
11 N° 10 SPÉCIAL CALCUL À HAUTE PERFORMANCE – 21 DÉCEMBRE 2010

Akantu signifie petit élément en kinyarwanda, une 
langue bantoue. Désormais, c’est également une bi-
bliothèque open-source orientée objets d’éléments 
finis, qui a pour ambition d’être à la fois générique 
et performante.

Akantu means a little element in Kinyarwanda, a 
Bantu language. From now on it is also an open-
source object-oriented library which has the ambi-
tion to be generic and efficient.

Within LSMS (Computational Solid Mechanics Laboratory, lsms.
epfl.ch), research is conducted at the interface of mechanics, ma-
terial science, and scientific computing. We currently work on 
damage mechanisms, contact mechanics, and micro mechanics. 
These domains imply studying phenomena at different scales, 
from atomic (nano-scale) to continuum (macro-scale). In order 
to understand the physics involved, we need ever more compu-
tationally intensive numerical simulations. For the macroscopic 
scale the finite-element method is a well established numerical 
method. However, as far as we know, there are no open-source 
projects that fulfill genericity, robustness and efficiency. Along 
these requirements Akantu was born.
The genericity is necessary to allow the easy exploration of math-
ematical formulations through algorithmic ideas. Furthermore, 
we believe that the open-source philosophy is important for any 
scientific software project evolution. Indeed, the collaboration 
permitted by shared codes enforces sanity when users (and not 
only developers) can criticise the implementation details. In addi-
tion, the understanding of complex physical mechanisms stands 
on the manipulation of huge data sets. Therefore, robustness and 
efficiency permit to push further the limitations imposed by the 
numerical simulations and more specifically in the context of par-
allel computation.
In order to achieve these goals, we made noticeable choices in 

An optimized finite-
element library: Akantu
Nicolas.Richart@epfl.ch, collaborateur scientifique, Guillaume.Anciaux@epfl.ch, collaborateur scientifique
& Jean-Francois.Molinari@epfl.ch, professeur EPFL – Laboratoire de simulation en mécanique des solides

the architecture of Akantu. First we decided to use the object-
oriented paradigm through C++. This paradigm is useful in terms 
of genericity and code factorization. In fact, it relies on the con-
cepts of inheritance and polymorphism, which allow to identify 
the common interface of objects so as to define high-level classes. 
These are to be derived in specialized classes. For instance, in the 
finite-element method, applied to solid mechanics, we need to 
compute different material laws. Most of them take strain as an 
input and compute the associated stress. In that case, the com-
mon interface to material objects contains a function that com-
pute stresses from strains (see Figure 1). 
The constitutive law is obviously not computed in the same way 
for every materials. Each material has to re-implement the func-
tion computeStress. The polymorphism mechanism allows the use 
of a common interface with any kind of material instantiated. It 
mainly relies on virtual function calls, which consist in finding the 
right function to invocate from the table containing all the imple-
mentations. Even though polymorphism provides an helpful tool 
to developers, there is an extra cost associated to virtual function 
calls that affects strongly the efficiency. 
Then, virtual function calls should be limited to specific situations 
and avoided where critical sections of the program are executed. 
In finite-element algorithms, in order to perform field manipu-
lations, loops over elements are always necessary and form the 
critical sections. In these loops, virtual calls should be excluded 
in order to maintain good calculation times. To demonstrate this 
point, we will use the example of mesh objects, which are natu-
rally part of every finite-element code. Two distinct architectures 
are now presented: first an all-object approach and then what has 
been used in Akantu to avoid virtual function calls.
A mesh is a set of elements that connect some nodes. Depending 
on the meshing process, these elements can be of different types 
(triangles in 2D, tetrahedra in 3D,...). The natural idea is to define 
a generic element class that describes a common interface. Then, 
any element can inherit from this common object description. In 
this view the element embeds a lot of intelligence. For example, 
one element should know how to integrate a given field. This ap-
proach, which forms a full object architecture, stores for each 
element a complex object which is also autonomous (see figure 
2a). In any processing loop over elements, it will result in a vir-
tual function call per element and lead to a drop of performance. 
To improve this, while maintaining the usage of object oriented 
paradigm, we limit in Akantu the virtual calls to be outside of any 
loop. Inside a loop, the manipulated data structures are vectors. 
For meshes, it means that elements, as a group, are represented by 
a vector of nodal coordinates and a vector of connectivities (see 
figure 2b). Global functions, like the integration procedure, oper-
ate on the entire set of elements. The counter part is that generic-
ity is reduced when compared to a full object view: the high level 
classes contain now more complex functions.

material
virtual  computeStress (in strain)

elastic
computeStress (in strain)

plastic
computeStress (in strain)

fig. 1 – inheritance schematic of material classes 

Analyse

http://lsms.epfl.ch
http://lsms.epfl.ch
mailto:Nicolas.Richart%40epfl.ch?subject=
mailto:Guillaume.Anciaux%40epfl.ch?subject=
mailto:Jean-Francois.Molinari%40epfl.ch?subject=


flash informatique1212  N° 10 SPÉCIAL CALCUL À HAUTE PERFORMANCE – 21 DÉCEMBRE 2010flash informatique

models steel during a normal compression. Comparative results 
are presented on figure 4. 

fig. 4 – comparative view between OFFEM and Akantu after 5000 time steps. The 
color shows the Z-axis displacement field

While the numerical results are very close, performance of Akantu 
appears to be 25 times faster. Thus, the choice of being very ge-
neric and of having a full object view has an important impact on 
the performance.
We used the same test case, and refined the mesh to get approxi-
mately 6.6 million elements, in order to do a scalability test of 
Akantu. The results are shown on figure 5. The scalability shows 
good behavior up to 32 processors. We also emphasize that a su-
per scalar effect is observable with 4 processors. This must be due 
to communications overlap and important processor cache ef-
fects. The announced memory usage drawback appears not to be 
a real limitation. Indeed on a cluster considered as low memory 
(2Gb per octo-core) we managed to run a reasonably large case 
with approximately 3.3 million of elements, even in sequential.

1

2

4

8

16

32

64

1 2 4 8 16 32 64

S
p

ee
d

u
p

Number of processors

Speedup
Ideal speedup

We presented the main choices taken in the development of Akan-
tu to achieve genericity and efficiency. We designed the library as 
an hybrid architecture with object at the high level layers and 
vectorialization for the low level layers. Thus, Akantu benefits the 
inheritance and polymorphism mechanisms without the counter 
part of having virtual calls within the critical loops. Even if the 
development is still at its onset, the first results seem encourag-
ing. They tend to prove that these choices show nice performance 
speedup while our needs for genericity were maintained at a rea-
sonable level. Soon (summer 2011 ?), the first release of Akantu 
will be out, with a set of tutorials that are thought to be the basis 
of a future educational program. In particular, Akantu tutorials 
will be added to the core finite-element classes, at the Bachelor 
and Master level of the Civil Engineering program. Furthermore, 
Akantu will be part of several research projects conducted within 
LSMS. n

In the case of the object/vector architecture, there are less virtual 
function calls but there are still potentially conditional jumps in 
the critical loops. Indeed, for a mesh containing different element 
types, an integration loop includes a decision per element to se-
lect the appropriate integration method. However, even a single if 
statement can decrease performances. Therefore, to be even more 
efficient, decisions should be avoided in loop contexts. The solu-
tion is to make choices outside of the loops. This will produce 
functions that are specialized to a typical situation. In other words 
the code needs to be vectorized.
In Akantu, the connectivities 
have been sorted by element 
types so as to break loops over 
elements as said above. Con-
cerning a complete finite-ele-
ment sequence, that contains 
gradient computation, con-
stitutive law call, integration 
and assembly, the vectoriali-
zation imposes a specific task 
organisation. Global tasks can 
be divided in simple opera-
tions and pipelined in order 
to obtain the desired result, as 
shown in figure 3. 
The crucial point here is that 
these SIMD (Simple Instruc-
tion Multiple Data) operations 
are in fact well optimized by 
nowadays compilers. These 
vectorial operations can also 
be ported easily on vectorial architectures such as modern GPUs. 
Nevertheless, the main drawback of this approach is the memory 
cost since we have to store partial results through the task pipe 
(strains, stresses, integral form, see figure 3).
In order to demonstrate the performance of our code and the 
relevance of our architecture choices, we made a comparison with 
another C++ finite-element code, OOFEM (Object-Oriented Finite-
Element Model, www.oofem.org). In OOFEM the authors made the 
choice to use the object inheritance concept down to the lowest 
levels. Our comparison test case considers a meshed cube which 

strain

stress

Gradient

Constitutive law

displacement

Integration

Assembly

integral form

residual
fig. 3 – pipeline of vectorial opera-
tions used to compute nodal resi-
duals from nodal displacements

a) Full object architecture

Mesh

nodes

connectivity

b) Object/vectors architecture

Mesh

elements

connectivity
nodes

virtual interpolate ()
virtual integrate()

Element

fig. 2 – object architecture 
versus a mixed object/
vector architecture for a 
mesh class

An optimized finite-element library: Akantu

fig. 5 – Speedup of 
Akantu library. The 
model manipulated 
is a cube meshed 
with 6 567 862 ele-
ments

http://www.oofem.org

