
ConDense: Managing Data in Community-driven
Mobile Geosensor Networks

Sebastian Cartier1, Saket Sathe1, Dipanjan Chakraborty2, and Karl Aberer1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{name.surname}@epfl.ch

2 IBM Research India
cdipanjan@in.ibm.com

Abstract. Effectively managing the data generated by community-driven mobile
geo-sensor networks is a new and challenging problem. One important step for
managing and querying sensor network data is to create abstractions of the data
in the form of models. These models can then be stored, retrieved, and queried,
as required. There has been significant amount of prior literature on using models
for query processing [6, 8, 11, 14, 20]. On the contrary, however, there has been
a lack of understanding on developing reliable models, considering the unique
characteristics of community-driven geo-sensor networks.
In an effort to correct this situation, this paper proposes various approaches for
modeling the data from a community-driven mobile geo-sensor network. This
data is typically collected over a large geographical area with mobile sensors
having uncontrolled or semi-controlled mobility. Therefore, we propose adaptive
techniques that take into account such mobility patterns and produce an accurate
representation of the sensed spatio-temporal phenomenon. To substantiate our
proposals, we perform extensive evaluation of our methods on two real datasets.

1 Introduction

Research in mobile geo-sensor networks is rapidly evolving to investigate the novel
paradigm of community-driven sensing. Here, sensors of various sorts (e.g., multi-
sensor units monitoring air quality, cell phones, thermal watches, thermometers in ve-
hicles, etc.) are carried by community (public vehicles, private vehicles, or individuals)
during their daily activities, collecting data about the environment. In this paper, we
present the ConDense (Community-driven Sensing of the Environment), a framework
for efficiently managing data generated about the environment.

At its core, community sensing is a new form of mobile geo-sensor network [5].
Unique characteristics of this sensing paradigm lie in its organic and unstructured mo-
bile sensing. This is analogous to the Web 2.0 model, where the community partic-
ipates in generating data. This differs from traditional mobile geo-sensor networks,
where the primary objective is to monitor the environment through a controlled spec-
ification of desired sampling, mobility characteristics, or through appropriate sensor
placement [16, 19].

This work investigates different approaches of condensing the data generated by
large-scale Community-driven Mobile GeoSensor Networks (CGSN). The ConDense

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

framework takes into account the unique properties of CGNSs and treats the underly-
ing sensor network as a disconnected component, which is collecting data using local
policies and principles. Although there is significant literature on model-based query
processing on mobile sensor networks, there is a lack of understanding of approaches
to determine high quality and concise models of the phenomenon from CGSNs. The
models built using the raw data are necessary, since raw data generated from sensors
is often, “imprecise, and erroneous, and hence rarely usable as it is” [11]. The raw
data generated needs to be synthesized and managed for consumption by scientists,
applications, and the community.

Regression-based modeling approaches have been proposed in literature to provide
mathematically meaningful descriptions of the phenomenon being sensed. For example,
[11] presents such a model-based view of sensory readings (temperature in rooms).
Here, the applications query only the models, and the models, in turn, get updated as
time progresses and new data arrives. However, most prior work implicitly assumes
that the sensors are relatively homogeneously distributed and/or their sensing behavior
can be tuned, considering the phenomenon being sensed. Typically, trials have used
small-scale deployments (e.g., covering a room or a small field).

Unfortunately, CGSNs cannot be tightly controlled and deployments cover large
areas (e.g., part of a city or state). Hence, it is difficult to produce a homogeneous,
good quality view of the phenomenon. The community-sensing pattern leads to spatio-
temporal irregularities in the sensing; while some areas might be adequately sampled,
some other areas would not be. A challenging question is: how do we efficiently create
quality-controlled models that cover the sensed data, spatially and temporally?

Traditional geo-statistical techniques like Kriging [9] can be used for modeling such
phenomenon. Kriging interpolates the best linear unbiased estimate of a value at an un-
observed point in space, based on the weighted linear combination of surrounding ob-
servations, minimizing the approximation error. We found, however, such approaches
incur high computational complexity, and hence suffer from scaling issues with dy-
namic temporal variations. On the other extreme, a naı̈ve strategy would be to grid the
area under consideration into equal size grid cells and compute a model per grid cell.
This approach is simple, however, might lead to lower quality models.

We propose adaptive strategies that discover spatial areas that can be modeled us-
ing single or multiple models. Our strategies adapt to the changing nature of the sensed
phenomenon by adjusting the geographical granularity of the models to capture the phe-
nomena with high fidelity. In addition, our strategies have user-defined approximation
error thresholds, which can used for adjusting the level of geographical granularity and
quality of the models produced by our approaches. On the temporal dimension, we use
slack functions (on the models) to time-out low quality models (i.e., models that no
longer fit the current data).

To summarize, this paper makes the following contributions:

– We present the ConDense data management framework that provides a multi-model
based abstraction by condensing information generated by a CGSN.

– To capture the environmental phenomena with high fidelity, we advocate the use
of multiple models, which we call model covers, for modeling large geographical
areas of a CGSN.

– We propose two novel techniques, namely adaptive DBSCAN and adaptive k-
means, that adaptively model the data respecting user-defined constraints.

– To establish the efficacy of our approaches, we carry out rigorous experimental
evaluation of all the modeling approaches using two real community-sensed datasets.

2 Sensors, Deployment, and Data Collection

In this section we describe the details of the sensor network deployments that are con-
sidered in this paper. We consider two sensor network deployments, namely OpenSense
and Safecast. In the following section, we discuss the details of the sensors, which are
a part of these deployments, and the datasets that are collected for experimental evalu-
ation.

Opensense. The OpenSense [5] project (the main source of funding for this work)
currently has two deployments, in the cities of Lausanne and Zurich in Switzerland.
In both deployments, the sensors are placed on public transport vehicles, like buses
or trams, and additionally include stationary monitoring stations at strategic locations.
Fig. 1 shows the infrastructural overview of the OpenSense deployments. The sensors
monitor the concentration of various environmental pollutants like, Carbon Monoxide
(CO), Carbon Dioxide (CO2), Nitrogen Dioxide (NO2), and Ozone (O3). Table 1 shows
the important characteristics of the sensors used for monitoring these pollutants.

The normal urban concentration shown in Table 1 for pollutants is the permissible
concentration of a pollutant in an urban environment. These concentrations are given by
the National Ambient Air Quality Standards (NAAQS) [1] based in the United States.
As will be discussed in Section 4, these normal urban concentration ranges will be
used for weighing the approximation error made while approximating the pollutant
concentration using a model.

We use the dataset collected from a mobile station mounted on a tram in Zurich,
Switzerland. This dataset was collected over seven weeks. For our experimental evalu-
ation, we use the Ozone (O3) values. The sensors mounted on the tram follow a local
sampling policy. An important property of this data is that it was collected from a rela-

Table 1. Characteristics of sensors and pollutants.

Pollutant Type Normal Urban Average
Concentration Power

NO2 electrochemical 0.008 to 0.04 ppm 45 mW
CO electrochemical 0.5 to 5 ppm 0.85 mW
CO2 electrochemical 500 to 1500 ppm 0.5 W
O3 semi-conductor 0.05 to 0.15 ppm -

Radiation event counter 0 to 0.23 µSv/h -

interpretation and
presentation of data

wireless
fixed nodes

mobile nodes

Internet

GPRS
GPS

Fig. 1. Community-driven mobile geosensor network infrastructure.

tively clean environment of Zurich, therefore this dataset does not contain large amount
of variation in the values of O3, NO2, CO2, etc. We denote this dataset as opensense.

Safecast. The Safecast [2] project is a community-driven global sensor network deploy-
ment that was kick-started one week after the Fukushima Daiichi nuclear disaster3 to
monitor the radiation level in eastern Japan. The project enables people to both con-
tribute and freely use the collected data. The project is a community-driven project with
over one hundred volunteers contributing to the project.

The radiation data is collected by using: (a) 35 mobile stations that are attached
to the cars of the volunteers, (b) 50 handheld stations, and (c) 50 static stations. The
measurement unit of radiation is micro Sievert per hour (µSv/h). This unit attempts to
evaluate the biological effects of radiation as opposed to other radiation units, which
just measure the absorbed dose of radiation energy.

Since there are a variety of sensors being used for radiation measurement, the col-
lected data is less accurate as compared to the OpenSense deployment. For our exper-
imental evaluation we use the radiation data from Safecast. This dataset was collected
over a period of twenty five weeks. We denote this dataset as safecast. Table 2 gives a
summary of both the datasets.

3 Related Work

In environmental science, rich models are developed to model environmental phenomenon.
For example, air quality [4] models consider three core aspects: pollution sources,
transport (wind), and chemical processes. Finally, considering terrain characteristics
(e.g. elevation, built-up areas, etc.), models are built to predict expected pollution read-
ings. Appropriate geo-statistical interpolation techniques like Kriging [9] or Gaussian

3 http://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_
disaster

Table 2. Summary of the Datasets

opensense safecast
Monitored parameter Ozone Radiation Exposure
Number of data values 110,500 970,000
Sensor accuracy ±2 ppb -∗

Sampling interval 40 sec. 5 sec.

∗Radiation counters have variable accuracy.

plumes [18] are used to infer spatio-temporal models of the phenomenon. Validation is
carried out using carefully designed sensor layouts, using few high-precision sensors.

While appropriate for visualization or creating rich models from the data, unfortu-
nately, these geo-statistical techniques are unsuitable for modeling the CGSN data in a
database environment. This is because they take enormous computation time (e.g., of
the order of hours [4]), and hence cannot be applied repeatedly to model error-prone
and incomplete data streams from a geographical area. Database environments need to
accept incoming sensory data and build models for consumption by queries. To do so,
we need solutions that consider performance parameters like model quality, but also
account for computational efficiency, query response time, down-time, etc.

In database environments, model-based approaches on distributed sensor data [6,11,
14,22] decouple the sensory updates from the query infrastructure by creating models of
the underlying data and allowing the queries to view and operate on top of the models.
There are different works that build temporal (per sensor) or spatial models on well-
defined regions (for e.g., using grids [11]). Prior work has also suggested in-network
modeling [6, 14] to reduce communication overhead.

Such approaches have not considered the ramifications of developing model covers
on top of the CGSN data. Firstly, unlike prior deployments, sensors in a CGSN have
autonomous (buses) or uncontrolled (private cars) mobility. Hence per-sensor models
are inappropriate, since the phenomenon changes behavior as the sensors move over
larger areas like cities. Secondly, such approaches have problems with the quality of
data. Prior approaches implicitly assume a quasi-uniform distribution of readings for
learning the models (e.g., basis function selection or weight optimization). Commu-
nity sensed data is unevenly distributed (skewed), spatially and temporally. Hence, it is
challenging to design methods for quality-controlled model covers that have reasonable
performance overhead.

As such, there are many projects today [3,7,10,17,23] exploring community-driven
sensing of environmental phenomena. Most of these projects primarily focus on systems
issues like developing inexpensive sensors, calibration, how to provide incentives to the
users, reduce sampling overhead [15]. None of these projects investigate the research
question of exploring efficient strategies to create a model-based data abstraction layer,
suitable for database environments.

multiple model

M1
M2
M3
M4
M5
M6

R1
R2
R3
R4
R5
R6

Ws
moving continuous queries

M2 M3

M4
models

M1R1

R2

R4

R3

W1

W2

R1
R2
R3
R4
R5
R6
R7

M1
M2
M3
M4
M5
M6
M7

raw_tuples

model_cover

ryxsidti

database

Fig. 2. Architecture of the ConDense framework.

4 Problem Characterization

Before diving into the details of the proposed approaches, we present foundational def-
initions and establish the notation used in the rest of the paper. We start by introducing
the overall framework of ConDense, which is shown as a schematic in Fig. 2. For sim-
plicity, we decompose this framework into the following three components:

Sensors. This component is responsible for sensing the environment. We assume that
there are sensors that are moving over a geographical regionR (refer Fig. 2). For exam-
ple,R could be a suburb, city, state, or even a larger geographical area. In addition, we
assume that all the sensors have their mobility limited to the region R and are sensing
the parameters of interest. In this paper, we are interested in parameters like pollution
and/or radiation.

We assume that the values transmitted by these sensors are continuously updated
in a database table called raw tuples. Each tuple i in the table of raw tuples
consists of the sensor identifier sid, the time ti at which the value was sensed, the GPS
co-ordinates of the sensed value (xi, yi) and the sensor value ri. Additionally, we denote
a single raw tuple in the database as bi = (ti, xi, yi, ri), its position as gi = (xi, yi),
and its positioned value as vi = (xi, yi, ri).

Models. The modeling component provides a multi-model abstraction (i.e., model cover)
over the raw tuples. On the one hand, it is responsible for answering continuous queries
registered by the vehicles; and on the other hand, it is responsible for continuously
maintaining the models that are obtained using raw tuples.

Our main objective in this paper is to build and continuously maintain a model
cover over the region R. Before proceeding further, let us rigorously define a model
cover over the regionR.

Definition 1. Model Cover. Given a regionR and its partition into regionsR1, R2, . . . , Rp,
such that ∪pα=1Rα = R. A model cover is defined as a set of modelsM = {Mα|1 ≤
α ≤ p}, where model Mα models the region Rα respectively, for all 1 ≤ α ≤ p.

In this paper, additionally, our objective is also to maintain the model cover as raw
tuples are streamed into the system. This task involves adapting the model cover to the
changes of the phenomenon that are observed over the regionR. To perform these tasks,
we should define a temporal dimension of the model cover. Our framework assumes that
the model cover is computed using the raw tuples in a time window of length H . Using
H , we define a window of raw tuples as Ws = 〈bi|sH ≤ ti ≤ (s + 1)H〉, where s
is a positive integer. Thus, Ws is a set of all the raw tuples bi falling in the interval
sH to (s + 1)H . In addition, we write gi @ Ws and vi @ Ws to respectively denote
the position gi = (xi, yi) and positioned value vi = (xi, yi, ri) found in the raw tuple
bi ∈Ws.

In this paper our focus is on estimating a model cover over the region R for the
values in a time window Ws. For clarity, let us concretely define the problem of model
cover estimation:

Problem 1. Model Cover Estimation. Given the region R and the window of raw
tuples Ws compute the model coverM such that:

– It partitions/segmentsR into p regions R1, R2, . . . , Rp covering the regionR,
– It estimates models M1,M2, . . . ,Mp, such that each corresponds to a region
R1, R2, . . . , Rp respectively.

We propose various solutions for solving Problem 1. Broadly, the proposed solutions
are of two types: (a) non-adaptive solutions that perform the partitioning and estima-
tion steps of Problem 1 only once, without iteratively improving the partitioning; and
(b) adaptive solutions that perform the partitioning and estimation steps of Problem 1
several times until a user-defined quality criteria (e.g., approximation error) is satisfied.
In this paper, we investigate two non-adaptive techniques, then, based on our obser-
vations, we propose two time- and space-efficient adaptive techniques that are able to
accurately estimate the model coverM over a large geographical area.

Queries. To make our framework schematic complete, we show the query processing
component in Fig. 2. The queries consists of vehicles that register moving continuous
queries. An example of such a query registered by a vehicle oq could be:

Query 1 Moving Continuous Query. Given the position g = (x, y) of the vehicle oq ,
continuously return the concentration of NO2 around oq at an interval of 10 seconds.

These queries can be answered directly using the model coverM [8, 11, 20]. Note
that although queries like Query 1 can be directly answered using the table raw tuples,
it is neither efficient nor accurate, since: (a) the number of raw tuples could be consider-
ably large as compared to the number of models, and (b) the models minimize the errors

caused during communication or due to the inherent imprecision of the sensors [8, 21].
Remember, query processing is not the primary focus of this paper; nonetheless, this
component is shown in Fig. 2 for presenting a complete picture of the ConDense frame-
work.

Error Metric. The last foundational aspect is the error metric that we use in this paper.
Consider a model cover estimation method that partitions the window Ws into regions
Rα where 1 ≤ α ≤ p, such that Wα

s denotes the set of raw tuples bi that are in region
Rα. Suppose the model Mα approximates the value ri with r̄i then the error metric is
defined as:

uα =
100
|Wα

s |
∑

vi@Wα
s

uα(vi), uα(vi) =
|ri − r̄i|

nhigh − nlow
, (1)

where nhigh and nlow are the upper and lower bounds of the normal concentration of
the measured pollutant found in the urban environment. For example, if we are mea-
suring Ozone, then the normal concentration of Ozone in normal urban environment is
nhigh = 0.15 ppm and nlow = 0.05 ppm (refer Table 1). Thus, the error metric shown
in (1) measures the relative error as compared to the normal range of values. We call
this error metric the normal percentage error4. Intuitively, the normal percentage error
is a fair error metric as compared to the other error metrics because it quantifies the
impact of the error on the environment.

5 Non-Adaptive Methods for Model Cover Estimation

In this section we present the non-adaptive model cover estimation methods. Specifi-
cally, we investigate to strategies: first, a naive strategy in which the partitioning of R
is performed by a rectangular division, second, we discuss a largely popular technique
from the geo-statistics literature called Kriging. We observe that the non-adaptive meth-
ods are either computational expensive or inaccurate. In addition, as will be seen later,
storing the model cover generated by these methods is also considerably expensive.

5.1 Grid-based Model Cover

The Grid-based (GRIB) model cover estimation method is the most naı̈ve strategy for
estimating a model cover. This approach involves overlaying a grid over the region R
and then estimating a linear regression model for individual grid elements. It simply
divides the regionR into a grid of a fixed size n×n. Then each grid element forms the
region Rα from Definition 1, such that p = n2. Now the set of regions R1, R2, . . . , Rp
induce a partition on the raw tuples in the window Ws. Let us denote the set of raw
tuples of the window Ws contained in the region Rα by Wα

s . Now we can estimate a
linear regression model Mα over the values Wα

s as:

ri = r̄i + ei r̄i = a0 + a1xi + a2yi. (2)

4 We use normal percentage error and approximation error interchangeably.

Here, we estimate the parameters (a0, a1, a2) by performing a least-squares fitting that
minimizes the sum of e2i . The interpolation of the value at a position g′ = (x′, y′) is
performed as:

r̂(g′) = a0 + a1x
′ + a2y

′. (3)

The main advantage of the GRIB model cover estimation method is that it is simple
to implement. This simplicity comes from the static nature of the partitioning scheme;
the partitioning scheme does not consider the characteristics of the underlying data.
In the GRIB method, the granularity of the partitioning does not evolve temporally.
Especially, for large geographical areas there could be a need to dynamically change
the granularity and size of the partitioning based on the nature of the underlying phe-
nomenon. For example, during peak hours of traffic, pollution is higher in downtown
areas as compared to residential areas, and therefore we need a partitioning scheme that
adapts to such change in behavior.

5.2 Kriging-based Model Cover

The Kriging-based (KRIB) model cover estimation method is an approach that involves
the use of Kriging [9]. Kriging is a well-known geo-statistical method for producing
highly accurate models of data. In comparison to other interpolation approaches, Krig-
ing has the advantage that it can also assign a confidence value to the interpolated val-
ues. These advantages (high accuracy and confidence values) naturally invite additional
cost for creating and querying a Kriging-based model cover.

Kriging interpolates the value at position g′ = (x′, y′) by summing the weighted
known values ri as follows:

r̂(g′) =
|Ws|∑
i=1

λiri, γ(gi, g′) =
|Ws|∑
j=1

λiγ(gi, gj), (4)

where λi are the weights, such that
∑|Ws|
i=1 λi = 1 and γ(gi, gj) is the semi-variogram

of the points gi and gj . λi are evaluated by solving the set of equations for γ(gi, g′)
where 1 ≤ (i, j) ≤ |Ws|. Additional details regarding Kriging can be found in [9].

Query processing time can be reduced by pre-computing the inverse matrix formed
by γ(gi, gj). Since γ(gi, gj) has size |Ws| × |Ws|, storing the inverse of γ(gi, gj) re-
quires a large amount of memory. In Section 7, we show that even with pre-computation
of the inverse of γ(gi, gj), the KRIB model cover estimation method is not compara-
ble with other model cover estimation approaches in answering point (interpolation)
queries.

The Kriging method was introduced to efficiently approximate values when the
sensors are stationary. But this method is not well suited for moving sensors, since in a
mobile sensing environment the values along hotspots are excessively dense and should
be condensed to reduce redundant sampling. Secondly, Kriging tries to fit a function
to all the sensed values without eliminating redundant information, and, therefore has
large overhead in terms of storage and computational complexity.

6 Adaptive Methods for Model Cover Estimation

In contrast to the non-adaptive techniques discussed in Section 5, the methods proposed
in this section exploit the characteristics of the underlying data for obtaining a better
partitioning of R. In Section 7, we thoroughly compare the adaptive and non-adaptive
methods, and experimentally establish the superiority of the adaptive techniques. Our
adaptive techniques are based on unsupervised clustering algorithms. They intelligently
partition R into regions, such that the models are always able to approximate the data
with a certain error guarantee.

6.1 Adaptive DBSCAN

The adaptive DBSCAN method is based on the well-known DBSCAN algorithm pro-
posed in [12]. Let us begin by first understanding the DBSCAN algorithm, then we
briefly discuss the reasons for the unsuitability of the DBSCAN algorithm for our prob-
lem; followed by the description of the adaptive DBSCAN method.

DBSCAN. Given a window of raw tuplesWs, DBSCAN defines the density of gi @ Ws,
denoted as NEps(gi), as the number of points that are present in a radius Eps around
gi. gi @ Ws is called a core point if NEps(gi) is greater than MinPts, where MinPts
is a user-defined constant. All the points around gi present in a radius Eps are called
directly density-reachable from gi.

A position gj is density-reachable from gi if there is a chain (g∗)1, . . . , (g∗)l, where
(g∗)1 = gi and (g∗)l = gj , such that (g∗)2 is directly density-reachable from (g∗)1,
(g∗)3 from (g∗)2, so on until (g∗)l. Two positions gi and gj are density-connected if
they are both density-reachable from a core point gc. Now, we define Wα

s as a set of
raw tuples, where gi @ Wα

s is density-connected with gj @ Wα
s for all i 6= j.

If a position gi is not density-connected with any other points in Ws, it is con-
sidered as noise and we set ci = NOISE, where ci represents the cluster member-
ship of a raw tuple bi. By randomly selecting unclustered points (i.e., points where
ci = UNCLASSIFIED) and clustering all density-reachable tuples into the same
regionWα

s we can divide the setWs into ka regions, where 0 ≤ ka ≤ (|Ws|/MinPts).
DBSCAN clusters the raw tuples only based on gi and does not consider the sensor

values ri. Thus, it is possible that DBSCAN produces regions that cannot be modeled
using polynomials having lower number of coefficients. To rectify this situation, we
modify the DBSCAN algorithm such that it produces regions that can be modeled using
lower number of coefficients. We call this modified algorithm Adaptive DBSCAN.

Adaptive DBSCAN. In the Adaptive DBSCAN (Ad-DBS) method we continuously
maintain a linear regression model Mα (refer (2)) for each region Rα. In addition, we
provide the following modified definition for density-reachable and density-connected:

Definition 2. Model Density-reachable. A positioned value vi is model density-reachable
from vj @ Wα

s , if position gi is density-reachable from gj and uα(vj) < τr, where τr
is a user-defined quality threshold.

Definition 3. Model Density-connected. Positioned value vi and vj are model density-
connected if vi and vj are model density-reachable from v` @ Wα

s .

Algorithm 1 The adaptive DBSCAN algorithm.
Input: Window Ws, error threshold τr , Eps, MinPts.
Output: Number of regions ka, regions Rα and a linear regression model Mα for each region

respectively where α = 1, . . . , p.
1: ka ← 1
2: for all vi @ Ws do
3: if ci = UNCLASSIFIED then
4: if EXPANDCLUSTER(vi,ka) then
5: ka ← ka + 1

6: procedure EXPANDCLUSTER(vi,ka) : boolean
7: seeds← REGIONSEARCH(vi, Eps) \ vi
8: if |seeds| < MinPts then
9: ci ← NOISE

10: return false
11: else
12: ADD(Mka ,vi)
13: for all vj ∈ seeds do
14: if CHECKERRORANDADD(Mka ,vj) 6= success then
15: seeds← seeds \ vj
16: while |seeds| 6= 0 do
17: vj ← removeOneV alue(seeds)
18: results← REGIONSEARCH(vj , Eps) \ vj
19: if |results| > MinPts then
20: for all vh ∈ results do
21: if ch = UNCLASSIFIED then
22: seeds← seeds ∪ ch
23: if ch ∈ {NOISE,UNCLASSIFIED} then CHECKERRORAN-

DADD(Mka ,vh)
24: return true

Algorithm 1 performs the partitioning of Ws, such that each positioned value vi @
Wα
s is model density-connected to vj @ Wα

s for all i 6= j. The function CHECKERRO-
RANDADD temporarily adds vj toWα

s and re-computes the modelMα. If uα(vj) > τr,
then vj is not model density-connected to the other tuples inWα

s , therefore it is not per-
manently added to Wα

s . In Step 7, REGIONSEARCH return the points in a radius Eps
around vi, and in Step 12, ADD unconditionally adds vi to Mα.

Interpolation using Ad-DBS. Because of the new definitions of model density-reachable
and density-connected it may happen that the regions Rα produced by the Ad-DBS
method overlap with each other. Therefore, for interpolating the value r̂(g′) at position
(x′, y′) it is unclear whether one or more regionsRα should be used. To solve this prob-
lem, we introduce a weighing scheme (refer Fig. 3) that produce the interpolated value
r̂(g′) by assigning weighting functions Kα(g′) to the regions Rα, such that:

r̂(g′) =
∑

α=1...p

κα(g′)r̂α(g′), (5)

where κα(g′) = Kα(g′)P
β=1...pKβ(g′) and r̂α(g′) is the interpolated value using model Mα.

Since the normal percentage error metric introduced in (1) does not consider over-
lapping regions, we introduce the following modified version of the normal percentage
error for analyzing this weighting scheme of the Ad-DBS method:

ûα =
100
|Wα

s |
∑

vi@Wα
s

ûα(vi), ûα(vi) =
|ri − r̂i(gi)|
nhigh − nlow

. (6)

Notably, the difference between uα and ûα characterizes the error introduced by the
weighting scheme used in the Ad-DBS method.

x

r(b) R2
R1

x

Kα(c)

x

κα(d)

x

y(a) ∈ R1

∈ R2

R2

R1

Fig. 3. (a) shaded area shows an example of two overlapping regions, (b) shows the regions with
the corresponding sensor values r, (c) and (d) present the weighting functions Kα and κα used
for interpolation.

6.2 Adaptive K-Means

In this section we start by discussing the k-means clustering method, then briefly discuss
the reasons why the vanilla k-means clustering method cannot be used for obtaining a
model cover with a user-defined approximation error threshold. Then we propose the
adaptive k-means model cover estimation method, that overcomes the shortcomings of
the the k-means clustering method and efficiently produces an highly accurate model
cover.

K-means Clustering. Given the raw tuples in a window Ws and the number of clusters
k, the objective of the k-means clustering method is to divide the raw tuples in the
window Ws into k sets W 1

s ,W
2
s , . . . ,W

k
s such that the following objective function is

minimized:

arg min
µ̂α

k∑
α=1

∑
vj@Wα

s

||vj − µ̂α||, (7)

where µ̂α = (xα, yα, rα) is known as the centroid of the region partition Wα
s . Then the

region Rα is the region that surrounds points Wα
s , and the model cover can be obtained

by computing a linear regression model Mα for each Wα
s .

The k-means clustering method does not achieve our objective of partitioning the
raw values Ws, since the euclidean distance used by the k-means method may com-
pensate a large difference in the sensor value r with a small difference in the position

(x, y). On the contrary, our objective is that values in a particular region Rα should
be close in the position and in the sensor value. Moreover, another requirement is that
the raw tuples Ws should be approximated within a user-defined normal percentage er-
ror threshold τn. For achieving these objectives we propose an adaptive variant of the
k-means clustering method.

Adaptive K-means. The algorithm used by adaptive k-means (Ad-KMN) method is
shown in Algorithm 2. Fig. 4 shows an example of the Ad-KMN method on toy data.

Assume that before executing the Ad-KMN method, we compute two k-means cen-
ters µ1 and µ2 over all the positions gi @ Ws. A snapshot after this step is shown in
Fig. 4(a). Next, we check whether the errors u1 and u2 are within a user-defined thresh-
old τn. The principle here is to introduce an additional cluster centroid ωi for each
region Ri where ui > τn, by choosing the gi that produced the worst error for Ri.

R1

R2
R2R3

R4R1

- centroids from previous iteration- positions with worst error

road

centroid

vi

(b)(a)
Fig. 4. Ad-KMN iterations on toy data. (a) the centroids of regions R1 and R2 are computed,
after which models M1 and M2 are estimated. (b) since error u1 > τn and u2 > τn, we add two
new clusters R3 and R4 using k-means clustering algorithm.

Suppose, both R1 and R2 of Fig. 4(a) violate the error condition (i.e., u1 > τn and
u2 > τn), then we initialize two new centroids ω1 and ω2 and we re-adjust the four
centroids (µ1, µ2, µ3 = ω1 and µ4 = ω2), by executing the standard k-means algorithm
on the four centroids. The result of this step is shown in Fig. 4(b).

As will be shown in Section 7, the Ad-KMN method exhibits fast convergence char-
acteristics. In addition, the Ad-KMN method also requires lower storage space and can
produce accurate model covers.

6.3 Efficiently Maintaining the Model Cover

Furthermore, we are interested in maintaining the model cover as new windows Ws are
streamed into ConDense. Specifically, given several windows of raw values Ws where
s = (1, 2, . . . , S), we are interested in continuously maintaining the model cover while
minimizing the number of additional computations required for model cover mainte-
nance.

We start by estimating the cluster centroids µα over a training window WD of size
D � H using the Ad-KMN method. The Ad-KMN method returns the regions Rα and

models Mα where α = (1, . . . , ka). Now, assume that the first window of raw values
W1 is available. W1 is first partitioned according to the cluster centers µα, such that
Wα

1 contains the raw tuples where ||gi − µα|| is minimal.
Next, we compute the metric uα forWα

1 . If uα is greater than a user-defined thresh-
old τr, then we invalidate the model Mα and re-estimate its coefficients. We perform
a similar test for all the other Wα

1 . We use flops5 to measure the cost of updating the
model Mα. Suppose the cost of updating the window Ws be denoted as C(Ws), then it
can be computed as follows [13]:

C(Ws) =
∑

∀α s.t. uα>τr

2 · |Mα|2
(
|Wα

s | −
|Mα|

3

)
, (8)

where |Mα| is the number of coefficients to estimate for the model Mα. In our case,
|Mα| = 3 since Mα has three coefficients (a0, a1, a2). The better the Ad-KMN method
partitions the region R, the less would be the cost of maintaining the model cover,
since the Ad-KMN method would have found similar areas. Therefore, for raw tuples
that are newly streamed into the system in a reasonably short interval do not require
a model update, resulting in potentially dramatic saving of computation required for
model cover maintenance.

Algorithm 2 The adaptive k-means model cover method.
Input: Window Ws, error threshold τn.
Output: Number of regions ka, regions Rα and a linear regression model Mα for each region

respectively where α = 1, . . . , ka.
1: newCluster ← true
2: clusterChanged← true
3: while newCluster do
4: newCluster ← false
5: while clusterChanged do
6: clusterChanged← false
7: for α in 1 to ka do
8: µα,n ← recenter(Wα

s)
9: if Wα

s 6= Wα,n
s then

10: clusterChanged← true

11: µα ← µα,n

12: for α in 1 to ka do
13: Mα, uα, ωα ← estimateModel(Wα

s)
14: if uα > τn then
15: ka ← ka + 1, µka ← ωα
16: newCluster ← true

As we will show in Section 7, such a strategy of maintaining the Ad-KMN model
cover is effective and can yield up to approximately 3x less number of flops as com-

5 A flop represents either the addition or the multiplication of two floating point numbers.

pared to using the same strategy over a GRIB model cover. Thereby, establishing the
advantages of using an adaptive method for model cover estimation.

7 Experimental Evaluation

In this section we perform extensive experimental evaluation of the various model
cover estimation approaches. In Section 7.1 we compare the model cover estimation
approaches with respect to the normal percentage error. In Section 7.2, we compare the
efficiency of the adaptive and non-adaptive techniques for model cover estimation in
terms of the storage space and estimation time. Lastly, Section 7.3 compares adaptive
and non-adaptive methods with respect to their temporal model cover validity character-
istics. For all the experiments we use the opensense and the safecast datasets described
in Section 2.

7.1 Error Analysis

We start by analyzing the different model cover estimation approaches using the normal
percentage error (1). Fig. 5 shows the error as the number of regions are increased
for the GRIB, Ad-KMN, and Ad-DBS methods. The process of adding more regions
terminates when the error is less than the user-defined error threshold τn = 1% or
adding new regions does not significantly reduce the error. For this experiment the size
of the window Ws is set to 6 hours. Clearly, for all the three approaches the percentage
normal error decreases with increase in the number of regions.

Specifically, for safecast the Ad-KMN method delivers an improvement of 12.5
times less error as compared to the GRIB method for p = 1000. In contrast, for
opensense, the Ad-KMN method does not show significant improvements (2.1 times
less error for p = 120) over the GRIB method. This is because, as described earlier,
opensense data does not exhibit high spatial-temporal variation. Therefore all the meth-
ods are able to achieve lower error. In general, the adaptive methods have lower number
of regions as compared to the non-adaptive methods. Consider safecast, at convergence
the GRIB method has 1296 regions as compared to the 981 regions of the Ad-KMN
method (refer Fig. 5).

Additionally, to substantiate the results in Fig. 5, we plot the error for 15 randomly
chosen windows Ws for the Ad-KMN and GRIB methods where the maximum number
of regions p = 50 and is constant. Similar observations to Fig. 5 could be made in Fig. 6,
for safecast the improvement obtained by using the Ad-KMN method as compared to
the GRIB method is significantly higher than opensense. In Fig. 6, we do not show
the result for the Ad-DBS method. Since for the Ad-DBS method, it is impossible to
control the number of regions that will be created, thus leading to an unfair comparison.
These experiments clearly establish that adaptive methods, like the Ad-KMN method,
can dramatically reduce the error as compared to the non-adaptive methods.

Note that Fig. 5 does not show the KRIB method, since the KRIB method always
produces zero error due to the fact that Kriging always finds a function that passes per-
fectly thorough the given points. The zero error of Kriging comes at a cost: estimating

 0

 5

 10

 15

 20

 50 100 150 200 250 300

e
rr

o
r

(%
)

number of regions (Rp)

GRIB
Ad-DBS
unweighted Ad-DBS
Ad-KMN

(a) opensense

 0

 20

 40

 60

 80

 0 350 700 1050 1400

e
rr

o
r

(%
)

number of regions (Rp)

GRIB
Ad-DBS
unweighted Ad-DBS
Ad-KMN

(b) safecast

Fig. 5. Comparing the decrease in percentage error as the number of regions increase. Unweighted
Ad-DBS denotes Ad-DBS without the weighting scheme of (5). Note the different ranges on the
y-axis.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

e
rr

o
r

(%
)

window ID (s)

GRIB
Ad-KMN

(a) opensense

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

e
rr

o
r

(%
)

window ID (s)

GRIB
Ad-KMN

(b) safecast

Fig. 6. Comparing the percentage normal error for Ad-KMN and GRIB over randomly chosen
windows Ws. Note the different ranges on the y-axis.

and storing a Kriging model is substantially inefficient (refer Section 7.2) as compared
to the adaptive methods, and therefore is not suitable for a database environment.

In Fig. 5 the Ad-DBS method produces higher error as compared to the Ad-KMN
method. The reason for such behavior is that, the increase in error due to the over-
simplified weighing scheme of the Ad-DBS method (see (5)), is more as compared to
the decrease in error obtained by adding more regions; thus leading to an overall error
increase. To experimentally establish this observation, in Fig. 5 we also show the normal
percentage error obtained by the Ad-DBS method without the weighting scheme of (5).
This shows that the Ad-DBS method could compete with the other methods if a more
sophisticated weighting scheme is introduced.

7.2 Comparing Efficiency of Model Cover Estimation Methods

Next, we compare the time- and space-efficiency of the model cover estimation meth-
ods. Fig. 7(a) compares the average time required for model cover estimation using
different methods. Fig. 7(b) compares the average time required for processing a point
query. Here a point query is defined as a query that requests for the interpolated value at
a particular position g = (x, y). The average point query processing time is computed
over 4000 point queries.

 1

 100

 10000

 1e+06

 900 1800 2700 3600 4500

ti
m

e
 (

m
il

li
s

e
c

o
n

d
s

)

no. of raw values

KRIB
GRIB
Ad-DBS
Ad-KMN

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 900 1800 2700 3600 4500

ti
m

e
 (

m
il

li
s

e
c

o
n

d
s

)

no. of raw values

KRIB
GRIB
Ad-DBS
Ad-KMN

(b)
Fig. 7. Comparing efficiency of (a) model cover estimation and (b) processing a point query
(interpolation) on opensense.

On the one hand, the most time-efficient method for model cover estimation is the
GRIB method, on the other hand it is significantly inefficient in terms of space (refer
Fig. 8). Moreover, the Ad-KMN method requires 1160 times less memory as compared
to the GRIB method, and can be estimated by spending on an average 1.5 seconds more
than the GRIB method.

Obviously, the KRIB method is significantly time- and space-inefficient as com-
pared to the other model cover estimation methods, demonstrating that the KRIB method
is clearly not usable in a database environment. Lastly, the Ad-DBS method can be
stored using slightly less memory, but exhibits minor inefficiency in processing a point
query as compared to the Ad-KMN method, and as seen in Section 7.1 it produces high
normal percentage error.

7.3 Analyzing Temporal Validity of Model Cover

We perform the last set of experiments on opensense. These experiments are performed
to compare the temporal validity characteristics between adaptive and non-adaptive
model cover estimation methods. Particularly, we are interested to compare temporal
behavior of the GRIB and the Ad-KMN methods.

We start by choosing a region R′ ⊂ R. From the raw tuples in R′, we choose
a training window WD of size 6 hours and 88 testing windows Ws of size 30 min-
utes. Note that WD and Ws are consecutive in time. Then we choose the model retain
threshold (τr) as 1% and apply the algorithm for maintaining the temporal validity of
the models from Section 6.3 and compute the cost C(Ws) for each window Ws. To sub-
stantiate our experiment, we choose three different values of p for the Ad-KMN method
and adjust the GRIB method so that the number of used grid cells by the GRIB method
are always equal to that of the Ad-KMN method.

Fig. 9 shows the cumulative number of flops required to maintain the model cover.
Admittedly, the Ad-KMN method requires a factor 2.7 less number of flops as compared
to the GRIB method. In conclusion, the regions Rα that are produced by the Ad-KMN
method are valid for a longer time, thus require less number of flops. For example, the
Ad-KMN method requires zero flops for the first 34 windows as opposed to the 1874
flops required by the GRIB method.

8 Conclusions

This paper presents non-adaptive and adaptive techniques for managing data produced
by a CGSN. Our experiments establish that the adaptive model cover estimation meth-
ods, which use dynamic partitioning approaches, demonstrate promising performance
gains as compared to the non-adaptive methods. Particularly promising is the adaptive
k-means model cover estimation method, since it shows the best model cover quality,
considering other parameters, like storage, computational cost, and temporal validity.

There are many issues that remain to be researched. Following are a few directions
we intend to pursue in our future works:

– Complete re-learn of model cover. In our approach for handling temporal evolution
of the model cover (refer Section 6.3) we have not considered a complete re-learn

 0.1

 1

 10

 100

 1000

 10000

KRIB GRIB Ad-DBS Ad-KMN

s
to

ra
g

e
 (

k
il

o
b

y
te

s
)

(a) opensense

 1

 10

 100

 1000

 10000

 100000

KRIB GRIB Ad-DBS Ad-KMN

s
to

ra
g

e
 (

k
il

o
b

y
te

s
)

(b) safecast

Fig. 8. Comparing the memory requirement of all the model cover estimation methods.

 0

 700

 1400

 2100

 2800

 3500

 0 18 36 54 72 90

n
o

.
o

f
fl

o
p

s
 (

c
u

m
u

la
ti

v
e

)

window ID (s)

p=20 p=32 p=50

(a) Ad-KMN

 0

 700

 1400

 2100

 2800

 3500

 0 18 36 54 72 90

n
o

.
o

f
fl

o
p

s
 (

c
u

m
u

la
ti

v
e

)

window ID (s)

p=20 p=32 p=50

(b) GRIB

Fig. 9. Comparing temporal validity of the model cover produced by (a) Ad-KMN and (b) GRIB
on opensense.

of the model cover if the cost C(Ws) increases dramatically. On the one hand, re-
learning could reduce the cost C(Ws) for future windowsWs, but on the other hand,
could incur down-time for the system. Another alternative to complete re-learn is to
develop techniques that merge/split the models, such that a reasonable model cover
is always maintained. We plan to explore the trade-off between complete re-learn
and merge/split in our future works.

– Continuous query processing. The ConDense framework describes the continuous
query processing component, and evaluates query costs with respect to model cover
techniques. As a next natural step, we plan to investigate efficient and accurate
query processing solutions. This, we believe, will open-up interesting research is-
sues like, query optimization, response caching, model cover indexing, etc.

– Utility-driven sampling. Finally, if we relax the autonomous sensing assumption in
the community sensing paradigm then there is a issue of utility-driven sampling.
Here, the underlying phenomenon is sampled only as much as required by a given
set of continuous queries. The utility is defined by the queries based on the accuracy
guarantee requirements provided by the user.

References

1. National Ambient Air Quality Standards (NAAQS). http://www.epa.gov/air/
criteria.html

2. The Safecast project. http://blog.safecast.org/
3. Urban Atmosphere Project. http://www.urban-atmospheres.net/ (2006)
4. AERMOD (EPA). http://www.epa.gov/scram001/dispersion prefrec.htm (2009)
5. Aberer, K., Sathe, S., Chakraborty, D., Martinoli, A., Barrenetxea, G., Faltings, B., Theile, L.:

OpenSense: Open community driven sensing of environment. In: IWGS (along with ACM
GIS) (2010)

6. Bhattacharya, A., Meka, Singh, A.: MIST: Distributed indexing and querying in sensor net-
works using statistical models. In: VLDB (2007)

7. Brewer et al., E.: N-Smarts: Networked suite of mobile atmospheric real-time sensors.
http://www.cs.berkeley.edu/˜honicky/nsmarts/ (2007)

8. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over imprecise
data. In: SIGMOD. pp. 551–562 (2003)

9. Chiles, J., Delfiner, P.: Geostatistics: modeling spatial uncertainty. Wiley-Interscience (1999)
10. Costa et al., B.: Air Project. http://www.pm-air.net/ (2006)
11. Deshpande, A., Madden, S.: MauveDB: Supporting model-based user views in database sys-

tems. In: SIGMOD (2006)
12. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters

in large spatial databases with noise. In: Proceedings of the 2nd International Conference on
Knowledge Discovery and Data mining. vol. 1996, pp. 226–231. AAAI Press (1996)

13. Golub, G., Van Loan, C.: Matrix computations. The Johns Hopkins University Press (1996)
14. Guestrin, C., Bodik, P., Thibaux, R., Paskin, R., Madden, S.: Distributed regression: An

efficient framework for modeling sensor network data. In: IPSN (2004)
15. Krause et al., A.: Towards community sensing. In: IPSN (2008)
16. Liu, C., Wu, K., J., P.: An energy-efficient data collection framework for wireless sensor

networks by exploiting spatio-temporal correlation. TPDS 18(7) (2007)
17. Luo et al., L.: Sharing and exploring sensor streams over geocentric interfaces. In: GIS

(2008)
18. Miller, C., Hively, L.: A review of validation studies for the Gaussian plume atmospheric

dispersion model. In: Journal of Nuclear Safety Vol. vol. 28 (2009)
19. Nittel, S.: A survey of geosensor networks: advances in dynamic environmental monitoring.

In: Sensors (2009)
20. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilistic

streams. In: SIGMOD. pp. 715–728 (2008)
21. Sathe, S., Jeung, H., Aberer, K.: Creating probabilistic databases from imprecise time-series

data. In: ICDE. pp. 327–338 (2011)
22. Thiagarajan, A., Madden, S.: Querying continuous functions in a database system. In: SIG-

MOD. pp. 791–804 (2008)
23. Willett et al., W.: Common sense community: scaffolding mobile sensing and analysis for

novice users. In: Pervasive Computing (2010)

