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1 Introduction

This document is meant as supporting material for the ECPOL code. This code calcu-
lates the propagation of a polarized wave through a series of reflectors, of which some
can be grooved mirrors altering the polarization of the wave. A wave is represented
simply by a propagation vector, (complex-valued) electric field, and a frequency. A
mirror is assumed infinitely large and only the normal vector defines its orientation. As
such, effects such as finite mirror size, diffraction, losses, mode conversion, etc are not
included. The code also includes some interface scripts to TCV equipment, including the
X2 MOU, transmission lines, and launchers, and can be used to calculate the optimal
MOU settings to obtain the required polarization at the plasma. Section 2 contains the
main definitions and equations used in the code, and Section 3 gives a summary of the
main functions. Most help is available through the matlab help interface directly.

2 Signs and definitions

All calculations are ultimately done in the lab frame, a fixed cartesian frame with unit
vectors {ex, ey, ez}. All vectors are assumed to be in this frame, unless specified other-
wise. All quantities are in SI units.
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2.1 Electric field of a polarized wave

The plane propagating electromagnetic wave with wave vector k ∈ R3 in [1/m] has its

electric field varying in space and time as E(r, t) = Re{Ê exp(i(k · r − ωt))}. where

Ê ∈ C3. Considering a fixed point in space this gives E(t) = Re{Ê exp(−iωt}. This can
be written explicitly as

E(t) = Re{Ê} cos(ωt) + Im{Ê} sin(ωt)

This shows that the electric field vector will lie in a plane spanned by the two vectors
{Re{Ê}, Im{Ê}}. These vectors are orthogonal to k. Now assume for simplicity that
k||ez such that the E vector lies in the xy plane. We can then write each of the complex

x and y components in polar form as Ê as Êx = |Êx|eiδx and Êy = |Êy|eiδy . We
now multiply both components by e−iδx . This has no global effect on the electric field
since it represents an equal phase shift of the both components of the wave electric field
vector. Defining δ = δx− δy, Ê is now given by Ê = |Êx|ex + |Êy|e−iδey. The temporal
evolution of E(t) can then be written as

E(t) = |Êx| cos(ωt)ex + |Êy| cos(ωt+ δ)ey

This equation describes an ellipse in the xy plane.
It can be seen that for δ < 0, the Ey component trails the Ex component in time. The

electric field thus moves from the x to the y direction, or in the right-hand direction with
respect to k. In the opposite case, for δ > 0 the Ey component leads the Ex component,
so the electric field moves in the left-hand sense with respect to k.

It should be noted that this definition is the one used in [1] but is opposite to the
one used in [2] which follows a different convention due to the historical evolution of
optics. The notation chosen here is commonly used in plasma physics, where a wave
propagating in the same direction as the static magnetic field is referred to as the R
wave when it is right handed with respect to k (and B).

2.2 Polarization angles

One can also define polarization angles (α,β) defining the characteristics of the ellipse.
The linear polarization angle α is defined as the inclination angle of the polarization
ellipse with respect to the x axis. Following [2, Ch.1.4]1 one can define the ratio of the

magnitude of the field components r =
|Eŷ|
|Ex̂| . The polarization angle −π/2 ≤ α ≤ π/2

is defined as the orientation of the main axis of the ellipse with respect to ex. It can be
shown that

tan(2α) =
2r

1− r2
cos(δ)

Optionally, introducing the auxiliary angle χ = arctan(r) one obtains the expression
tan(2α) = tan(2χ) cos(δ) which is also often encountered in the literature.

The elliptical polarization angle β is the arctangent of the ratio of minor to major
axis of the ellipse. Its sign defines the polarization direction.

sin(2β) = − sin(2χ) sin(δ) = − 2r

1 + r2
sin(δ)

since r > 0 clearly β and δ have opposite sign.
With these definitions we can summarize:

1Note the sign difference: [2] uses the “traditional” notation rather than the “natural” notation for
the polarization used here. The relation between α, β and the corresponding angles (called (ψ, χ) in
[2]) is α↔ ψ, β ↔ −χ
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• Right handed polarization (R) is right handed with respect to k, has δ < 0 and
β > 0. Looking from a position fixed in space, towards the direction of propagation
of the wave (in k direction), the E vector rotates CW in time. Right handed
perfectly circular polarization has δ = −π/2, β = 45

◦
, iEx/Ey = 1 (α can not be

defined for circular polarization)

• Left handed polarization (L) is left handed with respect to k, has δ > 0 and β < 0.
Looking from a position fixed in space, towards the direction of propagation of
the wave (i.e. in the k direction) the E vector rotates CCW in time. Left handed
perfectly circular polarization has δ = π/2, β = −45

◦
, iEx/Ey = −1 (α can not

be defined for circular polarization)

Ex

Ey

k

↵
�

Figure 1: Trajectory swept out by electric field vector and definitions of polarizer angles.
The direction of the electric field shown here corresponds to an R wave.

2.3 Reflection off a corrugated mirror

The polarization of the wave is altered upon reflection off a reflecting surface. A model
will now be derived to calculate the effect of a general corrugated mirror with rectangular
grooves on the electric field of the wave.

A (corrugated) mirror is defined by the following parameters.

• The normal vector n points into the plane of the mirror and is orthogonal to its
surface.

• The properties of the grooves are defined with the parameters h, c and d. Respec-
tively the height, width and period of the grooves. If h = 0 the other parameters
have no effect.

The effect of the grooved mirror depends on the above parameters, but also on the
incidence angle of the incoming wave with respect to the groove direction. Given the
incoming wave vector kin, the outgoing wave vector kout follows from geometrical optics
as

kout = kin − 2(kin ·n)n

The orientation of the grooves is defined with respect to the n× kin vector:
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• The rotation angle of the polarizer φ is defined as positive in the right-handed
sense with respect to n (which points into the mirror)

• φ = 0 when the grooves are aligned with n× k.

With knowledge of n and n×k, using these definitions, one can calculate the vector
g which is orthogonal to n and aligned with the grooves.

g = (n× k

|k|
) cos(φ) + (n× (n× k

|k|
)) sin(φ)

a local coordinate system {xm, ym, zm} is defined for the mirror. zm is aligned with the
grooves , ym is aligned with −n and xm is chosen to make the system right handed

R =
(
g × n −n g

)T
such that xmym

zm

 = R

exey
ez



Figure 2: Local coordinates for polarizer element, from [3]

In this local coordinate system, the effect of the polarizer on the wave electric field
is calculated by defining the matrix [3]

P̄ =

−so
k2y

k2x+k
2
y
−so kxky

k2x+k
2
y
−ro kxkz

k2x+k
2
y

so
kxky
k2x+k

2
y

so
k2x

k2x+k
2
y
−ro kykz

k2x+k
2
y

0 0 ro


where

ro = −e−2ikyh

and

so =
−
√
k2x + k2y · cd · tan(

√
k2x + k2y ·h) + iky√

k2x + k2y · cd · tan(
√
k2x + k2y ·h) + iky

e−2ikyh

the relation between the incident and reflected electric field vectors is then given by

Êr,m = P̄Êi,m
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. To verify this relation, note that for perpendicular incidence (kx = kz = 0) we obtain

P̄ =

−so 0 0
0 0 0
0 0 ro


Now examine some particular cases of polarizing mirrors

• For the case of a flat mirror h = 0 and we get ro = −1, so = 1 which gives
Êr = −Êi as one would expect.

• For an ideal half-wave plate we know that h = λ/4 = π
2k so kyh = π/2. In this

limit ro = 1 and so = 1 which shows that only the x component of the E field is
flipped.

• Finally for an ideal quarter-wave plate kyh = π/4 in which case ro = i and so = 1.
This results in a reflected field Er,x = −Ei,x, Er,z = iEi,z, a phase shift of 90◦.

Since the electric field vectors in this case are in the assumed in the local coordinate
frame, the complete expression relating the incident and reflected electric field in the
lab frame is given by

Êr = (RT P̄R)Êi = PÊi

P = RT P̄R describes the total effect of the reflecting element on the wave electric field
in the lab frame.

To simulate the effect of multiple elements, one needs to know for each element: n,
h, and if h 6= 0 also d and c. Using these parameters the procedure is as follows:

• Starting from the first element along the beam path, with knowledge of n and kin
one calculates kout and Êr

• set kin = kout, Êi = Êr and continue to the next element.
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2.4 Coupling to a Tokamak plasma

The coupling to the plasma LCFS can be calculated using equations from [1]. Defining
a local cartesian coordinate system with k in the z direction and B in the x-z plane.

iEp
Ey

=
Ωe
ω

{
±[sin4 θ + 4 cos2 θ/(Ωe/ω)2]1/2 − sin2 θ

2 cos θ

}
here θ is the angle between the wave vector k and the magnetic field at the last closed
flux surface. Ep is the electric field in the plane containing k and B, Ey is the electric
field perpendicular to k and B, Ωe is the (positive) electron cyclotron frequency |eB/me|
at the local magnetic field strength and ω is the frequency of the wave. The upper sign
is for X mode and the lower sign for O mode.

Distinguish the following special cases

• In the case where k ·B = |k||B|, θ = 0 and one has for X mode
iEp

Ey
= 1 so

Ey = iEp which describes a right-handed wave with β > 0 according to the
definitions above, gyrating in the same sense as the electrons.

• For k ·B = |k||B| in O mode one has
iEp

Ey
= −1 which is a left-handed wave with

β < 0.

• Conversely, if k ·B = −|k||B|, θ = π yields
iEp

Ey
= −1 for X mode and a left

handed wave with β < 0

• Again, if k ·B = −|k||B|, θ = π yields
iEp

Ey
= 1 for O mode and a right handed

wave with β > 0

• Choosing k ⊥ B one gets for X mode limθ→π/2
iEp

Ey
= 0 so the field is only in the

y direction, perpendicular to B and k.

• Finally for O mode with k ⊥ B, limθ→π/2
iEp

Ey
=∞ giving a field in the Ep direction

i.e. parallel to B

The sign of the required β is flipped in any of these cases

• Change sign of Bφ

• Flip the toroidal injection angle (if the magnitude of the toroidal angle is large
enough so that k ·B flips sign)

When switching from X to O mode, α is rotated by 90◦ and β changes sign.

6



3 ECPOL

A suite of matlab routines has been written implementing the expressions above. They
are hosted on the CRPP SVN https://crppsvn.epfl/ch/repos/TCV/ECPOL/trunk/

A quick summary of the main functions is given below. More detailed information
is given in the help of each routine. Two classes are defined: “mirrors” and “waves”.
Mirrors are defined in terms of their normal vector n and groove properties, while waves
are defined in terms of their wave vector k and complex electric field vector E (see
above).

3.1 General functions

• mirror used to define a “mirror” object, including grooved polarizers with all
its properties. Polarizer mirrors can be defined in three ways: as rectangular
corrugations (described in this paper), as a phase delay expressed as a sum of
cosines, or using a separate FORTRAN code by T-M. Tran for arbitrary groove
shapes.

• wave used to define a “wave” object and its properties.

• pos2mirrors Define mirrors based on their positions rather than normal vectors

• reflect function that takes a mirror and a wave objects as input, calculates the
reflection of the input wave by the mirror object and returns the wave object
corresponding to the output wave.

• propagate_wave propagates a wave through an array of mirrors.

• ox_coupling Calculates the wave required at last closed flux surface for perfect
coupling to X and O mode, given the local k and B vectors.

• wave_coupling Power coupling between waves of different polarization.

• pol3d Calculates the polarization parameters α, β for a given wave. One must
specify the direction of the local ŷ explicitly.

• p2ab Same as pol3d but for 2D vectors. One must take great care that the input
matches what is described in the help.

• p2Ed Calculates the absolute values of |Ê| and the phase delay δ for a given

• draw_mirror Plots a graphical representation of a mirror using matlab 3D plotting
functions.

• draw_wave Plots a graphical representation of a wave and the ellipse described by
its electric field using matlab 3D plotting functions.

• alpha_beta_map General tool to draw maps of α, β as a function of polarizer
angles.

• ECPOL_demo Some illustrative demonstrations
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3.2 TCV specific functions

• ox_lau Computes the wave that would be required at the launcher entrance for
perfect X and O mode coupling using knowledge of the launcher angles and the
plasma equilibrium to determine the LCFS intersection point.

• sim_TCV_TL Computes the wave at the launcher entrance from given MOU angles,
simulates the TCV MOUs and transmission lines.

• optimize_mou Computes the optimal angles for the MOU for a given equilibrium

• ox_fraction Fraction coupling to O or X mode for a given shot

• TCV_TL_setup TCV transmission line setup

• def_launcher launcher geometry definitions

• reqpol Required polarization angles for a given shot and time. For backwards
compatibility, superseded by optimize_mou

• find_mou_angles Find MOU angles for a give polarization at launcher entrance.
For backwards compatibility, superseded by optimize_mou
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