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SI1. Surface Second Harmonic Generation 1 

 

The intensity of the SSHG response (I (2ω)) can be expressed in terms of the nonlinear polarization 

(P(2ω)) induced by the fundamental driving field at frequency ω (Eq. S1). 

I
SSHG

(2! ) " P(2! )[ ]
2

                                                                  S1       

                 

The nonlinear polarization is directly proportional to the macroscopic second order nonlinear 

susceptibility tensor (χ(2)), and to the intensity of the driving field at frequency ω (EL(ω)) as shown in 

Eq. S2. 
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As shown in Eq. S3, the macroscopic susceptibility tensor χ(2) and therefore I (2ω), are directly 

proportional to the surface density of the adsorbed molecules at the interface (Ns) and the molecular 

hyperpolarizability ( ! ) 
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where, Ti is the transformation tensor for each molecule of type i (necessary for the transformation 

from the molecular reference frame) and ε0 is the permittivity in the vacuum.  

When no analyzer is used at the outlet of the cell, the outlet polarization is a combination of both 

contributions p and s (Eq. S4). Such contributions are expressed in Eq. S5 and S6 as a function of the 

incident beam angle γ.  
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SI2. Synthesis and characterization of the porphyrins 

 

Synthesis of 5,10,15,20-tetra-(4-N-methylpyridyl)-porphyrin tetraiodide Cobalt(II) CoTMPyP4+ 

(1) 

 

5,10,15,20-Tetrapyridylporphyrin 2,3 (0.50 g, 0.808 mmol) and Co(OAc)2·4H2O (0.50 g, 2 mmol) were 

dissolved in DMF (50 mL) under Ar. The reaction mixture was heated to reflux for 3.5 hours in the 

dark (see Figure S7). The reaction was monitored by MALDI/TOF mass spectrometry. CH3I (5 mL) 

was then added dropwise under Ar and the reaction mixture was refluxed for another 6.5 hours. After 

cooling the reaction mixture to room temperature, the organic solvent was removed under reduced 

pressure. The product was purified by recrystallization from H2O/acetone. Yield: 880 mg, 87%. 

UV/Vis (2%DMF-CH3OH): lmax (nm) (e x 10-3 L mol-1 cm-1)  = 430.0 (84.1), 535.9 (8.6). The 

spectroscopic data are in agreement with the literature 4.  
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Figure SI1. Schematic representation of the synthetic route of CoTMPyP4+. 

 

Synthesis of tetrasodium 5,10,15,20-tetra(4-sulfophenyl)porphyrin Cobalt(II) CoTPPS4- (2) 

 

Tetrasodium tetra(4-sulfophenyl)porphyrin 5 (TPPS) (400 mg, 0.391 mmol) was dissolved in 95:5 

methanol/ water (40 mL) under Argon. Co(OAc)2⋅4H2O (249 mg,  1 mmol) was added to the porphyrin 

solution (see Fig. S8). The mixture was heated to reflux. The reaction was followed by UV-Visible 

spectroscopy. After refluxing overnight, the reaction mixture was cooled to room temperature. Cobalt 
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complex was precipitated by adding acetone slowly and filtered. The filtrate was washed with acetone. 

The pure product was obtained by recrystallization from CH3OH/acetone. Yield: 274 mg, 65%. ESI-

MS: m/z 336.65 [M-3Na+]3-. UV/Vis (CH3OH): lmax (nm) (e x 10-3 L mol-1 cm-1) = 412.9 (199.6), 529.0 

(13.5). The spectroscopic data are in agreement with the literature 6.  
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Figure SI2. Schematic representation of the synthetic route of CoTPPS4-. 

 

Synthesis of the cofacial porphyrins: Co2(DPX), Co2(DPO), and Co2(DPOx) 

 

Details on the synthesis and characterization of each cofacial porphyrin [Co2(DPX), Co2(DPO), and 

Co2(DPOx)] have been reported elsewhere 7-11 (see Figure S9).  

 

Co2(DPX): The porphyrin free-base H4(DPX) (70 mg, 60 µmol) was dissolved in distilled and 

degassed CH2Cl2 (15 mL) under an argon atmosphere and a degassed MeOH solution (5 mL) 

containing cobalt(II) acetate tetrahydrate (75 mg, 0.3 mmol) was added. The reaction mixture was 

refluxed for one hour (the reaction was monitored by MALDI/TOF mass spectrometry and UV/Vis 

spectroscopy), and then cooled to room temperature and the solvent was evaporated using the Schlenk 

line. The product was purified under argon by column chromatography (Al2O3, eluent: CH2Cl2) 

affording after evaporation of the solvent under vacuum the biscobalt bisporphyrin Co2(DPX) as a 

purple solid (52 mg, 41 µmol, 67%). MS (MALDI/TOF) m/z = 1276.4 [M]+., 1276.5 calcd. for 
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C79H82Co2N8O. UV/Vis (CH2Cl2): lmax (nm) (ε × 10–3 in L.mol–1.cm–1) = 385 (185); 524 (9.8); 559 

(12.4). The spectroscopic data are in agreement with the literature 7-11. 
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Figure SI3. Schematic representation of the synthetic route of Co2(DPOx), Co2(DPX), and Co2(DPO). 

 

Co2(DPO) was synthesized as described for Co2(DPX) under an inert atmosphere from 100 mg (92 

µmol) of the corresponding free-base dyad H4(DPO) and 125 mg (0.5 mmol) of cobalt acetate 

tetrahydrate in     20 mL of a refluxing MeOH/CH2Cl2 (1:4) mixture. After purification, the title bis-Co 

dyad was obtained in 72% yield (79 mg, 64 µmol). MS (MALDI/TOF): m/z 1234.4 [M]+., 1234.4 calcd. 

for C76H76Co2N8O. UV/Vis (CH2Cl2): λmax, nm (ε × 10-3 in M-1.cm-1) 392 (212); 526 (10.2); 555 (16.1). 

The spectroscopic data are in agreement with the literature 7-11. 

 

Co2(DPOx) was synthesized as described for Co2(DPX) under an inert atmosphere from 100 mg (89 

µmol) of the corresponding free-base dyad H4(DPOx) and 125 mg (0.5 mmol) of cobalt acetate 

tetrahydrate in   20 mL of a refluxing MeOH/CH2Cl2 (1:4) mixture. After purification, the title bis-Co 



S8 

dyad was obtained in 68% yield (75 mg, 60 µmol). MS (MALDI/TOF): m/z 1236.5 [M]+., 1236.5 calcd. 

for C76H78N8OCo2. UV/Vis (CH2Cl2): λmax, nm (ε × 10-3 in M-1.cm-1) 388 (165); 524 (9.8); 558 (16.4). 

The spectroscopic data are in agreement with the literature 7-11. 

 

Physicochemical Characterization of the porphyrins 

 

 1H NMR spectra for synthesized compounds were recorded on a Bruker DRX–300 AVANCE 

spectrometer. Chemical shifts for 1H NMR spectra are expressed in parts per million (ppm) relative to 

CDCl3 (7.28 ppm) and DMSO-D6 (2.52 ppm). The mass spectra were obtained on a Bruker Daltonics 

Ultraflex II spectrometer at the Université de Bourgogne in the MALDI/TOF reflectron mode using 

dithranol as a matrix. High resolution mass measurements (HR–MS) were carried on a Bruker Micro–

ToF Q instrument in ESI mode. UV/Vis spectra were recorded on a Varian Cary 1 spectrophotometer. 
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Figure SI4. Ion-transfer voltammetry. (a) Initial electrochemical cell composition of the four-electrode 

cell used to study the transfer of the porphyrins. P4+:CoTMPyP4+, P4−: CoTPPS4−; (b) Ion-transfer 

voltammogram of 50 µM CoTMPyP4+ (P4+) and 50 µM CoTPPS4− (P4−) at neutral pH and 50 mV• s–1. 

(c) Scan rate dependence of the ion transfer of P4+ at neutral pH. The voltammetric responses associated 

with the transfer from the aqueous to the organic phase of the cationic porphyrin shows three peaks in 

the middle of the potential window. The most intense signal is associated with the transfer of the 

porphyrin, with a half-wave transfer potential (!
o

w"
1/2 ,

) of 0.08 V, while the post peaks around 0.15 V 

and 0.20 V that increases linearly with the scan rate, are related to strong adsorption of the porphyrin at 

the aqueous side of the liquid/liquid junction. The transfer of P4–is located at the limit of the potential 

window close to the transfer of Cl– with a !
o

w"
1/2 ,

around –0.22 V. No adsorption peaks are observed for 

this porphyrin.  

 

a 
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Figure SI5. Secondary electrons SEM picture of P4+ cristalized directly from water.  

 

 

 

Figure SI6. UV-visible absorption spectra of the organic phase after 1 h of biphasic reaction by using 

the cell illustrated in Figure 2a. P4+ :CoTMPyP4+, P4−: CoTPPS4−, [P4+/P4−]: Equimolar mixture of both 

porphyrins. H2P4+: H2TMPyP4+, H2P4–: H2TPPS4−. The concentration of the porphyrins was 50 µM.  
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Figure SI7. Chemical structures of the cofacial porphyrins Co2(DPX), Co2(DPO) and Co2(DPOx). 
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