dD =
∫ Dmax

D0
D3N(D)dD = 1

2

∫ Dmax

Dmin

D3N(D)dD. (1.4)

For applications related to soil erosion, the average kinetic energy rate E [Jm−2 h−1] on
the ground is given by:

E = 3π
107 ρw

∫ Dmax

Dmin

D3v(D)3N(D)dD (1.5)

where v(D) represents the average terminal fall speed (in still air) of a drop with
equivolume spherical diameter D [mm] and ρw [kgm−3] is the density of liquid water.
In general, v(D) is not known, but a very large number of experimental and theoretical
investigations using wind tunnels, falling towers and high-speed cameras showed that it
can be approximated using a power law of the drop diameter (e.g., Sekhon and Srivastava,
1971; Beard, 1976; Atlas and Ulbrich, 1977). Typical raindrop velocities are between
1 ms−1 for D ∼ 0.25 mm and 8 ms−1 for D ∼ 3 mm. The density of liquid water ρw
slightly depends on the temperature and is approximatively 103 kg per m3 (Kell, 1975).

Similarly to the kinetic energy, the rain rate R [mmh−1] also depends on the average
terminal fall speed of the individual drops:

R = 6π
104

∫
D
D3v(D)N(D)dD (1.6)

For applications involving weather radars, the radar reflectivity Zh|v [mm6 m−3] at
horizontal and vertical polarization is given by:

Zh|v = 106w4

π5|m2−1
m2+2 |

∫
D
σBh|v (D)N(D)dD (1.7)

where w [cm] represents the radar wavelength, m [-] the complex refractive index of
water (at a given temperature) and σBh|v (D) [cm2] the backscattering cross section (e.g.,
the area which, when multiplied by the incident intensity gives the total backscattered
power) of a drop of diameter D at horizontal and vertical polarization. Note that because
raindrops are not spherical, σBh

(D) and σBv (D) are different in general. Small raindrops
(D < 1 mm) falling at their terminal velocities have nearly spherical shape (Pruppacher
and Pitter, 1971; Beard and Chuang, 1987). Larger drops, however, are increasingly
flattened at their base and can be approximated by oblate spheroids (Andsager et al., 1999;
Beard et al., 2010). It is therefore common to model raindrops by oblate spheroids with
an equivolume drop diameter D and an average axis ratio rab (e.g., the ratio between the
vertical and the horizontal dimension of the drop). The T-matrix method by Mishchenko
et al. (2002) can then be used to compute the backscattering cross sections σBh|v (D)
based on this drop shape model. Note that once Zh and Zv have been computed, it is
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also possible to derive the differential reflectivity Zdr [dB]:

Zdr = 10 log10

(
Zh
Zv

)
(1.8)

Another, very important quantity, especially for X-band radars and microwave links is
the specific attenuation on propagation Ah|v [dB km−1] :

Ah|v = 1
ln(10)

∫
D
σEh|v (D)N(D)dD (1.9)

where σEh|v (D) [cm2] denotes the extinction cross section (e.g., the area which, when
multiplied by the incident intensity gives the total absorbed or scattered power) of a drop
of diameter D. Note that both σEh

(D) and σEv (D) can be computed (similarly to the
backscattering cross sections) using the T-matrix method for a given drop shape model.

The specific differential phase shift on propagation Kdp [◦ km−1] , a very important
quantity for rain rate estimation and attenuation correction algorithms is given by:

Kdp = 1800w
π

∫
D
Re [Shh(D)− Svv(D)]N(D)dD (1.10)

where Re(Shh|vv) [m] denote the real part of the forward scattering amplitudes at
horizontal and vertical polarizations (also computed using the T-matrix code).

1.2.3 Intermittency

A major problem in the mathematical description of precipitation is spatial and temporal
intermittency, i.e., the constant alternating between dry and rainy periods. Like the DSD,
intermittency is also highly variable in space and time. This variability has important
consequences that must be taken into account. For example, rainfall intermittency and
inhomogeneous water availability significantly influences vegetation cover (Baudena et al.,
2007; Kletter et al., 2009) and controls important natural processes like stream flow,
runoff, soil moisture and soil erosion (Pitman et al., 1990).

The major difficulty with rainfall intermittency is the fact that it significantly varies with
respect to the spatial and temporal scales at which it is observed (Kundu and Siddani,
2011). Typically, it is higher at finer scales and lower at coarser scales. This scale
dependency has important consequences in many practical applications in hydrology,
meteorology and remote sensing of precipitation. It is, for example, crucial in rainfall
interpolation and disaggregation techniques and must be taken into account when
upscaling/downscaling the outputs of numerical weather models or weather radar data
(Seo, 1998; Lanza et al., 2001). Other examples can be found in the field of stochastic
rainfall simulation (Bárdossy and Plate, 1992; Kang and Ramirez, 2010), partial beam
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1.2. The microstructure of rainfall

Figure 1.2: Visual illustration of rainfall intermittency.

filling problems (e.g., Durden et al., 1998; Gosset and Zawadzki, 2001) and attenuation
correction for weather radars (Bringi et al., 2001; Matrosov et al., 2002; Gorgucci and
Chandrasekar, 2005).

So far, several studies have investigated rainfall intermittency at different spatial and
temporal scales. Among the studies focusing more on spatial intermittency, Braud et al.
(1993) and Jeannin et al. (2008) analyzed the relations that exist between the mean
areal rain-rate and the fractional area where it rains above a fixed threshold. Using
mathematical morphology, Kumar and Foufoula-Georgiou (1994) proposed different
algorithms for downscaling/upscaling intermittent rainfall fields. Using disdrometer
measurements and high temporal resolutions, Lavergnat and Golé (1998) analyzed
the inter-arrival times of raindrops and proposed to model the time intervals between
raindrops using a Bi-Pareto law. Using radar data, Pavlopoulos and Gritsis (1999)
and Pavlopoulos and Gupta (2003) analyzed the durations and scaling of wet and dry
periods. Among the studies focusing more on the stochastic simulation of intermittent
rainfall fields, one can mention the work of Lanza (2001) who proposed a space-time
stochastic rainfall simulation method to generate intermittent rainfall fields conditional
on rain gauge observations. Based on radar data, Wojcik et al. (2009) proposed a
combination between Geostatistical methods for the simulation of intermittency and
truncated multiplicative random cascade for the rain rate. More recently, Kleiber et al.
(2012) proposed a simulation method for weather generators that relies on latent Gaussian
processes for intermittency and transformed Gaussian processes for the rain intensity.
Starting from tipping bucket rain gauges, Molini et al. (2009) and Rigby and Porporato
(2010) investigated different relations that exist between rainfall intermittency and
turbulence across a large range of time scales and climatic regimes. Using a different
approach based on the maximum entropy principle, Koutsoyiannis (2006) noted that,
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under some circumstances, the probability that a time interval is dry, follows a scaled
exponential function of timescale. This is consistent with the results obtained by Kundu
and Siddani (2011) who showed that dry probabilities (both spatial and temporal) can
be modeled using simple scaled exponential functions. Their study, however, did not
investigate the spatial and temporal autocorrelation of intermittency.

1.3 Remote sensing of precipitation

1.3.1 A brief introduction to weather radars

For over 50 years now, weather radars have been the unchallenged tools to accurately
measure precipitation at high spatial and temporal resolutions over large domains. The
term “radar” stands for “RAdio Detecting And Ranging” and was first introduced by S.
Taylor and F. Furth of the U.S. Navy in 1940. At this early stage, radars were mostly
used for military purposes, to detect aircrafts and ships during World War II. The very
origin and first use of radar as a new tool to detect clouds and precipitation is difficult
to trace back because of wartime secrecy but a significant amount of information can
be found in Atlas and Ulbrich (1990). As this thesis is not about weather radars, only
the most important notions will be mentioned here. For a more detailed and technical
description of weather radars and their applications in hydrology and meteorology, the
reader is referred to Bringi and Chandrasekar (2001).

A weather radar is an instrument used to locate precipitation, estimate its type (e.g.,
rain, snow, hail), calculate its motion and forecast its future position and intensity. Its
basic principle is rather simple: an electromagnetic wave is transmitted in the direction
of a meteorological target and the backscattered signal from the volume of interest is
recorded. Most of the time, the targets are raindrops but the same technique can be used
for other hydrometeors (e.g., snow flakes, hail stones or ice crystals) or non-meteorological
targets (e.g., insects, birds and planes). The relationship between the transmitted and the
received signals is described by the weather radar equation for a volume target (Battan,
1973):

P̄r = C
|K|2

r2 Z, (1.11)

where P̄r [W] denotes the average power received from the target at range r [km], |K|2

[-] is a coefficient related to the dielectric constant of water (about 0.93), C is called the
radar constant and Z denotes the radar reflectivity factor [mm6 m−3]. Note that while
the radar constant depends on the radar properties, the radar reflectivity is a purely
meteorological quantity that is independent of the radar properties and only depends on
the characteristics and properties of the targets. In case of liquid precipitation, it can be
expressed as a function of the raindrop size distribution according to Equation 1.7.
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1.3. Remote sensing of precipitation

Unfortunately, weather radars do not measure directly the rain rate R (which is the
quantity of interest in most applications) but only the reflectivity Z. Methods that
allow to estimate R given Z are called Z −R relationships. The most common Z −R
relationship is a simple power law (Marshall et al., 1955):

Z = αRβ (1.12)

where α and β are two parameters that depend on the time, the location and the type
of rainfall. In fact, the optimal values of α and β strongly depend on the drop size
distribution (which is usually unknown in practical applications). A common solution
to this problem is to rely on climatological relationships and to estimate α and β using
large data sets of different rain events that are supposed to be representative of the local
climatology. For example, Marshall et al. (1955) suggested

Z = 200R1.6 (1.13)

The problem with climatological Z − R relationships is that they only represent the
average relationship between Z and R. As a result, rain rates derived from radar
measurements are always affected by large uncertainties and can be strongly biased due
to the non-linearity of Equation 1.12. Moreover, traditional radar rain-rate estimation
techniques always rely on the assumption that the radar sampling volume (which can
be larger than 1 km3) is uniformly filled with rainfall. In case of strong intermittency
however, this assumption of uniform beam-filling is often violated and results in additional
errors in the rain rate estimation.

Nowadays, weather radars are increasingly polarimetric, i.e., they transmit two different
signals: one at horizontal and one at vertical polarization. The information contained in
the amplitude, phase and polarization states of the scattered electromagnetic waves can
then be used to improve the rain rate and snowfall estimates (Bringi and Chandrasekar,
2001). After more than 30 years of successful research and development, basic and applied
research in polarimetric radar meteorology continues to be strong world-wide but suffers
from the lack of knowledge about the raindrop size distribution and its variability at
small spatial and temporal scales. A stochastic simulator capable of generating synthetic
DSD fields (like the one presented in this thesis) is therefore a very valuable tool because
it allows to investigate and quantify the errors and uncertainties associated to rain rate
estimation using polarimetric weather radars.

1.3.2 Microwave links (MWL)

Microwave links (MWL hereinafter) are widely used for wireless data exchange between
base stations of mobile phone networks. Because of the high frequencies used for data
transmission, the link signal can be significantly attenuated when rainfall occurs along the
path of the link (see Figure 1.3). This attenuation can be related to the path-integrated

11



Chapter 1. Introduction

rain rate and used to provide valuable information at an intermediate scale between
measurements from rain gauges and radar measurements (Rahimi et al., 2004; Grum
et al., 2005; Upton et al., 2005).

Figure 1.3: Visual illustration of a terrestrial microwave link.

Recently, Messer et al. (2006) and Leijnse et al. (2007c) proposed to use operational
microwave links employed in telecommunication networks for quantitative rainfall es-
timation. They showed that the potential applications of MWLs in hydrology and
meteorology are considerable and will benefit from the rapid growth of cellular commu-
nication in the years ahead. Some new studies have already investigated the potential
of such highly dense networks for spatial rainfall reconstruction techniques (Zinevich
et al., 2008), stochastic interpolation of rain rate estimates (Goldshtein et al., 2009) and
state-space modeling (Zinevich et al., 2009). However, the ability to obtain accurate and
reliable precipitation estimates using MWL strongly depends on the spatial variability of
rainfall (Berne and Uijlenhoet, 2007; Leijnse et al., 2010) and the uncertainties affecting
the link measurements (Zinevich et al., 2010). A particularly critical issue concerns
the ability to distinguish between the rain-induced attenuation and other sources of
attenuation like water vapor, wind effects on the antennas, interferences and wet-antenna
(see Chapters 6-7).

In the last decade, significant efforts have been devoted to exploiting the full potential of
microwave links for rainfall estimation. Important progresses can still be expected for
applications including dual-polarization or dual-frequency microwave links. Indeed, by ex-
ploiting the fact that large raindrops are not spherical and by comparing the attenuations
at different polarizations or frequencies, one is able to provide more information about
the underlying microstructure of rainfall. For example, Rincon and Lang (2002) was able
to show that it is possible to retrieve the path-integrated drop size distribution from the
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measurements of a dedicated dual-frequency link. In 2009, (Berne and Schleiss, 2009)
proposed a similar approach for commercial dual-polarization links but their technique
must still be validated using ground data.

1.4 Stochastic simulation of rainfall

1.4.1 The rainfall measurement problem

Modern hydrological models often rely on accurate rainfall estimates at high spatial and
temporal resolutions (in the order of 1 km and 5 min or higher). Measuring rainfall
at these scales is known to be very difficult. Rain gauges and disdrometers provide
good point estimates at high temporal resolutions but their measurements are not very
representative at larger scales because of the large spatial variability of rainfall and
DSD (Ciach and Krajewski, 2006). High density rain gauge and disdrometer networks
partially overcome this problem but cannot be set up over large domains at reasonable
costs. Moreover, such networks cannot capture the vertical variability of rainfall, which
is very important in meteorological models and satellite applications. Telecommunication
microwave links constitute an interesting alternative to traditional rain gauge networks
by providing path-integrated rainfall measurements at high temporal resolutions (a few
meters above the ground). However, because these networks were not specifically built
for rainfall estimation, the estimated rain rates are usually affected by large errors and
uncertainties. Furthermore, their spatial resolution and representativity are limited by
the length of the links and density of the network.

So far, only weather radars are capable of providing quantitative rainfall estimates that
meet all the requirements of hydrological and meteorological models: extended coverage
with a single instrument (including the vertical dimension), rapid access to data for
real-time applications and relatively high spatial and temporal resolutions (e.g., sampling
volume of about 1 km3). Quantitative estimation of rainfall from radar observations
is, however, a very difficult problem (Krajewski and Smith, 2002). As a result, radar
rain-rate estimates can be affected by significant errors and uncertainties. These errors
and sources of uncertainties must be carefully quantified and taken into account in the
models. For example, 100 mm of rain falling on 10 % of a model grid square will produce
a very different hydrological response from 10 mm uniformly distributed over the entire
square. Such issues of scaling and non-linear error propagation are often encountered in
hydrology and meteorology and must be taken into account when working with radar
rainfall estimates.

One way to assess the uncertainties associated to radar rainfall estimation is by com-
paring radar rain-rate estimates to surface data collected using nearby rain gauges or
disdrometers (Collier, 1986). Such comparisons are interesting but suffer from several
fundamental limitations like scale incompatibility and vertical variability (e.g., Zawadzki,
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1975; Krajewski, 1987; Creutin et al., 1988). Another interesting way to study the error
structure and contributions related to radar rainfall estimation is to use stochastic rainfall
simulators. These simulators are not predictive tools like those used in weather forecast-
ing, but are designed to generate a large number of synthetic rain events that share the
same statistical properties (e.g., rain rate distributions, spatial and temporal structures,
intermittency). These generated fields can then be used to investigate important issues
related to input uncertainties and biases in rainfall estimation in hydrological models,
an approach known in the satellite community as an Observing System Simulation
Experiment (OSSE) (Arnold and Dey, 1986).

1.4.2 A brief overview of rainfall simulators

Models and techniques for the simulation of synthetic rainfall events with certain statistical
and physical properties have a long history. Initially, rainfall simulators were mostly
developed with the objective of simulating single variables, most often daily rain amounts
at a given location (e.g., Gabriel and Neumann, 1962). Soon, a new family of models
that included more climatic variables (e.g., temperature and humidity) emerged and
became known as weather generators. Most of the first weather generators were based on
chain-dependent processes (Katz, 1977; Richardson, 1981) that reproduced the statistical
properties of observed weather time series. The main reasons behind the development of
these generators were that observed time series of meteorological parameters were often
not long enough to accurately evaluate the long-term effects of proposed, man-made
hydrological changes. Moreover, the use of observed data only provided estimates for
one single realization of the weather process and could not be used to evaluate the result
for different inputs and scenarios. The second purpose of weather generators was to
provide a powerful tool to extend observed weather time series to unobserved locations.
Typically, in order to generate precipitation data at unobserved locations, the statistical
parameters of a weather generator would first be calibrated using the data from the
nearest meteorological stations and subsequently interpolated to the unobserved locations
(Hutchinson, 1995). For more details about the development of such statistical weather
models for single and multi-site rainfall simulation and their use in water engineering
design, agricultural, ecosystem and hydrological impact studies, the reader is referred to
Wilks and Wilby (1999).

Weather generators are undoubtedly a powerful tool to generate precipitation data at
single locations at the daily or hourly scale. Recent interest in the field of stochastic
simulation has, however, moved away from individual locations to more complicated,
space-time models of rainfall at higher spatial and temporal resolutions. Clearly, this
requires to make certain assumptions regarding the physical and statistical properties
of rain events. For example, Bras and Rodríguez-Iturbe (1976) emphasized that the
spatial variations should be linked to the temporal variations in the direction of the
storm movement according to Taylor’s hypothesis of frozen turbulence. Moreover, the
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event should be given a non-stationary temporal structure by allowing the values of the
model parameters to vary with time. This necessity for physically realistic simulation
frameworks is also pointed out by Waymire et al. (1984) who proposed a conceptual
rainfall simulation model based on point processes with many physical features that can
be observed in extratropical cyclonic storms (e.g., clustering of the rain cells, cell birth,
cell decay and cell motion relative to the ground). These ideas where further developed
by Rodríguez-Iturbe and Eagleson (1987) and Sivapalan and Wood (1987). Using a
transformed AR(1) process whose parameters are linked to atmospheric circulation
patterns, Bárdossy and Plate (1992) proposed a space-time stochastic simulation model
for daily precipitation that explicitly acknowledges the importance of intermittency
and non-stationarity of the rainfall process. However, as pointed out by Sivapalan
and Wood (1987), parameter estimation constitutes the largest problems in all these
simulation models. In their opinion, good rainfall simulators should be as simple as
possible and facilitate parameter estimation using minimal data such as observations from
rain gauge networks, disdrometers or weather radars. In order to retain their validity in
different conditions, the simulators should also incorporate, whenever possible, simple
physically-based structures and principles.

As a matter of fact, many different stochastic rainfall simulators have been proposed
during the last 20-30 years. The objective of this section is not to dress a list of all the
proposed techniques. Instead, a summary and overview of the major ideas and statistical
techniques behind these simulators are provided. Each technique is then illustrated
through one or two chosen references to the literature.

Since Lovejoy and Mandelbrot (1985) established the applicability of fractals in me-
teorology and their capability to generate complex structures like “bands”, “fronts”
and “clusters”, a large body of literature on rainfall simulation algorithms based on
(multi)fractals and self-similarity concepts has emerged (e.g., Gupta and Waymire, 1993;
Menabde et al., 1997). In order to study sahelian storms, Guillot (1999) proposed to
represent the spatial structure of the rainfall field using Geostatistics. Based on parame-
terizations from rain gauges, Shah et al. (1996) showed that it is possible to generate
synthetic precipitation fields with realistic spatial structure using the turning bands
method. Later, a new procedure for conditioning the simulated fields with rain gauge
observations while preserving the intermittency was proposed by Lanza (2001). Using
principal component decomposition based on rain gauge observations, Bouvier et al.
(2003) proposed a method to simulate daily rainfall fields by separating the temporal
distributions and the spatial correlations. More recently, (Wojcik et al., 2009) proposed a
combination of Geostatistical methods for the simulation of intermittency and a truncated
multiplicative random cascade model to simulate rain rates in each cluster.

A common characteristic of all the simulation methods mentioned above is that they all
focus on the simulation of rain rate values. Only a few studies have investigated the
possibility to simulate rainfall fields with higher level of detail, for example by including
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the drop size distribution. Such DSD simulators offer unprecedented advantages over
traditional rainfall simulators and can be used to investigate various issues related to
polarimetric weather radars (Krajewski et al., 1993; Anagnostou and Krajewski, 1997). So
far, however, only a few, very simple DSD simulators are available. Using simulated range
profiles of DSDs, Berne and Uijlenhoet (2005), Uijlenhoet and Berne (2008) and Montopoli
et al. (2008) investigated different uncertainties associated with rainfall estimation using
weather radars. Using point processes, Lavergnat and Golé (2006) proposed a rainfall
simulator based on a drop release mechanism for series of drop diameters and arrival
times. Following a different approach, Lee et al. (2007) proposed to use measured radar
reflectivity fields in combination with ground-based DSD measurements to generate
synthetic DSD fields. In this case, however, the highest spatial resolution is imposed by
the resolution of the radar, which is usually of the order of 1 km2. Hence this approach
does not allow to investigate the radar subgrid variability of the DSD.

1.5 Thesis outline

The main objective of this thesis is to develop a stochastic simulator capable of generating
realistic fields of raindrop size distributions in space and time. Special emphasis is put
on the reproduction of the spatial and temporal structures as well as the intermittency
of observed DSD fields. An experimental approach based on a network of 16 optical
disdrometers covering an area of about 1 km2 in the vicinity of Lausanne, Switzerland
(Jaffrain et al., 2011; Jaffrain and Berne, 2012) is used to derive meaningful parameteriza-
tions of the simulator that are representative of the local climatology. The proposed DSD
simulator is then used to develop a new and innovative disaggregation method of rainfall
fields that includes the drop size distribution as an output. The final part of the thesis
is devoted to the study of rainfall intermittency at small spatial and temporal scales.
It presents new results about the downscaling and upscaling of rainfall intermittency
that are necessary to parameterize the DSD simulator and investigates the possibility to
identify dry and rainy periods using telecommunication microwave links.

This thesis is structured as follows: In Chapter 2, a first and (relatively) simple DSD
simulator based on a Gamma DSD model is presented. It is based on Geostatistics and
uses variograms to model the spatial structure of the DSD parameters µ, Λ and Nt.
The simulator is limited to the static case (i.e., the simulated fields are frozen in time)
and does not address the issue of rainfall intermittency. It is, however very important
because it provides the general ideas and methodologies used to build the more elaborate
simulation techniques presented in Chapter 3 and 4.

Chapter 3 presents a second, more general and complex DSD simulator. It includes
the possibility to simulate both in space and in time and explicitly considers rainfall
intermittency. The generated DSD fields are more realistic and their evolution in time or
space can be partially controlled through the use of external drifts. Spatial and temporal
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variations are linked and described using a separable space-time variogram. Chapter 4
further generalizes the simulator by including the possibility to generate intermittent
DSD fields with realistic space-time structures that are conditioned by average rain-rate
values at a coarser resolution. Further extensions of this new technique to dual-frequency
and dual-polarization weather radars are also discussed.

Chapter 5 provides a short statistical analysis of rainfall intermittency at small spatial
and temporal scales. Its objective is to provide simple methods and guidelines for accurate
downscaling and upscaling of intermittency in space and time. Such scaling laws are
relevant to parameterize rainfall intermittency in the DSD simulator and to estimate the
percentage of dry regions and periods during the disaggregation process. It is also useful
for further investigations on rainfall intermittency using microwave links in Chapter 6 and
7. The objective of these last chapters is to investigate different methods to identify and
quantify rainfall intermittency using commercial microwave links. Significant efforts are
devoted to the identification of dry and rainy periods based solely on the path-integrated
signal attenuation. Chapter 7 further describes a new and innovative experimental setup
deployed in Dübendorf and used to investigate different aspects of rainfall retrieval using
commercial microwave link networks. Finally, a summary of the most important results
in this thesis as well as some perspectives for future research are given in Chapter 8

Note that this thesis is a compilation of published or submitted articles and might therefore
contain small repetitions (in particular in the introduction and in the description of
the models and methods in each chapter). The author apologizes for any inconvenience
caused by this particular format.
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2 Geostatistical simulation of 2D
fields of raindrop size distribu-
tions at the meso gamma scale 1

2.1 Summary

The large variability of the raindrop size distribution (DSD) in space and time must be
taken into account to improve remote sensing of precipitation. The ability to simulate a
large number of 2D fields of DSDs sharing the same statistical properties provides a very
useful simulation framework that nicely complements experimental approaches based on
DSD ground measurements. These simulations can be used to investigate radar beam
propagation through rain and to evaluate different radar retrieval techniques.

The proposed approach uses Geostatistical methods to provide structural analysis and
stochastic simulation of DSD fields. First, the DSD is assumed to follow a Gamma
distribution with three parameters. As a consequence, 2D fields of DSDs can be described
as a multivariate random function. The parameters are normalized using a Gaussian
anamorphosis and simulated by taking advantage of fast Gaussian simulation algorithms.
Variograms are used to characterize the spatial structure of the DSD fields. The generated
fields have identical spatial structure and are consistent with the observations. Because
intermittency cannot be simulated using this technique, the size of the simulation domain
is limited to the meso-γ scale (2-20km).

To assess the proposed approach, the method is applied to data collected during intense
Mediterranean rainfall. Taylor’s hypothesis is invoked to convert time series into 1D range
profiles. The anisotropy of the fields is derived from radar measurements. Simulated
and measured reflectivity fields are in good agreement with respect to the mean, the
standard deviation and the spatial structure, demonstrating the promising potential of
the proposed stochastic model of DSD fields.

1. This chapter is a slightly modified version of the article by Schleiss, M., A. Berne and R. Uijlenhoet,
2009: Geostatistical simulation of 2D fields of raindrop size distributions at the meso gamma scale, Water
Ressour. Res., 45, W07415, doi:10.1029/2008WR007545.
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2.2 Introduction

Because of the complex interactions between atmospheric dynamics and cloud micro-
physics, precipitation is highly variable over a large range of space and time scales (e.g.,
Berndtsson and Niemczynowicz, 1988; Groisman and Easterling, 1994; Xie and Arkin,
1997). This variability is a significant source of uncertainty for the measurement, the
simulation and the forecasting of precipitation as well as of the environmental processes
influenced by it. For example, the variability of land surface hydrology is strongly
controlled by the variability of precipitation (Syed et al., 2004).

To investigate aspects of the large space-time variability of precipitation, a simulation
approach is able to provide known reference data from which a variety of sources of
uncertainty can be studied quantitatively. Hence a lot of attention has been devoted
to the development of techniques to simulate 2D or 3D precipitation fields (Foufoula-
Georgiou and Krajewski, 1995; Pegram and Clothier, 2001). These techniques can be
divided in two main categories: (1) physical approaches that aim at simulating the
physical processes involved in precipitation (e.g., ARPS, Xue et al., 2000); (2) statistical
approaches that consider precipitation as a random variable in space and time. Within
the latter category, different techniques have been applied: point processes and clustering
(e.g., Waymire et al., 1984; Onof et al., 2000); self-similarity (e.g., Gupta and Waymire,
1993; Menabde et al., 1997); and Geostatistics (e.g., Guillot, 1999; Bouvier et al., 2003).
The proposed methods focus solely on the simulation of rain rate values.

Remote sensors do not directly measure the rain rate but rather some observables
which are related to the electromagnetic properties of the ensemble of drops within the
considered sampling volume. In the case of weather radars, the conversion of radar
reflectivity values into rain rate values is strongly influenced by the microstructure of
rainfall (mainly by the size, the shape and the fall velocity of individual rain drops).
The fall velocity and the shape of rain drops are closely related to their equivolume
diameter (Beard, 1976; Andsager et al., 1999). Therefore the raindrop size distribution
(DSD hereafter) is of critical importance for the quantitative interpretation of radar
measurements. Similarly to rain rates, the DSD is highly variable in space and time
(Tokay and Short, 1996; Jameson and Kostinski, 2001; Uijlenhoet et al., 2003). This
variability must be taken into account to improve radar rain-rate estimates.

To analyze the different sources of uncertainty in radar rain-rate estimates using a
simulation approach, it is necessary to include information about the spatial variability
of the DSD. Simulation methods based on point processes have been developed (e.g.,
Lavergnat and Golé, 2006), but so far cannot provide 2D or 3D fields of DSDs. Condi-
tional simulation methods have also been proposed. Starting from simulated rain rate
fields, Krajewski et al. (1993) derived a consistent Gamma DSD assuming uniform and
uncorrelated distributions of the DSD parameters. These are strong assumptions, not
supported by our own data. More recently, Lee et al. (2007) proposed to use measured
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radar reflectivity fields in combination with ground-based DSD measurements to gen-
erate DSD fields. In this case, the highest spatial resolution is imposed by the radar
resolution, which is usually of the order of 1 km2. Hence this approach does not allow to
investigate the radar subgrid variability of the DSD. Simulations of correlated DSD fields
based on point DSD measurements do not have this limitation. However, to date such
techniques have only been proposed to simulate time series or 1D range profiles (Berne
and Uijlenhoet, 2005; Montopoli et al., 2008).

The main objective of this chapter is to develop a stochastic simulation framework
allowing for conditional as well as non-conditional simulation of 2D fields of DSDs using
point DSD measurements. Geostatistics provides useful tools for the analysis and the
simulation of random fields with complex spatial structures (Chilès and Delfiner, 1999;
Lantuéjoul, 2002). The ability to generate a large number of statistically homogeneous
fields can be used to obtain reliable statistical characterizations of a variety of issues
related to radar beam propagation through rain as well as radar retrieval techniques.
It is worth mentioning that such a simulation framework may also be useful for other
domains dealing with the propagation of radio waves in the atmosphere. Satellite or
ground-based microwave communication is a relevant illustration (Dissanayake et al.,
1997; Fong et al., 2003).

The chapter is organized as follows: Section 2.3 describes the modeling of the DSD. The
simulation framework is detailed in Section 2.4. The simulator is applied and evaluated
using data collected during an intense Mediterranean rain event in Section 2.5. The
conclusions and perspectives are given in Section 2.6.

2.3 Modeling the DSD

2.3.1 The Gamma model

The DSD describes the number of drops per unit volume and per unit size interval of
equivolume spherical drop diameter. It is supposed to be adequately described by a
Gamma distribution (Ulbrich, 1983; Willis, 1984) given by the following expression:

N(D) = αNtD
µexp(−ΛD), (2.1)

where N(D)dD [m−3] denotes the number of drops per unit volume with diameters
between D [mm] and D + dD and α = (

∫Dmax
Dmin

Dµe−ΛD dD)−1 is a normalization factor
taking into account the finite range of possible drop sizes between Dmin and Dmax. The
Gamma DSD depends on three parameters: the shape µ > −1 [-], the rate Λ > 0 [mm−1]
and the concentration Nt > 0 [m−3].
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2.3.2 Gaussian anamorphosis of DSD parameters

DSD parameters (µ,Λ,Nt) can be interpreted as correlated random functions in space
and time with a theoretical multivariate distribution function F . Simulating realistic
DSD fields means generating independent realizations of (µ,Λ,Nt) according to F . In
theory, this requires the complete knowledge of all the finite-dimensional distributions of
F , which is rarely the case in practical applications. Furthermore, finding a simulation
algorithm for any given distribution function F is known to be a very difficult problem,
as pointed out by Lantuéjoul (2002).

A possible solution is to transform the original distribution F into a Gaussian distribution
for which a variety of simulation algorithms have been developed (e.g. sequential
simulation, turning bands, spectral decomposition). Such a transformation is called a
Gaussian anamorphosis (Journel and Huijbregts, 1978; Guillot, 1999). At the end of the
simulation, the inverse transformation is applied to retrieve the original parameters.

For multivariate continuous distributions, a possible Gaussian anamorphosis is given by
the stepwise conditional transformation (Leuangthong and Deutsch, 2003). The advantage
of stepwise conditional transformation is that it creates independent jointly Gaussian
variables that can be simulated separately. The relations between the original variables
(e.g. the correlations and higher order moments) are preserved in the back-transformation
process.

For n-variate problems, the nth variable is transformed conditionally to the first n− 1
variables, as follows:

Yn = Φ−1[Fn|1,...,n−1(zn|z1, ..., zn−1)] (2.2)

where Fn|1,...,n−1 is the conditional distribution function of the nth component given
z1, ..., zn−1 and Φ is the cumulative distribution function of a standardized Gaussian
random variable. For n = 1 this reduces to Y1 = Φ−1[F1(z1)]. If it exists, the inverse
transformation is given by Zn = F−1

n|1,...,n−1[Φ(yn)|y1, ..., yn−1].

In practical applications where Fn|1,...,n−1 is unknown, the conditional distributions must
be estimated from the sample. This can be done empirically by discretizing the space of
parameters or by applying more complex methods (e.g. Diciccio et al., 1993; Hall et al.,
1999). In each case, the inverse transformation is approximated using a correspondence
table between the original and the transformed variables, which implies that simulated
fields will in fine be composed of measured values only. Inversion problems may arise
when many data share the same value. This is unlikely with continuous distributions but
may happen for mixed distributions like those produced by intermittent rain fields where
the marginal distribution of Nt has an atom at zero. Therefore the presented simulator is
limited to non-intermittent rainfall fields, which is a reasonable assumption up to scales
of the order of 20 km, also referred as the meso-γ scale (Orlanski, 1975).
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2.4 Geostatistical simulation of DSD fields

2.4.1 Modeling the spatial structure of DSD fields

Previous studies have shown that the 3 parameters µ, Λ and Nt that describe the
Gamma DSD model are highly variable in space and time (e.g. Tokay and Short, 1996;
Ulbrich and Atlas, 1998). This must be taken into account for accurate radar rain-rate
estimation. Because of their variability, µ, Λ and Nt can be seen as realizations of
random variables. In theory, rainfall is an intrinsically discrete process consisting of
individual drops. Nevertheless, it can be seen as a continuous quantity when considering
bulk variables like the rain rate or the radar reflectivity factor integrated over scales
larger than a few cubic meters. At these scales, DSD parameters can also be considered
continuous in space and time and the values of (µ,Λ,Nt) can be interpreted as realizations
of a multivariate random function (Yaglom, 2004). Geostatistics has been developed to
provide a mathematical framework for the analysis of such random functions (Matheron,
1965).

The fundamental tool for the analysis of the spatial structure of a random function Z(x)
is the semi-variogram (called variogram in the following) :

γ(h) = 1
2E[(Z(x+ h)− Z(x))2], (2.3)

where E denotes the expectation, x ∈ R2 is a position vector and h ∈ R2 is a separation
vector. The variogram is only defined if Z(x) is an intrinsic random function, meaning that
its increments Z(x+h)−Z(x) must be second-order stationary (Chilès and Delfiner, 1999,
pp.16-17). This assumption, however, is less restrictive than second-order stationarity of
the variable Z(x) itself.

If γ(h) only depends on the norm of h, the random function is said to be isotropic. In
general, however, random functions are anisotropic, meaning that γ(h) depends both on
the norm of h and on its direction. Finally, a variogram must satisfy some mathematical
properties: in particular, −γ(h) must be an even and positive definite function with
γ(0) = 0 (Chilès and Delfiner, 1999, pp.57-63). In general, variograms are preferred to
covariances for two reasons: (1) they are more general than covariances because they
do not assume finite variance of the random function and (2) they do not require any
knowledge about the mean of the sample.

In practice, variograms must be estimated from the sample. This can be done by using
the following standard expression:

γ̂(h) = 1
2N(h)

∑
xk−xl∼h

[z(xk)− z(xl)]2 (2.4)

where N(h) represents the number of observations separated by a vector h. This estimate

23



Chapter 2. Simulation of 2D fields of raindrop size distributions

is known to be asymptotically unbiased. However, it is sensitive to the presence of
outliers and measurement errors in the sample. Therefore, more robust alternatives to
the standard variogram estimate have been proposed (e.g. Cressie and Hawkins, 1990).

Note that in general −γ̂(h) is not a positive definite function and hence does not verify
the mathematical properties of a variogram. Therefore, a common approach is to fit a
theoretical model on the sample variogram. Popular variogram models are exponential,
spherical or Gaussian functions (Chilès and Delfiner, 1999, pp.80-93). Several variograms
can be combined to create nested structures. In particular, the sum of two variograms is
still a valid variogram.

2.4.2 Simulation of the DSD fields

This section explains how to generate realistic 2D fields of DSDs using the Geostatistical
methods introduced in the previous section.

First, the DSD parameters (µ,Λ,Nt) are fitted on measured DSD spectra and normalized
using a Gaussian anamorphosis (see Section 2.3.2) to obtain a new set (µ̃,Λ̃,Ñt) of
independent and centered parameters. Sample variograms are computed on the trans-
formed parameters and fitted using a theoretical variogram model. A Gaussian simulation
algorithm is used to generate independent fields of (µ̃,Λ̃,Ñt) with spatial structure given
by the fitted variogram models. At the end of the simulation, the inverse anamorphosis
is applied to retrieve the original DSD parameters. Bulk variables characterizing rainfall
such as the radar reflectivity factor Z [mm6 m−3] can be derived from the fields at both
horizontal and vertical polarization using the following expression:

ZH|V = 106w4

π5|K|2
∫ Dmax

Dmin

σBH|V (D)N(D)dD (2.5)

where σBH|V (D) [cm2] is the backscattering cross-section of a drop with diameter D [mm]
at the given polarization, w [cm] is the wavelength, and K is the dielectric factor of
liquid water, a function of the complex relative permittivity.

The simulation method described above can be applied to produce both conditional
and non-conditional simulations. Conditional simulations are particular realizations
which honor observed values at some specified locations within the considered domain,
whereas non-conditional simulations are just independent realizations of the same random
function. Since non-conditional simulations can be easily transformed into conditional
ones (e.g. Chilès and Delfiner, 1999, p.465), the following application will focus solely on
the simulation of non-conditional fields.
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2.5 Application

This section presents an application of the proposed DSD simulator using the statistical
software package “R” (http://www.r-project.org) together with the “gstat” package by
Pebesma (2004).

2.5.1 Data

In theory, the description of the spatial and temporal variability of DSD fields requires
large data sets of DSD measurements in space and time. Such data sets are not yet
available at a resolution that is sufficient to capture the variability of DSD fields over a
large range of scales. Therefore, the following application has been parameterized using
time series of DSD measurements instead of spatial measurements. The considered time
series was collected on 11 September 1998 during the HIRE’98 experiment that took
place in Marseille, southern France (Uijlenhoet et al., 1999b). A rain event of about 2 h
and representative of intense Mediterranean precipitation was simultaneously observed
by an optical disdrometer and by an S-band weather radar (10 cm wavelength) operated
by Météo France and located at about 100 km from Marseille. The optical disdrometer
was operated at a 20-s time resolution and collected 415 DSD measurements during the
event. The total rain amount seen by the disdrometer over the 2 hours was 27 mm for a
maximum intensity of 80 mmh−1. The choice of the 20-s time resolution is a trade-off
between availability of enough data for the structural analysis and limitation of the
sampling effects due to high temporal resolution.

2.5.2 DSD fitting

For each of the 415 DSD spectra recorded by the disdrometer, a three-parameter Gamma
DSD was fitted using the maximum likelihood method. This method has already been
employed in previous investigations including Haddad et al. (1997) and Kliche et al.
(2008). Maximum likelihood estimators are known to be asymptotically unbiased, efficient
and Gaussian distributed (e.g., van der Vaart, 1998). For small samples, however, they
must be handled with care since significant uncertainty can be introduced in the estimates
(Uijlenhoet et al., 2006). Figure 2.1 shows the time series of the fitted DSD parameters
together with their empirical marginal distributions. The average number of drops per
fit is 242. Only 7 DSD spectra contained less than 30 drops and could not be fitted
properly. Note the large correlation (0.99) between µ and Λ and the negative correlation
(-0.40) between µ and Nt, respectively between Λ and Nt (-0.37).
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Figure 2.1: Time series and empirical distributions of the DSD parameters (µ,Λ,Nt)
before the anamorphosis.

2.5.3 Gaussian anamorphosis of DSD parameters

Clearly, the marginal distributions of the DSD parameters are not Gaussian. Therefore, a
Gaussian anamorphosis (see Section 2.3.2) is performed to obtain a new set of independent
parameters (µ̃,Λ̃,Ñt) with joint Gaussian distribution. The conditional distributions
needed for the transformation are approximated by discretizing the space of parameters
into 30 regularly spaced bins. Here we can take advantage of the strong correlation
(0.99) between µ and Λ, which makes it particularly easy to estimate their conditional
distributions. The number of discretization bins has been chosen after testing several
alternative possibilities and is a trade-off between availability of enough points for the
estimation and limitation of the bias. The normality of the joint distribution is confirmed
by performing a Mardia test (Mardia, 1970) and a multivariate version of the Shapiro-
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Wilk test (Srivastava and Hui, 1987). The independence assumption is confirmed by
performing a standard t-test on the correlations. Figure 2.2 shows the transformed
DSD parameters together with their empirical marginal distributions. A correspondence
table between original and transformed variables is used to approximate the inverse
transformation.

Figure 2.2: Time series and empirical distributions of the DSD parameters (µ̃,Λ̃,Ñt) after
the anamorphosis.

2.5.4 Testing Taylor’s hypothesis

According to Berne et al. (2004), the average rainstorm movement velocity during the
described event was about 12.5 m s−1 in the N-E direction (i.e., azimuth of 50 degrees).
Time series of (µ̃,Λ̃,Ñt) can thus be converted into a 1D range profile along the direction
of advection by assuming Taylor’s hypothesis of frozen turbulence. The spatial resolution
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(250 m) of this profile is determined by the time resolution (20 s) and the average
advection speed (12.5 m s−1).

Note that Taylor’s hypothesis is a strong assumption that is not required by the simulator
but necessary in absence of spatial DSD data. Reflectivity measurements taken by the
radar can be used to quantify the quality of Taylor’s hypothesis. The method consists in
shifting the fields in time and space for a given advection speed and direction (in this
case 12.5 m s−1 and 50 degrees with respect to the North). If the fields result from pure
advection by a constant wind, the shifted pixels should overlap on average, meaning that
in the (Z,Zshift) space, Taylor’s hypothesis is represented by a straight line with slope 1
and intercept 0. The quality of Taylor’s hypothesis can thus be verified by looking at the
correlation between Z and Zshift and at the ratio of their means. Figure 2.3 represents
these values for time shifts between 5 and 20 minutes. It can be seen that for a time
shift of 5 min, both the correlation (0.95) and the ratio of means (0.98) stay close to 1,
indicating that Taylor’s hypothesis is a good approximation over short time periods. For
time shifts of 10-20 min, the correlation (0.80,0.63,0.50) decreases rapidly. The ratio of
means (0.96,0.94,0.91) also decreases slightly. The conclusion is that Taylor’s hypothesis
is not a good approximation for time shifts larger than 20 min and implies that consistent
structural analysis is limited to time shifts less or equal to 20 min, corresponding to
15 km in the spatial domain.

Figure 2.3: Verification of Taylor’s hypothesis for time shifts between 5 and 20 min.
Under the hypothesis of pure advection, both the correlation and the ratio of means
should be equal to 1.

2.5.5 Fitting a variogram model

Using Taylor’s hypothesis with 12.5 m s−1 advection speed, the DSD time series (µ̃,Λ̃,Ñt)
are converted into range profiles and their sample variograms are computed. The sample
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variograms are fitted by combining two spherical variogram models, one for the short-
range variability and one for the long-range variability. A spherical variogram model is
given by:

γsph(h) =

C0 + C1

(
3
2
h

a
− 1

2
h3

a3

)
h < a

C0 + C1 h ≥ a
(2.6)

where C0 denotes the nugget, C1 the partial sill, h the distance lag and a the range.
The values of the fitted parameters are given in Table 2.1. Figure 2.4 shows the fitted
variograms for each DSD parameter. The total variogram for each DSD parameter is the
sum of the two spherical models.

Figure 2.4: Sample variograms of (µ̃,Λ̃,Ñt) after Gaussian anamorphosis. The values of
the parameters are given in Table 2.1.

Table 2.1: Nugget [-], range [km] and partial sill [-] values of two nested spherical models
fitted to the sample variograms of (µ̃,Λ̃,Ñt).

Nugget Range 1 Partial Sill 1 Range 2 Partial Sill 2
µ̃ 0.03 7 0.63 18 0.26
Λ̃ 0.67 4 0.25 14 0.04
Ñt 0.29 3 0.35 12 0.21

2.5.6 Estimation of the anisotropy

The variograms defined in Table 2.1 only describe the spatial structure along the average
direction of advection. The complete 2-dimensional structure of the fields can be expressed
in terms of the 1D variograms by adding information on anisotropy derived from radar
reflectivity measurements. For the considered event, 28 reflectivity measurements were
collected by an S-band weather radar from 08h35 to 10h50 UTC at a 5-min temporal
resolution over the considered area. The analysis of these reflectivity fields as well as their
corresponding 2D variograms indicates that the fields have geometric anisotropy (i.e., the
2D variograms exhibit elliptic structure). The average azimuth of smallest variability (the
major axis of the ellipse) is 320 degrees. The average anisotropy ratio (the ratio between
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the minor and the major axis of the ellipse) is about 0.7. As an example, Figure 2.5
shows the radar reflectivity field and the corresponding 2D variogram map at 09h35
UTC. The major axis of the anisotropy ellipse is approximatively in the N-W direction
(azimuth of 315 degrees). The ratio between the minor and the major axis of the ellipse
is about 0.5. In the rest of the application, the average anisotropy values (azimuth of
320 degrees and anisotropy ratio of 0.7) are used to characterize the 2D variograms.

Figure 2.5: Observed radar reflectivity field at 09h35 UTC over the considered 32 ×
32 km2 domain (left panel) together with its corresponding 2D variogram map (right
panel). Grey pixels correspond to ground echos. Dry regions are represented in white.
The location of the disdrometer is indicated by the black cross in the lower left-hand
corner. The anisotropy direction is given by an azimuth of 315 degrees. The anisotropy
ratio is about 0.5.

2.5.7 Simulation of DSD fields

Using the variogram model described in Table 2.1 together with the average geometrical
anisotropy described above, 200 Gaussian DSD fields have been simulated on a 32 ×
32 km2 domain consisting of 16’384 pixels of size 250 × 250 m2. Such an area adequately
represents the meso-γ scale and is large enough to contain all the measured variability
in the DSD without being too large to avoid problems related to intermittency. Using
inverse anamorphosis, the Gaussian fields are back-transformed into the original DSD
fields. The backscattering cross-sections σH|V (D) are computed at both horizontal
and vertical polarization using the T-matrix code (Mishchenko and Travis, 1998) and
used in Equation 2.5 to derive the corresponding reflectivity fields at S-band (negligible
attenuation).

Figure 2.6 shows an example of a simulated DSD field together with the corresponding
rain rate R, horizontal reflectivity Zh and differential reflectivity Zdr = Zh − Zv (in dB).
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Figure 2.6: Example of a simulated DSD field (µ,Λ,Nt) together with its corresponding
rain rate, horizontal and differential reflectivity fields.

2.5.8 Comparison with radar measurements

In order to assess the quality of the simulation, the simulated reflectivity fields Zh
derived using Equation 2.5 are compared to the observations taken by the radar. Because
the radar resolution is 1 × 1 km2 and the simulation resolution is 250 × 250 m2, the
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simulations are averaged over blocks of 4 × 4 pixels before comparison. Moreover, all
ground echos are removed from the data before the comparison. To avoid issues due to
intermittency, the comparison is restricted to radar measurements taken between 09h15
and 09h55 UTC (10 measurements), for which intermittency is negligible. The selected
fields have mean values ranging from 30.5 to 34.2 dBZ, with an average of 33.8 dBZ.
The standard deviation of the observed fields is between 4.6 dBZ and 7.6 dBZ, with an
average of 5.6 dBZ. Figure 2.7 shows that these values are in good agreement with the
simulated fields. Indeed, the simulated reflectivity fields have mean values between 29.3
and 36.4 dBZ, with an average of 32.9 dBZ and their standard deviations are between
5.3 and 7.9 dBZ, with an average of 6.3 dBZ. This shows that the simulated fields
adequately reproduce the first order moments (mean and standard deviation) of the
observed reflectivity fields. Furthermore, the simulations also exhibit a similar asymmetry
in the distributions as shown in Figure 2.7.

Figure 2.7: Histogram of the mean and of the standard deviation of 200 simulated
reflectivity fields. Simulated values are represented by grey boxes. The red cross
represents the minimum, mean and maximum values observed by the S-band radar
during the event.

Figure 2.8 shows a comparison between the spatial structure of the simulations and the
spatial structure of the observations. In order to keep the figure readable, an average
variogram has been plotted for both simulated and observed reflectivity fields. The
dispersion about the average variogram is represented (for each distance class) by the
10 % and 90 % quantiles.

It can be seen that the simulated and observed variograms are in good agreement except
for the first 2-3 km where the simulations exhibit slightly too much variability. Different
explanations can be given for this: (1) there is a smoothing effect in the observed
reflectivity fields due to the power distribution in the radar beam. Hence, radar pixels
that are far away from the antenna are averaged over large overlapping volumes and
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Figure 2.8: Average radar reflectivity variogram (in red with vertical bars) and average
simulated reflectivity variogram (in black). The lower and upper bounds represent the
10 % and 90 % variogram quantiles for each distance lag computed on 28 radar pictures
and 200 simulations.

exhibit more correlation. This implies a smaller slope in the variograms computed using
radar observations, especially at small distance lags where the averaging effect is the
strongest; (2) the Gaussian anamorphosis described in Section 2.3 was computed on a
small sample of 415 DSD observations. The inverse transformation was approximated
using a correspondence table between the original and transformed variables. The
discretization introduced by this technique may explain the rather strong variability at
short ranges in the simulations; (3) Taylor’s hypothesis of frozen turbulence was shown
to be acceptable but not perfect. Furthermore, parameters like the advection speed, the
anisotropy direction and anisotropy ratio were estimated using radar data and supposed
constant over the entire event, which is not exactly true. Despite the above mentioned
problems, the proposed simulator produces very encouraging results that are consistent
with the observations. The simulated 2D fields are in good agreement in terms of first
and second order moments. The spatial structure is also in good agreement with the
observations.
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2.6 Conclusions

DSD fields are highly variable in space and time. To investigate issues related to this
variability in radar rain-rate estimation, a stochastic simulation framework has been
proposed. It is based on Geostatistics and considers the parameters (µ,Λ,Nt) of the
Gamma DSD as realizations of a multivariate random function.

In order to take advantage of simple and fast Gaussian simulation algorithms, the
distribution of the three DSD parameters is normalized using a Gaussian anamorphosis
technique. The spatial structure of the fields is quantified using variograms. Gaussian
fields with identical spatial structure are generated and then back-transformed into the
original parameter space. In this way, realistic conditional and non-conditional 2D fields
of DSDs can be generated.

The proposed approach is applied to DSD measurements collected during an intense
Mediterranean rainfall event. As only DSD time series are available, Taylor’s hypothesis
is used to convert time series into range profiles. The anisotropy direction and anisotropy
ratio of the fields are derived from measurements taken by an S-band weather radar.
The reflectivity fields derived from the simulated DSD fields are compared to radar
measurements. Both the mean and the standard deviation are in very good agreement.
The spatial structure is also coherent with the observations, indicating that the proposed
simulator generates realistic 2D fields of DSDs.

The main limitation of the proposed simulator is its inability to simulate intermittent DSD
fields. This limits the size of the simulated domains to the meso-γ scale (about 20 km)
at which non-intermittent rain fields are plausible. Taylor’s hypothesis is not required to
run the simulator, but is used because of the lack of spatial DSD measurements. Better
results can even be expected when spatial DSD data will be available.
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3 Stochastic simulation of intermit-
tent DSD fields in time 1

3.1 Summary

This chapter generalizes previous results presented in Chapter 2 and introduces a method
for the stochastic simulation of intermittent fields of raindrop size distributions in space
and time. Rainfall intermittency is modeled using an indicator field and simulated
using sequential indicator simulation. The raindrop size distribution is described by a
Gamma distribution with 2 or 3 stochastic parameters and simulated using sequential
Gaussian simulation. Separable space-time variograms are used to model the spatial
and temporal structures of all these variables. A simple and user-oriented procedure
for the parameterization of the simulator is proposed. The only data required are DSD
time series and radar rain-rate (or reflectivity) measurements. The proposed simulation
method is illustrated for frontal and convective precipitation using real data collected
in the vicinity of Lausanne, Switzerland. The spatial and temporal structures of the
simulated fields are evaluated and validated using DSD measurements from 8 independent
disdrometers.

1. This chapter is a slightly modified version of the article by Schleiss, M., J. Jaffrain and A. Berne,
2012: Stochastic simulation of intermittent DSD fields in time, J. Hydrometeorol., vol.13, No.3, 621-637
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3.2 Introduction

Precipitation is an important and complex part of the Earth’s water cycle and climate
system. Although it is very beneficial in every day’s life (it produces most of the fresh
water on the Earth’s surface and is therefore vital for plants and animals), it can also
have dramatic effects on humans and infrastructures (e.g., floods, droughts, landslides,
avalanches). Consequently, a lot of efforts have been devoted over the last decades to
measure, quantify, model and predict precipitation with increasing accuracy. Nowadays,
most of the individual physical mechanisms (e.g., nucleation, diffusional growth, collisional
growth, evaporation and breakup) involved in the formation of clouds and precipitation
are fairly well understood (Pruppacher and Klett, 1997). The study and modeling
of their complex interactions is, however, still an active field of research. At larger
scales, additional complexity is introduced through the influence of land and sea surface
processes (e.g., changes in temperature and evaporation) which significantly contribute
to the spatial and temporal variability of precipitation (Koster and Suarez, 1995; Roe,
2005). As a result, rainfall is generally non-stationary, inhomogeneous, intermittent and
largely variable in space and time.

Modern hydrological models require accurate rainfall estimates with high spatial and
temporal resolutions. Weather radars provide relatively good inputs to these models
but their estimates can be affected by large uncertainties (Wilson and Brandes, 1979;
Krajewski and Smith, 2002; Villarini and Krajewski, 2010). More robust and better
data can be expected if measurements coming from several independent rainfall sensors
(e.g., satellites, ground-based radars, rain gauges, disdrometers, microwave links) are
combined. Finding robust and reliable merging techniques that take into account the
relative uncertainties and error contributions of each instrument, is known to be a very
difficult problem. In particular, there is a strong lack of reference data against which
the different instruments and retrieval algorithms could be compared and evaluated
objectively. A common approach therefore consists in using stochastic rainfall simulators.
The latter are very interesting and useful because they allow to generate large numbers of
statistically homogeneous fields at high spatial and temporal resolutions (far beyond the
capabilities of traditional rainfall sensors) that can be used as reference data in further
analysis.

In this chapter, a stochastic rainfall simulator at the mesoscale (domain size between
10-100 km) is presented which adequately reproduces the main statistical features of
a given rain event, i.e., the spatial and temporal structures, the rainfall intermittency
and, most importantly, the (rain)drop size distribution (DSD). From the DSD it is then
possible to derive or approximate most physical quantities of interest, i.e., the shape,
fall speed and energy of the individual drops. In addition, quantities like the rain rate,
the median drop diameter, the radar reflectivity, the differential reflectivity, specific
attenuation and differential phase shift (which are very important for remote sensing
of precipitation and explicitly depend on the DSD) can also be derived. As a result,
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simulated DSD fields are very valuable for many practical applications including soil
erosion problems (Kinnell, 2005), runoff and infiltration (Smith et al., 2009), atmospheric
deposition processes (Beier and Hansen, 1993), the Z −R relationship for weather radars
(Battan, 1973; Ulbrich, 1985), attenuation correction algorithms at C- and X-band (e.g.,
Bringi et al., 1990; Delrieu et al., 1999; Testud et al., 2000), rainfall measurement using
satellites (e.g., TRMM and GPM) and microwave links from telecommunication networks
(Messer et al., 2006; Leijnse et al., 2007c).

So far, most of the stochastic rainfall simulation techniques have been focusing on the
simulation of daily, monthly or annual precipitation amounts using chain-dependent
stochastic processes (e.g., Katz, 1977; Richardson, 1981; Wilks, 1999). Also, significant
efforts have been devoted to the simulation of spatially correlated rain rate fields using,
for example, principal components (Bouvier et al., 2003), clustering processes (Waymire
et al., 1984; Rodríguez-Iturbe and Eagleson, 1987; Sivapalan and Wood, 1987), self
similarity (Gupta and Waymire, 1993; Menabde et al., 1997) and Geostatistics (Guillot,
1999). Only a few studies have investigated the possibility to simulate rainfall fields (or
rain profiles) with higher level of detail, for example by including the (rain)drop size
distribution (e.g., Krajewski et al., 1993; Berne and Uijlenhoet, 2005; Lavergnat and
Golé, 2006; Lee et al., 2007). In Chapter 2, a (relatively) simple DSD simulation method
based on Geostatistics has been proposed. The method was, however, limited to small,
non-intermittent and instantaneous rainfall fields. In this chapter, the method presented
in Chapter 2 is extended and a new DSD simulator capable of generating intermittent
DSD fields in space and time is proposed.

This chapter is structured as follows: Section 3.3 is devoted to the description of the
models and mathematical tools needed for the simulation. Section 3.4 explains how to
parameterize the simulator. Section 3.5 provides a detailed step by step description
of the simulation algorithm and explains how the main variables of interest can be
computed from the simulated DSD fields. In Section 3.6, the capabilities of the simulator
are illustrated and evaluated using real data collected in the vicinity of Lausanne,
Switzerland. The advantages and limitations of the proposed method are discussed in
Section 3.7 and the conclusions and perspectives are given in Section 3.8.

3.3 Modeling

A substantial amount of material presented in this section is similar to Section 2.3 and
2.4 in Chapter 2 and will not be repeated here. Instead, the major differences between
the two approaches are highlighted.
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3.3.1 Drop Size Distribution

The drop size distribution is described using a Gamma distribution (Ulbrich, 1983; Willis,
1984; Ulbrich and Atlas, 2007) with three parameters (µ, Λ and Nt), exactly as in
Section 2.3.1.

N(D) = αNtD
µe−ΛD. (3.1)

Because of the natural variability of rainfall, the DSD parameters (µ,Λ, Nt) can be
seen as realizations (in time and space) of an underlying multivariate random function.
Furthermore, some studies (Zhang et al., 2001; Seifert, 2005) suggest that there a
deterministic relation between the shape and the rate parameter:

Λ = f(µ), (3.2)

where f depends on the type of precipitation and on the local climatology. Such relations
are interesting because they allow to reduce the number of stochastic parameters to be
simulated. However, Moisseev and Chandrasekar (2007) argued that µ − Λ relations
must be handled with extreme care because they might be the result of statistical errors
and data filtering of disdrometer measurements. In any case, this is not a critical issue
because the proposed simulation method can be easily adapted to include an additional
third stochastic parameter, as in Schleiss et al. (2009). But for simplicity, only the first
case (two stochastic parameters µ and Nt and a deterministic relationship between Λ and
µ) is presented. Finally, it must be noted that the proposed simulation technique can
easily be adapted to any other parametric DSD model (e.g., exponential or log-normal).

3.3.2 Intermittency

Intermittency, i.e., the presence or absence of rainfall, is modeled using an indicator field

I(x) =
{

1 if R(x) > 0
0 else

(3.3)

where R(x) [mmh−1] represents the instantaneous rain rate at location x. Using this
notation, R(x) can be seen as the product of two random functions

R(x) = I(x)R+(x), (3.4)

where R+(x) > 0 represents the nonzero rain rate at location x (for consistency, R+

is only defined for rainy locations). Using the same decomposition, Barancourt et al.
(1992) derived an interesting scheme for the interpolation and simulation of intermittent
rain rate fields. Following the same idea, one can extend this result to the simulation of
intermittent DSD fields by applying the same decomposition to the two DSD parameters:
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µ(x) = I(x)µ+(x) Nt(x) = I(x)N+
t (x). (3.5)

Using this notation, an intermittent DSD field (at a given time t and location x) is given
by a triplet (I, µ+, N+

t ) where I represents the rainfall indicator field and (µ+, N+
t )

the DSD parameters. But for conciseness (and because the DSD is not defined for dry
locations anyway), we will drop the “+” sign and simply denote the DSD field by (I, µ,
Nt).

3.3.3 Anamorphosis

For now, suppose that a given rainfall indicator field I has been simulated and that the
rainy and dry locations are known. The only parameters that remain to be simulated are
µ and Nt. Simulating realistic DSD fields means generating independent realizations of
(µ,Nt) according to some unknown bivariate distribution, a problem known to be very
difficult in general. A possible solution, known as Gaussian anamorphosis (Leuangthong
and Deutsch, 2003), is to transform the original parameters (µ,Nt) into independent
Gaussian variables (µ̃,Ñt) for which a variety of efficient simulation algorithms are known,
e.g., turning bands (Journel and Huijbregts, 1978; Guillot, 1999) and sequential simulation
(Ripley, 1987). For details about the anamorphosis procedure, see Section 2.3.2.

3.3.4 Space-time structure

The space-time structure of I, µ̃ and Ñt is modeled using a space-time variogram
(Matheron, 1965; Chilès and Delfiner, 1999):

γ(h, τ) = 1
2E[(Z(x+ h, t+ τ)− Z(x, t))2], (3.6)

where h ∈ Rn is a separation vector, τ ∈ R a given time lag and E denotes the
expectation. Unfortunately, fitting a valid space-time variogram can be very difficult in
general, especially when few data are available. Therefore, a common approach consists
in separating the spatial and the temporal variations:

γ(h, τ) = γS(h) + γT (τ), (3.7)

where γS(h) and γT (τ) represent the spatial respectively temporal variogram of Z(x, t).
For the rainfall indicator field I, both γS(h) and γT (τ) can be derived and fitted using
radar rain-rate or reflectivity data. For the DSD parameters, this is usually not possible
because disdrometer networks are usually not dense and large enough for a direct
estimation of γS(h). Hence most of the time, the only variogram that can be computed
is the one in the time domain. In this case, the spatial variogram must be approximated
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using external information (e.g., the speed and direction of advection and the anisotropy
of the rainfall field). If available, polarimetric radar quantities like the differential
reflectivity Zdr and the reflectivity at horizontal polarization Zh can also be used to
estimate the spatial structure of µ̃ and Ñt.

In the following, a method based on Taylor’s hypothesis of frozen turbulence (Taylor, 1938)
that allows to approximate the spatial structure of µ̃ and Ñt without using polarimetric
radar data is proposed. Taylor’s hypothesis states that the rainfall field moves, during
short periods of time, with constant velocity v, and that its evolution for time lags up to
20-30 min is small compared to the advection process (Li et al., 2009). As a consequence,
the temporal covariance of a variable at time lag τ is equal to the spatial covariance
at space lag h = τv, or equivalently, γS(τv) = γT (τ). Hence (short) variations in time
can be converted into small variations in space, but only in the direction of advection.
For all other directions, the relation between temporal and spatial variations is not
known a priori. However, it is reasonable to assume that similar relations exist and can
be described using a geometric anisotropy parameter derived from radar rain-rate or
reflectivity measurements.

γS(h) = γT

(
α(h)‖h‖

‖v‖

)
(3.8)

α(h) = 1
α

+ (1− 1
α

)
∣∣∣∣< h, a >

‖h‖‖a‖

∣∣∣∣ (3.9)

where 0 < α ≤ 1 is called the anisotropy ratio (i.e., the ratio between the minor and
major axis of the anisotropy ellipse), a ∈ R2 is the vector giving the direction of minimum
variability (not necessarily identical to the direction of advection), < h, a > denotes the
standard scalar product between h and a and ‖ · ‖ denotes the euclidean norm in R2.
The anisotropy factor α(h) is supposed to reflect a geometrical property of the rainfall
field and is therefore assumed to be identical for the rain rate, the reflectivity, µ̃ and Ñt.
Under these assumptions, the complete space-time variograms of µ̃ and Ñt is given by:

γ(h, τ) = γT

(
α(h)‖h‖

‖v‖

)
+ γT (τ). (3.10)

Note that it is possible to generalize Equation 3.10 by taking into account a time-dependent
speed and direction of advection. In this case, each time period (e.g., 20-30 min) is
represented by an average advection vector vi, an average anisotropy direction ai and an
average anisotropy ratio αi(h). The space-time variogram of each time period is then
given by

γi(h, τ) = γT

(
αi(h) ‖h‖

‖vi‖

)
+ γT (τ). (3.11)
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3.4 Parameterization

3.4.1 Required data

Optimal parameterization of the simulator is achieved if both spatial and temporal DSD
data are available. Unfortunately, such data are not yet available. In the meantime,
alternative parameterizations using fewer data must be considered. In the following, a
method that allows to parameterize the simulator using solely DSD time series (collected
using one or several disdrometers) and radar rain-rate or reflectivity data for the considered
domain and event of interest is proposed. The temporal sampling resolution of the
disdrometers must be high enough to capture most of the natural variations occurring
in the DSD but not too high to avoid strong sampling effects. Typically, temporal
resolutions between 30 s and 1 min are adequate. The size of the simulation domain must
be large enough to catch the spatial structure of the rainfall field but not too large for the
variogram to be representative over the entire domain. Also, the size of the simulation
domain must be consistent with the length of the collected DSD times series and the
average speed of advection. A 30-min times series with an average speed of advection of
5 m s−1 only corresponds to 9 km along the direction of advection and is unlikely to be
representative of a 50 × 50 km2 domain. Depending on these parameters, domain sizes
between 10 and 100 km can be considered.

3.4.2 Parameters derived from radar data

Radar data are used to estimate (1) the rainfall intermittency, (2) the spatial and temporal
variograms of the rainfall indicator field, (3) the speed and direction of advection and
(4) the anisotropy parameters of the rainfall field. All these parameters are assumed
constant during the considered event or, alternatively, time dependent. For simplicity,
the procedure is only illustrated for constant parameters.

The rainfall intermittency is estimated using the radar data by computing the proportion
pW of wet and pD = 1− pW of dry locations within the simulation domain. Note that if
the intermittency changes significantly with time, it is better to consider separate time
periods with varying intermittency. The spatial structure of the rainfall indicator field is
then estimated (for each time period) by computing its average spatial sample variogram
γ̂SI (h) (aggregating the fields in time) and by fitting a valid variogram model γSI (h) on
it. The temporal structure of the rainfall indicator field is estimated by computing the
average sample time variogram γ̂TI (τ) (aggregating the time series in space) and by fitting
a valid variogram model γTI (τ) on it. This defines the complete space-time variogram
γI(h, τ) = γSI (h) + γTI (τ) of the rainfall indicator field.

The average speed and direction of advection v is determined using a cell or echo-tracking
algorithm on each pair of successive radar images (e.g., Rinehart, 1979; Crane, 1989;
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Tuttle and Foote, 1990). The anisotropy parameters a and α given in Equations 3.8
and 3.9 are estimated by computing the spatial sample (2D) variogram γ̂SR(h) of the
radar rain-rate or reflectivity data. It is then possible to identify the (average) direction
of minimum variability a and the corresponding (average) anisotropy ratio α.

3.4.3 Parameters derived from DSD data

First, the 3-parameter DSD model (µ, Λ, Nt) given in Equation 3.1 is fitted on each
collected DSD spectrum. The scatterplot between µ and Λ is used to investigate if there
is a relation (possibly nonlinear) between µ and Λ. For simplicity, and because of the
high correlation that is usually observed, only linear relations between µ and Λ are
considered. The generalization of this technique to nonlinear relations (e.g. power-laws
or exponential models) is straightforward. For linear relations, the standard Pearson
correlation coefficient is used to decide weather two or three stochastic parameters should
be included in the model. As a rule of thumb, a correlation of 0.9 or higher is considered
sufficient to drop one of the parameters. Otherwise, all three DSD parameters are kept
and the simulation scheme is adapted to include an additional stochastic parameter. Note
that this also includes the case of (complex) nonlinear relations which are then captured
automatically by the Gaussian anamorphosis and do not need to be parameterized.
However, it must be emphasized that 3 parameter simulations require far more DSD data
(at least ten times more than with 2 parameters) and significantly increase the simulation
time. It is therefore highly recommended to work with 2 stochastic parameters whenever
it is possible.

In the next step, the DSD parameters (µ,Nt) are detrended following a procedure
described in the Appendix. This is particularly important for highly intermittent rain
fields where the constant alternating between dry and rainy periods significantly affects
the variograms of µ and Nt. The detrended time series of (µ,Nt) are then transformed
into independent Gaussian variables µ̃ and Ñt using a Gaussian anamorphosis (see
Section 3.3.3). The temporal variograms of µ̃ and Ñt are estimated and fitted using
two valid temporal variogram models γTµ̃ (τ) and γT

Ñt
(τ). Finally, the complete space-

time variograms γµ̃(h, τ) and γÑt
(h, τ) needed for the simulations are estimated using

Equation 3.10.

3.5 Simulation

Generating a simulation means choosing a simulation algorithm. The choice of this
algorithm depends on the type of variables to be simulated. An intermittent DSD field
consists of two parts: (1) a rainfall indicator field I(x) and (2) a bivariate (µ,Nt) DSD
field (for rainy locations only) which can be transformed into two independent Gaussian
fields µ̃ and Ñt with zero mean and unit variance. Although different simulation methods
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can be considered, we focus on a very general technique called sequential simulation
(Ripley, 1987).

3.5.1 Sequential simulation

Consider the case of a random function Z(x) with known values z1, ..., zM at locations
x1, ..., xM . If M = 0, the simulation is said to be non-conditional. Suppose that Z(x)
needs to be simulated at N new locations xM+1, ..., xM+N , conditionally to the previous
values z1, ..., zM . The sequential simulation paradigm states that Z(xi) can be simulated
sequentially by randomly sampling from the conditional distribution of Z(xi) given all
the previously simulated or prescribed values and by including the outcome zi in the
conditioning data set for the next step. The practical difficulty is that in general, the
conditional probabilities are not known, except for the Gaussian case (with known mean)
for which the conditional distribution of Z(xi) knowing {zj}j<i is Gaussian with mean
z?i (the simple kriging estimator at xi) and variance σ?2

i (the associated kriging variance)
(e.g., Chilès and Delfiner, 1999, p.164). Note also that for indicator fields, i.e., fields
which take only 0 and 1 values, the conditional distribution is equal to the conditional
expectation E[Z(xi)|Z(x1) = z1, . . . , Z(xi−1) = zi−1], i.e., the probability that Z(xi) is
equal to 1. This probability is not known in general but can be estimated like in the
Gaussian case by the simple kriging estimate z?i (Alabert, 1987). The only theoretical
problem with this method is that z?i can be less than 0 or greater than 1, even for very
simple variogram models. If this is the case, the corresponding probabilities are set to 0
or 1 accordingly. At the end of the simulation, the variogram of the simulated indicator
field is checked against the model to discard possible artifacts due to these thresholding.

3.5.2 DSD Simulation algorithm

This paragraph provides a detailed step by step description of the algorithm used to
generate intermittent DSD fields in space and time. For a visual diagram of the simulation
algorithm, see Figure 3.1.

First, sequential indicator simulation (SIS) is used to generate an indicator field with
mean pW and space-time structure given by γI(h, τ). Locations and periods for which
the outcome of the simulation is 1 are considered wet. The others are considered dry.
Only the wet periods and locations are used to simulate the DSD parameters. In the
next step, sequential Gaussian simulation (SGS) is used to generate a Gaussian field for
µ̃ with mean 0 and space-time structure given by γµ̃(h, τ). A second Gaussian field with
mean 0 and space-time structure given by γÑt

(h, τ) is generated for Ñt. At the end of
the simulations, an inverse anamorphosis is applied to back-transform (µ̃,Ñt) into the
original parameter space (µ,Nt). If the original time series of µ and Nt were detrended
prior to analysis (see Appendix), the external drifts (mainly caused by the transitions
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Figure 3.1: Visual illustration of the DSD simulation algorithm (from top to bottom).
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between dry and rainy periods or locations) are added back to the simulated fields at
this stage. Finally, Λ is derived through its deterministic relation with µ. If desired, The
simulation procedure can be repeated several times to obtain different realizations in
space and time.

3.5.3 Post-processing

One of the main advantages of simulating DSD fields is that they can be used to derive
most quantities of interest related to remote sensing. This includes the rain rate R
[mmh−1], the median drop diameter D0 [mm], the radar reflectivity Zh|v [dBZ] at
horizontal and vertical polarization, the differential reflectivity Zdr [dB], the specific
attenuation Ah|v [dB km−1] at horizontal and vertical polarization and the differential
phase shift on propagation Kdp [◦ km−1]. For more details on these quantities and on
how to compute them from the DSD, the reader is referred to Section 1.2.2.

3.6 Illustration using real data

This section illustrates the capabilities of the previously described DSD simulator using
real data collected in the vicinity of Lausanne, Switzerland. Two rain events (frontal and
convective) which are very different in terms of magnitude and temporal dynamics are
selected to better illustrate the simulator’s capability of reproducing different rainfall types
and structures. Note that the goal is neither to predict nor to reproduce the observed
events but to generate synthetic rainfall fields sharing the same statistical properties, i.e.,
spatial and temporal structures, intermittency and raindrop size distributions.

3.6.1 Data

The DSD data are collected using a network of 16 optical disdrometers of type Parsivel
(Löffler-Mang and Joss, 2000) deployed over EPFL campus, Lausanne, Switzerland. The
entire network covers an area of approximatively 1 km2 (Jaffrain et al., 2011). The
distances between the stations are between 80 m and 800 m. The sampling temporal
resolution is 30 s. The uncertainty on the collected measurements has been quantified
and extensively documented in Jaffrain and Berne (2011). For validation purposes,
the disdrometer data are divided into two groups: 8 disdrometers are used for the
parameterization and the remaining 8 for the validation.

The radar data are provided by MeteoSwiss. The complete rain rate map is of size
610 × 538 km2 with 1 × 1 km2 resolution. The temporal resolution is 5 min. The rain
rates are estimated by combining the measurements of three C-band weather radars
at different elevations, correcting for the main sources of errors (ground clutter, beam
shielding, vertical variability) according to the procedure described in Germann et al.
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(2006). The estimated rain rates are then coded using 16 (irregularly spaced) intensity
classes from 0-100 mmh−1.

3.6.2 Simulation domain

A simulation domain of size 50× 50 km2 covering the city of Lausanne and the disdrometer
network described in Section 3.6.1 is considered. The domain mostly lies in the so-called
“Swiss Plateau”, between the “Jura mountain” and the Swiss Alps. The minimum and
maximum altitudes are 370 m and 2010 m AMSL but most of the domain (75 %) is lower
than 800 m AMSL and only 10 % is higher than 1100 m AMSL. The simulation domain
mostly avoids regions like the mountains of “Savoie” in the South, the Swiss Alps in the
East and the “Jura mountains” in the North West where radar data are known to be
noisy and affected by larger uncertainties.

3.6.3 Considered events

Two events that occurred on 17th June and 5th August 2010 are selected. The first event
is classified (based on visual inspection of disdrometer and operational radar data) as
frontal, the second is convective. The radar rain-rate maps corresponding to these events
are shown in Figure 3.2 at 00:50 UTC respectively 13:55 UTC. The main characteristics
of the selected events are given in Table 3.1. For simulation purposes, only the time
periods during which the events passed over the disdrometer network are considered, i.e.,
from 00:50 UTC to 03:45 UTC for the first event and from 13:55 UTC to 14:55 UTC for
the second.

Figure 3.2: Radar rain-rate maps for event 1 (left panel) and event 2 (right panel). The
size of the domain is 50 × 50 km2. The location of the 16 disdrometers is represented by
a black cross in the lower left corner.

The time series of µ, Nt and R corresponding to these time periods are shown in
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Table 3.1: Rainfall type, intermittency, advection and anisotropy of each selected event.

Event 1 Event 2
type frontal convective
intermittency (pD) 21 % 70 %
direction of advection to the North-West to the South-East
speed of advection 9.5 m s−1 12.5 m s−1

anisotropy direction a North-West North-West
anisotropy ratio α 0.95 0.90

Figure 3.3 and Figure 3.4. Note that Λ is not shown because it is strongly correlated
with µ (correlation coefficient of 0.96) and is therefore expressed as a linear model of µ in
the simulations. It is also important to point out the differences between the two events
(represented on different scales for better readability). The frontal event is characterized
by small to moderate values of Nt, moderate to large values of µ (small drops) and
limited temporal variability. The convective event on the other hand exhibits a lot of
temporal variability, large values of Nt (lots of drops) and small values of µ (large drops).

Figure 3.3: Time series of µ [-], Nt [m−3] and R [mmh−1] at 30 s time resolution for
event 1 (frontal). The 3 lines represent the minimum, average and maximum values
measured by the 16 disdrometers at each time step.

Figure 3.4: Time series of µ, Nt and R for event 2 (convective). Same format as Figure 3.3.

47



Chapter 3. Simulation of intermittent DSD fields in time

Table 3.2: Fitted values of nugget, partial sill and range for the rainfall indicator
variograms

Type Event Nugget Partial sill Range
1 0.005 0.16 26 kmspatial variogram 2 0.001 0.21 20 km
1 0.003 0.16 40 mintemporal variogram 2 0 0.20 25 min

3.6.4 Parameterization

For each selected event, the spatial and temporal sample variograms of the rainfall
indicator field are computed using the radar rain-rate data (see Section 3.3.2). Each
sample variogram is fitted using a spherical variogram model:

γ(h) =

n+ s
(

3h
2r −

h3

2r3

)
for h < r

n+ s for h ≥ r
(3.12)

where n is called the nugget, s the (partial) sill and r the range. The fitted values of
nugget, sill and range for each variogram are given in Table 3.2.

Next, the time series of µ̃ and Ñt are used to compute the temporal variograms of the DSD
parameters. A sum of two spherical variograms, one for the small-scale variability and
one for the large-scale variability, is fitted to each sample variogram (see Figure 3.5). The
fitted values of nugget, sills and ranges are given in Table 3.3. The temporal variograms
are then used to define the complete space-time variograms of µ̃ and Ñt as described in
Section 3.3.4.

Figure 3.5: Fitted temporal variograms of µ̃ and Ñt for event 1 (left panel) and event 2
(right panel). For details about the variogram parameters, see Table 3.3.
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Table 3.3: Fitted values of nugget, partial sills and ranges of the temporal variograms of
µ̃ and Ñt.

Parameter Event Nugget Partial sills Ranges [min]
1 0.06 0.16 and 0.98 4.3 and 29

µ̃ 2 0 0.38 and 0.42 3.3 and 11.3
1 0 0.1 and 0.88 2.4 and 26.3

Ñt 2 0.02 0.21 and 0.6 4.6 and 19.8

3.6.5 Simulated DSD fields

For illustration purposes, two 1-h simulations with a temporal resolution of 1 min and a
spatial resolution of 500 × 500 m2 have been generated. This turned out to be a good
trade-off between the required simulation time (a few minutes on a standard desktop
computer) and the ability to reproduce most of the space-time dynamics occurring in
rainfall and DSD at these scales. All the simulations were performed using the statistical
computing software “R” (R Development Core Team, 2011) and the “gstat” package by
Pebesma (2004).

Figure 3.6: Snapshot of a simulated field of µ, Nt, D0 and R for the frontal event. The
simulation size is 50 × 50 km2 and corresponds to the domain shown in Figure 3.2. The
pixel resolution is 500 × 500 m2.
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Figure 3.7: Snapshot of a simulated field of µ, Nt, D0 and R for the convective event.
Same format as in Figure 3.6.

Figure 3.8: Fields of Zh, Zdr, Ah and Kdp corresponding to Figure 3.6.
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Snapshots illustrating the simulated fields at a given time are provided in Figure 3.6 and
Figure 3.7. The associated radar bulk variables Zh, Zdr, Ah and Kdp at X-band (9.41
GHz) and 20 ◦ C are shown in Figure 3.8 and Figure 3.9.

Figure 3.9: Fields of Zh, Zdr, Ah and Kdp corresponding to Figure 3.7.

3.6.6 Evaluation

The quality and realism of the simulated DSD fields are difficult to evaluate quantitatively.
It is, for example, not possible to compare the simulated fields with observed radar data
because the latter were used to parameterize the simulator. An “indirect” evaluation of
the simulated fields based on the measurements of the 8 remaining disdrometers discarded
during the parameterization is nevertheless proposed.

The idea is to compare the statistical properties and the temporal structure of the
simulated and observed time series of µ and Nt. For each location x in the simulation
domain, the simulated values of µ and Nt (at this particular location) are extracted.
This gives, for each location, a 1-h time series of simulated DSD parameters. For each
location, the mean µ̄ and N̄t of the extracted time series is computed. To validate the
simulations, the distributions of µ̄ and N̄t are compared to their equivalents obtained
using the time series from the 8 “control” disdrometers (see Figure 3.10). One can see
that the simulated and observed values of µ̄ and N̄t are in good agreement but that
the simulated mean values have a much larger dispersion than the control values. This
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can however be explained by the fact that there are far more simulated time series
(one for each pixel in the simulation domain) than measured time series (only 8 control
disdrometers).

Figure 3.10: Simulated distributions of µ̄ (left) and N̄t (right) for event 1 (top) and
event 2 (bottom). Each box plot represents the 10 %, 25 %, 50 %, 75 % and 90 %
quantiles of all simulated values. The arrow next to each box plot represents the range
of µ̄ and N̄t for the 8 control disdrometers.

In order to evaluate the simulator’s capabilities to reproduce correct temporal structures,
the variograms of the simulated time series of µ̃ and Ñt are compared to the variograms
obtained from the 8 control disdrometers (see Figure 3.11). Again, the simulated
variograms exhibit a larger dispersion than the control variograms but the overall
agreement between the variograms is good. This suggests that the simulated fields
exhibit realistic temporal structures that are consistent with the control disdrometers.
Finally, it is also important to point out that both events (frontal and convective) were
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statistically well reproduced by the simulator despite their different nature.

Figure 3.11: Simulated and measured temporal variograms of µ̃ (left) and Ñt (right)
for event 1 (top) and event 2 (bottom). The black dotted lines represent the 10 % and
90 % quantiles of the simulated variograms for each pixel in the simulation domain. The
continuous black line represents the median of all simulated variograms. The dashed red
lines represent the minimum and the maximum of the 8 variograms computed using the
control disdrometers.

3.7 Discussion

Clearly, the proposed DSD simulator offers several advantages. It is relatively easy to
parameterize and only requires DSD time series (from a single disdrometer) and radar
rain-rate or reflectivity data. Once all the parameters have been estimated, hundreds of
simulations can be performed in a reasonable time on a single desktop computer. There
are, however, some limitations which have to be mentioned.

The size of the simulation domain is limited by the fact that the variograms of µ̃ and Ñt

must be representative of the variability of the DSD over the entire domain. Areas with
different variabilities (due for example to orographic effects) should be separated and
treated individually. As a rule of thumb, a reasonable simulation domain for convective
events should not exceed 50 × 50 km2 and 100 × 100 km2 for stratiform events. Another
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factor that strongly limits the size of the simulation domain is the particular form of the
space-time structure assumed in Equation 3.10 which essentially states that the advection
field must be constant over the entire domain. Local changes in advection within the
simulation domain (for example due to mountains or a coastal line) cannot be reproduced
correctly. The only possible generalization is to consider an average advection field that
changes over periods of 20-30 min and to simulate each time block separately.

The presented simulation technique only considers 2-dimensional fields of DSD at the
ground level (+ an additional temporal dimension). No assumptions with respect to
the vertical variability and structure of the DSD are made. In theory, 3-dimensional
fields of DSD could also be simulated using the technique presented in this chapter. In
practice, however, this turns out to be far more difficult because the horizontal and
vertical dimensions exhibit completely different dynamics and structures. Nevertheless,
if adequate parameterizations of the vertical variability (i.e., variogram) of µ and Nt can
be provided, an extension to 3-dimensional fields of DSD (using the generated 2D + time
fields as a starting point) is possible. This is particularly interesting for applications in
which the vertical properties of the DSD in the atmosphere are more important than on
the surface (e.g., for space-borne weather radars and telecommunication applications).

Finally, it must be noted that there is currently no direct way of controlling complex
physical processes like the growth, the decay, the merging and the splitting of individual
rain cells in the simulations. Individual rain cells may emerge or split up during the simu-
lations by “chance” (i.e., without any particular forcing nor additional parameterization)
but this is essentially due to “side effects” (e.g., a rain cell that is advected outside the
simulation domain causes another cell to appear elsewhere) and cannot be related to any
microphysical processes or atmospheric dynamics. Introducing such a forcing into the
simulations is difficult and far beyond the scope of this study. In the simplified case with
just one rain cell, additional external drifts on I, µ̃ and Ñt (similar to the one presented
in the Appendix), could be used to introduce such dynamics into the simulations. For
example, a temporal drift on I can be used to control the percentage of dry and wet
locations in the simulation domain and therefore the size of the considered cell with
respect to its lifetime. Similarly, a temporal drift on µ̃ can be used to control the increase
or decrease of the average drop diameter within the cell. Finally, a temporal drift on
Ñt allows to control the average drop concentration with respect to the lifetime of the
cell. It is however not clear how this technique could be extended to the case of multiple
interacting rain cells with different lifetimes and dynamics.

3.8 Conclusions

Precipitation is an essential part of the hydrological, atmospheric and climatic system
and must therefore be monitored and measured with great accuracy. Yet the large spatial
and temporal variability of precipitation appears to be an inevitable source of uncertainty
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in many practical applications. Modern hydrological and atmospheric models require
accurate rainfall estimates with high spatial and temporal resolutions, sometimes far
beyond the capabilities of current rainfall sensors. In these cases, a stochastic rainfall
simulator can be a very valuable tool because it provides large amounts of reference
data at high spatial and temporal resolutions. These reference data can be used to
investigate various aspects and algorithms in the models. For example, they can be used
to evaluate the performance of new algorithms for the merging of data collected using
different sensors and techniques (e.g., weather radars, rain gauges, disdrometers and
microwave links). Other possible applications include the study of the Z −R relationship
for weather radars, attenuation correction algorithms at C- and X-band, downscaling of
precipitation and reflectivity fields, soil erosion problems, atmospheric deposition and
signal attenuation of telecommunication microwave links.

In this chapter, a new method for the stochastic simulation of intermittent DSD fields in
time has been presented. The method generalizes previous work done by Barancourt
et al. (1992) and Schleiss et al. (2009) presented in Chapter 2 and uses a combination
of sequential indicator simulation and sequential Gaussian simulation. A multivariate
Gaussian anamorphosis is used prior to the simulation in order to transform the original
DSD parameters into independent normalized Gaussian variables. External drifts are
used to ensure the continuity between dry and rainy locations. In Section 3.6, the
simulator’s ability to reproduce complex and different rainfall patterns using real data
collected in Lausanne, Switzerland has been illustrated. An indirect evaluation of the
simulations suggests that the simulated DSD fields exhibit realistic space-time structures
that are in good agreement with independent DSD measurements.

The main advantage of the presented simulator is its simplicity and its short computation
time. The main limitation is the inability to reproduce the interactions (growth, decay,
merging and splitting) of multiple rain cells. Future work will mainly focus on practical
applications of the DSD simulator to problems related to the downscaling of DSD fields
and to the statistical representativity of radar and satellite measurements.
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Appendix: detrending the DSD time series

Recall that the variogram is only defined for intrinsic random functions (see Chilès and
Delfiner (1999)). Time series of µ and Nt usually do not satisfy this condition because
E[µ(t)] and E[Nt(t)] depend (non-linearly) on t. Typically, the beginning and the end
of each event is characterized, on average, by lower rain rates. Therefore, the expected
rain rate drifts towards zero as one approaches the next dry period. Similar continuity
conditions also affect each of the DSD parameters. The characteristics of this drift
are event dependent and must be estimated and removed before computing the sample
variograms. Finding appropriate methods to estimate these drifts can be difficult and
should be done with great care. In the following, a possible method for detrending DSD
time series that takes into account the proximity (in time) to the nearest dry period is
proposed. First, a logarithmic transform is applied to µ > −1 and Nt > 0:

µ 7→ log10(µ+ 1) (3.13)

Nt 7→ log10(Nt). (3.14)

The distribution of the log-transformed parameters is usually more symmetric and hence
better suited for statistical analysis. For a measured DSD time series (µ, Nt, I)(ti),
the sets D = {i | I(ti) = 0} and W = { i| I(ti) = 1} of all dry and wet time periods are
identified. For all i ∈W , the distance τi = minj∈D{|ti − tj |} to the nearest dry period is
computed. Finally, the drifts mµ(τ) and mNt(τ) are estimated for each (transformed)
DSD parameter:

mµ(τ) = 1
N(τ)

∑
τi∼τ

µ(ti) (3.15)

mNt(τ) = 1
N(τ)

∑
τi∼τ

Nt(ti) (3.16)

where N(τ) represents the number of observations at an (approximate) time lag τ from
the nearest dry period. A (simple) theoretical drift model is fitted to the sample estimates
and used to detrend the time series of µ and Nt (in the logarithmic space):

µ(ti) 7→ µ(ti)−mµ(τi) (3.17)

Nt(ti) 7→ Nt(ti)−mNt(τi) (3.18)
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An example of this technique is shown in Figure 3.12 where the estimated drift functions
mµ(τ) and mµ(τ) are shown for the convective rainfall event presented in Section 3.6.
Note that mNt(τ) usually increases with τ whereas for mµ(τ) it is the opposite.

Figure 3.12: Estimated drift functions for log10(µ+ 1) and log10(Nt) for the convective
event.

After removing the drift, a Gaussian anamorphosis is applied to the DSD time series. All
the simulations are performed in the Gaussian space. At the end, the simulated variables
are back-transformed using an inverse anamorphosis and the drift (depending on the
distance to the nearest simulated dry location or period) is added. Finally, the inverse
transform corresponding to (3.13) and (3.14) is applied to retrieve the parameters in the
original parameter space. The logarithmic transform ensures that only valid values of
µ > −1, and Nt > 0 are produced after adding the drifts to the simulations.
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4 Stochastic space-time disaggrega-
tion of rainfall into DSD fields 1

4.1 Summary

In this chapter, a stochastic method to disaggregate rainfall fields into DSD fields is
proposed. It is based on the stochastic DSD simulator presented in Chapter 3 that
has been modified in order to take into account prescribed mean values of rain rates
provided at the coarser scale. The proposed method is illustrated and validated using
radar rain-rate data provided by MeteoSwiss for two rain events of contrasted type.
The space-time structure of the DSD fields at the fine scale is parameterized using data
collected with a network of 16 disdrometers. The rainfall intermittency is modeled using
climatological relationships derived from radar data at different spatial and temporal
scales. The results show that the two types of rain events can be correctly disaggregated,
although the general agreement in terms of rain rate distributions, intermittency and
space-time structures is much better for the stratiform case. At the end of the chapter,
possible extensions and generalizations of the technique (e.g., using radar reflectivities
at two different frequencies or polarizations to drive the disaggregation process) are
discussed.

1. This chapter is a slightly modified version of the article by Schleiss, M. and A. Berne, 2012:
Stochastic space-time disaggregation of rainfall into DSD fields, submitted to J. Hydrometeorol., on the
17th of January 2012.
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4.2 Introduction

Meaningful investigations of many hydrological processes like flash floods, landslides
and urban water management, require accurate rain rate estimates at high spatial and
temporal resolutions (typically in the order of 1 km and 5 min and higher). Given the
impracticality of deploying extended rain gauge networks at the ground, one often has
to rely on remotely sensed rainfall estimates provided by passive and active sensors
like weather radars. The major problem with this approach is that the spatial and
temporal resolutions at which theses measurements are provided may not be relevant
for hydrological and meteorological applications. A common solution to this problem,
called rainfall disaggregation, consists in downscaling the initial measurements prior to
their use as input into the models. This requires to make certain assumptions about the
physics and the statistical properties of the considered rainfall fields. As a consequence,
disaggregated rainfall fields should not be taken as a faithful representation of the “true”
rainfall field, but as a particular realization of a stochastic process satisfying a set of
prescribed physical and statistical properties. A distinctive feature of this approach
is that each disaggregated rainfall field looks different at the fine scale but cannot be
distinguished from the others at the coarser scale.

So far, many different disaggregation techniques of various degrees of complexity have
been proposed in the literature. Among the few deterministic disaggregation methods,
one can mention the linear model by Ormsbee (1986) for time series disaggregation
and the chaotic dynamical approach by Sivakumar et al. (2001). Examples of spatial
deterministic disaggregation techniques are given by the Haar wavelet transform proposed
by Perica and Foufoula-Georgiou (1996) and the QQ transforms by Bárdossy and Pegram
(2011). Stochastic disaggregation techniques on the other hand are much more common.
Most of them focus on the temporal disaggregation of rain rate time series using stochastic
point processes (e.g., Hershenhorn and Woolhiser, 1987; Bo et al., 1994; Cowpertwait
et al., 1996; Koutsoyiannis and Onof, 2001) or (multi)fractal random cascades (Olssen
and Berndtsson, 1998; Guntner et al., 2001). Different approaches based on simulated
annealing (Bárdossy, 1998) and master target scaling techniques (Jennings et al., 2010) are
also worth mentioning. A lot of efforts have also been devoted to develop stochastic spatial
and space-time disaggregation methods, like the morphological algorithms by Kumar and
Foufoula-Georgiou (1994) and Mackay et al. (2001) that have the advantage of explicitly
taking into account the rainfall intermittency during the downscaling procedure. Other
examples include the Gibbs sampler by Onibon and Lebel (2004), filtered autoregressive
models (also called meta-Gaussian models) by Rebora et al. (2006b) and spectral multi-
scaling by Pavlopoulos (2011).

A common characteristic of all the above mentioned disaggregation techniques is that
they all focus on the disaggregation of rain rates. So far, no attempts have been made
to include the (rain)drop size distribution (DSD) into the disaggregation process. Yet
generating DSD fields is potentially more interesting and general than simulating rain
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rate fields because most of the important quantities in remote sensing of precipitation
(like the rain rate, the median drop diameter, the radar reflectivity, the differential
reflectivity, specific attenuation and differential phase shift) explicitly depend on the
DSD and its weighted moments. Such disaggregated DSD fields would constitute a
very valuable input for many practical applications in hydrometeorology. They can,
for example be used to investigate issues related to soil detachment, landslides and
erosion problems (Rosewell, 1986; Finlay et al., 1997; Kinnell, 2005), flash floods (Rebora
et al., 2006a), urban water management (Onof and Arnbjerg-Nielsen, 2009), rainfall
estimation using telecommunication microwave link networks (Messer et al., 2006; Leijnse
et al., 2007c) and remote sensing of precipitation using weather radars (e.g., Bringi and
Chandrasekar, 2001; Krajewski and Smith, 2002), satellites like TRMM (Simpson et al.,
1988; Iguchi et al., 2000) and the upcoming global precipitation measurement mission
GPM (http://gpm.nasa.gov).

In this chapter, a stochastic disaggregation technique that allows to generate realistic
space-time intermittent DSD fields with given space-time integral rain rates (or any
other variable related to the DSD) is described. It is based on Geostatistics and uses
climatological variograms to model the space-time structure of the DSD parameters.
Sequential indicator and sequential Gaussian simulation methods are used iteratively
until the generated DSD fields satisfy all the prescribed conditions at the coarse scale.
The method is illustrated and evaluated qualitatively using two different rainfall events
and MeteoSwiss radar rain-rate data.

This chapter is structured as follows: first, the models and methods needed for the
disaggregation are described in Section 4.3. The disaggregation technique is then detailed
in Section 4.4 and illustrated in Section 4.5. The conclusions are given in Section 4.6.

4.3 Models

This section describes the models used to represent the DSD and the rainfall intermittency
in the disaggregation process. Only the most important and relevant parts are explained.
For more details about the models and the stochastic simulation method used to generate
the DSD fields, see Chapter 2 and Chapter 3.

4.3.1 DSD model

The DSD is assumed to be adequately represented by a Gamma distribution (Ulbrich,
1983; Willis, 1984):

N(D) = αNtD
µe−ΛD, (4.1)
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where N(D)dD [m−3] denotes the number of drops per unit volume with diameters
between D [mm] and D + dD and α = (

∫Dmax
Dmin

Dµe−ΛD dD)−1 is a normalization factor
taking into account the finite range of possible drop sizes between Dmin and Dmax.
The Gamma DSD model has three parameters: the shape µ > −1 [-], the rate Λ > 0
[mm−1] and the concentration Nt > 0 [m−3]. Because of the natural variability of
rainfall, (µ,Λ, Nt) can be seen as realizations (in space and time) of an underlying
multivariate random function. Simulating DSD fields is therefore equivalent to simulating
a (tri-variate) random field (µ,Λ, Nt)(x, t) at each point x in space and t in time. Note
that other parameterizations corresponding for example to normalized DSDs (Bringi and
Chandrasekar, 2001) can also be considered.

Simulating DSD fields is more interesting and general than simulating rain rate fields
because the rain rate can be derived from the DSD, through direct numerical integration:

R = 6π
104

∫
D
D3v(D)N(D)dD (4.2)

where R [mmh−1] denotes the rain rate and v(D) [m s−1] the terminal fall speed of a drop
of diameter D (e.g., Beard, 1977). Similar expressions exist for many other quantities
of interest like the median drop diameter D0 [mm], the radar reflectivity at horizontal
or vertical polarization Zh|v [dBZ], the differential reflectivity Zdr = Zh − Zv [dB] and
the specific attenuation on propagation Ah|v [dB km−1]. Consequently, any quantity that
is directly related to the DSD can be used as a driving variable in the disaggregation
process. More generally, any combination of moments or quantities related to the DSD
(e.g., the radar reflectivities at two different frequencies or polarizations) can be used
to further refine the disaggregation process (see Section 4.5.4 for more details). For
illustration, only the rain rate will be considered.

It is worth mentioning that several studies on the Gamma DSD mention the existence of
deterministic relationships between the shape parameter µ and the rate parameter Λ in
Equation (4.1) (e.g., Zhang et al., 2001; Seifert, 2005). Although they are not necessary
in the disaggregation process, these relationships are very interesting because they allow
to reduce the number of stochastic parameters to be simulated and therefore significantly
increase the computational efficiency. For more conciseness, the disaggregation method
will only be explained for two stochastic parameters (µ,Nt) instead of three, therefore
assuming a deterministic relationship between µ and Λ. The extension of the method to
3 stochastic parameters is straightforward and does not change the general idea behind
the approach.
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4.3.2 Gaussian anamorphosis of DSD parameters

Simulating a bivariate random field (µ,Nt)(x, t) with given space-time structure is
very difficult in general. There are, however, very efficient simulation algorithms for
the case where (µ,Nt) are jointly Gaussian with known correlation structure (Journel
and Huijbregts, 1978; Ripley, 1987; Guillot, 1999). A common approach in stochastic
simulation therefore consists in transforming the original parameters (µ,Nt) into jointly
Gaussian variables (µ̃,Ñt) prior to their simulation, a procedure also known as “Gaussian
anamorphosis”. At the end of the simulation, the values of (µ̃,Ñt) are back-transformed
into the original parameter space using the inverse transform. A particularly interesting
Gaussian anamorphosis is the so-called stepwise conditional Gaussian transformation
technique (Leuangthong and Deutsch, 2003) that ensures that the transformed parameters
are independent Gaussian variables with zero mean and unit variance. Because they are
independent, the parameters can be simulated separately. Cross-correlations and higher
order moments between the variables are then re-introduced after the simulation, during
the back-transformation.

4.3.3 Intermittency

Rainfall intermittency, i.e., the presence or absence of rainfall, is described by an indicator
function

I(x, t) =
{

1 if R(x, t) > 0
0 else

(4.3)

where R(x, t) [mmh−1] represents the instantaneous rain rate at location x ∈ R2 and
time t ∈ R. By extension, we define

I(X,T ) =
{

1 if ∃ (x, t) ∈ (X,T ) with I(x, t) = 1
0 else

(4.4)

where X is a given domain in R2 and T a given time period. For simplicity, only square
areas of size k × k [km2] and continuous time periods [t, t + τ ] of duration τ [h] are
considered.

The problem with rainfall intermittency is that it strongly depends on the scale at which
it is considered. This dependency must be taken into account during the disaggregation
process. More specifically, the amount of dry regions and locations must increase when
going from the coarse scale to the fine scale. Analytical relationships describing the
average amount of intermittency with respect to the considered spatial and temporal
scales can be found in Kundu and Siddani (2011) and Chapter 5. These relationships
can be used to estimate the percentage p [-] of rainy pixels at the fine scale (k, τ) as a
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function of the observed percentage of rainy blocks P [-] at the coarse scale (K,T ). This
is a difficult problem that has not been addressed in detail in the literature so far. A
possible approach is to estimate p using the climatological relationships between rainfall
intermittency at different scales given in Chapter 5:

p = P + p(k, τ)− p(K,T ) (4.5)

where

p(k, τ) = (p0 + p1k) exp
{
−
[
τ

akb

]β}
(4.6)

for some given parameter values p0, p1, a, b and β provided in Table 5.1. For example,
a simple numerical application of Equation (4.5) shows that the percentage of rainy
periods and locations decreases by about 5 percent points on average when disaggregating
from 5 × 5 km2 and 15 min to 1 × 1 km2 and 5 min. In other words, if the observed
percentage of rainy periods and locations at 5 × 5 km2 and 15 min is 95 %, the expected
value at 1 × 1 km2 and 5 min resolution will be 90 %. However, because these are only
climatological relationships, the “real” value of rainfall intermittency for a given event
can be significantly different from its expectation, as shown in Section 4.5. Consequently,
it is suggested to generate many, different realizations with different values of p within a
given confidence interval (e.g., 5-10 %) around the expected climatological value.

4.3.4 Space-time structure

The space-time structures of I, µ̃, and Ñt are modeled using variograms (Matheron,
1965), a key tool in the field of Geostatistics (Chilès and Delfiner, 1999). The space-time
variogram of a random field Z is defined as

γZ(h, τ) = 1
2E

[
(Z(x+ h, t+ τ)− Z(x, t))2

]
, (4.7)

where h ∈ R2 is a spatial separation vector, τ ∈ R is a given time lag and E denotes the
expectation.

In theory, any valid space-time variogram can be used to model the space-time structure
of I, µ, and Nt. In Section 4.5, different variogram models that have been fitted using a
large amount of DSD data collected in Lausanne, Switzerland and are representative of
the local climatology and rainfall types (e.g., stratiform vs convective) are proposed. The
general space-time structure of these variograms is closely related to Taylor’s hypothesis
of frozen turbulence (Taylor, 1938), which states that the rainfall field moves, during
short periods of time, with constant velocity v, and that its evolution for time lags
up to 20-30 min is small compared to the advection process (Li et al., 2009). Hence
the following variogram model can be used to represent the space-time structure of the
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rainfall field:

γZ(h, τ) = γ
(S)
Z (h− τv) + γ

(T )
Z (τ) (4.8)

where γ(S)
Z (h) and γ(T )

Z (τ) are two valid variogram models representing the spatial and
the temporal structure of Z. In other words, the space-time variogram of Z can be
decomposed in spatial and temporal variations, linked by a speed and direction of
advection v. Note that γ(S)

Z (h) can be isotropic (i.e., it only depends on the norm of h)
or anisotropic (it depends on both the norm and the direction of h).

The fact that, in the absence of any external source of information the space-time
variograms of I, µ, and Nt must be “guessed” or estimated from the observed structure
at the coarse scale is an inherent property of any disaggregation method and should not
be seen as a major limitation. Climatological variograms are useful but will not always
provide optimal results, especially if the “true” variogram of the field is significantly
different. In case the spatial and temporal structures are highly uncertain, it is always
possible to generate different realizations of the same event using different space-time
variogram models covering a large range of plausible structures.

4.3.5 Sequential Gaussian and indicator simulation

The simulation methods used to generate Gaussian and indicator fields with a given
space-time structure are the sequential Gaussian simulation (SGS) and the sequential
indicator simulation (SIS) algorithms (Ripley, 1987). These methods were chosen because
they are intuitive and efficient, even for large simulation domains (through the use of
local neighborhoods). Because SGS and SIS are very similar, the implementation details
are only provided for SGS.

1. Start with a previously simulated or prescribed set of (Gaussian) values z1, ..., zM at
locations x1,...,xM . If M = 0, the simulation is said to be non-conditional.

2. Define the locations xM+1,...,xM+N at which Z will be simulated.
3. Choose a random path Γ that visits each location xM+1, ..., xM+N exactly once. For
simplicity, we will assume that Γ = (M + 1, ...,M + N) (otherwise the remaining
locations are re-arranged in the order given by Γ).

4. Go through Γ. At location i, estimate the conditional distribution Fi of Z(xi) given
all the previously simulated or prescribed values. Generate a realization zi according to
Fi and include the outcome in the set of previously simulated values. In the Gaussian
case, this is very easy because

Z(xi) | Z(xi−1) = zi−1, ..., Z(x1) = z1 ∼ N(z?i , σ?
2
i ) (4.9)

where z?i and σ?2
i represent respectively the simple kriging estimate at location i and

the associated kriging variance (e.g., Chilès and Delfiner, 1999, p.164). Hence the
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problem reduces to solving the kriging equations and drawing a value at random from
a Gaussian distribution with known mean and variance.

5. Go to the next location and repeat the procedure for the remaining locations.

Note that, in its simplest formulation (given above), SGS is not computationally efficient
because the size of the kriging system increases at each iteration. Consequently, the time
needed to solve the kriging system and to derive z?i and σ?2

i rapidly becomes prohibitive.
A common solution to this problem, called sequential Gaussian simulation with local
neighborhood selection, is to exploit the screening effect (e.g., Chilès and Delfiner, 1999,
p.202) and to consider only a fixed amount of nearest neighbors at each iteration step
when solving the kriging system. In this way, the algorithm stays computationally
efficient, even for large simulation domains. The size of the neighborhood is selected as a
trade-off between computational cost and accuracy of the kriging estimates.

Sequential indicator simulation (SIS) is very similar, except that the considered variable
Z follows a discrete probability distribution with two states (0/1). The major difference
compared to the Gaussian case is that the conditional distribution Fi is now Bernoulli
and that the simple kriging mean z?i is supposed to accurately represent the conditional
expectation of Z(xi) (i.e., the probability of Z(xi) to be equal to 1). The estimated
kriging variance is not needed anymore and does not need to be computed. Once the
kriging system has been solved and z?i determined, the problem reduces to drawing a
value at random from a Bernoulli distribution with known mean. The only theoretical
problem with this method is that z?i can, in theory, be less than 0 or greater than 1. If
this is the case, the corresponding probabilities are set to 0 or 1 accordingly and the
outcome zi is purely deterministic. At the end of the simulation, the variogram of the
simulated indicator field is checked against the model in order to discard possible artifacts
caused by this thresholding.

4.4 Disaggregation

This section describes the proposed algorithm to generate realistic DSD fields with
prescribed space-time structure, intermittency and block-averaged rain rates. A simplified
visual illustration of the disaggregation procedure (without the temporal dimension) is
provided in Figure 4.1.

4.4.1 Conditions and constraints

In the following, the conditions that need to be satisfied by the generated DSD fields are
described. For simplicity, the driving variable is supposed to be the rain rate. Suppose a
target rain rate field R = (R1, ..., Rn) consisting of n space-time blocks of equal size and
duration is provided at the coarse scale (K,T ). In the classical disaggregation framework,
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the objective is to generate a new rain rate field r = (r(1:m)
1 , ..., r

(1:m)
n ), at a smaller scale

(k, τ), such that

1
m

m∑
j=1

r
(j)
k = Rk ∀ k = 1, . . . , n (4.10)

where m represents the number of space-time pixels of size k × k × τ per block of size
K × K × T . In other words, the generated rain rate field r must aggregate exactly
into R when going from the fine to the coarse scale. In practical applications, however,
Equation (4.10) only needs to be verified up to a given tolerance level εabs

R [mmh−1] or
relative tolerance εrel

R [-] related to the measurement uncertainty on the rain rates at the
coarse scale.

A more general approach consists in generating a DSD fieldN(D) = {N(D)(1:m)
1 ..., N(D)(1:m)

n }
at the fine scale and to derive the corresponding rain rate field r using Equation (4.2).
The simulated DSD field must satisfy the same conditions as above:

6π
104m

m∑
j=1

∫ Dmax

Dmin

D3v(D)N(D)(j)
k dD = Rk ∀ k = 1, . . . , n (4.11)

where v(D) is the terminal fall speed of a drop of diameter D. Note that for consistency,
the DSD is assumed to be defined only for rainy periods and locations.

Finally, recall that the generated DSD fields are intermittent. If I = (I1, ..., In) denotes
the intermittency at the coarse scale and i = (i(1:m)

1 , ..., i
(1:m)
n ) the intermittency at the

fine scale, the following conditions related to the presence and absence of rainfall need to
be satisfied:

m∑
j=1

i
(j)
k = 0 ∀ blocks for which Ik = 0

m∑
j=1

i
(j)
k > 0 ∀ blocks for which Ik = 1.

(4.12)

Also, the percentage p of rainy pixels at the fine scale must be related to the observed
intermittency at the coarse scale, in accordance to Equation (4.5)

p = 1
nm

n∑
k=1

m∑
j=1

i
(j)
k = 1

n

n∑
k=1

Ik + p(k, τ)− p(K,T ) (4.13)

where p(k, τ) respectively p(K,T ) represent the average climatological rain probabilities
at the fine and the coarse scale.
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4.4.2 Disaggregation algorithm

This subsection describes the algorithm used to generate intermittent DSD fields satisfying
the disaggregation conditions given in Equations (4.11), (4.12) and (4.13). For more
details on the underlying models and methods (e.g., Gaussian anamorphosis, SIS and
SGS), see Section 4.3. For a (simplified) visual illustration of the disaggregation algorithm,
see Figure 4.1.

1. Use SIS to generate a conditional indicator field i = (i(1:m)
1 , ..., i

(1:m)
n ) with mean p and

space-time structure given by γI(h, τ). Note that it might be necessary to draw more
than 1 realization until a field satisfying all the conditions given in Equation (4.12) is
found.

2. Assign a zero rain rate value to all simulated dry pixels (i(j)k = 0). Keep only the wet
pixels for the next simulation steps.

3. For the wet pixels only, use SGS to generate 2 independent Gaussian fields µ̃ =
(µ̃1:m

1 , ..., µ̃1:m
n ) and Ñt = (Ñ (1:m)

t1 , ..., Ñ
(1:m)
tn ) with zero mean and space-time variograms

given by γµ̃(h, τ) and γÑt
(h, τ).

4. Apply an inverse anamorphosis to back-transform the simulated values (µ̃(j)
k ,Ñ (j)

tk
)

into the original parameter space (µ(j)
k ,N (j)

tk
).

5. Compute the rain rates r(j)
k from the simulated DSD fields using Equations (4.1-4.2).

6. Aggregate the simulated rain rate field r = (r(1:m)
1 , ..., r

(1:m)
n ) at the coarse scale.

7. Identify all the blocks that satisfy Equation (4.11). If all the block-averaged rain rates
are correct, stop.

8. Generate two new realizations of µ̃ and Ñt on the sub-domain defined by all the (wet)
pixels with incorrect block-averaged rain rates. Use the previously simulated values
of µ̃(j)

k and Ñ (j)
tk

on the pixels with correct block-averaged rain rates as conditioning
values for the new simulations.

9. Continue until all blocks satisfy Equation (4.11) or until a predefined maximum
number of iterations is reached. If there are remaining blocks with incorrect rain rates,
go back to 1 and start a new simulation or continue and slightly decrease/increase the
range/sill of γµ̃(h, τ) and γÑt

(h, τ).

This defines the method to simulate a realistic intermittent DSD field with given space-
time integral rain rate values. Because the proposed procedure is stochastic, an infinite
number of DSD fields satisfying the same conditions can be generated by repeating the
previous simulation steps. Note that this can be done using the same rainfall indicator
field (i.e., starting at step 2) or, more generally, by simulating another indicator field at
each iteration.
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Chapter 4. Stochastic disaggregation of rainfall into DSD fields

4.5 Application

In this section, the disaggregation procedure is illustrated using two different events.
The first is a rather stratiform event that occurred on the 30th of March 2010 and the
second is a rather convective event that occurred on the 13th and 14th of June 2010.
The rain rate measurements used to drive the disaggregation process are taken from the
operational MeteoSwiss radar rain-rate product (1 × 1 km2 and 5 min resolution), for a
chosen domain of size 30×30 km2 in the North East of the city of Lausanne, Switzerland,
for which the radar data are known to be of good quality. For validation purposes, the
radar data are first aggregated at 5 × 5 km2 and 15 min and then disaggregated back
to their original resolution, i.e., 1 × 1 km2 and 5 min. In this way, it is possible to
rigorously compare the statistics of the measured and disaggregated fields and to draw
relevant conclusions with respect to the performance of the disaggregation process (see
Section 4.5.3 for more details). Snapshots illustrating the two considered events are given
in Figure 4.2 and Figure 4.3.

Figure 4.2: Radar rain rate measurements (in mmh−1) for the first 15 min of event 1,
the 30th of March 2010, between 11:55 UTC and 12:05 UTC. The lower right panel shows
the aggregated rain rates at 5 × 5 km2 for the considered 15 min. The domain size is
30 × 30 km2.
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4.5. Application

Figure 4.3: Radar rain rate measurements for the first 15 min of event 2, between the
13th of June 2010 at 23:50 UTC and the 14th of June 2010 at 00:00 UTC. Same format
as in Figure 4.2.

The DSD database used for disaggregation consists of 5239 DSD spectra at 5 min
temporal resolution and 1 km2 spatial resolution collected using a network of 16 optical
disdrometers on EPFL campus, Lausanne, Switzerland (Jaffrain et al., 2011). The
selected database represents a total of 87.3 hours of rainfall for 33 different events. Note
that because DSD parameters are scale dependent, it is important to collect them at scales
that are similar to the one used in the disaggregation. A 3-parameter Gamma distribution
(µ,Λ,Nt) given in Equation (4.1) has been fitted on each observed DSD spectrum using
the maximum likelihood method (correcting for drop censoring at the lower end of the
distribution). For simplicity, the rate parameter Λ is expressed as a linear function of
the shape parameter µ, therefore reducing the number of stochastic parameters to be
simulated. A bivariate Gaussian anamorphosis is applied to transform the observations
(µ,Nt) in the original parameter space into independent Gaussian variables µ̃ and Ñt

(see Section 4.3.2). A total of 6 rather stratiform events and 9 rather convective events
were selected and used to compute climatological variograms representative of the spatial
and temporal variability of the transformed DSD parameters. The remaining 18 events
(representative of transitional scenarios) were not considered.
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Chapter 4. Stochastic disaggregation of rainfall into DSD fields

4.5.1 Stratiform event

The selected stratiform event lasts several hours but only the first hour between 11:55 and
12:55 UTC is considered for disaggregation. This represents 144 blocks of size 5 × 5 km2

and 15 min duration, decomposed into 10800 pixels of size 1 × 1 km2 and 5 min duration
(i.e., each block is decomposed into 75 pixels). The percentage of dry blocks at the coarse
scale is 3.47 %. Based on Equation (4.5), the percentage of dry pixels at the fine scale
should therefore be about 8.5 %. Note that this is different from the “true” intermittency
value of 12.97 % derived from the radar rain-rate data at the highest resolution. However,
because the “true” value of intermittency at the fine scale is usually unknown in practical
applications, it has been decided to illustrate the disaggregation procedure using the
non-optimal climatological estimate of 8.5 %.

Next, the speed and direction of advection v ∈ R2 for this event was estimated using
an echo-tracking algorithm (Rinehart, 1979). The results show that for the considered
hour, the rainfall field moved at approximatively 12 m s−1 towards the North-East. The
average advection vector v was then used to estimate the parameters of the corresponding
space-time variogram models described in Equation (4.8). In this case, both γS and γT
were well represented by an isotropic spherical variogram model:

γ(h) =
{
n+ (s− n)

(
3||h||

2r −
||h||3
2r3

)
if ||h|| < r

s if ||h|| ≥ r
(4.14)

where n is called the nugget, s the sill, r the range and || · || denotes the Euclidean norm
in R2. The fitted values of n, s and r are given in Table 4.1.

Table 4.1: Variogram parameters for event 1 (stratiform). Both γS and γT are isotropic
spherical variogram models. The nugget is assumed to be zero.

γ(S) γ(T )

sill [-] range [km] sill [-] range [min]
I 0.034 24 0.044 33
µ̃ 0.43 18 0.57 24
Ñt 0.43 12 0.57 16

No particular problems occurred during the disaggregation of this event. The algorithm
needed between 30 and 50 iterations on average (corresponding to a few minutes on a
standard desktop computer) until all conditions were satisfied. An illustration of the final,
disaggregated rain rate field (with DSD parameters µ and Nt) is shown in Figure 4.4.
Note that for a better visibility, only the first 15 min are shown.

One can see that the simulated DSD parameters µ and Nt are plausible with respect
to stratiform rainfall. There are many large values of µ (small drops) and the spatial
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Chapter 4. Stochastic disaggregation of rainfall into DSD fields

variability is relatively small. The rain rate seems to be mostly influenced by changes
in the drop concentration Nt which exhibits a moderate spatial variability, mostly due
to the presence of intermittency. The corresponding rain rates (bottom panel) exhibit
limited spatial and temporal variability and look very realistic.

4.5.2 Convective event

Disaggregating convective events is more difficult than stratiform cases. Their variability
is larger and their space-time structures can be significantly different from the average
climatological variogram. If the difference between the climatological and the “true”
(unknown) variogram of the field is too large, the algorithm might not converge at all.
Most of the time, however, it just needs more iterations until an acceptable solution
satisfying all the prescribed block-averaged rain-rates is found. Another reason why
convective events are generally more difficult to disaggregate is because they sometimes
exhibit small spatial or temporal non-homogeneities. For example, convective cells with
high rain rates will be more difficult to generate, especially if these are surrounded by
very low rain rates or dry regions. If the transition between small and large rain rates is
too abrupt, the algorithm might not be able to generate a DSD field satisfying both the
prescribed spatial structure and the block-averaged rain rates. Fore more details on this
problem (and possible solutions), see Section 4.5.4.

The considered convective event is slightly longer than 1 hour but only the first hour
between the 13th of June 2010 at 23:50 UTC and the 14th of June 2010 at 00:50 UTC
is considered. The percentage of dry blocks at the coarse scale is 25 % and is therefore
estimated at 30 % at the fine scale. The “true” value, however, is 44.91 %. This clearly
shows the current limitations of using climatological relationships for the transformation
of dry probabilities from one scale to another. Next, the speed and direction of advection v
is estimated for the considered hour and found to be about 6 m s−1 along the 30◦ direction
(clockwise from the North). The nugget, sill and range values of the corresponding space-
time variogram models defined in Equations (4.8) and (4.14) are given in Table 4.2. Note
that similar variogram models are used for the stratiform and convective events, but
with different values of sill and range.

Table 4.2: Variogram parameters for event 2 (convective). Both γS and γT are isotropic
spherical variogram models. The nugget is assumed to be zero.

γ(S) γ(T )

sill [-] range [km] sill [-] range [min]
I 0.05 12 0.16 33.3
µ̃ 0.26 7.2 0.74 20
Ñt 0.26 5.8 0.74 16.1
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4.5. Application

As expected, the disaggregation algorithm needed slightly more iterations on average
(between 50 and 100) until all the conditions were satisfied. An illustration of a disag-
gregated rain rate field (with DSD parameters µ and Nt) is shown in Figure 4.5. As
previously, only the first 15 min are shown.

The generated DSD fields look realistic and are plausible with respect to convective
rainfall: the µ values are low (large drops) and exhibit strong spatial and temporal
variabilities. The values of Nt are large (high drop concentrations) and also exhibit
strong variabilities. The rain rate fields derived from the simulated DSD parameters
(bottom row) also look realistic and satisfy all the prescribed conditions at the coarse
scale. They are, however, slightly too smooth compared to the radar estimates at the
same scale (see Figure 4.3 for comparison). This discrepancy is confirmed by additional
analyses presented in Section 4.5.3 that show that both the spatial and temporal ranges
of the simulated fields are overestimated.
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4.5. Application

4.5.3 Evaluation

Figures 4.4 and 4.5 nicely illustrate the disaggregation process but only represent 1
possible realization for each considered event. In order to better evaluate the performance
of the proposed algorithm, 100 different realizations have been generated for each type
of rainfall (stratiform and convective). The statistical properties of the generated fields
have then been analyzed and compared to the ones derived from the radar rain-rate data
at the same spatial and temporal resolutions. Note that the goal is not to reproduce the
same rain rate values as the radar but to generate an ensemble of realizations that are
consistent with the radar data and have similar statistical properties. Here, the criteria
used to assess the consistency between the simulated and observed fields are (1) the rain
rate distributions over the considered region, (2) the percentage of dry locations over the
considered domain, (3) the spatial structure of the rain rate fields and (4) the temporal
structure of the rain rate fields.

The results for criteria 1-2 are shown in Figure 4.6 (stratiform event) and in Figure 4.7
(convective event).

Figure 4.6: Statistical analysis of 100 simulated realizations for event 1 (stratiform). The
left panel shows the measured (black) and simulated (plain gray) rain rate distributions
using box plots (10 %, 25 %, 50 %, 75 % and 90 % quantiles). On the right, the measured
(black points) and simulated (grey crosses) percentage of dry locations with respect to
time.

Figure 4.7: Statistical analysis of 100 simulated realizations for event 2 (convective).
Same format as in Figure 4.6.

In both cases, the simulated rain rate distributions are consistent with the observations.
The percentage of dry locations is underestimated in both cases because the intermittency
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at the small scale is estimated using a climatological relationship which is not optimal for
the considered events. Note that this is not a limitation of the disaggregation method but
rather a consequence of our lack of knowledge about the scaling of rainfall intermittency.

The spatial and temporal structures of the disaggregated rain rate fields are shown in
Figure 4.8 (stratiform event) and Figure 4.9 (convective event). Note that the analysis
focuses on the small spatial and temporal scales only. Larger scales are less interesting
because they are mostly conditioned by the structure of the rain rate field used to drive
the disaggregation process (and are therefore very similar). Note that because the rain
rate distributions are highly skewed, all the sample variograms were estimated using
Cressie’s robust estimator (Cressie and Hawkins, 1990). Figure 4.8-4.9 show that the
small-scale structures of the disaggregated fields are consistent with the “true” structures
observed by the radar.

Figure 4.8: Statistical analysis of the spatial and temporal structures of 100 simulated
realizations for event 1 (stratiform). The left panel shows the 10 %, 50 % and 90 %
quantiles of the spatial variogram of the disaggregated rain rate fields (grey dotted lines).
The black dots represent the “true” spatial variogram computed using the radar rain
rates at the fine scale. The right panel shows a similar comparison but for the temporal
structure of the disaggregated rain rate fields.

Figure 4.9: Statistical analysis of the spatial and temporal structures of 100 simulated
realizations for event 2 (convective). Same format as in Figure 4.8.

The spatial and temporal structures of the stratiform event are particularly well repro-
duced. The convective event, on the other hand, is too smooth compared to the radar
data, which can also been seen when comparing Figure 4.3 and Figure 4.5. Clearly, the
climatological space-time variograms for convective events are not optimal in this case,
although one must be careful because radar rain-rate estimates are not perfect either. A
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significant part of the observed spatial variability in Figure 4.3 could be due to noise
affecting the radar measurements. If this is the case, then the disaggregated rain rate
fields (that are free from any noise because computed directly from the DSD) are more
realistic.

4.5.4 Discussion

The simulated DSD fields presented in this section are all plausible in terms of structure
and dynamics and their associated rain rates are consistent with radar measurements at
the same scales. In general, stratiform events are easier to disaggregate than convective
events because they are smoother and more homogeneous in space and time. Convective
events, on the other hand, are more difficult to generate using a single climatological
variogram. Furthermore, if there are regions that exhibit a significantly different behavior
and variability than the rest of the domain, the disaggregation algorithm might not
converge at all. In this case, it is better to break down the simulation domain into smaller
sub-domains represented by different variabilities and variograms. This naturally limits
the size of the simulation domain which should be in the order of 50 × 50 km2 and a
few hours in time, after which non-stationarities and non-homogeneities may become
too important to be ignored. Instead of breaking down the simulation domain into
smaller pieces, another, maybe more interesting approach is to slowly increase/decrease
the sill/range of the variograms after each iteration step. In this way, the DSD fields
are generated in ascending order of variability, starting with the large scale structures
(with small variability) and finishing with the regions that exhibit the strongest spatial
and temporal variabilities. Intuitively, this is equivalent to generate a smooth field
representative of the trend over the entire domain and to add successive layers of
(increasing) noise to this initial field.

Note that the average rain rate at the coarse scale was the only variable used to drive
the disaggregation process in this application. The presented disaggregation method is,
however, far more general and can be applied to other and more complex inputs and
driving variables. It is, for example, possible to drive the disaggregation process using
radar reflectivity fields instead of rain rates in Equation (4.10). The relationship between
the DSD and the driving variable is then given by:

Zh|v = 106w4

π5|m2−1
m2+2 |

∫
D
σBh|v (D)N(D)dD (4.15)

where w [cm] represents the radar wavelength, m [-] the complex refractive index of water
(at a given temperature) and σBh|v (D) the backscattering cross sections at horizontal
and vertical polarizations for a drop of diameter D. Such an extension is easy, straight-
forward and particularly interesting if reflectivity measurements are available at different
frequencies (e.g., GPM) or polarizations because in this case, the generated DSD fields
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must satisfy the prescribed space-time integral reflectivity values at both frequencies or
polarizations which significantly reduces the range of possible solutions compared to the
traditional disaggregation framework. This is, however, beyond the scope of the present
study.

4.6 Conclusions

In this chapter, a stochastic method for the disaggregation of rainfall fields into in-
termittent fields of DSD with given space-time integral rain rates has been presented.
The feasibility of the method has been illustrated using radar rain-rate data for two
different events and types of rainfall (convective vs stratiform). The results show that
the generated DSD fields exhibit realistic spatial and temporal structures and that their
associated rain rates are consistent with radar measurements at the same scales. The
rainfall intermittency at the small scale is slightly underestimated but coherent with the
available observations at the coarse scale. Improvement can be expected if other, more
advanced methods are used to estimate the amount of intermittency at the fine scale based
on the observations at the coarse scale. The application further showed that stratiform
events are easier to disaggregated than convective events because they are smoother and
exhibit fewer non-stationarities. However, for convective events, convergence can still be
obtained if the sill/range is slightly increased/decreased at each iteration.

The main limitations of the proposed disaggregation method are that the space-time
variograms used to generate the DSD fields at the fine scale must be (more or less)
representative over the entire simulation domain (which limits the size of the domain
that can be simulated) and that the disaggregation scheme is limited to 2-dimensional
fields of liquid precipitation. Issues related to mixed-phase precipitation and vertical
variabilities (which are very important for satellites applications) are not addressed in
this version but will be investigated in future work.

The main advantages of the proposed approach are its generality and flexibility with
respect to the variables and constraints that can be used to drive the disaggregation
process and the broad range of potential applications. The DSD can be parameterized
using 2 or 3 stochastic parameters for a standard or normalized Gamma distribution (or
any parametric distribution in general). Furthermore, any weighted moment of the DSD
(or combination of different moments) can be used to drive the disaggregation process.
Most of the time, the target variable is the rain rate but other, more general approaches
can be considered. Future work will mainly focus on disaggregation using dual-frequency
reflectivity constraints, vertical variability and methods to deal with non-stationarities in
larger simulation domains.
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5 Statistical analysis of rainfall in-
termittency at small spatial and
temporal scales 1

5.1 Summary

Rainfall intermittency is analyzed and quantified at small spatial and temporal scales
using 2 years of radar and disdrometer data collected in Switzerland. Analytical models
are fitted and used to describe the intermittency for spatial scales between 0 and 30 km
and temporal resolutions between 30 s and 6 h, providing climatological parameterizations
for efficient and accurate upscaling/downscaling of intermittent rainfall fields. First, the
zero rainfall probability is analyzed with respect to the considered spatial resolution.
Second, the spatial autocorrelation of rainfall intermittency is quantified with respect to
the temporal resolution. Finally, the temporal autocorrelation is analyzed with respect
to the spatial resolution. The results show that all these different aspects of rainfall
intermittency can be accurately described by a scaled exponential function with a fixed
shape parameter and a variable scale parameter. Models describing this variability are
provided.

1. This chapter is a slightly modified version of the article by Schleiss, M., J. Jaffrain and A. Berne,
2011: Statistical analysis of rainfall intermittency at small spatial and temporal scales, Geophys. Res.
Lett., 38, doi:10.1029/2011GL049000
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5.2 Introduction

Precipitation is a highly variable non-continuous process in space and time. It is
characterized by relatively long dry periods punctuated by shorter rain events with
complex spatial and temporal structures. This constant alternating between dry and
rainy periods, called rainfall intermittency, significantly affects the environment and the
ecosystems. For example, vegetation cover in arid or semi-arid regions is highly sensitive
to rainfall intermittency which limits the available resources (water and nutrient) and
controls their abundance in time (Kletter et al., 2009). In more temperate regions, the
soil and surface hydrology are known to be strongly sensitive to rainfall intermittency
which influences important natural processes like stream flow, runoff, soil moisture and
soil erosion (Pitman et al., 1990).

The major difficulty with rainfall intermittency is the fact that it varies significantly with
respect to the considered spatial and temporal scales. Short time periods are more likely
to be completely dry than long ones and small areas are more likely to be dry than large
ones. Yet the ability to quantify the probability of zero rainfall at multiple space and
timescales is crucial for many practical applications in hydrology, meteorology and remote
sensing of precipitation. For example, it plays a major role in rainfall interpolation and
disaggregation techniques and must be taken into account when upscaling/downscaling
the outputs of numerical weather models or weather radar data (e.g., Seo, 1998; Lanza
et al., 2001). Other examples can be found in the field of stochastic rainfall simulation
(Kang and Ramirez, 2010), partial beam filling and path-integrated attenuation using
ground based weather radars or satellites.

Several studies have investigated rainfall intermittency at different spatial or temporal
resolutions. Among the studies focusing on spatial intermittency, Braud et al. (1993)
and Jeannin et al. (2008) analyzed the relations between the mean areal rainfall and the
fractional area where it rains above a fixed threshold. Using mathematical morphology,
Kumar and Foufoula-Georgiou (1994) proposed different algorithms for downscaling/up-
scaling intermittent rainfall fields. Using radar data, Pavlopoulos and Gritsis (1999)
and Pavlopoulos and Gupta (2003) analyzed the durations and scaling of wet and dry
periods. Using time series from tipping bucket rain gauges, Molini et al. (2009) and Rigby
and Porporato (2010) investigated different relations between rainfall intermittency and
turbulence across a large range of time scales and climatic regimes. Their study, however,
did not include any information on the spatial structure of rainfall intermittency. Using
a different approach based on the maximum entropy principle, Koutsoyiannis (2006)
noted that, under some circumstances, the probability that a time interval is dry, follows
a scaled exponential function of timescale. Using disdrometer measurements and high
temporal resolutions, Lavergnat and Golé (1998) analyzed the inter-arrival times of
raindrops and proposed to model the time intervals between raindrops using a Bi-Pareto
law. Finally, recent work by Kundu and Siddani (2011) shows that dry probabilities
(both spatial and temporal) can be modeled using a scaled exponential function.
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This chapter extends previous results by providing a complete statistical analysis of
rainfall intermittency (including spatial and temporal structures) for a large range of
scales. Section 5.3 provides some definitions and Section 5.4 presents the data used for
the analysis. In Section 5.5, the zero-rainfall probability is quantified using 2 years of data
collected in Switzerland. In Sections 5.6 and 5.7, the spatial and temporal autocorrelation
of rainfall intermittency are analyzed. The conclusions and perspectives are given in
Section 5.8.

5.3 Modeling the intermittency

Rainfall intermittency, i.e., the presence or absence of rainfall, can be described by an
indicator function

I(x, t) =
{

1 if R(x, t) > 0
0 else

(5.1)

where R(x, t) [mmh−1] represents the instantaneous rain rate at location x and time t.
By extension, we define

I(X,T ) =
{

1 if ∃ (x, t) ∈ (X,T ) with I(x, t) = 1
0 else

(5.2)

where X is a given area and T a given time period. For simplicity, only square areas
of size k × k and continuous time periods [t0, t0 + τ ] of duration τ are considered. For
convenience, k is chosen to be expressed in kilometers and τ in hours. The probability
that a randomly chosen area of size k remains dry for at least τ hours is denoted by
p(k, τ) . For consistency, it is supposed that p(k, τ) is well-defined and does not depend
on the location nor on the timing, i.e., that I(X,T ) is stationary over the considered
period and area. Note that if this is not the case, the analysis can always be confined
into appropriate areas and periods (e.g., months or seasons) for which I(X,T ) can be
considered stationary.

5.4 Data

The results in this chapter are mostly based on the analysis of nearly 2 years of operational
radar rain-rate data provided by MeteoSwiss. These data are available from 30th April
2009 to 2nd February 2011, at a spatial resolution of 1 × 1 km2 and a temporal resolution
of 5 min. There are almost no missing data for the considered time period. The estimated
rain rates are obtained by combining the measurements of 3 C-band weather radars
at different elevations, correcting for the main sources of errors (ground clutter, beam
shielding, vertical variability) according to a procedure described in Germann et al.
(2006). For the purpose of this study, only the rain/no-rain information is retrieved from
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the estimated rain-rate maps, which limits the influence of the uncertainties associated
with rain rate retrieval from radar measurements. Note that the minimum detectable
rain rate is 0.16 mmh−1 which defines the threshold for rain/no-rain detection. Two
30×30 km2 areas located in the North-East and in the South-West of Geneva are selected
for statistical analysis. These are the biggest square areas with no evident signs of data
contamination (e.g., ground clutter or beam shielding) that were found for the selected
time period. Note that both areas are relatively flat and close (less than 60 km) to
one of the 3 C-band radars. It is therefore assumed that false rain and dry detections
are negligible over the selected areas and do not affect significantly the statistical and
structural analysis.

At very small spatial scales (less than 1 km2), rainfall intermittency is analyzed using the
data from a network of disdrometers deployed over EPFL campus, Lausanne, Switzerland
(Jaffrain et al., 2011). The distance from the network to the 2 areas defined above is less
than 100 km. For comparison with radar data, the same time period between 30th April
2009 and 2nd February 2011 is considered. During this period, a total of 6 disdrometers
sampling at 30 s temporal resolution and separated by 80 m to 800 m were available. For
consistency with radar data, the same rain/no-rain detection threshold of 0.16 mmh−1

(corresponding to the 20 % rain-rate quantile) is applied to the disdrometer data.

5.5 Zero-rainfall probability

In this section, the data presented in Section 5.4 are used to investigate the probability
p(k, τ) that a randomly chosen area of size k remains completely dry for at least τ hours.
Because they are very similar for the 2 considered areas, the results are only shown and
discussed for the first area. For details about the second area, see Table 5.1. During
this analysis, the largest spatial scale that can be considered is given by the size of
the studied area, i.e., k = 30 km. The smallest possible scale is given by the radar
resolution (k =1 km). For smaller scales, the rain/no-rain information derived from the
6 disdrometers are used to estimate p(k, τ) at the point-scale, i.e., k = 0.

The values of p(k, τ) for different spatial and temporal scales are displayed in Figure 5.1.
It shows that, for a fixed spatial scale k, p(k, τ) can be described by a scaled exponential
function:

p(k, τ) = p(k) exp
{
−
[
τ

λ(k)

]β(k)
}

(5.3)

where λ(k) > 0 [h−1] is a scale parameter, β(k) > 0 [-] a shape parameter and p(k) ∈ [0, 1]
represents the dry probability for τ = 0. The fact that scaled exponential functions can
be used to describe zero-rainfall probabilities has been pointed out previously by Kundu
and Siddani (2011). Another parallel can be found in the field of survival analysis, where

84



5.5. Zero-rainfall probability

scaled exponentials are used to express the probability that the time of “death” occurs
later than some specified time. Hence another way of seeing rainfall intermittency is
through a marked point process characterized by the “birth” and “death” of individual
dry periods.

Figure 5.1: Estimated values of p(k, τ) at k=0, 1, 5 , 10 and 15 km spatial resolution.
All estimates are obtained using radar data except k=0 which represents the average
value computed from the 6 disdrometers. The dashed lines represent the fitted model
from Equation 5.3.

In order to investigate the dependence of p(k), λ(k) and β(k) to the considered spatial
scale, the radar estimates of p(k, τ) corresponding to each value of k between 1 and
15 km, were fitted using non-linear least squares. The scatter plots of p(k), λ(k) and
β(k) with respect to k suggest that p(k) is a linear function, λ(k) a power law and that
β(k) can be assumed constant.

p(k) = p0 + p1k

λ(k) = akb

β(k) = β

(5.4)

Figure 5.2 shows the fitted scatter plots of p(k) and λ(k) with respect to k. The triangles
at k = 0 represent the average parameter estimates from the 6 disdrometers. Note that
these were not used to fit the relations in Equation 5.4 but are in very good agreement
with their values predicted using radar measurements only. The fitted values of p0, p1, a,
b and β are given in Table 5.1. Note that they are likely to be specific to the considered
region and must therefore be adapted to the local climatology. It is conjectured, however,
that the functional forms for p(k) and λ(k) are generally valid (at least for the considered
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range of spatial scales) and can be used to describe rainfall intermittency for other regions
and climatologies.

Figure 5.2: Estimated values of p(k) (left panel) and λ(k) (right panel) at spatial
resolutions between 1 km and 15 km. The triangles at k = 0 represent the average
parameter estimates from the 6 disdrometers. The dotted lines represent the fitted
models given in Equation 5.4.

The sensitivity of p0, p1, a, b and β to the rain/no-rain detection threshold has been inves-
tigated by considering the next possible radar rain detection threshold, i.e., 0.25 mmh−1

(corresponding to the 30 % rain rate quantile at the point-scale). Higher thresholds
would not be reasonable as too many rain rate values would be below this threshold.
The results show that the model parameters are not very sensitive to the rain threshold
(less than 2 % variation for p0, a and β and 15 % for b and p1). Moreover, the functional
forms in Equations 5.3 and 5.4 remained unchanged. Finally, the stationarity hypothesis
was tested by splitting the data into 4 periods (summer 2009, winter 2009-2010, summer
2010 and winter 2010-2011) and by computing p(k, τ) for each season. No statistically
significant differences between these periods could be observed.

5.6 Spatial autocorrelation structure

In this section, the spatial autocorrelation structure ρS(h, τ) of the rainfall intermittency
is investigated at different distance lags h and temporal resolutions τ using the data
presented in Section 5.4. In order to ensure the highest possible resolution in the
spatial domain, this analysis is performed at the highest available spatial resolution, i.e.,
1× 1 km2.

Figure 5.3 shows the spatial autocorrelation for τ = 5 min, 15 min, 45 min, 120 min and
360 min. The data show that, for each temporal resolution τ , the spatial autocorrelation
at lag h can also be described by a scaled exponential function:

ρS(h, τ) = exp
{
−
[

h

λS(τ)

]βS(τ)}
(5.5)
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where λS(τ) > 0 [km−1] is a scale parameter and βS(τ) > 0 [-] a shape parameter. The
scatter plots of λS(τ) and βS(τ) versus τ show that λS(τ) can be described as a power
law of τ and that βS(τ) can be assumed constant for all temporal scales:λS(τ) = aSτ

bS

βS(τ) = βS
(5.6)

where aS , bS and βS depend on the local climatology.

Figure 5.3: Estimated spatial autocorrelation ρS(h, τ) of rainfall intermittency at 5,
15, 45, 120 and 360 min temporal resolutions. For each temporal resolution, a scaled
exponential function as given in Equation 5.5 has been fitted.

The fitted values of aS , bS and βS for the considered areas are given in Table 5.1. The
fitted model for λS(τ) is shown in Figure 5.4. The sensitivity of aS , bS and βS to the
radar rain detection threshold (see Section 5.5) has been investigated and is in the order
of 3 % for aS and βS and 15 % for bS . The functional forms in Equations 5.5 and 5.6
were also preserved.

5.7 Temporal autocorrelation structure

In this section, the temporal autocorrelation structure ρT (τ, k) of the rainfall intermittency
is investigated at different spatial resolutions using the data presented in Section 5.4. The
approach is similar to the previous section and, for conciseness, only the results without
any further illustrations are given. In order to ensure the highest possible resolution
in the temporal domain, this analysis is performed at the highest available temporal
resolution, i.e., 5 min. The results show that, for each fixed spatial resolution k, the
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Figure 5.4: Estimated values of λS(τ) for τ between 5 min and 6 h. The dotted line
represents the fitted power law given in Equation 5.6.

temporal autocorrelation ρT (τ, k) of rainfall intermittency can be described by a scaled
exponential function:

ρT (τ, k) = exp
{
−
[

τ

λT (k)

]βT (k)
}

(5.7)

for a given scale parameter λT (k) > 0 [h−1] and shape parameter β(k) > 0 [-]. In this
case, the scatter plots of λT (k) and βT (k) versus k show that λT (k) is a linear function
of k and that βT (k) can be assumed constant at all spatial scales.λT (k) = aT + bTk

βT (k) = βT
(5.8)

The fitted values of aT , bT and βT are provided in Table 5.1. Similarly to the zero-rainfall
probability, the values of λT (0) and βT (0) obtained from the disdrometer data (i.e.,
k = 0) are in very good agreement with their predicted values using radar data only. The
sensitivity of aT , bT and βT to the rain detection threshold (similarly to the previous
sections) is lower than 2 % for bT and βT and in the order of 15 % for aT .

5.8 Conclusions

Rainfall intermittency significantly varies with respect to the spatial and temporal scale at
which it is considered. It is larger at finer scales and its spatial correlation is larger at lower
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Table 5.1: Estimated parameter values.

Parameter Area 1 Area 2

Zero rainfall probability

p0 0.925 0.936
p1 -0.005 -0.007
a 50.8 45.1
b -0.096 -0.173
β 0.57 0.64

Spatial autocorrelation
aS 161.5 147.2
bS 0.376 0.362
βS 0.579 0.527

Temporal autocorrelation
aT 2.977 2.958
bT 0.156 0.138
βT 0.514 0.501

temporal resolutions (i.e., longer time periods). In this chapter, a statistical analysis of
rainfall intermittency at different spatial and temporal resolutions has been performed. It
shows that zero-rainfall probabilities can be adequately described by a scaled exponential
function (of the timescale) with parameters depending on the considered spatial scale.
Models describing this dependency have been provided. The estimated parameters are
likely to depend on the considered region and climatology but the functional forms and
models are assumed to be generally valid. The choice of models is supported by the
fact that independent disdrometer measurements (at scales that can not be observed
by the radar) are in very good agreement with their radar-based predictions. Using
the same approach, the spatial and temporal autocorrelations of rainfall intermittency
are also quantified. The model parameters are not very sensitive to the rain/no-rain
detection threshold (up to 15 % for the considered thresholds). The functional forms
describing p(k, τ), ρS(h, τ) and ρT (τ, k) are not influenced by this threshold and can
be used to improve the modeling of rainfall intermittency (including its spatial and
temporal structure) in hydroclimatological models, to upscale and downscale the outputs
of numerical weather prediction models and to parameterize stochastic rainfall simulators.
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6 Identification of dry and rainy
periods using telecommunication
microwave links 1

6.1 Summary

Microwave links are widely used for wireless data exchange, in particular between base
stations of mobile phone networks. Because of the range of frequencies used for data
transmission, the link signal is attenuated when rainfall occurs along the path of the link.
This attenuation can be related to the path-averaged rain rate. A critical issue in this
procedure is the ability to separate the attenuation due to rainfall from the attenuation
occurring during dry periods.

In this chapter, a technique to separate dry and rainy periods and to estimate a time-
varying attenuation baseline using path-integrated attenuation measurements from op-
erational telecommunication microwave links is presented. Dry and rainy periods are
separated by analyzing the local variability of the link signal. The attenuation baseline is
estimated in real-time through the classification into dry and rainy periods. The method
is applied to 4 different links and 10 different rain events. Measurements from a near-by
C-band weather radar are used to evaluate the performance of the algorithm. The new
method performs well, identifying about 92 % of all rainy periods, 86 % of all dry periods
and 93 % of the total rain amount on average.

1. This chapter is a slightly modified version of the article by Schleiss, M. and A. Berne, 2010:
Identification of dry and rainy periods using telecommunication microwave links, IEEE Geosci. Remote
Sens. Lett., 7, No.3, pp. 611-615
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6.2 Introduction

The possibility to use operational microwave links employed in telecommunication
networks for rain estimation has recently been demonstrated (Messer et al., 2006; Leijnse
et al., 2007c). Because of the range of frequencies (roughly from 10 to 50 GHz) used for
data transmission, the link signal is attenuated when rainfall occurs along the link path.
This attenuation can be related to the path-integrated rain rate and used to provide
valuable information at an intermediate scale between point measurements and radar
measurements Rahimi et al. (2004). A critical issue in this approach is the ability to
distinguish the attenuation due to rainfall from the attenuation occurring during dry
periods, referred to as the attenuation baseline (Leijnse et al., 2007c; Rahimi et al.,
2003). The difficulty lies in the fact that the attenuation baseline changes with time and
fluctuates due to changes in water vapor concentration, temperature, wind effects on
the antenna, losses during transmission and reception, interferences, wet-antenna and
possible multipath effects. Moreover, attenuation measurements are quantized (usually
at 1 dB) which introduces additional variability in the process.

Using dual-frequency links specifically designed for rainfall estimation, Rahimi et al.
(2003) and Holt et al. (2003) proposed to identify dry and rainy periods using the
correlation between the link signals at 2 different frequencies. Following the same idea,
Goldshtein et al. (2009) proposed to identify dry and rainy periods using the correlation
between bidirectional signals (each antenna acting both as a transmitter and a receiver).
For dual-polarization links, Ruf et al. (1996) and Aydin and Daisley (2002) showed that
the attenuation baseline can be removed by considering the difference of attenuation
between the two polarizations. Unfortunately, many operational telecommunication
microwave links only use single-polarization signals and the frequencies of local and
remote signals are often too close (about 1 GHz apart) for dual-frequency considerations.

In this chapter, a method to identify and separate dry from rainy periods and to fit a
time-varying attenuation baseline using only path-integrated attenuation measurements
from single-polarization single-frequency telecommunication microwave links is presented.
Once the attenuation baseline has been estimated, the attenuation due to rainfall can
be retrieved and used to estimate the path-integrated rain rate. Furthermore, the fact
that the proposed technique does not require any calibration is of advantage in locations
where rain gauge and radar monitoring is sparse or hindered. Note that the focus of this
study is on liquid precipitation only. Issues related to solid or mixed-phase hydrometeors
as well as antenna icing are not addressed.

This chapter is organized as follows: Section 6.3 presents the microwave link and radar
data. Section 6.4 describes the proposed method and Section 6.5 presents an application
for different rain events and different links. The summary and conclusions are given in
Section 6.6.
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6.3. Data

6.3 Data

Measurements of instantaneous (up to a few ms) transmitted and received powers,
expressed in dBm, from 4 operational telecommunication links are provided by Bouygues
Telecom, a French telecommunication company. The length, frequency and polarization
of each link are given in Table 6.1. Note that link 13 and 14 are dual-polarization links,
but only the horizontal polarization is used for this study. Link 1 and link 2 are co-located
parallel links but with distinct transmitters and receivers. The attenuation along the
link path is obtained by subtracting the received power to the transmitted one (in dB).
The instantaneous transmitted and received power are measured every 30 s from May
to August 2008 and every 6 s since January 2009. No link data are available between
September and December 2008. All power measurements are rounded at 1 dB.

Table 6.1: Length [km], frequency [GHz] and polarization of the considered telecommuni-
cation microwave links.

Link Length Frequency Polarization
1 3.7 26 V
2 3.7 26 H
13 7.1 19 H/V
14 2.4 26 H/V

Ten rain events of various intensities and durations have been selected and are considered
as representative of the local rainfall climatology. The dates, durations, rain amounts
and maximum rain rates (as measured along the link paths by a near-by C-band weather
radar) of these events are given in Table 6.2. The selected events represent about 90 h of
rain and about 150 mm of rain amount.

Table 6.2: Date, duration [h], rain amount [mm] and maximum rain rate [mmh−1] of the
considered events.

Event Date Duration Amount Rmax

1 27-28 May 2008 8 40 60
2 22 Aug 2008 23 25 20
3 18 Jan 2009 10 12.5 10
4 27 Apr 2009 7 11.5 5.5
5 29 Apr 2009 3 10 18
6 25-26 May 2009 1.5 5 12
7 06-07 Jun 2009 2 1.5 2.5
8 07 Jun 2009 2 3.5 12.5
9 09-10 Jun 2009 16 18.5 12.5
10 10-11 Jun 2009 15 21.5 20
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The performance of the proposed method is investigated by comparing the link estimates
with independent radar rain-rate estimates provided by Météo France. The radar rain-
rate maps are provided at a spatial resolution of 1×1 km2 and temporal resolution of
5 min. They are derived from measurements of an operational C-band weather radar
located in Trappes, about 20-30 km from the links. All rain rate maps are obtained by
combining different scans at different elevation angles using the technique described in
Tabary (2007) which corrects for the main sources of error (e.g., ground clutter, beam
blocking, vertical variability and advection).

Since microwave links provide path-integrated measurements, the corresponding radar
path-averaged rain-rate values are calculated by averaging the radar pixels crossed by
the link beam with weights given by the length of the link in each pixel. A period is
considered rainy if at least one radar pixel along the link-path has a strictly positive rain
rate value.

6.4 Method

Figure 6.1 shows the raw attenuation measurements recorded on 22 August 2008 by
link 14 (2.4 km and 26 GHz). Rainy periods are clearly characterized by a local increase
of the signal attenuation (e.g., between 17:00 and 18:00 GMT). However, it is also
important to note the significant (54-56 dB) and time-varying attenuation of the signal
during dry periods (e.g. between 09:00 and 12:00 GMT).

Figure 6.1: Attenuation measurements and attenuation baseline for link 14 (horizontal
polarization) and event 2 (22 August 2008).
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Let A(t) be the total attenuation affecting a given link at time t. Because of the natural
variability affecting the link measurements, A(t) can be seen as a stochastic process.
Furthermore, we suppose that A(t) is the sum of two underlying stochastic processes
AB(t) and AR(t) representing respectively the attenuation baseline and the attenuation
caused by rainfall.

A(t) =

AB(t) for every dry period,
AB(t) +AR(t) for every rainy period.

(6.1)

For a moving time window Wt = [t − w, t] of duration w > 0 , we define the following
test statistic related to the local variability of the link signal :

SWt =

 1
NW

∑
k∈Wt

(
A(k)− ĀWt

)2
1/2

(6.2)

where

ĀWt = 1
NW

∑
k∈Wt

A(k) (6.3)

is the local average of the signal and NW the number of observations in Wt. Note that
since A(t) is non-stationary (hence non-ergodic), there is no convergence between SWt

and the local standard deviation σ(t) = (Var[A(t)])1/2. The proposed method to separate
dry from rainy periods is based on the assumption that SWt is small during dry periods
and large during rainy periods.

P[SWt ≤ σ | dry] ≥ P[SWt ≤ σ | rainy] ∀σ > 0 (6.4)

where P denotes the probability. Hence the following decision rule provides a simple
classification into dry and rainy periods:

Decision rule:
{

rain if SWt > σ0
dry if SWt ≤ σ0

(6.5)

for a given threshold value σ0 . The accuracy of the classification depends on the threshold
value σ0 but also on the underlying conditional distributions of SWt with respect to dry
and rainy periods. In particular, light rainfall might not be distinguishable from dry
periods because both can exhibit similar variability.

There are different methods to estimate σ0 in practical applications. If rain gauges or
radar data are available near the link, σ0 can be calibrated using these measurements.
If there are no external data, σ0 must be estimated from the link data. Two different
techniques are proposed here, depending on the amount of link data. If a large amounts
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of data are available (typically several months of attenuation measurements), σ0 can
be estimated on a climatological basis, taking advantage of the fact that rainy periods
represent only a small fraction r of all time periods. For Paris and its surroundings, this
fraction is between 5 % and 15 % per year for a time resolution of 5 min to 60 min.
Hence a reasonable threshold value is given by

σ0 = q1−r{SWt }, (6.6)

where q1−r denotes the 1 − r quantile. The fact that this method does not require
any particular dry or rainy period for calibration is a clear advantage. Furthermore,
a sensitivity analysis has been conducted and shows that the choice of r has limited
influence on the classification procedure as long as it stays in a reasonable range (5 % to
15 %). Larger values for r reduce the number of type II errors (dry detections during
rainy periods) but increase the number of false rain detections.

If few data are available, σ0 can be estimated by considering the attenuation measurements
from a collection of dry periods (typically several dry days). If D denotes these dry
periods, a possible value for σ0 is given by:

σ0 = q99{SWt | t ∈ D }, (6.7)

where q99 denotes the 99 % quantile. This choice of σ0 is preferred to the maximum
because it limits the effect of outliers and link failures. Smaller quantiles can be used
depending on the desired detection sensitivity. Combining several non-consecutive dry
days is recommended because single or consecutive dry days may not adequately represent
all the variability of the attenuation baseline.

The choice of the window size w is a delicate trade-off and is related to the natural
variability of rainfall. Short time windows are desirable because they capture more details
about the local variability of the signal. On the other hand, they are less powerful for
detecting rain because rainfall (especially stratiform) can be nearly constant over short
periods of time. Hence the attenuation caused by rain and the attenuation baseline
cannot be separated effectively and the algorithm will miss a significant amount of rain.
Larger time windows do not have this limitation because it is unlikely to have nearly
constant rainfall over extended periods of time. On the other hand, large time windows
are less powerful for detecting dry periods because w also determines the duration of the
shortest dry period that can be identified using this algorithm. For Paris, time windows
between 15 min and 35 min adequately capture the dynamics of the considered rainfall
climatology.

Once w has been chosen and σ0 estimated, the previously described decision rule can be
applied to the entire data set to identify dry (D) and rainy time periods (R). The attenu-
ation baseline AB(t) can then be estimated in real-time using the following algorithm:

96



6.5. Performance evaluation

(1) For each time index t ∈ D, set AB(t) = ĀWt .
(2) For each t ∈ R, set AB(t) = AB(t − k) where k is the smallest value such that
t− k ∈ D.

Finally, the baseline is used as a reference to remove all rain detections for which the total
attenuation is below the baseline. This step is necessary since the proposed algorithm only
considers the variability of the link signal without making any assumption on the absolute
level of attenuation. Hence no distinction is made between strongly increasing/decreasing
link signals above and below the baseline.

This defines the proposed method to identify dry and rainy periods and to fit the
attenuation baseline using solely single-frequency and single-polarization microwave link
data. Note that this approach does not take into account possible changes of the baseline
during rainy periods. Such changes can be estimated by interpolating baseline estimations
from two consecutive dry periods. However, this cannot be done in real-time anymore.

6.5 Performance evaluation

In this section, the proposed method is applied to 4 different microwave links and 10
different rain events between May 2008 and June 2009 (see Section 6.3). Independent
radar rain-rate maps provided by Météo France are used to validate the classification
into dry and rainy periods obtained with the links. These maps are used to separate
dry and rainy periods and to quantify the total amount of rain identified by the links.
Note that link and radar measurements cannot be in perfect agreement because they
have different sampling volumes and altitudes. For comparison with radar estimates, a
5-min time step is considered rainy if at least one link measurement during this period is
identified as rainy. Otherwise, the period is considered dry.

In this application, the test statistic SWt is computed using a 25-min moving time window
which adequately captures the rainfall dynamics for the considered climatology. The
corresponding rain detection thresholds σ0 as described in Section 6.4 are 0.50 (link 1),
0.51 (link 2) and 0.48 (link 13 and 14) for the first method and 0.53 (link 1), 0.52 (link 2),
0.55 (link 13) and 0.50 (link 14) for the second method. For the first method, we assumed
that rainy periods represent 10 % of all periods. For the second method, three different
dry days (23 August 2008, 21 January 2009 and 16 April 2009) were used. Although
both methods do not produce the exact same threshold values, the performance of the
algorithm is similar and differences between the two methods did not exceed more than
10 % in the worst case. Hence, only the results for the first method are shown.

In order to quantify the performance of the algorithm, 5 different criteria are used:
(1) the percentage of rain detections during rainy periods, (2) the percentage of dry
detections during dry periods, (3) the percentage of type I errors (rain detections during
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dry periods), (4) the percentage of type II errors (dry detections during rainy periods) and
(5) the detected rain amount assuming the rain rate estimates from the links are identical
to the radar rain-rate estimates. While the first 4 criteria define the contingency table
between the link estimates and the radar data, criterion 5 is important for hydrological
applications for which the total rain amount plays a major role.

Finally, the proposed algorithm is compared to two alternative baseline methods proposed
by Leijnse et al. (2007c) and Rahimi et al. (2003). In the first method, the attenuation
baseline is assumed constant and equal to the mode (the most observed value) of all
attenuation measurements. All periods for which the attenuation exceeds the mode are
considered rainy. The rest is considered dry. The second method was originally designed
for dual-frequency links but can also be applied to bidirectional signals (each antenna
acting both as a transmitter and a receiver). It is based on the cross-correlation over a
15 min time window between attenuation measurements from opposite signals. Time
periods for which the cross-correlation is larger than 0.6 are considered rainy. Otherwise,
they are considered dry (Rahimi et al., 2003; Goldshtein et al., 2009).

Because of its rather simplistic approach, the performance for the fixed “mode” baseline
is low and its contingency table is not shown here. The median percentage of true rain
detections is between 68 % and 83 % with worst case about 40 % (link 13, event 2). The
percentage of true dry detections is between 67 % and 83 % with worst case down to
14 % (link 13, event 7). The type I errors are between 15 % and 33 % with worst case
up to 83 % (link 13, event 7) and the type II errors are between 21 % and 42 % with
worst case about 59 % (link 13, event 5). The median rain amount captured using this
method is about 95 %.

Figure 6.2 shows the performance for criteria 1-4 for both the new method and the
cross-correlation method. For the new method, the median percentage of correct rain
detections for the four considered links is between 90 % and 95 % and the median
percentage of correct dry detections is between 84 % and 88 %. The median type I errors
(rain detection during dry periods) are between 11 % and 16 % and the median type II
errors are between 4 % and 10 %.

For the cross-correlation method, the median percentage of true rain detections is between
76 % and 81 % and the median percentage of true dry detections is between 93 % and
97 %. The median type I errors (rain detection during dry periods) are between 1 % and
3 % and the median type II errors are between 19 % and 24 %.

Finally, the proposed algorithm detected about 93 % of the total rainfall amount compared
to 83 % for the cross-correlation method.

It is important to note that the comparison between the correlation-based method and
the proposed one is done at different error rates. Therefore, it is not clear which method
is more accurate. To address this question, a cost function is introduced to compare
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Figure 6.2: Performance for all 4 links and all 10 rain events. The results of the proposed
method are represented by black box-plots. Red box-plots represent the performance for
the cross-correlation method. Each box-plot represents the 10 %, 25 %, 50 %, 75 % and
90 % quantiles. All values are in percentage.

the performances of the two methods. For hydrological applications, a reasonable cost
function is given by

C(x) = Rtot −Rcapt
Rtot

+ Fp
Ndry

+ α
Fn

Nrainy
(6.8)

where x represents the detection threshold, Fp and Fn denote respectively the number
of false positives and false negatives, Rcapt and Rtot the captured and total amount of
rainfall, Ndry and Nrainy the number of dry and rainy periods and α > 0 is the relative
weight attributed to type II errors (with respect to type I errors). For the baseline
estimation problem, α is usually larger than one because type II errors (dry detection
during rainy periods) have more serious consequences than type I errors, as pointed out
by Rahimi et al. (2003). Figure 6.3 shows the cost function for all links and methods
(α = 2). It shows that the new method performs better than the cross-correlation method
for all links and all type II error rates smaller than 15 %, except for link 1 which suffers
from larger dry-air attenuation variability. This is likely due to the transmission-reception
chain of link 1 as the proposed method gives much better results for link 2 which has the
exact same path. Similar results are obtained for any value of α ≥ 1.

The major problem with the cross-correlation method is that it produces large type
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Figure 6.3: Cost function (for α = 2) for all links and both methods. The solid lines
correspond to the proposed method and the dotted lines to the cross-correlation method.

II error rates, even for low threshold values. This is mainly due to the fact that the
correlation coefficient often drops to zero, even during strong rainfall. The new method
based on the local variability measure SWt produces less type II errors and strong rainfall
is never misclassified as being dry. The value of SWt increases rapidly as soon as it starts
to rain but takes some time to decrease at the end of each event. Consequently, false
rain detections often occur at the end or between two rain peaks.

The performance of the algorithm with respect to the average rain rate R̄ and maximum
rainfall intensity Rmax is investigated in Table 6.3. In this classification, events at the
top of the table can mostly be associated with convective precipitation whereas events at
the bottom of the table mostly represent stratiform precipitation.

The results show that the algorithm performs better during strong rainfall and worse
during light rainfall. In particular, the algorithm produces less type II errors (dry
detections during rain) for strong rainfall (about 2 % type II errors) than for light rain
(about 13 % type II errors). As a consequence, the amount of rain captured by the
algorithm is higher during intense precipitation (about 98 %) than during light rainfall
(about 84 %). Table 6.3 concerns only link 14, but similar results were obtained for
the other links (not shown for more conciseness). Note that further studies involving
more links and more events may be necessary to quantify precisely the differences in
performance for different types of precipitation, links and climatologies. However, the
results obtained in this section clearly demonstrate the feasibility of the method and its
improvements on other techniques employed so far.
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Table 6.3: Detailed performance for link 14.

Event R̄ Rmax type I type II Rain amount
[mmh−1] [mmh−1] errors errors captured

1 10.7 60 0 % 1 % 97.4 %
5 3.5 18 17 % 3 % 94.8 %
10 3.0 20 11 % 4 % 99.5 %
3 3.0 10 14 % 0 % 98.0 %
6 2.8 12 11 % 0 % 98.1 %
2 2.2 20 0 % 17 % 89.3 %
9 1.9 12.5 26 % 9 % 94.6 %
8 1.6 12.5 13 % 15 % 88.5 %
4 1.8 5.5 0 % 13 % 65.5 %
7 0.8 2.5 8 % 13 % 83.7 %

The limitations of the proposed algorithm are illustrated in Figure 6.4 which shows the
attenuation signal recorded by link 14 for event 4. This event is particular because it is
characterized by a long period of nearly uniform rainfall (17:45-18:15 GMT) preceding
a strong rainfall peak (18:30-19:00 GMT). After 25 min of nearly constant rainfall (at
about 18:00 GMT), SWt drops below σ0 and the corresponding period is declared dry
(type II error).

Figure 6.4: Attenuation measurements and attenuation baseline for link 14 (horizontal
polarization) during event 4 (27 Apr 2009).
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As a consequence, an erroneous baseline is fitted at 55 dB, about 2 dBs above the correct
baseline. As a result, about 35 % of the total rain amount is lost during the rest of the
event. This is a particular case where a 25-min moving time-window does not adequately
capture all the dynamics of the considered rainfall. This is confirmed by the fact that
better results are obtained for larger time windows. A 60-min time window captures
82 % of the total rainfall amount and a 90-min time window captures more than 90 % of
the total rainfall with less than 5 % type I/II errors. This shows that the performance of
the algorithm could be improved by choosing different time windows for each event or by
adapting the time window to seasonal variations in rainfall dynamics.

6.6 Summary and conclusions

Telecommunication microwave links can be used for rainfall estimation. A critical issue
in this procedure is the ability to separate the attenuation during dry periods (called the
attenuation baseline) from the attenuation due to rainfall. In particular, this requires to
identify and separate dry from rainy periods.

In this chapter, a method to identify dry and rainy periods and to fit a time-varying
attenuation baseline has been presented. The proposed method can be applied in real-
time on a single-polarization single-frequency link and does not require any additional
data for calibration. Rain identification is performed by analyzing the local variability of
the link signal. The attenuation baseline is estimated through the classification into dry
and wet periods. The new method detected about 92 % of all rainy periods, 86 % of all
dry periods and 93 % of the total rain amount on average for 10 rain events.

The proposed algorithm provides an interesting and efficient alternative to existing
techniques like the “mode” and the cross-correlation method. It is easy to calibrate and
can be employed in regions were rain gauge or radar data are sparse.

The main limitation of the proposed method is its inability to separate light rain from
dry-air attenuation and to identify changes in the attenuation baseline during rainy
periods. It may not be suitable for a limited number of links with large dry-air attenuation
variability. Future work will mainly focus on the analysis of the intermittency as seen by
microwave links and on daily and seasonal variations in the link signal.
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7 Using Markov switching models
to infer dry and rainy periods
from telecommunication mi-
crowave link signals 1

7.1 Summary

A Markov switching algorithm is introduced to classify attenuation measurements from
telecommunication microwave links into dry and rainy periods. It is based on a simple
state-space model and has the advantage of not relying on empirically estimated thresh-
old parameters. The algorithm is applied to data collected using a new and original
experimental set-up in the vicinity of Zürich, Switzerland. The false dry and false rain
detection rates of the algorithm are evaluated and compared to 3 other algorithms
from the literature. The results show that, on average, the Markov switching model
outperforms the other algorithms. It is also shown that the classification performance
can be further improved if redundant information from multiple channels is used.

1. This chapter is a slightly modified version of a manuscript by Wang, Z., M. Schleiss, J. Jaffrain,
A. Berne and J. Rieckermann: Using Markov switching models to infer dry and rainy periods from
telecommunication microwave link signals, submitted to Atmos. Meas. Tech., on the 16th of December
2011.
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7.2 Introduction

Precipitation is an important component of the Earth’s water cycle and needs to be accu-
rately measured. So far, several techniques have been proposed to measure rainfall with
different spatial and temporal resolutions, ranging from traditional point measurements
from rain gauges to observations from weather radars and satellites. Not surprisingly,
each of these techniques has its advantages but also its limitations (Sevruk, 1999; Upton
et al., 2005; Germann et al., 2006).

Recently, microwave links (MWL), which are commonly used in telecommunication
networks for wireless data transmission, have been suggested as a novel tool to monitor
rainfall in urban areas (Messer et al., 2006; Leijnse et al., 2007c). The main idea behind
this technique is to relate the rain-induced signal attenuation to the path-averaged rain-
rate along the considered link. The potential of this technique has been demonstrated
using microwave links specifically designed for rainfall estimation (Ruf et al., 1996;
Rahimi et al., 2003; Holt et al., 2003; Upton et al., 2005; Krämer et al., 2005) and
commercial microwave links operated by telecommunication companies (Messer et al.,
2006; Zinevich et al., 2009). Note that, in addition to estimating rain rates, MWL can
also be used to measure evaporation (Leijnse et al., 2007a) and water vapor (David et al.,
2009). In fact, MWL nicely complement traditional rainfall sensors because they provide
rain rate measurements (near the ground level) at an intermediate scale between point
measurements from rain gauges and weather radars with sampling volumes up to several
km3. The fact that MWL networks can be very dense can also be used to improve rain
rate estimates using spatial interpolation techniques (Zinevich et al., 2008).

A very important issue that needs to be addressed prior to rainfall estimation using MWL
is the so-called baseline estimation problem (Rahimi et al., 2003; Leijnse et al., 2007c).
It consists in identifying and separating the attenuation occurring during dry periods
from the rain-induced attenuation (which is the quantity of interest in most applications).
Depending on the link characteristics, this problem can be very difficult (Upton et al.,
2005). Dry-weather signal attenuations can exhibit significant variability caused, for
example by changes in water vapor, wind effects on the antennas, birds or insects
crossing the beam, losses during transmission or reception, interferences, wet-antenna
and multi-path effects (Zinevich et al., 2010). Moreover, attenuation measurements
are often quantized, which introduces additional variability in the process. It is only
after the attenuation baseline has been properly estimated for each time step that the
corresponding path-averaged rain-rate can be retrieved. A very important step in this
procedure is the ability to identify the dry and rainy periods using solely the measurements
of the MWL. The measured attenuation levels during the dry periods can then be used
to better estimate the attenuation baseline during rainy periods.

So far, various techniques have been suggested to solve this identification problem (see
Section 7.3 for a detailed description). The simplest of them uses a global attenuation
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threshold, i.e., all the periods for which the path-integrated attenuation (PIA hereinafter)
is above a given threshold are considered rainy and vice versa (Leijnse et al., 2007b). A
slightly more sophisticated procedure was suggested by Schleiss and Berne (2010) who
proposed to use a threshold on the temporal variability of the PIA (see Chapter 6). A
more complex algorithm by Reller et al. (2011) investigates the possibility to identify
dry and wet periods using a Bayesian approach based on Factor Graphs (Loeliger et al.,
2010). The underlying idea is that the variations of the baseline are learned during
dry weather and propagated to wet periods. Although it is more sophisticated and
flexible, the algorithm also requires the choice of a subjectively estimated threshold for
classification. Finally, special algorithms have been developed for situations where signals
from dual-frequency MWLs or simultaneous PIA’s from two communication channels are
available. For example, Holt et al. (2003) and Rahimi et al. (2003) proposed a method
based on the assumption that the correlation between the attenuations from two different
frequencies tend to be higher during rainy periods. Such methods, however, also rely on
empirically adjusted thresholds for the classification, which is not necessarily optimal.

In this chapter, a new classification algorithm based on Markov switching models is
introduced. It is based on a simple state-space model and has the advantage of not
relying on any empirically estimated threshold parameters. Also, the proposed algorithm
can be easily generalized to multivariate inputs, i.e., inputs from different channels or
frequencies. A real-world application of the algorithm (see Section 7.5) shows that it
performs better than other existing techniques and that its performance can be improved
if multiple channel inputs are considered. The proposed algorithm thus improves the
signal processing of MWL data and helps estimating better attenuation baselines required
for accurate rainfall retrieval.

This chapter is structured as follows: Section 7.3 describes some of the existing clas-
sification methods and introduces the Markov switching model. In Section 7.4, the
experimental set-up used to quantify the performances of the classification algorithms is
described. Section 7.5 evaluates and compares the performances of the different algo-
rithms for two very different datasets. Possible improvements of the algorithm are then
discussed in Section 7.6. The conclusions are given in Section 7.7.

7.3 Methods

This section briefly describes some of the existing methods proposed in the literature
to identify dry and rainy periods using single channel MWL attenuation measurements.
Then, a new classification method based on Markov switching models is introduced and
discussed in detail.
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7.3.1 Existing algorithms

Three popular classification methods have been chosen: the simple threshold method (ST),
the moving window method (MW) and the Factor Graph (FG). The simple threshold
algorithm (Leijnse et al., 2007b) is straightforward and computationally efficient. It uses
a global threshold on the path-integrated attenuation to distinguish between dry and
rainy periods. Each time period for which the PIA is above the threshold is classified as
rainy, and vice versa.

Decision rule for ST:
{

rainy if At > a0
dry if At ≤ a0

(7.1)

where At [dB] denotes the path-integrated attenuation at time t and a0 [dB] is a given
threshold value. The method has shown to produce good results in practical applications
and can be applied in real-time. Finding the optimal detection threshold a0 is, however,
difficult. Moreover, the performance (in terms of false dry and rain detections) of this
algorithm can be very sensitive to the value of the threshold. Finally, this method is only
appropriate for datasets for which the dry-weather attenuation is more or less constant.
This is not always the case as can be seen in the right panel of Figure 7.2. In some
situations, the dry-weather attenuation exhibits clear daily cycles and a strong temporal
drift in the PIA, possibly due to changes in temperature between day and night and
hardware instabilities. Obviously, the simple threshold is not appropriate for such types
of signals and alternative classification methods have been suggested.

A slightly more complex approach (hereinafter referred to as the moving window al-
gorithm) which is better suited for non-stationary dry-weather attenuations has been
proposed in Chapter 6. The method is based on the assumption that the temporal
variability of the PIA is small and bounded during dry weather. On the other hand, rainy
periods are characterized by larger signal fluctuations. Each time period is classified
according to the following decision rule:

Decision rule for MW:
{

rainy if SWt > σ0
dry if SWt ≤ σ0

(7.2)

where SWt [dB] represents the local (temporal) variability of the signal attenuation for a
moving window [t− w, t] and σ0 [dB] is a rain detection threshold estimated using one
of the two approaches described in Section 6.4. The moving window algorithm is also
computationally efficient and can be applied in real-time to non-stationary time series of
attenuations. However, finding the optimal detection threshold σ0 can be very difficult
without appropriate calibration data over extended periods of time. Moreover, one of
the main disadvantages of the moving window algorithm is its inability to separate light
rain from dry periods because both signals exhibit similar variability.

The Factor Graph algorithm proposed by Reller et al. (2011) can also be applied to
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non-stationary MWL signals but does not require large datasets for model calibration.
A Factor Graph is a particular type of graphical model, with applications in Bayesian
inference, which computes marginal distributions through the sum-product message
passing algorithm (Kschischang et al., 2001). More specifically, the Factor Graph
algorithm models the attenuation baseline during dry weather using a line model whose
parameters can vary slowly over time together with periodicity constraints. In this, it
assumes a smoothly varying baseline and, where the signal exceeds a certain threshold,
the algorithm identifies that the system enters another state. The Factor Graph algorithm
possesses several advantages, as it can deal with irregular time series and not only identifies
dry and rainy periods, but simultaneously estimates the baseline and thus delivers the
rain-induced attenuation. However, it also relies on several tuning parameters that need
to be estimated subjectively prior to the classification into dry and rainy periods.

In the following, a new algorithm for the identification of dry and rainy periods based
on MWL attenuation measurements is introduced. It uses Markov switching models to
estimate the state of the system (i.e., dry or rainy).

7.3.2 Univariate Markov switching model (MSU)

A Markov switching model combines dynamic linear system behavior with a Markov
process, which models the transitions between different states. It belongs, similarly to
the Factor Graph, to a very general class of so-called state-space models. Such models
are commonly used to model a change in behavior with respect to different regimes. The
regimes themselves can be related to certain events, often stochastic, such as a financial
crisis or changes in government policy. Practical applications of such models can be
found (among others) in the fields of Economics (Hamilton, 1989) and Physics (Yue
and Han, 2005; Metzner et al., 2007). Markov switching models have also been used in
weather generators to model rainfall patterns (Weiss, 1964).

For simplicity, the details of the algorithm are only given for the univariate case, i.e., a
single channel input. The multivariate case is briefly described at the end of this section.
For more details on Markov switching models, the reader is referred to Hamilton (1989,
1990) and Kim (1994). Note that Rayitsfeld et al. (2011) proposed a similar approach
based on a hidden Markov model with a slightly different implementation. They did,
however not compare their method with previously proposed classification techniques.

The underlying assumption of the Markov switching algorithm is that the magnitude
and the variability of the PIA are fundamentally different during dry and rainy periods.
During dry periods, the PIA mildly fluctuates around a given value, while for rainy
periods it is much larger and variable. This additional variability is caused by the
scattering and absorption of the transmitted signal by the raindrops along the path of
the link. Hence, it should be possible to identify two fundamentally different states of the
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system (dry/rainy) from the different behavior of the PIA. For example, the following,
very simple model can be used to describe the data:

At =
{
µ0 + ε0 for every dry period
µ1 + ε1 for every rainy period

(7.3)

where At [dB] represents the path-integrated attenuation at time t, µ0 [dB] and µ1 [dB]
represent the average value of the attenuation during dry and rainy periods. The noise
terms ε0 [dB] and ε1 [dB] are assumed to be independent Gaussian random variables
with zero mean and standard deviations given by σ0 [dB] and σ1 [dB]. The transitions
between the dry and the rainy periods are modeled using a stationary hidden random
variable St ∈ {0,1} where

St =
{

0 for every dry period
1 for every rainy period

(7.4)

The unconditional probability of the system being in the dry state is denoted by p0 =
Pr(St = 0) = 1− p1. Combining Equations 7.3 and 7.4, it is possible to write At using a
single expression given by

At = µSt + εSt (7.5)

with 5 model parameters Θ = (µ0, µ1, σ0, σ1, p0). The maximum likelihood technique is
then used to infer the optimal model parameters for a given set of observations {At = at}:

Θ̂ = argmax {l(Θ)} (7.6)

where the log-likelihood function l(Θ) is given by

l(Θ) =
∑
t

log
[ 1∑
k=0

fk(at,Θ)pk(at,Θ)
]

(7.7)

with

fk(x,Θ) = 1√
2πσ2

k

exp
(
−(x− µk)2

2σ2
k

)
k = 0, 1

and

pk(x,Θ) = pkfk(x,Θ)
p0f0(x,Θ) + (1− p0)f1(x,Θ) k = 0, 1

where fk(x,Θ) denotes the probability density for a given state k and pk(x,Θ) the
associated state probability (for a given set of model parameters Θ). The maximization
of l(Θ) is performed using a standard Newton-type algorithm. In order to be valid, the
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solution must satisfy some simple conditions. Specifically, one must have 1 > p0 > 0,
σ1 > σ0 > 0 and µ1 > µ0 > 0. Once Θ̂ has been estimated, the classification into
dry and rainy periods can be easily derived from the estimated state probabilities
p0(at, Θ̂) = 1− p1(at, Θ̂).

ŝt =
{

0 if p0(at, Θ̂) > 1
2

1 else
(7.8)

Note that it is also possible to choose another threshold depending on the relative cost
associated to each of the classification errors. One of the advantages of the Markov
switching model is that it can be easily generalized to include multivariate inputs from
different channels or frequencies.

7.3.3 Multivariate Markov switching model (MSM)

Telecommunication microwave links are usually operated using multiple channels such as
two directions, frequencies or polarizations. This redundant information can be used to
improve the classification performance.

In the multivariate case with N channels, the attenuation at time step t is given by a
vector At = (A(1)

t , ..., A
(N)
t ) where

A
(j)
t = µ

(j)
St

+ ε
(j)
St

∀ j = 1, ..., N. (7.9)

Note that the vector of model parameters is now significantly longer and given by
Θ = (µ(1:N)

0 , µ
(1:N)
1 , σ

(1:N)
0 , σ

(1:N)
1 , p0), that is, 4N + 1 variables to estimate. The major

difference with respect to the univariate case concerns the difficulty to estimate the
joint densities f0(At,Θ) and f1(At,Θ), although significant simplifications occur if the
channels are assumed independent. While this is certainly not the case for rainy periods,
it is, at least, reasonable during dry periods (which usually represent the majority of all
the periods). In the absence of any further information, a pragmatic solution therefore
consists in assuming that all channels are independent and that the log-likelihood function
is given by

l(Θ) =
∑
t

log

 1∑
k=0

N∏
j=1

f
(j)
k (a(j)

t ,Θ)pk(at,Θ)

 (7.10)

where

f
(j)
k (x,Θ) = 1√

2π(σ(j)
k )2

exp

−(x− µ(j)
k )2

2(σ(j)
k )

2

 k = 0, 1
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and

pk(at,Θ) =

pk

N∏
j=1

f
(j)
k (a(j)

t ,Θ)

1∑
i=0

pi

N∏
j=1

f
(j)
i (a(j)

t ,Θ)

Maximizing l(Θ) yields, similarly to the univariate case, the maximum likelihood estimate
Θ̂. The classification into dry and rainy periods can then be derived from the estimated
state probabilities pk(at, Θ̂). Possible extensions to correlated attenuation values, at least
during rainy periods, and more general expressions for the joint density f1(At,Θ) will
not be discussed. For simplicity, only the independent case is presented in Section 7.5.

7.4 Experimental set-up

The experimental site is located in Dübendorf, near the city of Zürich, Switzerland (see
Figure 7.1). It consists of a 1.85 km long commercial dual-polarization microwave link, 5
disdrometers and 3 rain gauges placed approximatively at equal distances along the path
of the link. The dataset is complemented by climatic and meteorological data from two
weather stations. The experiment is designed to investigate different aspects of rainfall
monitoring using microwave links in the context of a humid continental climate, such as
the retrieval of path-averaged rain-rates, the influence of the drop size distribution, the
characteristics of dry-weather attenuation and wet-antenna effects. In particular, the
horizontally and vertically polarized signals could be used to retrieve the effective drop
size distribution along the link path.

7.4.1 Microwave link

The installed microwave link is an “Ericsson Mini-link TN ETSI”, a widely used system
in commercial telecommunication applications. The MWL is operated at about 38 GHz
in a dual-polarization set-up with the specific characteristics given in Table 7.1. For
more redundancy, the link provides measurements on 4 different channels (2 polarizations
and 2 directions). In its original configuration, the link only records the transmitted
and received powers every 15 min. This is clearly not sufficient for accurate rainfall
monitoring at scales relevant for modern hydrological and meteorological applications.
Therefore, a stand-alone data logging application using the SNMP protocol has been
developed and implemented to record the power measurements in much shorter intervals.
For the purposes of this project, a 4 s temporal resolution has been chosen.

The experiment started in March 2011 and is continuing into the first half of 2012. It is
divided into two parts. During the first part of the project, i.e., until the 10th of October
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Figure 7.1: Experimental set-up deployed in Dübendorf, Switzerland. The Disdrometers
are located at sites 2 (2 collocated stations), 3, 4 and 5. The rain gauges at sites 2, 4
and 5. Pictures 5.A and 5.B show the MWL (at site 5) with (respectively without) the
rain shields.
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Table 7.1: Longitude, latitude, height and frequencies of the installed microwave link.

Parameters Site 1: Dübendorf Site 5: Wangen
Longitude 8◦37’43.10” E 8◦38’16.26 E
Latitude 47◦24’4.80” N 47◦25’0.25” N
Height 436 m AMSL 486 m AMSL

Freq. (horizontal) 38’657.5 MHz 37’397.5 MHz
Freq. (vertical) 38’650.5 MHz 37’390.5 MHz

Length 1.85 km

2011, the antennas of the link were fully exposed to the rain. Consequently, during
rainy periods, a thin film of water was formed on the surface of the antennas, causing
additional attenuation in the order of several dB (Kharadly and Ross, 2001; Leijnse et al.,
2008). Preliminary data analysis suggest that the antennas sometimes remained wet
for several hours after the rain had stopped. In the second part of the experiment, i.e.,
after the 10th of October 2011, the antennas were shielded from rain using plastic shields
specifically designed for this experiment (see 5.A in Figure 7.1). Visual inspection of the
antennas proved that these shields effectively protect the surface of the antennas, even
during strong rainfall and moderate wind speeds.

In addition to wet-antenna effects, the experimental set-up also revealed unexpected
fluctuations in the transmitted power levels. According to the manufacturer, the received
power is measured with an accuracy of 0.1 dB and the transmitted power with an accuracy
of 1 dB. Additional measurements of the transmitted power using a power meter showed
that the transmitted power was accurate within a range of approximatively 0.35 dB over
a period of 11 days, for temperatures between 7◦ C and 23◦ C and relative humidities
between 37 % and 100 %. This is confirmed by independent measurements collected in
the laboratory, with (more or less) constant temperatures and humidities and for which
the uncertainty on the transmitted power was found to be 0.3 dB.

7.4.2 Disdrometers and rain gauges

5 optical disdrometers of type Parsivel (1st generation, manufactured by OTT) have
been deployed at 4 different sampling locations (sites 2-5) along the 1.85 km path of the
link (see Figure 7.1). For more details on the principle of these optical disdrometers,
see Löffler-Mang and Joss (2000). All the disdrometers are designed to be autonomous
in terms of power supply and data transmission (Jaffrain et al., 2011). They provide
measurements of particle sizes and velocities at a 30-s temporal resolution. Note that
sampling point 2 is equipped with two collocated disdrometers in order to quantify the
measurement uncertainty associated with Parsivel disdrometers (Jaffrain and Berne,
2011). The 4 sampling locations have been chosen as a trade-off between a regular
distribution of the instruments, the distance to the path of the link, line of sight for data
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transmission between the different instruments and minimum probability of disturbance
and vandalism.

In addition to the 5 disdrometers, 3 tipping-bucket rain gauges from Précis Mécanique
(model 3029) have been deployed at sampling locations 2, 4 and 5. The tipping-bucket
rain gauges have a catching area of 400 cm2 and are connected to data loggers that
record the tipping time with an accuracy of 0.1 s. One tip corresponds to 0.1 mm of rain.
Note that the 3 rain gauges are not transmitting the data in real time. The collected
data are used to check the calibration of the disdrometers and to identify possible biases
between the sensors.

7.4.3 Additional data

The rainfall measurement network is complemented by operational radar data provided by
MeteoSwiss. Processed maps of rain rate and radar reflectivities are available at a spatial
resolution of 1 × 1 km2 and a temporal resolution of 5 min. In addition, meteorological
and climatic data (e.g., temperature, relative humidity, pressure, wind speed and wind
direction) are collected using a MIDAS IV weather station (manufactured by Vaisala)
located at the airport in Dübendorf. The MIDAS IV system collects data from two
sensors situated at both ends of the runway. The temporal resolution depends on the
considered parameter and can vary between 3 and 60 s.

7.4.4 Originality

Several other studies involving simultaneous measurements of microwave links, rain
gauges, disdrometers and weather radar can be found in the literature. Rincon and Lang
(2002) proposed a method to estimate the drop size distribution from the measurements
of a dedicated 2.3 km, dual-frequency research link and validated their results using 6
rain gauges and a single 2D video disdrometer placed along the path of the link. Rahimi
et al. (2003) used a 23.3 km, dual-frequency research link with 22 rain gauges and
radar data. However, only 4 or 5 rain gauges were reasonably close to the considered
link. More recently, Leijnse et al. (2007c) used a 4.89 km, 27 GHz research link with 6
rain gauges placed along the path of the link. Finally, Zinevich et al. (2010) compared
the rain estimates from 23 commercial microwave links with 5 nearby rain gauges.
The experimental set-up presented above is original because it combines attenuation
measurements from a dual-polarization commercial microwave link with a sufficiently
dense network of disdrometers to accurately estimate the path-averaged DSD. This
provides a platform to develop and validate new methods for rainfall retrieval using MWL
and to evaluate their respective performances as outlined above. In particular, it can be
used to investigate if the redundancy between the different channels and polarizations
can be used to improve the rain rate estimates. Furthermore, it might also be of interest

113



Chapter 7. Markov switching models to infer dry and rainy periods

to radio engineers concerned with better predictions of rain-induced attenuation and
MWL simulation methods (Paulson, 2002; Callaghan et al., 2008).

7.4.5 Selected datasets

Two datasets have been selected from the experimental observational record to evaluate
the performance of the algorithms described in Section 7.3 under fundamentally different
conditions. A visual illustration of these datasets is given in Figure 7.2. Note that for a
better visibility, the attenuation measurements are only shown for one channel. The first
dataset covers the period between the 17th of May 2011 and the 12th of June 2011 and is
representative of a (more or less) constant dry-weather attenuation baseline (hereinafter
referred to as the stationary case). This period is also characterized by small variations
in the PIA during dry weather. The second dataset covers the period between the
17th of March 2011 and the 26th of April 2011 and illustrates a very different behavior
(hereinafter referred to as the non-stationary case). This period is characterized by a
highly-variable attenuation baseline with a strong temporal drift and daily cycles in the
PIA, due to changes in temperature and humidity. A preliminary analysis of the current
observational record suggests that the non-stationary cases represent a non-negligible
amount (about 10-20 %) of all the time periods and must therefore be considered carefully.
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Figure 7.2: Rain rates [mmh−1] and path-integrated attenuations [dB] for dataset 1
(stationary) and 2 (non-stationary). For better illustration, only the attenuation of
channels 1 (dataset 1), and 4 (dataset 2) are shown. The time is given in UTC.
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7.5 Results and model comparison

7.5.1 False rain and dry detections

The performances of the algorithms described in Section 7.3 are evaluated and compared
using two criteria:

type I error: #dry periods classified as rainy
#dry periods

type II error: #rainy periods classified as dry
#rainy periods

In other words, type I errors correspond to false rain detections and type II errors to false
dry detections. A perfect classification algorithm has 0 type I error and 0 type II error.
In practical applications, however, both types of errors are usually competing against
each other, i.e., if the type I error decreases, the type II increases and vice versa. Finding
an optimal trade-off between both errors is difficult and depends on the underlying
application and the cost associated to each type of error. However, this is beyond the
scope of this study.

For comparison purposes, it is assumed that the path-averaged rain-rate measured by the
5 disdrometers along the path of the link (see Section 7.4) is representative of the “true”
weather state. If the path-averaged rain rate is greater than zero, the period is considered
rainy. Otherwise, it is supposed to be dry. In order to analyze the sensitivity of the results
with respect to this rain-detection threshold, a slightly higher rain detection threshold
of 0.1 mmh−1 is also considered. All periods for which the path-averaged rain rate is
smaller than 0.1 mmh−1 are considered dry and vice versa. The value of 0.1 mmh−1 was
chosen as a threshold because it approximatively corresponds to the hardware-induced
measurement uncertainty of 0.1 dB in the path-integrated attenuation (ITU-R P.838-3,
2005). In other words, rainy periods with rain rates smaller than 0.1 mmh−1 cannot be
distinguished from dry periods because of the uncertainty on the power measurements.
Finally, note that because the disdrometer data are provided at a 30-s temporal resolution,
the corresponding MWL data (at a 4-s temporal resolution) are averaged at 30-s prior to
the analysis. Periods for which one of the instruments was not working are not considered
for the comparison.

7.5.2 Stationary dry-weather attenuation baseline

The results for the first dataset (stationary case) are shown in Table 7.2. For better
illustration of important details, a small subset of dataset 1 (a 5-days period between
the 8th of June 2011 and the 12th of June 2011) is plotted in Figure 7.3.
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Table 7.2: Classification performances (in percentages) for the simple threshold (ST), the
moving window (MW), the Factor Graph (FG), the univariate Markov switching (MSU)
and the multivariate Markov switching (MSM) algorithms for dataset 1 (stationary case).
For the univariate algorithms, the value given in the table corresponds to the average
classification performance for all 4 channels. In parentheses the associated standard
deviation. Note that no model parameters could be fitted for the MSU algorithm on
channel 2.

Models rain detection threshold 0 mmh−1 rain detection threshold 0.1 mmh−1

type I error type II error type I error type II error
ST 2.74 (0.88) 23.07 (4.44) 4.52 (0.98) 13.06 (4.26)
MW 12.35 (0.46) 39.04 (2.44) 14.43 (0.14) 11.84 (1.78)
FG 12.00 (2.13) 38.78 (5.75) 12.80 (2.04) 27.07 (6.06)
MSU 2.11 (0.10) 23.32 (2.50) 3.89 (0.18) 13.28 (2.53)
MSM 2.46 21.97 4.27 11.82
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Figure 7.3: Illustration of the classification performances for the univariate Markov
switching algorithm (MSU), the simple threshold, the Factor Graph and the moving
window on a subset of dataset 1 (stationary case). Displayed are the observations from
channel 1. The time is given in UTC.

The univariate Markov switching model (MSU) clearly produced the best classification
performances among the univariate models, closely followed by the simple threshold
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method. The good performance of the simple threshold algorithm is explained by
the fact that the dry-weather attenuations over this time period are (more or less)
constant with very low fluctuations. The moving window and the Factor Graph, on
the other hand, have significantly higher values of type I and type II errors. This
can be partially explained by the fact that these models rely on pre-defined threshold
parameters which were not necessarily optimal over the considered time period. For
example, it is possible to decrease the type II error rate in the moving window algorithm
by increasing the value of σ0. This will, however, also result in an increased type I error
rate. Additional tests with different threshold parameters confirmed that the moving
window algorithm produces, on average, less reliable classifications than the threshold
and the Markov switching algorithm. Not surprisingly, the multivariate Markov switching
model outperformed all the other univariate models in terms of type I and type II errors.
Its false rain/dry detection rates are 2.46 % and 21.97 % for a rain detection threshold
of 0 mmh−1 and 4.27 % and 11.82 % for a rain detection threshold of 0.1 mmh−1(not
shown). This confirms the intuitive idea that the state of the system can be estimated
more accurately using 4 channels rather than 1. The improvement is, however, only
minor because the univariate Markov switching model already produced good and similar
classifications for all the considered channels (except for channel 2 for which no valid
model parameters could be fitted). The fact that the univariate Markov switching model
provides realistic classifications can also be seen in Figure 7.3, which shows the estimated
states (dry/rainy) for all the considered algorithms. A qualitative evaluation suggests
that the best classifications are obtained for the threshold method and the univariate
Markov switching model (MSU). The classifications obtained using the Factor Graph
and the moving window algorithm are not satisfactory. Both the Factor Graph and the
moving window produce considerable false dry detections. The moving window algorithm
also produces some false rain detections at the beginning of the period. Clearly, the
threshold parameters (which were subjectively estimated for the entire dataset) are not
optimal for this period.

7.5.3 Non-stationary dry-weather attenuation baseline

The results for the second dataset are shown in Table 7.3. As for the first dataset, the
classification performances is illustrated in Figure 7.4, where the results are plotted for a
11-days subset from the 27th of March 2011 to the 7th of April 2011.

The first point to notice is that all the considered models have a very high rate of type
II errors (about 50-60 % for the first rain detection threshold and 20-35 % for the second
rain detection threshold). This is due to the large variability of the attenuation baseline
during dry periods, which makes it difficult for the models to separate dry periods
from light rainfall. Consequently, more rainy periods are classified as dry. This is also
confirmed by the low type I error rates, meaning that very few dry periods are actually
classified as rainy. The “best” average performance (among the univariate algorithms)
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Table 7.3: Classification performances for dataset 2 (non-stationary case). Same format
than in Table 7.2. Note that no model parameters could be fitted for the MSU algorithm
on channels 2 and 4.

Models rain detection threshold 0 mmh−1 rain detection threshold 0.1 mmh−1

type I error type II error type I error type II error
ST 7.30 (2.74) 48.91 (2.35) 7.51 (2.69) 17.72 (3.57)
MW 11.54 (0.28) 65.74 (0.77) 11.97 (0.34) 17.54 (2.16)
FG 1.80 (0.47) 61.81 (1.40) 1.93 (0.46) 34.78 (2.57)
MSU 1.83 (0.43) 56.10 (2.17) 2.06 (0.47) 27.09 (2.27)
MSM 3.24 50.55 3.53 20.08
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Figure 7.4: Illustration of the classification performances of the algorithms for a subset
of dataset 2 (non-stationary case). Displayed are the observations from channel 4. Note
that the results of the MSU, which did not converge for this channel, have been replaced
by the results of the MSM.

is again obtained for the univariate Markov switching model and the simple threshold
method, although these two models do not have the same type I,II error rates. As can
be seen in Table 7.3, the threshold method produces less false dry detections but more
false rain detections. The moving window algorithm has the highest rate of type II
errors (65.74 % on average for a rain detection threshold of 0 mmh−1), but most of
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these false dry detections correspond to very light rain rates. This is indicated by the
fact that, for a rain detection threshold of 0.1 mmh−1, which essentially removes light
rainfall, a much lower type II error rate of 17.54 % is obtained. In fact, for the higher
rain detection threshold, the moving window algorithm performs similarly to the simple
threshold and the univariate Markov switching model. Again, the multivariate Markov
switching algorithm outperformed (on average) the univariate algorithms in terms of
false dry and rain detections. In particular, it is worth mentioning that no valid model
parameters could be fitted for the univariate Markov switching model for channels 2 and
4 whereas the multivariate Markov switching model (using all 4 channels) was still able
to provide valid parameter estimates for all channels. The threshold method and the
multivariate Markov switching algorithm (MSM) produce very good and similar results
for this time period. The classifications obtained using the Factor Graph and the moving
window algorithm do not look very good. In particular, the strong variability in the
attenuation baseline causes the moving window algorithm to produce a large amount of
false rain detections. This problem could be (partially) solved by considering a lower
detection threshold σ0 for this time period, but there is currently no easy way of doing
this automatically in the absence of any control data from nearby weather stations.

7.6 Discussion and possible developments

The Markov switching model proposed in Section 2 already provides good results at
a reasonable computational cost. It remains, however, very simple in its formulation
and does not exploit the full potential of state space models. As a possible extension,
the performance of an autoregressive state space model of order 1 was also investigated.
Although more elaborate, the autoregressive model of order 1 only showed little improve-
ment in performance compared to the much simpler AR(0) model. Because autoregressive
state space models are longer and more difficult to fit, the AR(0) was preferred for prac-
tical applications. Next, the authors investigated how the Gaussian error assumption in
Equation (7.3) affects the dry/wet classification performance. It is well known that the
distribution of rain rate values (and consequently path-integrated attenuation) is skewed
and closer to a log-normal distribution than to a Gaussian distribution. An alternative
model formulation with non-Gaussian error structure was therefore considered:

At =
{
µ0 + ε0 for every dry period
µ0 + ε0 + ε1 for every rainy period

(7.11)

where ε0 is a Gaussian random variable with zero mean and standard deviation σ0 and ε1
is a positive random variable with log-normal distribution representing the rain-induced
attenuation. The major drawback of such a formulation is that it has no analytical
expression for the conditional density of At knowing St = 1. It is, at the expense of
additional computation costs, however still possible to fit this model using numerical
approximations. Surprisingly, the more complex and physical error structures did not
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improve significantly the classification performance. The reason for this can be seen in
Figure 7.5 which shows the probability density functions of attenuation values for dry
and rainy periods. The sample distributions are not exactly Gaussian but the fact that
the tails of the distributions are not correctly reproduced is not critical with respect to
the classification problem. In fact, the optimal classification threshold which is at the
intersection between the two empirical probability density functions (i.e., about 49 dB)
is very close to the threshold derived from the Gaussian model (i.e., the intersection
between the two Gaussian densities). Similar results are obtained for all channels and all
considered datasets and show that the Gaussian error assumption is not critical with
respect to the classification problem.

Figure 7.5: Empirical probability density functions of attenuation values for dry and
rainy periods (for dataset 1). The dashed lines represent the fitted densities of a Gaussian
distribution with same mean and variance as the samples. The dry and rainy periods are
derived from the disdrometer data.

Another fundamental problem that needs to be addressed in future studies concerns
the problem of the wet antenna effects on the classification into dry and wet periods.
Most commercial microwave links do not have shielded antennas. Consequently, they
experience some additional attenuation due to a thin water film formed on the surface
of the antennas. This effect can be in the order of several dB and must be taken into
account when estimating dry and rainy periods, especially during and immediately after
a given rain event where the antenna can stay wet for several hours. Future investigations
could consider two different states for dry periods, depending on the state of the antenna.

120



7.7. Conclusions

St =


0 for every dry period with dry antenna
1 for every dry period with wet antenna
2 for every rainy period (with wet antenna)

(7.12)

In this case, a possible attenuation model could be given by

At =


µ0 + ε0 for every dry period with dry antenna
µ1 + ε1 for every dry period with wet antenna
µ2 + ε2 for every rainy period

(7.13)

It must be noted, however, that such a model might be poorly identifiable, i.e., the
parameters and states can not be identified without ambiguity because of the uncertainty
affecting the power measurements and because of the strong dependence between the
model parameters.

7.7 Conclusions

A new algorithm based on a Markov switching model has been introduced to classify
attenuation measurements from commercial microwave links into dry and rainy periods.
The performance of the algorithm has been evaluated using real data from a new and
original experimental set-up and compared to 3 other classification methods. The results
show that the Markov switching algorithm performs well and that its classification
performance can be increased if multiple channel inputs are considered. Clearly, this is a
big advantage compared to other univariate algorithms from the literature which cannot
be generalized easily to the multivariate case. The fact that the Markov switching model
does not require any empirically estimated threshold parameters is also of advantage.

The experimental set-up described in Section 7.4 provides a unique platform from which
various aspects of rainfall retrieval using MWL can be investigated. For example, it is
now possible to rigorously evaluate and compare the classification performances of the
different algorithms presented in Section 7.3. The potential applications and scientific
value of this experiment go, however, far beyond the simple application presented in this
study. Future studies will, for example, investigate the effect of wet antenna on retrieved
rain rates, explore how attenuation of orthogonal polarizations can be used to retrieve
the effective drop size distribution (DSD) along the link path, and the possibility to use
multiple channels in order to improve the accuracy of the rain rate estimates.
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8.1 Summary

Precipitation is an essential part of the hydrological cycle and must be carefully monitored.
Knowledge of its microstructure (e.g., the drop size distribution) is essential in many
hydrological and remote sensing applications. The large spatial and temporal variability
of rainfall (and DSD) makes it particularly difficult to accurately measure rainfall at
scales that are relevant for hydrological applications (e.g., 1 km and 5 min). Stochastic
simulation addresses this issue by providing the ability to generate large numbers of
synthetic rain events with similar structures and statistical properties. Such simulated
fields provide useful reference data that can be used to quantify the errors and uncertainties
associated to remote sensing of precipitation (e.g., using weather radars or microwave
links).

In Chapter 2, a (relatively) simple 2-dimensional DSD simulation method (without
intermittency and temporal structure) based on Geostatistics has been presented. It uses
variograms to characterize the spatial and temporal structures of the DSD parameters. A
multivariate Gaussian anamorphosis is used to transform the correlated DSD parameters
µ, Λ and Nt into independent Gaussian variables µ̃, Λ̃ and Ñt prior to their simulation.
Cross-correlations are re-introduced during the back-transformation at the end of the
simulation. The simulator is parameterized using DSD data collected from a network of
disdrometers at EPFL campus, Switzerland and radar rain-rate data from MeteoSwiss.
The potential of the simulator to address important issues in hydrology and remote
sensing applications is illustrated for two events of contrasted types.

In Chapter 3, a new and more general DSD simulator has been described. It includes
the temporal dimension and proposes to model rainfall intermittency using an indicator
field (0 = dry ; 1 = rainy). The space-time structures of the DSD parameters (and of the
intermittency field) are described using space-time variograms. Taylor’s hypothesis of
frozen turbulence is used to link the temporal variations and the spatial variations along
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the direction of advection. The variability in all the other directions is described using a
geometrical anisotropy parameter (estimated from radar data). External drifts are used
to ensure that the transitions between dry and rainy locations are realistic. They can
also be used to (partially) control the growth and decay of individual rain cells.

In Chapter 4, the DSD simulator has been applied to the problem of rainfall disaggregation.
A modified version of the simulator described in Chapter 2 and Chapter 3 is used to
generate DSD fields at high spatial and temporal resolutions that satisfy a set of conditions
at the coarse scale (e.g., prescribed areal rain-rate values or radar reflectivities). The
procedure is illustrated using MeteoSwiss radar rain-rate data and two types of rainfall
(stratiform vs convective). Further extensions of the method to dual-frequency and
dual-polarization weather radars are discussed.

In Chapter 5, a statistical analysis of rainfall intermittency at different spatial and
temporal scales has been performed. The analysis shows that intermittency can be
adequately represented by scaled exponential functions with fixed shape parameters
and variable scale parameters. Similar results are found for the spatial and temporal
autocorrelation functions of intermittency. Climatological scaling laws and intermittency
models based on radar and disdrometer data were fitted and subsequently used to
parameterize the DSD simulator and the rainfall disaggregation algorithm.

In Chapter 6, a new algorithm for the identification of dry and rainy periods using
attenuation measurements from single-polarizations, single-frequency telecommunication
microwave links has been proposed. Rain identification is achieved by analyzing the
local (temporal) variability of the link signal over short periods of about 30 min. If
the variability exceeds a given threshold, the period is declared rainy. Two different
methods (depending on the amount of data that are available) for the estimation of the
rain detection threshold are provided. Once dry and rainy periods have been identified,
the attenuation baseline is estimated during dry periods and subsequently interpolated
during rainy periods. Comparisons with a nearby C-band radar show that the dry/wet
classification error rate is about 10 %.

In Chapter 7, a new and better algorithm for the identification of dry and rainy periods
using MWL attenuation measurements has been provided. It is based on a Markov
switching model whose parameters are estimated using the maximum likelihood method.
The method is very general and can be easily extended to multivariate inputs (from
different channels). Data from a new and innovative set-up deployed in Dübendorf
in the vicinity of Zürich are used to evaluate the performance of the algorithm. The
false dry/wet detection rates are compared to 3 other algorithms from the literature,
including the method described in Chapter 6. On average, the Markov switching model
outperforms the other algorithms. More general Markov switching models that take into
account wet antenna effects are discussed.
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8.2 Important contributions of this thesis

The most important contributions of this thesis can be summarized as follows:

(1) A stochastic DSD simulator capable of generating large numbers of DSD fields in
space and time with realistic space-time structures and intermittency has been
proposed.

(2) A new rainfall disaggregation method (based on the DSD simulator) has been
presented. It can be used to downscale rain rate or reflectivity fields provided at a
coarse resolution into high resolution DSD fields with realistic space-time structures
and intermittency.

(3) Different scaling laws that can be used to downscale/upscale rainfall intermittency
(including spatial and temporal autocorrelations) have been provided. The results
were used to parameterize the DSD simulator and the rainfall disaggregation
method.

(4) Two new methods (i.e., the moving window algorithm and the Markov switching
model) for the identification of dry and rainy periods using attenuation measure-
ments from telecommunication microwave links were proposed. A new experimental
set-up to investigate the potential of commercial microwave links for quantitative
rainfall estimation has been presented.

8.3 Perspectives

The research presented in this thesis has shown that there are a few points that merit
further attention. First, it must be noted that the proposed simulation techniques only
mention 2-dimensional fields of DSD at the ground level (+ an additional temporal
dimension). No assumptions with respect to the vertical variability and structure of the
DSD fields are made. Finding a way to include this vertical variability in the simulations
would be extremely useful, especially for satellite applications. In theory, 3-dimensional
fields of DSD can be generated using the techniques described in Chapters 2-4. In practice,
however, this requires to parameterize and characterize the spatial and temporal structures
of the DSD in the vertical dimension. In order to be realistic, such characterizations
would have to take into account many different and complex issues. For example, one
must take into account the fact that large drops fall at higher speeds than small ones.
Other issues related to the melting layer, the effect of winds and updrafts and finally,
the fact that rainfall intermittency in the vertical dimension is poorly documented must
also be addressed. Nevertheless, if adequate parameterizations of the vertical variability
can be provided, an extension to 3-dimensional fields of DSD (using the generated 2D +
time fields as a starting point) is possible.

Another, very important issue that needs to be addressed in future work concerns the
extension of the simulation domain (e.g., to domain sizes of 100 × 100 km2 or more).
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At these scales, spatial inhomogeneities (e.g., due to orographic effects) and temporal
non-stationarities (e.g., due to the birth, growth, merging and decay of individual rain
cells) play an important role and must be carefully taken into account. As suggested
in the Appendix of Chapter 3, a possible way to include such phenomena into the
simulations is by adding external drifts to the simulated parameters. Another more
pragmatic way would be to break down the simulation domain into smaller pieces and to
simulate each sub-domain separately. Finding a way to combine the individual pieces
together is, however, not trivial. Another, maybe more promising idea suggested in
Section 4.5.4 is to build the simulations from “bottom” to “top”, i.e., by adding successive
layers of (increasing) noise to an initial and very smooth field that represents the general
trend over the considered domain. However, it is not clear how such methods could be
parameterized using observations from disdrometers, rain gauges or weather radars.

Future work on disaggregation techniques will mainly focus on the possibility to include
data from dual-frequency or dual-polarization weather radars in the disaggregation
process. Also, data from different sensors can be easily combined in order to produce
DSD simulations that satisfy multiple conditions at different scales (e.g., areal rain rates
prescribed by radar, path-integrated attenuations in adequacy with measurements from
MWL and specific values of DSDs at the point scale imposed by nearby disdrometers).
The evaluation of the disaggregated fields presented in Section 4.5.3 also showed that
more efforts are necessary in order to better describe the relationships between rainfall
intermittency at the coarse and the fine scales.

A lot of future and interesting results can also be expected from the data collected using
the experimental set-up presented in Chapter 7. So far, about 1 year of data have been
collected. First results have already been obtained (e.g., see Chapter 7) but a lot of
issues still need to be investigated. For example, issues related to wet antenna effects
and their consequences in terms of rainfall estimation errors and uncertainties. Other,
more elaborate methods (e.g., wavelets) for the identification of dry and rainy periods
and the estimation of an attenuation baseline are also worth investigating.

126



Bibliography
Alabert, F. G., 1987: Stochastic imaging of spatial distributions using hard and soft

information. M.S. thesis, Stanford University, 198 pp., Dept of Applied Earth Sciences.

Anagnostou, E. N. and W. F. Krajewski, 1997: Simulation of radar reflectivity fields:
Algorithm formulation and evaluation. Water Resour. Res., 33 (6), 1419–1428.

Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis
ratios for large rain drops. J. Atmos. Sci., 56 (15), 2673–2683.

Arnold, C. and C. Dey, 1986: Observing-Systems Simulation Experiments: Past, Present,
and Future. Bull. Amer. Meteor. Soc., 67 (6), 687–695.

Assouline, S. and Y. Mualem, 1989: The similarity of regional rainfall - a dimensionless
model of drop size distribution. Trans. ASAE, 32 (4), 1216–1222.

Atlas, D. and C. W. Ulbrich, 1977: Path and area integrated rainfall measurement by
microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16 (4), 327–332.

Atlas, D. and C. W. Ulbrich, 1990: Early foundations of the measurement of rainfall by
radar. Radar Meteorology, D. Atlas, Ed., American Meteorological Society, 86–97.

Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall.
Mon. Weather Rev., 115 (5), 1053–1071.

Aydin, K. and S. E. Daisley, 2002: Relationships between rainfall rate and 35-ghz attenu-
ation and differential attenuation: modeling the effects of raindrop size distribution,
canting, and oscillation. IEEE T. Geosci. Remote Sens., 40 (11), 2343–2352.

Barancourt, C., J.-D. Creutin, and J. Rivoirard, 1992: A method for delineating and
estimating rainfall fields. Water Resour. Res., 28 (4), 1133–1144.

Bárdossy, A., 1998: Generating precipitation time series using simulated annealing. Water
Resour. Res., 34 (7), 1737–1744, doi:10.1029/98WR00981.

Bárdossy, A. and G. Pegram, 2011: Downscaling precipitation using regional climate
models and circulation patterns toward hydrology. Water Resour. Res., 47 (W04505),
doi:10.1029/2010WR009689.

127



Bibliography

Bárdossy, A. and E. J. Plate, 1992: Space-time model for daily rainfall using atmospheric
circulation patterns. Water Resour. Res., 28 (5), 1247–1259.

Battan, L. J., 1973: Radar observation of the atmosphere. University of Chicago Press,
324 pp.

Baudena, M., G. Boni, L. Ferraris, J. von Hardenberg, and A. Provenzale, 2007: Vegeta-
tion response to rainfall intermittency in drylands: Results from a simple ecohydrolog-
ical box model. Adv. Water Resour., 30 (5), 1320–1328, doi:10.1016/j.advwatres.2006.
11.006.

Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft.
J. Atmos. Sci., 33 (5), 851–864.

Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft.
J. Atmos. Sci., 34 (8), 1293–1298.

Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop
shape. Atmos. Res., 97 (4), 396–415, doi:10.1016/j.atmosres.2010.02.001.

Beard, K. V. and C. Chuang, 1987: A new model for the equilibrium shape of raindrops.
J. Atmos. Sci., 44 (3), 1509–1524.

Beier, C. and K. Hansen, 1993: Spatial variability of throughfall fluxes in a spruce forest.
Environ. Pollut., 81, 257–267.

Berndtsson, R. and J. Niemczynowicz, 1988: Spatial and temporal scales in rainfall
analysis, some aspects and future perspectives. J. Hydrol., 100 (1-4), 293–313.

Berne, A., G. Delrieu, J.-D. Creutin, and C. Obled, 2004: Temporal and spatial resolution
of rainfall measurements required for urban hydrology. J. Hydrol., 299 (3-4), 166–179.

Berne, A. and M. Schleiss, 2009: Retrieval of the rain drop size distribution using
telecommunication dual-polarization microwave links. Proc. 34th AMS Conf. Radar
Meteorol., Williamsburg, USA, AMS.

Berne, A. and R. Uijlenhoet, 2005: A stochastic model of range profiles of raindrop
size distributions: application to radar attenuation correction. Geophys. Res. Lett.,
32 (10), L10803, doi:10.1029/2004GL021899.

Berne, A. and R. Uijlenhoet, 2007: Path-averaged rainfall estimation using microwave
links: Uncertainty due to spatial rainfall variability. Geophys. Res. Lett., 34 (7),
L07403, doi:10.1029/2007GL029409.

Bo, Z., S. Islam, and A. B. Eltahir, 1994: Aggregation-disaggregation properties of a
stochastic rainfall model. Water Resour. Res., 30 (12), 3423–3435.

128



Bibliography

Bouvier, C., L. Cisneros, R. Dominguez, J.-P. Laborde, and T. Lebel, 2003: Generating
rainfall fields using principal components (PC) decomposition of the covariance matrix:
a case study in Mexico City. J. Hydrol., 278 (1-4), 107–120.

Bradley, S. G. and C. D. Stow, 1974: The measurement of charge and size of raindrops:
Part II. Results and analysis at ground level. J. Appl. Meteor., 13 (1), 131–147.

Bras, R. L. and I. Rodríguez-Iturbe, 1976: Rainfall generation - nonstationary time-
varying multidimensional model. Water Resour. Res., 12 (3), 450–456.

Braud, I., J. D. Creutin, and C. Barancourt, 1993: The relation between the mean areal
rainfall and the fractional area where it rains above a given threshold. J. Appl. Meteor.,
32, 193–202.

Bringi, V. N. and V. Chandrasekar, 2001: Polarimetric doppler weather radar. Cambridge
University Press, 662 pp.

Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic̀, 1990: An examination
of propagation effects in rainfall on radar measurements at microwave frequencies. J.
Atmos. Oceanic Technol., 7 (6), 829–840.

Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar
reflectivity and differential reflectivity data for rain attenuation: A self-consistent
method with constraints. IEEE T. Geosci. Remote Sens., 39 (9), 1906–1915.

Callaghan, S., B. Boyes, A. Couchman, J. Waight, C. Walden, and S. Ventouras, 2008:
An investigation of site diversity and comparison with ITU-R recommendations. Radio
Sci., 43 (RS4010), doi:10.1029/2007RS003793.

Chate, D. M., P. S. P. Rao, M. S. Naik, G. A. Momin, P. D. Safai, and K. Ali, 2003:
Scavenging of aerosols and their chemical species by rain. Atmos. Environ., 37 (18),
2477–2484.

Chilès, J.-P. and P. Delfiner, 1999: Geostatistics: Modeling spatial uncertainty. Probability
and statistics, Wiley, 695 pp.

Ciach, G. J. and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation
structure in small-scale rainfall in central Oklahoma. Adv. Water Resour., 29 (5),
1450–1463, doi:10.1016/j.advwaters.200511.003.

Collier, C. G., 1986: Accuracy of rainfall estimates by radar, part II: comparison with
raingauge network. J. Hydrol., 83 (1-4), 224–235.

Cowpertwait, P. S. P., P. E. O’Connell, A. V. Metcalfe, and J. A. Mawdsley, 1996:
Stochastic point process modelling of rainfall. ii. regionalization and disaggregation. J.
Hydrol., 175, 47–65.

129



Bibliography

Crane, R. K., 1989: Automatic cell detection and tracking. IEEE T. Geosci. Electronics,
17 (4), 250–262.

Cressie, N. and D. M. Hawkins, 1990: Robust estimation of the variogram. J. Math.
Geology, 12 (2), 115–125.

Creutin, J.-D., G. Delrieu, and T. Lebel, 1988: Rain measurement by raingage-radar
combination: a geostatistical approach. J. Atmos. Oceanic Technol., 5 (1), 102–115.

David, N., P. Alpert, and H. Messer, 2009: Technical Note: Novel method for water
vapour monitoring using wireless communication networks measurements. Atmos.
Chem. Phys., 9 (7), 2413–2418, doi:10.5194/acp-9-2413-2009.

Delrieu, G., L. Hucke, and J.-D. Creutin, 1999: Attenuation in rain for X- and C-band
weather radar systems: sensitivity with respect to the drop size distribution. J. Appl.
Meteor., 38 (1), 57–68.

Diciccio, T., M. Martin, and G. Young, 1993: Analytical approximations to conditional
distribution functions. Biometrika, 80 (4), 781–790.

Dissanayake, A., J. Allnutt, and F. Haidara, 1997: A prediction model that combines
rain attenuation and other propagation impairments along Earth-satellite paths. IEEE
T. Antenn. Propag., 45 (10), doi:10.1109/8.633864.

Durden, S. L., Z. S. Haddad, A. Kitiyakara, and F. K. Li, 1998: Effects of nonuniform
beam filling on rainfall retrieval for the TRMM precipitation radar. J. Atmos. Oceanic
Technol., 15 (3), 635–646.

Finlay, P. J., R. Fell, and P. K. Maguire, 1997: The relationship between the probability
of landslide occurrence and rainfall. Can. Geotech. J., 34 (6), 811–824.

Fong, B., P. B. Rapajic, G. Y. Hong, and A. C. M. Fong, 2003: Factors causing
uncertainties in outdoor wireless wearable communications. IEEE Pervas. Comput.,
2 (2), 16–19, doi:10.1109/MPRV.2003.1203748.

Foufoula-Georgiou, E. and W. F. Krajewski, 1995: Recent advances in rainfall modeling,
estimation and forecasting. Rev. Geophys., 33 (S1), 1125–1137.

Gabriel, K. R. and J. Neumann, 1962: A markov chain model for daily rainfall occurrence
at Tel-Aviv. Q. J. Roy. Meteor. Soc., 88 (375), 90–95.

Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation mea-
surement in a mountainous region. Q. J. Roy. Meteor. Soc., 132 (618), 1669–1692,
doi:10.1256/qj.05.190.

Goldshtein, O., H. Messer, and A. Zinevich, 2009: Rain rate estimation using measure-
ments from commercial telecommunication links. IEEE T. Signal Processing, 57 (4),
1616–1625.

130



Bibliography

Gorgucci, E. and V. Chandrasekar, 2005: Evaluation of attenuation correction methodol-
ogy for dual-polarization radars: Application to X-band sytems. J. Atmos. Oceanic
Technol., 22 (8), 1195–1206, doi:10.1175/JTECH1763.1.

Gosset, M. and I. Zawadzki, 2001: Effect of nonuniform beam filling on the propagation
of the radar signal at X-band frequencies. Part I: changes in the k(Z) relationship. J.
Atmos. Oceanic Technol., 18 (7), 1113–1126.

Groisman, P. Y. and D. R. Easterling, 1994: Variability and trends of total precipitation
and snowfall over the United States and Canada. J. Climate, 7 (1), 184–205.

Grum, M., S. Krämer, H. R. Verworn, and A. Redder, 2005: Combined use of point rain
gages, radar, microwave link and level measurements in urban hydrological modelling.
Atmos. Res., 77 (1-4), 313–321.

Guillot, G., 1999: Approximation of Sahelian rainfall fields with meta-Gaussian random
functions - Part 1: model definition and methodology. Stoch. Env. Res. Risk A.,
13 (1-2), 100–112.

Guntner, A., J. Olsson, A. Calver, and B. Gannon, 2001: Cascade-based disaggregation
of continuous rainfall time series: the influence of climate. Hydrol. Earth Syst. Sci.,
5 (2), 145–164.

Gupta, V. K. and E. Waymire, 1993: A statistical analysis of mesoscale rainfall as a
random cascade. J. Appl. Meteor., 32 (2), 251–267.

Haddad, Z. S., D. A. Short, S. L. Durden, E. Im, S. Hensley, M. B. Grable, and R. A.
Black, 1997: A new parametrization of the rain drop size distribution. IEEE T. Geosci.
Remote Sens., 35 (3), 532–539.

Hall, P., R. Wolff, and Q. Yao, 1999: Methods for estimating a conditional distribution
function. J. Amer. Stats. Assoc., 94, 154–163.

Hamilton, J., 1989: A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica, 457 (2), 357–384.

Hamilton, J., 1990: Analysis of time series subject to changes in regime. J. Econometrics,
45 (1-2), 39–70, doi:10.1016/0304-4076(90)90093-9.

Hershenhorn, J. and D. A. Woolhiser, 1987: Disaggregation of daily rainfall. J. Hydrol.,
95, 299–322.

Holt, A. R., G. G. Kuznetsov, and A. R. Rahimi, 2003: Comparison of the use of
dual-frequency and single-frequency attenuation for the measurement of path-averaged
rainfall along a microwave link. IEE Proc-H, 150 (5), 315–320.

Hutchinson, M. F., 1995: Stochastic space-time weather models from ground-based data.
Agr. and Forest Meteor., 73 (3-4), 237–264.

131



Bibliography

Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling
algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 (12), 2039–2052.

ITU-R P.838-3, 2005: Specific attenuation model for rain for use in prediction meth-
ods. International Telecommunication Union Radiocommunication Recommendations,
International Telecommunication Union Radiocommunication Recommendations.

Jaffrain, J. and A. Berne, 2011: Experimental quantification of the sampling uncertainty
associated with measurements from Parsivel disdrometers. J. Hydrometeor., 12 (3),
doi:10.1175/2010JHM1244.1.

Jaffrain, J. and A. Berne, 2012: Quantification of the small-scale spatial structure of the
raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climate,
in press.

Jaffrain, J., A. Studzinski, and A. Berne, 2011: A network of disdrometers to quantify
the small-scale variability of the raindrop size distribution. Water Resour. Res., 47,
W00H06, doi:10.1029/2010WR009872.

Jameson, A. R., 1989: Theoretical analysis and meteorological interpretation of the role
of raindrop shape on microwave attenuation and propagation phase shifts: implication
for the radar measurement of rain. J. Atmos. Oceanic Technol., 6 (1), 76–88.

Jameson, A. R. and A. B. Kostinski, 2001: What is a raindrop size distribution? Bull.
Amer. Meteor. Soc., 82 (6), 1169–1177.

Jeannin, N., L. Féral, H. Sauvageot, L. Castanet, and J. Lemorton, 2008: Statistical
distribution of the fractional area affected by rain. J. Geophys. Res., 113 (D21120),
doi:10.1029/2008JD009780.

Jennings, S. A., M. F. Lambert, and G. Kuczera, 2010: Generating synthetic high
resolution rainfall time series at sites with only daily rainfall using a master-target
scaling approach. J. Hydrol., 393 (3-4), 163–173, doi:10.1016/j.jhydrol.2010.08.013.

Journel, A. G. and C. J. Huijbregts, 1978: Mining geostatistics. Academic Press, London,
600 pp.

Kang, B. and J. Ramirez, 2010: A coupled stochastic space-time intermittent random
cascade model for rainfall downscaling. Water Resour. Res., 46 (W10534), doi:
10.1029/2008WR007692.

Katz, R. W., 1977: Application of chain-dependent processes to meteorology. J. Appl.
Prob., 14 (3), 598–603.

Kell, G. S., 1975: Density, thermal expansivity, and compressibility of liquid water
from 0 degrees to 150 degrees - correlations and tables for atmospheric-pressure and
saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data,
20 (1), 97–105.

132



Bibliography

Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on
the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 (3-4),
159–224, doi:10.1016/S0169-8095(00)00064-8.

Kharadly, M. M. Z. and R. Ross, 2001: Effect of wet antenna attenuation on propagation
data statistics. IEEE T. Antenn. Propag., 49 (8), 1183–1191.

Kim, C. J., 1994: Dynamic linear models with Markov-switching. J. Econometrics, 60,
1–22.

Kinnell, P. I. A., 2005: Raindrop-impact-induced erosion processes and prediction: a
review. Hydrol. Processes, 19, 2815–2844.

Kleiber, W., R. Katz, and B. Rajagopalan, 2012: Daily spatiotemporal precipitation
simulation using latent and transformed gaussian processes. Water Resour. Res.,
48 (W01523), doi:10.1029/2011WR011105.

Kletter, A. Y., J. Hardenberg, E. Meron, and A. Provenzale, 2009: Patterned vegetation
and rainfall intermittency. Journal of Theoretical Biology, 256, 574–583.

Kliche, D., P. Smith, and R. Johnson, 2008: L-moment estimators as applied to gamma
drop size distributions. J. Appl. Meteor. Climate, doi:10.1175/2008JAMC1936.1.

Koster, R. D. and M. J. Suarez, 1995: Relative contributions of land and ocean processes
to precipitation variability. J. Geophys. Res., 100 (D7), 775–790.

Koutsoyiannis, D., 2006: An entropic-stochastic representation of rainfall intermittency:
The origin of clustering and persistence. Water Resour. Res., 42 (W01401), doi:
10.1029/2005WR004175.

Koutsoyiannis, D. and C. Onof, 2001: Rainfall disaggregation using adjusting procedures
on a poisson cluster model. J. Hydrol., 246 (1-4), 109–122, doi:10.1016/S0022-1694(01)
00363-8.

Krajewski, W. F., 1987: Cokriging radar-rainfall and rain-gauge data. J. Geophys. Res.,
90 (D8), 9571–9580.

Krajewski, W. F., R. Raghavan, and V. Chandrasekar, 1993: Physically based simulation
of radar rainfall data using a space-time rainfall model. J. Appl. Meteor., 32 (2),
268–283.

Krajewski, W. F. and J. A. Smith, 2002: Radar hydrology: rainfall estimation. Adv.
Water Resour., 25 (8-12), 1387–1394, doi:10.1016/j.advwatres.2005.03.018.

Krämer, S., H.-R. Verwon, and A. Redder, 2005: Improvement of x-band radar rainfall
estimates using a microwave link. Atmos. Res., 77, 278–299.

133



Bibliography

Kschischang, F. R., B. J. Frey, and H.-A. Loeliger, 2001: Factor graphs and the sum-
product algorithm. IEEE Trans. Inf. Theory, 47 (2), 498–519.

Kumar, P. and E. Foufoula-Georgiou, 1994: Characterizing multiscale variability of zero
intermittency in spatial rainfall. J. Appl. Meteor., 33, 1516–1525.

Kundu, P. K. and R. K. Siddani, 2011: Scale dependence of spatiotemporal intermittency
of rain. Water Resour. Res., 47 (W08522), doi:10.1029/2010WR010070.

Lantuéjoul, C., 2002: Geostatistical simulation, models and algorithms. Springer, 256 pp.

Lanza, L., 2001: A conditional simulation model of intermittent rain fields. Hydrol. Earth
Syst. Sci., 4 (1), 173–183.

Lanza, L., J. Ramirez, and E. Todini, 2001: Stochastic rainfall interpolation and down-
scaling. Hydrol. Earth Syst. Sci., 5 (2), 139–143.

Lavergnat, J. and P. Golé, 1998: A stochastic raindrop time distribution model. J. Appl.
Meteor., 37 (8), 805–818.

Lavergnat, J. and P. Golé, 2006: A stochastic model of raindrop release: application to
the simulation of point rain observations. J. Hydrol., 328 (1-2), 8–19.

Lee, G., A. W. Seed, and I. Zawadzki, 2007: Modeling the variability of drop size
distributions in space and time. J. Appl. Meteor. Climate, 46 (7), 742–756, doi:
10.1175/JAM2505.1.

Lee, G., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general
approach to double-moment normalization of drop size distributions. J. Appl. Meteor.,
43 (2), 264–281.

Leijnse, H., R. Uijlenhoet, and A. Berne, 2010: Errors and uncertainties in microwave
link rainfall estimation explored using drop size measurements and high-resolution
radar data. J. Hydrometeor., 11 (6), 1330–1344, doi:10.1175/2010JHM1243.1.

Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007a: Hydrometeorological application
of a microwave link: 1. evaporation. Water Resour. Res., 43 (4), W04416, doi:
10.1029/2006WR004988.

Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007b: Hydrometeorological application
of a microwave link. Part II: precipitation. Water Resour. Res., 43 (4), W04417,
doi:10.1029/2006WR004989.

Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007c: Rainfall measurement using radio
links from cellular communication networks. Water Resour. Res., 43 (3), W03201,
doi:10.1029/2006WR005631.

134



Bibliography

Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2008: Microwave link rainfall estimation:
effects of link length and frequency, temporal sampling, power resolution, and wet
antenna attenuation. Adv. Water Resour., 31 (11), 1481–1493.

Leuangthong, O. and C. V. Deutsch, 2003: Stepwise conditional transformation for
simulation of multiple variables. Math. Geology, 35 (2), 155–173.

Li, B., A. Murthi, K. Bowman, G. North, M. Genton, and M. Sherman, 2009: Statistical
tests of taylor’s hypothesis: An application to precipitation fields. J. Hydrometeor.,
10, 254–265.

Loeliger, H. A., J. Dauwels, J. Ju, S. Korl, L. Ping, and F. R. Kschischang, 2010: The
factor graph approach to model-based signal processing. Proc. of the IEEE, 95 (6),
1295–1322.

Löffler-Mang, M. and J. Joss, 2000: An optical disdrometer for measuring size and
velocity of hydrometeors. J. Atmos. Oceanic Technol., 17 (2), 130–139.

Lovejoy, S. and B. B. Mandelbrot, 1985: Fractal properties of rain, and a fractal model.
Tellus A, 37A (3), 209–232.

Lovejoy, S. and D. Schertzer, 2008: Turbulence, raindrops and the l1/2 number density
law. New J. Phys., 10 (075017), doi:10.1088/1367-2630/10/7/075017.

Mackay, N. G., R. E. Chandler, C. Onof, and H. S. Wheater, 2001: Disaggregation
of spatial rainfall fields for hydrological modelling. Hydrol. Earth Syst. Sci., 5 (2),
165–173.

Mardia, K., 1970: Measures of multivariate skewness and kurtosis with applications.
Biometrika, 57, 519–530.

Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather.
Adv. Geophys., 2, 1–56.

Marshall, J. S. and W. M. Palmer, 1948: The distribution of raindrops with size. J.
Meteor., 5, 165–166.

Matheron, G., 1965: Les variables régionalisées et leur estimation. Masson et Cie, Paris,
305 pp.

Matrosov, S. Y., K. A. Clark, B. E. Martner, and A. Tokay, 2002: X-band polarimetric
radar measurements of rainfall. J. Appl. Meteor., 41 (9), 941–952.

Menabde, M., A. Seed, D. Harris, and G. Austin, 1997: Self-similar random fields and
rainfall simulation. J. Geophys. Res., 102 (D12), 13 509–13 515.

Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless
communication networks. Science, 312 (5774), 713–713, doi:10.1126/science.1120034.

135



Bibliography

Metzner, P., I. Horenko, and C. Schuette, 2007: Generator estimation of Markov jump
processes based on incomplete observations nonequidistant in time. Phys. Rev. E,
76 (6), doi:10.1103/PhysRevE.76.066702.

Mishchenko, M., L. Travis, and A. Lacis, 2002: Scattering, Absorption, and Emission of
Light by Small Particles. Cambridge University Press, 445 pp.

Mishchenko, M. I. and L. D. Travis, 1998: Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly oriented, rotationally
symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60 (3), 309–324.

Moisseev, D. N. and V. Chandrasekar, 2007: Examination of the µ-δ relation suggested
for drop size distribution parameters. J. Atmos. Oceanic Technol., 24 (5), 847–855,
doi:10.1175/JTECH2010.1.

Molini, A., G. Katul, and A. Porporato, 2009: Revisiting rainfall clustering and in-
termittency across different climatic regimes. Water Resour. Res., 45 (W11403),
doi:10.1029/2008WR007352.

Montopoli, M., F. S. Marzano, and G. Vulpiani, 2008: Analysis and synthesis of raindrop
size distribution time series from disdrometer data. IEEE T. Geosci. Remote Sens.,
46 (2), 466–478, doi:10.1109/TGRS.2007.909102.

Olssen, J. and R. Berndtsson, 1998: Temporal rainfall disaggregation based on scaling
properties. Water Sci. Technol., 37 (11), 73–79.

Onibon, H. and T. Lebel, 2004: Gibbs sampling for conditional spatial disaggregation of
rain fields. Water Resour. Res., 40 (W08401), doi:10.1029/2003WR002009.

Onof, C. and K. Arnbjerg-Nielsen, 2009: Quantification of anticipated future changes in
high resolution design rainfall for urban areas. Atmos. Res., 92, 350–363.

Onof, C., R. E. Chandler, A. Kakou, P. Northrop, H. S. Wheater, and V. Isham, 2000:
Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch.
Env. Res. Risk A., 14 (6), 384–411.

Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer.
Meteor. Soc., 56 (5), 527–530.

Ormsbee, L. E., 1986: Rainfall disaggregation model for continuous hydrological modeling.
J. Hydraul. Eng., 115 (4), 507–525.

Paulson, K. S., 2002: The spatial-temporal statistics of rain rate random fields. Radio
Sci., 37 (5).

Pavlopoulos, H., 2011: A stochastic framework for downscaling processes of spatial
averages based on the property of spectral multiscaling and its statistical diagnosis on
spatio-temporal rainfall fields. Adv. Water Resour., 34 (8), 990–1011, doi:10.1016/j.
advwatres.2011.05.006.

136



Bibliography

Pavlopoulos, H. and J. Gritsis, 1999: Wet and dry epoch durations of spatially averaged
rain rate, their probability distributions and scaling properties. Environ. Ecol. Stat., 6,
351–380.

Pavlopoulos, H. and V. K. Gupta, 2003: Scale invariance of regional wet and dry
durations of rain fields: A diagnostic study. J. Geophys. Res., 108(D8), doi:10.1029/
2002JD002763.

Pebesma, E. J., 2004: Multivariate geostatistics in S: the gstat package. Comput. Geosci.,
30 (7), 683–691, doi:10.1016/j.cageo.2004.03.012.

Pegram, G. G. S. and A. N. Clothier, 2001: High resolution space time modelling of
rainfall: the string of beads model. J. Hydrol., 241 (1-2), 26–41.

Perica, S. and E. Foufoula-Georgiou, 1996: Model for multiscale disaggregation of spatial
rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res.,
101 (D21), 26 347–26 362.

Pitman, A. J., A. Henderson-Sellers, and Z.-L. Yang, 1990: Sensitivity of regional climates
to localized precipitation in global models. Nature, 346, 734–737.

Pruppacher, H. R. and R. L. Klett, 1997: Microphysics of clouds and precipitation. 2d
ed., No. 18 in Atmospheric and Oceanographic Sciences Library, Kluwer Academic
Press, 954 pp.

Pruppacher, H. R. and R. L. Pitter, 1971: Semi-empirical determination of shape of
cloud and rain drops. J. Atmos. Sci., 28 (1), 86–94.

R Development Core Team, 2011: R: A Language and Environment for Statistical
Computing. Vienna, Austria, R Foundation for Statistical Computing, URL http:
//www.R-project.org/, ISBN 3-900051-07-0.

Radke, L. F., P. V. Hobbs, and M. W. Eltgroth, 1980: Scavenging of aerosol-particles by
precipitation. J. Appl. Meteor., 19 (6), 715–722.

Rahimi, A. R., G. J. G. Upton, and A. R. Holt, 2004: Dual-frequency links - a complement
to gauges and radar for the measurement of rain. J. Hydrol., 288 (1-2), 3–12.

Rahimi, A. R., G. J. G. Upton, A. R. Holt, and R. J. Cummings, 2003: Use of dual-
frequency microwave links for measuring path-averaged rainfall. J. Geophys. Res.,
108 (D15), 4467, doi:10.1029/2002JD003202.

Rayitsfeld, A., R. Samuels, A. Zinevich, U. Hadar, and P. Alpert, 2011: Comparison of
two methodologies for long term rainfall monitoring using a commercial microwave
communication system. Atmos. Res., 104-105 (0), 119–127, doi:10.1016/j.atmosres.
2011.08.011.

137

http://www.R-project.org/
http://www.R-project.org/


Bibliography

Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006a: Rainfall downscal-
ing and flood forecasting: a case study in the mediterranean area. Nat. Hazard. Earth
Sys. Sci., 6, 611–619.

Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006b: RainFARM:
Rainfall downscaling by a filtered autoregressive model. J. Hydrometeor., 7, 724–738.

Reller, C., H. Loeliger, and J. Diaz, 2011: A model for quasi-periodic signals with
application to rain estimation from microwave link gain. Proc. 19th European Signal
Proc. Conf. (EUSIPCO), Barcelona, Spain.

Richardson, C., 1981: Stochastic simulation of daily precipitation, temperature and solar
radiation. Water Resour. Res., 17 (1), 182–190.

Rigby, J. and A. Porporato, 2010: Precipitation, dynamical intermittency, and sporadic
randomness. Adv. Water Resour., 33, 923–932.

Rincon, R. S. and R. H. Lang, 2002: Microwave link dual-wavelength measurements
of path-average attenuation for the estimation of drop size distribution and rainfall.
IEEE T. Geosci. Remote Sens., 40 (4), 760–770.

Rinehart, R. E., 1979: Internal storm motions from a single non-Doppler weather radar.
Ph.D. thesis, Colorado State University, 280 pp.

Ripley, B. D., 1987: Stochastic Simulation. Wiley, 237 pp.

Robertson, F. R., D. E. Fitzjarrald, and C. D. Kummerow, 2003: Effects of uncertainty
in TRMM precipitation radar path integrated attenuation on interannual variations of
tropical oceanic rainfall. Geophys. Res. Lett., 30, L016416, doi:10.1029/2002GL016416.

Rodríguez-Iturbe, I. and P. S. Eagleson, 1987: Mathematical models of rainstorm events
in space and time. Water Resour. Res., 23 (1), 181–190.

Roe, G. H., 2005: Orographic precipitation. Ann. Rev. Earth Planet Sci., 33, 645–671.

Rosewell, C. J., 1986: Rainfall kinetic energy in Eastern Australia. J. Climate Appl.
Meteor., 25, 1695–1701.

Ruf, C. S., K. Aydin, S. Mathur, and J. P. Bobak, 1996: 35-GHz dual-polarization
propagation link for rain-rate estimation. J. Atmos. Oceanic Technol., 13 (2), 409–
425.

Sauvageot, H. and J. P. Lacaux, 1995: The shape of averaged drop size distributions. J.
Atmos. Sci., 52 (8), 1070–1083.

Schleiss, M. and A. Berne, 2010: Identification of dry and rainy periods using telecom-
munciation microwave links. IEEE Geosci. Remote Sens. Lett., 7 (3), 611–615, doi:
10.1109/LGRS.2010.2043052.

138



Bibliography

Schleiss, M., A. Berne, and R. Uijlenhoet, 2009: Geostatistical simulation of 2d fields
of raindrop size distributions at the meso-γ scale. Water Resour. Res., 45, W07415,
doi:10.1029/2008WR007545.

Seifert, A., 2005: On the shape-slope relation of drop size distributions in convective
rain. J. Appl. Meteor., 44, 1146–1151.

Sekhon, R. S. and R. C. Srivastava, 1971: Doppler radar observations of drop-size
distributions in a thunderstorm. J. Atmos. Sci., 28 (6), 983–994.

Sempere-Torres, D., J. M. Porrà, and J.-D. Creutin, 1994: A general formulation for
raindrop size distribution. J. Appl. Meteor., 33 (12), 1494–1502.

Seo, D.-J., 1998: Real-time estimation of rainfall fields using rain gauge data under
fractional coverage conditions. J. Hydrol., 208, 25–36.

Sevruk, 1999: Adjustment of tipping-bucket precipitation gauge measurements. Atmos.
Res., 42 (1-4), 237–246.

Shah, S. M. S., P. E. O’Connel, and J. R. M. Hosking, 1996: Modelling the effects of
spatial variability in rainfall on catchment response. 1. Formulation and calibration of
a stochastic rainfall field model. J. Hydrol., 175 (1), 67–88.

Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring
Mission (trmm) satellite. Bull. Amer. Meteor. Soc., 69 (3), 278–295.

Sivakumar, B., S. Sorooshian, H. V. Gupta, and X. Gao, 2001: A chaotic approach to
rainfall disaggregation. Water Resour. Res., 37 (1), 61–72.

Sivapalan, M. and E. F. Wood, 1987: A multidimensional model of nonstationary
space-time rainfall at the catchment scale. Water Resour. Res., 23 (7), 1289–1299.

Smith, J. A., E. Hui, M. Steiner, M. L. Baeck, W. Krajewski, and A. A. Ntelekos, 2009:
Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour.
Res., 45 (W04430), doi:10.1029/2008WR006840.

Srivastava, M. and T. Hui, 1987: On assessing multivariate normality based on Shapiro-
Wilk W statistic. Statistics and Probability Letters, 5, 15–18.

Srivastava, R., 1971: Size distributions of raindrops generated by their breakup and
coalescence. J. Atmos. Sci., 28 (3), 410–415.

Syed, T. H., V. Lakshmi, E. Paleologos, D. Lohmann, K. Mitchell, and J. S. Famiglietti,
2004: Analysis of process controls in land surface hydrological cycle over the continental
United States. J. Geophys. Res., 109, D22 105, doi:10.1029/2004JD004640.

Tabary, P., 2007: The new french operational radar rainfall product. Part I: methodology.
Weather Forecast., 22 (3), 393–408, doi:10.1175/WAF1004.1.

139



Bibliography

Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164 (919),
476–490.

Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling
algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17 (3),
332–356.

Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of
“normalized” distribution to describe raindrop spectra: a tool for cloud physics and
cloud remote sensing. J. Appl. Meteor., 40 (6), 1118–1140.

Tokay, A. and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin
of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 (3), 355–371.

Tuttle, J. D. and G. B. Foote, 1990: Determination of the boundary layer airflow from a
single doppler radar. J. Atmos. Oceanic Technol., 7, 218–232.

Uijlenhoet, R. and A. Berne, 2008: Stochastic simulation experiment to assess radar
rainfall retrieval uncertainties associated with attenuation and its correction. Hydrol.
Earth Syst. Sci., 12 (2), 587–601.

Uijlenhoet, R., J. M. Porrà, D. Sempere Torres, and J.-D. Creutin, 2006: Analytical
solutions to sampling effects in drop size distribution measurements during stationary
rainfall: estimation of bulk rainfall variables. J. Hydrol., 328, 65–82, doi:10.1016/j.
jhydrol.2005.11.043.

Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions
in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 44 (4),
43–61.

Uijlenhoet, R., J. N. M. Stricker, P. J. J. F. Torfs, and J.-D. Creutin, 1999a: Towards
a stochastic model of rainfall for radar hydrology: testing the Poisson homogeneity
hypothesis. Phys. Chem. Earth, 24 (6), 747–755.

Uijlenhoet, R., et al., 1999b: HYDROMET Integrated Radar Experiment (HIRE):
experimental setup and first results. Proc. 29th AMS Conf. Radar Meteorol., Montréal,
Canada, 926–930.

Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop-size
distribution. J. Climate Appl. Meteor., 22 (10), 1764–1775.

Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral
parameters and empirical relations. J. Climate Appl. Meteor., 24, 580–590.

Ulbrich, C. W. and D. Atlas, 1998: Rainfall microphysics and radar properties: analysis
methods for drop size spectra. J. Appl. Meteor., 37 (9), 912–923.

140



Bibliography

Ulbrich, C. W. and D. Atlas, 2007: Microphysics of raindrop size spectra: tropical
continental and maritime storms. J. Appl. Meteor. Climate, 46, 1777–1791.

Upton, G. J. G., A. R. Holt, R. J. Cummings, A. R. Rahimi, and J. W. F. Goddard, 2005:
Microwave links: the future for urban rainfall measurements? Atmos. Res., 77 (1-4),
300–312.

van der Vaart, A. W., 1998: Asymptotic Statistics. Cambridge University Press, 443 pp.

Van Dijk, A. I. J. M., L. A. Bruijnzeel, and C. J. Rosewell, 2002: Rainfall intensity-kinetic
energy relationships: a critical literature appraisal. J. Hydrol., 261 (1-4), 1–23.

Villarini, G. and W. F. Krajewski, 2010: Review of the different sources of uncertainty
in single polarization radar-based estimates of rainfall. Surveys in Geophysics, 31 (1),
107–129.

Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 (4), 1067–1078.

Waymire, E., V. K. Gupta, and I. Rodriguez-Iturbe, 1984: A spectral theory of rainfall
intensity at the meso-β scale. Water Resour. Res., 20 (10), 1453–1465.

Weiss, L. L., 1964: Sequences of wet or dry days described by a Markov chain probability
model. Mon. Weather Rev., 92, 169–176.

Wilks, D. S., 1999: Simultaneous stochastic simulation of daily precipitation, temperature
and solar radiation at multiple sites in complex terrain. Agr. and Forest Meteor., 96 (1-
3), 85–101.

Wilks, D. S. and R. L. Wilby, 1999: The weather generation game: a review of stochastic
weather models. Prog. Phys. Geog., 23 (3), 329–357.

Willis, P. T., 1984: Functional fits to some observed drop size distributions and parame-
terization of rain. J. Atmos. Sci., 41 (9), 1648–1661.

Wilson, J. M. and E. A. Brandes, 1979: Radar measurement of rainfall - a summary.
Bull. Amer. Meteor. Soc., 60 (9), 1048–1058.

Wojcik, R., D. McLaughlin, A. G. Konings, and D. Entekhabi, 2009: Conditioning
stochastic rainfall replicates on remote sensing data. IEEE T. Geosci. Remote Sens.,
47 (8), 2436–2449.

Xie, P. and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based
on gauge observations, satellite estimates and numerical model outputs. Bull. Amer.
Meteor. Soc., 78 (11), 2539–2558.

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction
System (ARPS); A multi-scale nonhydrostatic atmospheric simulation and prediction
model. Part I: model dynamics and verification. Meteorol. Atmos. Phys., 75 (3-4),
161–193, doi:10.1007/s007030070003.

141



Bibliography

Yaglom, A., 2004: An Introduction to the Theory of Stationary Random Functions. Dover
Publications, 256 pp.

Yue, D. and Q. Han, 2005: Delay-dependent exponential stability of stochastic systems
with time-varying delay, nonlinearity, and Markovian switching. IEEE Trans. Autom.
Control, 50 (2), 217–222.

Zawadzki, I., 1975: On radar-raingauge comparison. J. Appl. Meteor., 14 (8), 1430–1436.

Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate
and drop size distribution from polarimetric radar measurements. IEEE T. Geosci.
Remote Sens., 39 (4), 830–841.

Zinevich, A., P. Alpert, and H. Messer, 2008: Estimation of rainfall fields using commercial
microwave communication networks of variable density. Adv. Water Resour., 31 (11),
1470–1480, doi:10.1016/j.advwatres.2008.03.003.

Zinevich, A., P. Alpert, and H. Messer, 2009: Frontal rainfall observation by commercial
microwave communication network. J. Appl. Meteor. Climate, 48, 1317–1334.

Zinevich, A., H. Messer, and P. Alpert, 2010: Prediction of rainfall intensity measurement
errors using commercial microwave communication links. Atmos. Meas. Tech., 3,
1385–1402.

142



Marc Schleiss
Education

2008–2012 PhD in hydrometeorology, École Polytechnique Fédérale de Lausanne, Switzerland.
2006–2008 M.Sc. in mathematics, École Polytechnique Fédérale de Lausanne, Switzerland.
2003–2006 Bachelor in mathematics, École Polytechnique Fédérale de Lausanne, Switzerland.
2000–2003 Maturité fédérale scientifique, Gymnase de Burier, Switzerland.

PhD thesis
Title “Variability of the Rain Drop Size Distribution: Stochastic Simulation and Application

to Telecommunication Microwave Links”
Supervisor Prof. A. Berne

Other research projects
Autumn 2007 Master thesis: “R-estimators in regression and extension to generalized linear models”
Spring 2007 Semester project: “Random algorithms”

Autumn 2006 Semester project: “Optimal frequency allocation in telecommunication networks”
Spring 2006 Semester project: “Generalized linear models”

Autumn 2005 Semester project: “Interacting particle systems”

Experience
2008-2011 Teaching assistant, École Polytechnique Fédérale de Lausanne, Switzerland.

Teaching assistant for “Spatial statistics and analysis”, Prof. Golay and Prof. Berne
Summer 2006 Examination supervisor, École Secondaire de Montreux, Switzerland.

External expert for maths exams.
Summer 2004 Military service, Bern, Switzerland.

Appointed to private first class. Service accomplished successfully.

Languages
French Mother tongue

Swiss German Mother tongue
German Fluent
English Fluent

Portuguese Intermediate

B Vers-chez-Cochard 4 – 1807 Blonay, Switzerland
• H +41 79 545 36 26 • T +41 21 943 39 35 • k marc.schleiss@epfl.ch 1/2



Computer skills
OS Windows (XP/Vista/7), Linux

Office Word, Excel, Power Point, Open Office, LaTex
Programming R, C++, Matlab, Fortran-77

Other skills
Mathematics Applied statistics, multivariate statistics, data mining, modeling, stochastic simula-

tion, time series analysis, spatial statistics, Geostatistics, Bayesian statistics, optimiza-
tion, statistical programming in “R”.

Remote sensing Rainfall estimation using polarimetric weather radars, rain gauges, disdrometers, mi-
crowave links and satellites. Rainfall simulation and disaggregation.

Publications
2012 “Polarimetric X-band radar network simulator”: Domaszczynski, P., W. Krajewski, A. Kruger,

M. Schleiss, A. Berne and R. Uijlenhoet, submitted to Water Ressour. Res., Feb 2012
2012 “Stochastic space-time disaggregation of rainfall into DSD fields”: Schleiss, M. and A. Berne,

submitted to J. Hydrometeorol., Jan 2012
2012 “Using Markov switching models to infer dry and rainy periods from telecommunication mi-

crowave link signals”: Wang, Z., M. Schleiss, J. Jaffrain, A. Berne and J. Rieckermann,
submitted to Atmos. Meas. Tech., Dec 2011

2012 “Stochastic simulation of intermittent DSD fields in time”: Schleiss, M., J. Jaffrain and A.
Berne, J. Hydrometeorol., vol.13, No.2, 621-637

2012 “Scaling analysis of the variability of the rain drop size distribution at small scale”: Berne,
A., J. Jaffrain and M. Schleiss, Adv. Water Resour., in press

2011 “Statistical analysis of rainfall intermittency at small scales”: Schleiss, M., J. Jaffrain and A.
Berne, Geophys. Res. Lett., vol.38, L18403

2010 “Identification of dry and rainy periods using telecommunication microwave links”: Schleiss,
M. and A. Berne, IEEE Geosci. Remote Sens. Lett., vol.7, No.3, 611-615

2009 “Geostatistical simulation of 2D fields of raindrop size distributions at the meso-γ scale”:
Schleiss, M., A. Berne and R. Uijlenhoet, Water Ressour. Res., vol.45, W07415

Awards & Media
March 2011 I was interviewed and filmed by the “Télévision suisse romande” about my work on urban

rainfall estimation using telecommunication microwave links, in collaboration with the Swiss
Aquatic Research (EAWAG) in Dübendorf, Switzerland.

January 2011 I was interviewed by the “Radio suisse romande” about the potential of rainfall estimation
using telecommunication microwave links, Lausanne, 26 Jan 2011.

September 2010 Finalist for the best article at the European Conference on Radar in Meteorology and Hydrol-
ogy, Sibiu, Romania, 6-10 Sept 2010.

B Vers-chez-Cochard 4 – 1807 Blonay, Switzerland
• H +41 79 545 36 26 • T +41 21 943 39 35 • k marc.schleiss@epfl.ch 2/2


	Title
	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	List of symbols
	List of acronyms
	Introduction
	Motivation
	The microstructure of rainfall
	The drop size distribution (DSD)
	Important quantities related to the DSD
	Intermittency

	Remote sensing of precipitation
	A brief introduction to weather radars
	Microwave links (MWL)

	Stochastic simulation of rainfall
	The rainfall measurement problem
	A brief overview of rainfall simulators

	Thesis outline

	Simulation of 2D fields of raindrop size distributions
	Summary
	Introduction
	Modeling the DSD
	The Gamma model
	Gaussian anamorphosis of DSD parameters

	Geostatistical simulation of DSD fields
	Modeling the spatial structure of DSD fields
	Simulation of the DSD fields

	Application
	Data
	DSD fitting
	Gaussian anamorphosis of DSD parameters
	Testing Taylor's hypothesis
	Fitting a variogram model
	Estimation of the anisotropy
	Simulation of DSD fields
	Comparison with radar measurements

	Conclusions

	Simulation of intermittent DSD fields in time
	Summary
	Introduction
	Modeling
	Drop Size Distribution
	Intermittency
	Anamorphosis
	Space-time structure

	Parameterization
	Required data
	Parameters derived from radar data
	Parameters derived from DSD data

	Simulation
	Sequential simulation
	DSD Simulation algorithm
	Post-processing

	Illustration using real data
	Data
	Simulation domain
	Considered events
	Parameterization
	Simulated DSD fields
	Evaluation

	Discussion
	Conclusions

	Stochastic disaggregation of rainfall into DSD fields
	Summary
	Introduction
	Models
	DSD model
	Gaussian anamorphosis of DSD parameters
	Intermittency
	Space-time structure
	Sequential Gaussian and indicator simulation

	Disaggregation
	Conditions and constraints
	Disaggregation algorithm

	Application
	Stratiform event
	Convective event
	Evaluation
	Discussion

	Conclusions

	Statistical analysis of rainfall intermittency
	Summary
	Introduction
	Modeling the intermittency
	Data
	Zero-rainfall probability
	Spatial autocorrelation structure
	Temporal autocorrelation structure
	Conclusions

	Identification of dry and rainy periods using microwave links
	Summary
	Introduction
	Data
	Method
	Performance evaluation
	Summary and conclusions

	Markov switching models to infer dry and rainy periods
	Summary
	Introduction
	Methods
	Existing algorithms
	Univariate Markov switching model (MSU)
	Multivariate Markov switching model (MSM)

	Experimental set-up
	Microwave link
	Disdrometers and rain gauges
	Additional data
	Originality
	Selected datasets

	Results and model comparison
	False rain and dry detections
	Stationary dry-weather attenuation baseline
	Non-stationary dry-weather attenuation baseline

	Discussion and possible developments
	Conclusions

	Conclusions and perspectives
	Summary
	Important contributions of this thesis
	Perspectives

	Bibliography

