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Polar Codes: Robustness of the Successive
Cancellation Decoder with Respect to Quantization

S. Hamed Hassani and Rüdiger Urbanke

Abstract—Polar codes provably achieve the capacity of a
wide array of channels under successive decoding. This assumes
infinite precision arithmetic. Given the successive natureof the
decoding algorithm, one might worry about the sensitivity of the
performance to the precision of the computation.

We show that even very coarsely quantized decoding al-
gorithms can lead to excellent performance. More concretely,
we show that under successive decoding with an alphabet of
cardinality only three, the decoder still has a threshold and
this threshold is a sizable fraction of capacity. More generally,
we show that if we are willing to transmit at a rate δ below
capacity, then we need onlyc log(1/δ) bits of precision, wherec
is a universal constant.

I. I NTRODUCTION

Polar coding schemes provably achieve the capacity of
several classes of channels including binary memoryless sym-
metric (BMS) channels. Since the invention of polar codes
by Arikan, [1], a large body of work has been done to
investigate the pros and cons of polar codes in different
practical scenarios. In [3], the authors propose methods to
compute the compound capacity of polar codes, decoded under
the successive cancellation (SC) decoder, over a given set of
BMS channels and show that polar codes are not universal.
In [5] and [6], given a desired probability of error, the trade-
off between the maximum achievable rate and block-length is
considered. In [7], [8] and [9], efficient constructions of polar
codes are considered. Recently, in [11] the authors generalize
the successive cancellation decoder to a proper successive
list decoder and report that with such a decoder the error
probability for short block-lengths is considerably improved
(at the cost of an increase in complexity proportional to list
size).

We address one further aspect of polar codes using succes-
sive decoding. We ask whether such a coding scheme isrobust.
More precisely, the standard analysis of polar codes under suc-
cessive decoding assumes infinite precision arithmetic. Given
the successive nature of the decoder, one might worry how
well such a scheme performs under a finite precision decoder.
A priori it is not clear whether such a coding scheme still
shows any threshold behavior and, even if it does, how the
behavior scales in the number of bits of the decoder.

We show that in fact polar coding is extremely robust with
respect to the quantization of the decoder. In Figure 1, we
show the achievable rate using a simple successive decoder
with only three messages, called the decoder with erasures,
when transmission takes place over several important channel
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Fig. 1. The maximum achievable rate of a simple three message
decoder, called the decoder with erasures, for different channel
families. From top to bottom: the first curve corresponds to the family
of binary erasure channels (BEC) where the decoder with erasures
is equivalent to the original SC decoder and, hence, the maximum
achievable rate is the capacity itself. The second curve corresponds
to the family of binary symmetric channels (BSC). The third curve
corresponds to the family of binary additive white Gaussianchannels
(BAWGN). The curve at the bottom corresponds to a universal lower
bound on the achievable rate by the decoder with erasures.

families. As one can see from this figure, in particular for
channels with high capacity, the fraction of the capacity that
is achieved by this simple decoder is close to1, i.e., even
this extremely simple decoder almost achieves capacity. We
further show that, more generally, if we want to achieve a rate
δ below capacity (δ > 0), then we need at mostc log(1/δ)
bits of precision.

The significance of our observations goes beyond the pure
computational complexity which is required. The main bottle-
neck in the implementation of large high speed coding systems
is typically memory. Therefore, if one can find decoders which
work with only a few bits per message then this can make the
difference whether a coding scheme can be implemented or
not.

The outline of the paper is as follows. Section II gives a brief
review of polar codes and successive decoding. In Section III
we review an equivalent model which will form the basis for
all of our analysis. Section IV contains the main statements
of the paper which are proved in Section V and Section VI .
Section VII concludes the paper.

II. POLAR CODES

A. Basic setting and definitions

Let W : X → Y be a BMS channel, whereX = {0, 1}.
Let I(W ) ∈ [0, 1] denote the mutual information between
the input and output ofW with uniform distribution on the
inputs. We call this the symmetric mutual information. Since
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we assumedW to be symmetric,I(W ) is in fact the capacity
of W .

Let G2 = [ 1 0
1 1 ]. The generator matrix of polar codes is

defined through the Kronecker powers ofG2, denoted by
GN = G⊗n

2 . Throughout the paper, the variablesN and
n are related asN = 2n. Let us quickly review how the
generator matrix of polar codes is constructed. Consider the
N × N matrix GN and let us label the rows of the matrix
GN from top to bottom by0, 1, · · · , N − 1. Now assume
that we desire to transmit binary data over the channelW at
rateR < I(W ) with block-lengthN . One way to accomplish
this is to choose a subsetI ⊆ {0, · · · , N − 1} of size NR
and to construct a vectorUN−1

0 = (U0, · · · , UN−1) in a way
that it contains ourNR bits of data at positions inI and
contains, at positions not inI, some fixed value (for example
0) which is known to both the encoder and decoder. We then
send the codewordXN−1

0 = UN−1
0 GN through the channel

W . We refer to the setI as the set ofchosen indicesor
information indicesand the setIc is called the set offrozen
indices. The choice of these indices is specific to the channel
W and in general for two different channels it is different.
([3]). The chosen indices of the channelW are identified
by using the following procedure on each of the indices
i ∈ {0, · · · , N − 1}. Let uN−1

0 be a randomly and uniformly
chosen vector from{0, 1}N and let yN−1

0 be the result of
transmitting the vectorxN−1

0 = uN−1
0 GN throughN parallel

copies ofW . Assume that we want to estimate the value ofui

(denoted bŷui) given the received outputyN−1
0 and the values

of the previous bitsu0, · · · , ui−1. The optimal decision in this
regard is to compute the probabilitiesp(yN−1

0 , ui−1
0 |ui = 0)

andp(yN−1
0 , ui−1

0 |ui = 1) and to decide on the value ofui

by comparing the probabilities. These probabilities definea
BMS channel betweenui and the “observation”(yN−1

0 , ui−1
0 )

which is denoted byW (i)
N : {0, 1} → YN × {0, 1}i−1 and

whose law is given by

W
(i)
N (yN−1

0 , ui−1
0 |ui) =

1

2N−1

∑

u
N−1
i+1

N−1
∏

j=0

W (yj | (uN−1
0 GN )j).

(1)
It is easy to see that given(yN−1

0 , ui−1
0 ), we can decodeui

very reliably if and only if the channelW (i)
N is very close to

being noise-less (i.e., its capacity is very close to1). A crucial
fact here is that the channels{W (i)

N } have the property that
asn grows large, a fraction ofI(W ) of them tend to become
noise-less (i.e., have capacity close to1) and a fraction of
1−I(W ) of them tend to become completely noisy (i.e., have
capacity close to0). As a result, given a rateR < I(W ), a
natural way to choose the information indices is to choose the
NR indices such asi that their corresponding channelW

(i)
N

has the largest capacity. At the decoder, the bitsu0, · · · , uN−1

are decoded one by one. That is, the bitui is decoded after
u0, · · ·ui−1. If i is a frozen index, its value is known to the
decoder. If not, using the outputyN−1

0 and the estimates of
u0, · · · , ui−1, the decoder computes the log-likelihood ratio

(llr) log
p(yN−1

0 ,u
i−1
0 |ui=0)

p(yN−1
0 ,u

i−1
0 |ui=1)

and decides the value ofui hardly.
It can be shown that by a clever exploitation of the structure
of GN , one can estimate the llr’s for all the information bits

in time N(logN + 1). For the sake of briefness, we do not
fully describe the functionality of the SC decoder and referto
[1] for a detailed description.

III. QUANTIZED SC DECODER

Let R∗ = R∪{±∞} and consider a functionQ(x) : R∗ →
R

∗ that is symmetric (i.e., Q(x) = Q(−x)). We define the
Q-quantized SC decoder as a decoder in which the function
Q is applied to the output of any computation that the decoder
does. We denote such a decoder by SCDQ. More precisely, the
decoder SCDQ computes the log-likelihoods of the received
symbols from the channel and applies the functionQ to them.
These new numbers are then fed into the SC algorithm to
estimate further messages. However, after computing every
new message, the functionQ is applied and the new quantized
message is used for further computations. Finally, the value of
the i-th bit, if not frozen, is decided according to the sign of
its corresponding computed message. If positive,ûi = 0, if
0, the value ofûi is decided by flipping a fair coin, and if
negative,̂ui = 1.

Typically, the purpose of the functionQ is to model the
case where we only have finite precision in our computations
perhaps due to limited available memory or due to other
hardware limitations. Hence, the computations are correct
within a certain level of accuracy which the functionQ
models. Thus, let us assume that the range ofQ is a finite
set Q with cardinality | Q | . As a result, all the messages
passed through the decoder SCDQ belong to the setQ.

In this paper we consider a simple choice of the function
Q that is specified by two parameters: The distance between
levels∆, and truncation thresholdM . Given a specific choice
of M and∆, we defineQ as follows:

Q(x) =























⌊

x
∆ + 1

2⌋∆, x ∈ (0,M ],

⌈

x
∆ − 1

2⌉∆, x ∈ [−M, 0),

sign(x)M, otherwise.

(2)

Note here that| Q | = 1 + 2M
∆ . A graphical illustration ofQ

is given in Fig. 2.

−4∆

4∆

−∆
2

∆
2

− 7∆
2

7∆
2

x

Q(x)

Fig. 2. The functionQ(x) for |Q | = 9 andM = 4∆.
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IV. M AIN STATEMENT

Theorem 1 (Main Statement):Consider transmission over a
BMS channelW using polar codes and a SCDQ with message
alphabetQ.

• For |Q| = 3, we provide methods to precisely compute
the maximum rate that can be achieved reliably when the
transmission takes place overW and we use polar codes
with the decoding algorithm SCDQ. In particular, such
maximum rates are plotted for different channel families
in Figure 1. Also, in Figure 1 a universal lower bound
for the maximum achievable rate is given. The methods
used here are extendable to other quantized decoders.

• We can achieve up to an additive gapδ, δ > 0, below
the capacityI(W ) with log |Q| ≤ c log(1/δ).

Discussion:In short, polar codes are very robust to quantiza-
tion within the decoder. In particular for BMS channels with
capacity close to1, very little is lost by quantizing. And as
we discussed in the introduction, a reduction of the message
alphabet can be crucial for the hardware implementation of
such schemes.

Our proof strategy is the following. We describe a general
framework of how to analyze the asymptotic performance of
quantized decoders. We first apply our general framework
to the so-called decoder with erasures. This decoder has a
message alphabet of size3. As we will see, this decoder
achieves the fraction indicated in Figure 1. We then describe
a general family of quantized decoders and prove how its
performance scales.

V. GENERAL FRAMEWORK FOR ANALYSIS

A. Equivalent tree channel model and analysis of the proba-
bility of error

Since we are dealing with a linear code, a symmetric chan-
nel and symmetric decoders throughout this paper, without loss
of generality we confine ourselves to theall-zero codeword
(i.e., we assume that all theui’s are equal to0)1. In order to
better visualize the decoding process, the following definition
is handy.

Definition 2 (Tree Channels of Heightn): For each i ∈
{0, 1, · · · , N − 1}, we introduce the notion of thei-th tree
channel of heightn which is denoted byT (i). Let b1 . . . bn
be then-bit binary expansion ofi. E.g., we have forn = 3,
0 = 000, 1 = 001, . . . , 7 = 111. With a slight abuse of
notation we usei andb1 · · · bn interchangeably. Note that for
our purpose it is slightly more convenient to denote the least
(most) significant bit asbn (b1). Each tree channel consists
of n+ 1 levels, namely0, . . . , n. It is a complete binary tree.
The root is at leveln. At level j we have2n−j nodes. For
1 ≤ j ≤ n, if bj = 0 then all nodes on levelj are check
nodes; ifbj = 1 then all nodes on levelj are variable nodes.
Finally, we give a label for each node in the treeT (i): For
each levelj, we label the2n−j nodes at this level respectively
from left to right by (j, 0), (j, 1), · · · , (j, 2n−j − 1).

1In terms of the analysis of the probability of error, it must be noted that
since the we are dealing with a symmetric channel and a symmetric decoder,
for any codeword the average error probability is the same asthe average
error probability for the all-zero error codeword ([12, Chapter 4])

All nodes at level0 correspond to independent observations
of the output of the channelW , assuming that the input is0.
In other words, assuming that the all-zero codeword has been
transmitted, theN independent observations that result from
passing each of theN codebits throughW are fed into the
bottom ofT (i) for further processing.

An example forT (3) (that isn = 3, b = 011 and i = 3) is
shown in Fig. 3.

T (3)

W W W W W W W W

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1)

(3, 0)

Fig. 3. Tree representation of the tree-channelT (3) (W 011). The 3-bit
binary expansion of3 is b1b2b3 = 011 (note thatb1 is the most significant
bit). The pair beside each node is the label assigned to it.

Given the channel output vectoryN−1
0 and assuming

that the values of the bits prior toui are given, i.e.,
u0 = 0, · · · , ui−1 = 0, we now compute the probabilities
p(yN−1

0 , ui−1
0 |ui = 0) and p(yN−1

0 , ui−1
0 |ui = 1) via a

simple message passing procedure on the equivalent tree
channelT (i). We attach to each node inT (i) with label(j, k)
a message2 mj,k and we update the messages as we go up
towards the root node. We start with initializing the messages
at the leaf nodes ofT (i). For this purpose, it is convenient
to represent the channel in the log-likelihood domain; i.e., for
the node with label(0, k) at the bottom of the tree which
corresponds to an independent realization ofW , we plug in the
log-likelihood ratio (llr) log(W (yk | 0)

W (yk | 1) ) as the initial message
m0,k. That is,

m0,k = log(
W (yk | 0)
W (yk | 1)

). (3)

Next, the SC decoder recursively computes the messages
(llr’s) at each level via the following operations: If the nodes
at levelj are variable nodes (i.e.,bj = 1), we have

mj,k = mj−1,2k +mj−1,2k+1, (4)

and if the nodes at levelj are check nodes (i.e.,bj = 0), the
message that is passed up is

mj,k = 2 tanh−1(tanh(
mj−1,2k

2
) tanh(

mj−1,2k+1

2
)). (5)

In this way, it can be shown that ([1]) the message that we
obtain at the root node is precisely the value

mn,0 = log(
p(yN−1

0 , ui−1
0 |ui = 0)

p(yN−1
0 , ui−1

0 |ui = 1)
). (6)

Given the description ofmn,0 in terms of a tree channel, it is
now clear that we can use density evolution [12] to compute

2To simplify notation, we drop the dependency of the messagesmj,k to
the positioni whenever it is clear from the context.
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the the probability density function ofmn,0. In this regard,
at each levelj, the random variablesmj,k are i.i.d. fork ∈
{0, 1, · · · , 2n−j − 1}. The distribution of the leaf messages
m0,k is the distribution of the variablelog(W (Y | 0)

W (Y | 1) ), where
Y ∼ W (y | 0). One can recursively compute the distribution
of mj,k in terms of the distribution ofmj−1,2k,mj−1,2k+1 and
the type of the nodes at levelj (variable or check) by using
the relations (4), (5) with the fact that the random variables
mj−1,2k andmj−1,2k+1 are i.i.d.

Finally, note that by the all-zero codeword assumption given
the outputyN−1

0 and the value of previous bitsu0, · · · , ui−1,
the value ofui is incorrectly decoded if eithermn,0 < 0 or
mn,0 = 0 and we choose the value ofui to be1 ( This happens
with probability 1

2 ). Thus, denotingEi as the event that we
make and error on thei-th bit within the above setting, we
obtain

Pr(Ei) = Pr(mn,0 < 0) +
1

2
Pr(mn,0 = 0), (7)

and the block error probability of polar codes using the
information setI and SC decoder is upper bounded by

Pe ≤
∑

i∈I
Pr(Ei). (8)

B. Equivalent tree-channel model and quantized density evo-
lution

An important point to note here is that with the decoder
SCDQ, the distribution of the messages in the treesT (i) is
different than the corresponding ones that result from the
original SC decoder. Hence, the choice of the information
indices is also specified by the choice of the functionQ as well
as the channelW . To be more precise, in order to analyze the
error probability when we use the algorithm SCDQ, one should
note that since the functionQ(x) is a symmetric function
aroundx = 0 and the channelW is also a BMS channel,
the block error probability is equal to its value when we
assume that the all-zero codeword has been sent. Similar to
the analysis of the original SC decoder, we further assume
that the codeword sent is the all-zero codeword and we fix
the i-th bit and consider its equivalent tree-channelT (i). Our
objective is now to analyze the distribution of the messages
in T (i) assuming that the algorithm SCDQ is performed and
the previous bitsu0, · · · , ui−1 are decoded correctly (i.e., we
know that all of them are0).

For each label(j, k) in T (i), let the random variablêmj,k

represent the messages at this label. The messagesm̂j,k take
their values in the discrete setQ (range of the functionQ).
At the leaf nodes of the tree we plug in the message

m̂0,k = Q(log(
W (yk | 0)
W (yk | 1)

)), (9)

and the update equation for̂m(j,k) is

m̂j,k = Q(m̂j−1,2k + m̂j−1,2k+1), (10)

if the node(j, k) is a variable node and

m̂j,k = Q(2 tanh−1(tanh(
m̂j−1,2k

2
) tanh(

m̂j−1,2k+1

2
))),

(11)

if the node(j, k) is a check node. One can use the density
evolution procedure to recursively obtain the densities ofthe
messageŝmj,k.

Finally, let Êi denote the event that we make an error in
decoding thei-th bit, with a further assumption that we have
correctly decoded the previous bitsu0, · · · , ui−1. In a similar
way as in the analysis of the original SC decoder, we get

Pr(Êi) = Pr(m̂n,0 < 0) +
1

2
Pr(m̂n,0 = 0). (12)

Hence, one way to choose the information bits for the algo-
rithm SCDQ is to choose the bitsui according to the least
values of Pr(Êi).

Note here that, since all of the densities takes their value
in the finite alphabetQ, the construction of such polar codes
can be efficiently done in timeO( | Q | 2N logN). We refer
the reader to [1] to see how such a construction can be done.

C. Gallager Algorithm

Since our aim is to show that polar codes under successive
decoding are robust against quantization, let us investigate
an extreme case. The perhaps simplest message-passing type
decoder one can envision is the Gallager algorithm. It works
with single-bit messages. Does this simple decoder have a non-
zero threshold? Unfortunately it does not, and this is easy to
see.

We start with the equivalent tree-channel model. For each
channeli of the polar code we have such a tree of heightn and
on each layer, nodes are either all check nodes or all variable
nodes.

Since messages are only a single bit, the “state” of the
decoder at levelj can be described by a single non-negative
number, namely the probability that the message at levelj
is incorrect. Assume that we transmit over a BSC(p). Let
x0 = p ∈ (0, 12 ). We are interested in the evolution ofxj .
This evolution depends of course on the sequence of levels,
i.e., it depends on which tree channel we are considering.

Assume thatxj is given and that the next level consists of
check nodes. In this case the error probability increases. More
precisely,xj+1 = 2xj(1 − xj) > xj when xj ∈ (0, 1

2 ). In
other words, the state deteriorates. What happens if the next
level consists of variable nodes instead? A little thought shows
that in this casexj+1 = xj , i.e., there is no change at all. This
is true since if both incoming messages agree we can make
a decision on the outgoing message, but if they differ we can
only guess. This gives usxj+1 = x2

j + xj(1− xj) = xj .
Since in either case, the state either becomes worse or

stays unchanged, no progress in the decoding is achieved,
irrespective of the given tree. In other words, this decoder
has a threshold of zero. As we have seen, the problem is the
processing at the variable nodes since no progress is achieved
there. But since we only have two incoming messages there
is not much degree of freedom in the processing rules. It is
doubtful if any message-passing decoder with only a single-bit
message can do better.
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D. 1-Bit Decoder with Erasures

Motivated by the previous example, let us now add one
message to the alphabet of the Gallager decoder, i.e., we also
add the possibility of having erasures to the above mentioned
Gallager algorithm. In this regard, the functionQ(x) becomes
the sign function, i.e.,

Q(x) =







∞ x > 0,
0 x = 0,
−∞ x < 0.

(13)

As a result, all messages passed by the algorithm SCDQ take
on only three possible values:{−∞, 0,∞}. In this regard, the
decoding procedure takes a very simple form. The algorithm
starts by quantizing the channel output to one of the three
values in the setQ = {−∞, 0,∞}. At a check node we
take the product of the signs of the incoming messages
and at a variable node we have the natural addition rule
(0← ∞+ −∞, 0 ← 0 + 0 and∞ ← ∞+∞,∞ ← ∞+ 0
and−∞ ← −∞ + −∞,−∞ ← −∞ + 0 ). Note that on
the binary erasure channel, this algorithm is equivalent tothe
original SC decoder.

Our objective is now to compute the maximum possible rate
that the decoder SCDQ can achieve reliably for a BMS channel
W . We denote such quantity byC(W,Q). The analysis is done
in three steps:

1) The density evolution procedure:To analyze the perfor-
mance of this algorithm, first note that since all our messages
take their values in the setQ, then all the random variables
that we consider have the following form

D =







∞ w.p. p,
0 w.p. e,
−∞ w.p. m.

(14)

Here, the numbersp, e,m are probability values such that
p + e + m = 1. Let us now see how the density evolves
through the tree-channels. For this purpose, one should trace
the output distribution of the relations (10) and (11) when the
input messages are two i.i.d. copies of a r.v.D with pdf as in
(14).

Lemma 3:Given two i.i.d. versions of a r.v.D with distri-
bution as in (14), the output of a variable node operation (10),
denoted byD+, has the following form

D+ =







∞ w.p. p+ 2pe,
0 w.p. e2 + 2pm,
−∞ w.p. m2 + 2em.

(15)

Also, the check operation (11), yieldsD− with the following
law

D− =







∞ w.p. p2 +m2,
0 w.p. 1− (1− e)2,
−∞ w.p. 2pm.

(16)

Proof: The proof follows by a straight forward compu-
tation of the corresponding probabilities forD+ andD−. As
an example, letD1, D2 be two i.i.d. copies ofD that are fed
into the check operation (11). We know that withQ as in (13),
the check operation is just multiplication of the signs. Hence,
to haveD− = ∞, we should either haveD1 = ∞, D2 = ∞
which occurs with probabilityp2 or D1 = −∞, D2 = −∞

which occurs with probabilitym2. Hence,D− takes the value
∞ with probabilityp2 +m2.

In order to compute the distribution of the messagesm̂n,0

at a given leveln, we use the method of [1] and define
the polarization processDn as follows. Consider the random
variableL(Y ) = log(W (Y | 0)

W (Y | 1) ), whereY ∼ W (y | 0). The
stochastic processDn starts from the r.v.D0 = Q(L(Y ))
defined as

D0 =







∞ w.p. p = Pr(L(Y ) > 0),
0 w.p. e = Pr(L(Y ) = 0),
−∞ w.p. m = Pr(L(Y ) < 0).

(17)

and forn ≥ 0

Dn+1 =

{

D+
n ;w.p. 1

2 ,
D−

n ;w.p. 1
2 ,

(18)

where the plus and minus operations are given in (15), (16).
2) Analysis of the processDn: Note that the output of

processDn is a itself a random variable of the form given
in (14). Hence, we can equivalently represent the processDn

with a triple(mn, en, pn), where the coupled processesmn, en
andpn are evolved using the relations (15) and (16) and we
always havemn + en + pn = 1.

Following along the same lines as the analysis of the
original SC decoder, we first claim that asn grows large,
the processDn will become polarized, i.e., the output of the
processDn will almost surely be a completely noiseless or a
completely erasure channel.

Lemma 4:The sequence{Dn = (pn, en,mn), n ≥ 0}
converges almost surely to a random variableD∞ such that
D∞ takes its value in the set{(1, 0, 0), (0, 1, 0)}.

Proof: We first show that the processmn is a super-
martingale which converges a.s. to0. From (15) and (16) we
obtain,

E[mn+1 |mn] =
m2

n + 2mnen + 2mnpn
2

= mn −
m2

n

2
≤ mn.

As a result, sincemn is also bounded it converges a.s. to a
limit r.v. m∞. The a.s. convergence and boundedness ofmn

also implies that

E[mn+1 −mn] = −
1

2
E[m2

n]→ 0.

Hence,mn → 0 almost surely. In the same way, consider the
processen. We have

E[en+1 | en] = en + 2pnen. (19)

Hence, the processen is a bounded sub-martingale which
converges a.s. to a r.v.e∞. This would imply that

E[en+1 − en] = 2E[pnen]→ 0.

Now, sincepn = 1− en −mn andmn → 0, we get

E[en(1− en)]→ 0.

Thus,e∞ ia either0 or 1 and considering the fact thatm∞ =
0, the proof follows.



6

We now aim to compute the value ofC(W,Q) = Pr(D∞ =
(1, 0, 0)), i.e., the ratio of the noiseless indices. The value
of Pr(D∞ = (1, 0, 0)) is dependent on the starting channel
D0 that is given in (17) and is the highest rate that we can
achieve with the 1-Bit Decoder with Erasures. In this regard,
a convenient approach is to find a functionf : D → R such
that f((0, 1, 0)) = 0 andf(0, 0, 1) = 1 and for anyD ∈ D

1

2
(f(D+) + f(D−)) = f(D).

With such a functionf , the process{f(Dn)}n≥0 is a martin-
gale and consequently we have Pr(D∞ = (1, 0, 0)) = f(D0).
Therefore, by computing the deterministic quantityf(D0) we
obtain the value ofC(W,Q). However, finding a closed form
for such a function seems to be a difficult task3. Instead, our
idea is to look for alternative functions, denoted byg : D → R,
such that the processg(Dn) is a super-martingale (sub-
martingale) and hence we can get a sequence of upper (lower)
bounds on the value of Pr(D∞ = (1, 0, 0)) as follows. Assume
we have a functiong : D → R such thatg((0, 1, 0)) = 0 and
g(1, 0, 0) = 1 and for anyD ∈ D,

1

2
(g(D+) + g(D−)) ≤ g(D). (20)

Then, the process{g(Dn)}n≥0 is a super-martingale and for
n ≥ 0 we have

Pr(D∞ = (1, 0, 0)) ≤ E[g(Dn)]. (21)

The quantityE[g(Dn)] decreases byn and we have

Pr(D∞ = (1, 0, 0)) = lim
n→∞

E[g(Dn)]. (22)

In a similar way, on can search for a functionh : D → R

which h((0, 1, 0)) = 0 andh(1, 0, 0) = 1 and

1

2
(h(D+) + h(D−)) ≥ h(D). (23)

Then {h(Dn)}n≥0 is a sub-martingale, the quantities
E[h(Dn)] are increasing withn, and

Pr(D∞ = (1, 0, 0)) = lim
n→∞

E[h(Dn)]. (24)

It remain to find some suitable candidates forg and h. It
can be easily checked that one example forg is the function
g(D) = 1 − e. To come up with more interesting examples,
we first consider an equivalent representation of a generic
densityD that sometimes provides a good insight to choose
candidates forg and h. A density D as in (14) can be
equivalently represented as a simple BMS channel given in
Fig. 4. This equivalence stems from the fact that for such
a channel, conditioned on the event that the symbol+1 has
been sent, the distribution of the output is preciselyD. With
a slight abuse of notation, we also denote the corresponding
BMS channel byD. In particular, it is an easy exercise to show
that the capacity (I(D)), Bhattacharyya parameter (Z(D)) and
the error probability (E(D)) of the densityD are given as

I(D) = (m+ p)(1− h2(
p

p+m
)), (25)

3The functionf clearly exists as one trivial candidate for it isf(D) =
Pr(D∞ = (1, 0, 0)), where D∞ is the limiting r.v. that the process
{Dn}n≥0 with starting valueD0 = D converges to.

−1

+1

−1

+1

?

p

e

m

p

e

m

Fig. 4. The equivalent channel for the densityD given in (14).

Z(D) = 2
√
mp+ e, (26)

E(D) = 1− p− e/2, (27)

whereh2(·) denotes the binary entropy function. We now show
that another example ofg is the functiong(D) = I(D), i.e.,
the capacity functional. We clearly haveI((1, 0, 0)) = 1 and
I(0, 1, 0) = 0. It is also easy to see that since the functionQ
is a not an injective function, we have

I(D+) + I(D−)

2
≤ I(D).

We now find suitable candidates for the functionh. We
postpone the proof of the following lemma to the appendices.

Lemma 5:Define the functionh(D) ash(D) = p−4
√
pm

for D ∈ D. We haveh(D = (1, 0, 0)) = 1, h(D = (0, 1, 0)) =
0 and

h(D+) + h(D−)

2
≥ h(D). (28)

Numerical experiments show that the functionsI(D)2, (1 −
Z(D))2 are also good candidates forh. However, an explicit
proof of the fact that these functions satisfy the relation (23)
may be a difficult task.

Given a BMS channelW , one can numerically compute
C(W,Q) with arbitrary accuracyδ: Consider the two functions
g(D) = I(D) and h(D) = I(D)2. At time n ∈ N, the
processDn given in (18) with staring densityD0 given in
(17) has2n possible possible outputs of the form (14) with
equal probability. Hence, the valuesE[g(Dn)] andE[h(Dn)]
can be explicitly computed in timeO(2n). Let n ∈ N be such
thatE[g(Dn)]−E[h(Dn)] ≤ δ. Since the value ofC(W,Q) is
sandwiched betweenE[h(Dn)] andE[h(Dn)], thenE[h(Dn)]
provides a lower bound onC(W,Q) which no further from it
than δ. The curves in Figure 1 have been plotted with these
considerations. Also, for a channelW with capacityI(W )
and error probabilityE(W ), we have

E(W ) ≤ 1− I(W )

2
. (29)

Therefore,

inf
D:E(D)= 1−I(W )

2

C(D,Q) ≤ C(W,Q), (30)

and this leads to the universal lower bound obtained in
Figure 1.
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3) Scaling behavior and error exponent:In the last step, we
need to show that for the rates belowC(W,Q) the block-error
probability decays to0 for large block-lengths.

Lemma 6:Let D ∈ D. We have

Z(D−) ≤ 2Z(D), (31)

Z(D+) ≤ 2(Z(D))
3
2 . (32)

Hence, for transmission rateR < C(W,Q) and block-length
N = 2n, the probability of error of SCDQ, denoted by

Pe,Q(N,R) satisfiesPe,Q(N,R) = o(2−Nβ

) for β <
log 3

2

2 .
Finally, we mention one major drawback of the 1-bit decoder
with erasures and that is the fact the the speed of the polar-
ization is further decreased compared to the original channel
polarization process. As a result, by using the 1-bit decoder
with erasures, we need to construct longer codes that polar
codes with the original SC decoder. In Figure 5 we have
plotted the block-error probability of polar codes of different
block-lengths with the 1-bit decoder with erasures.

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

 

 

14
15
16
17

R

log10(Pe)

Fig. 5. Empirical value of the probability of error (Pe) in terms
of rate (R) for the decoder with erasures. For top to bottom, the
curves correspond to block-length2n with n = 14, 15, 16, 17. The
transmission takes place over the BSC(0.11) which has capacity
equal to 1

2
. For this channel, the decoder with erasures is capable

of achieving at most the rate0.46 with very large block-lengths (the
value0.46 has been computed by the methods given in Section V-D2).

We conclude this section by providing a lower bound on
how fast the processZQ,n = Z(Dn) polarizes.

Lemma 7:For a, b ∈ (0, 1), define the process

Y a,b
n := Za

Q,n(1− ZQ,n)
b. (33)

We have
E[Y a,b

n ] ≤ ζna,b, (34)

whereζa,b is the given by,

ζa,b = sup
D∈D

Z(D+)a(1− Z(D+))b + Z(D−)a(1− Z(D−))b

2Z(D)a(1− Z(D))b
.

(35)
Here,D denotes the space of all the random variables that
have the form as in (14).
Remark:Note that the optimization problem in (35) can be
reformulated as a2-dimensional optimization problem. Also,
as an example fora = b = 3

4 we haveζa,b = 0.9045.

VI. T RADE-OFF BETWEEN THE NUMBER OF BITS AND THE

GAP TO CAPACITY

In the previous section we have considered a particular fam-
ily of decoders. We have seen that not only a small number of
messages suffice to achieve a considerable fraction of capacity,
but that by increasing the alphabet size this fraction quickly
converges to capacity. Let us make this second observation
precise now and prove the second part of Theorem 1. Consider
a BMS channelW and assume that we need an algorithm
SCDQ such that is capable of achieving rates up toI(W )−d,
whered ≤ 1

2 is a positive constant (ford ≥ 1
2 the 1-bit decoder

with erasures is already a good choice). We first note that our
ultimate goal is to find suitable parametersM and∆ so that
the algorithms SCDQ is capable of achieving a rate at least
I(W ) − d. We denote the maximum achievable rate of the
algorithm SCDQ by C(W,Q). In order to computeC(W,Q),
we should precisely compute the ratio of the good indices
among the set{0, 1, · · · , N − 1} whenN grows large. Here,
we don’t intend to compute the precise value ofC(W,Q) but
to provide universal lower bound onC(W,Q) that are already
applicable for proving the theorem.

The proof consists of three steps. We first consider the
original SC decoder and choose an integernd large enough
so that forn ≥ nd, at least a fractionI(W ) − d

2 of the sub-
channels at leveln have Bhattacharyya value less thane−2n.
More precisely, we have forn ≥ nd

Pr(Zn ≤ e−2n) ≥ I(W )− d

2
. (36)

As a result, if we perform the original SC decoding, then
at level n at least a fractionI(W ) − d

2 of the sub-channels
are very perfect. LetIn,d denote the set of indices of these
sub-channels. We now tune the parametersM and ∆ for a
decoder SCDQ (with function Q given in (2)) in a way that
the algorithm SCDQ still decodes perfectly on the indices
that belong to the setIn,d. Hence, in the first step, we fix
n ∈ N and assume we are using a polar code of length2n.
We intend to find candidates forM and∆ in terms ofn so
that the messages that we get by the algorithm SCDQ with
such candidates forM and ∆, are suitably close the their
counterpart in the original SC decoder.

A. First step: How to chooseM and∆

Consider thei-th channel with its channel tree model. That
is a binary tree withn+1 levels0, 1, · · · , n with 2n−j nodes
at the j-th level. The nodes are categorized into two types:
variable nodes and check nodes. Also, depending on the value
of i, all the nodes at each level are either variable of all are
check nodes. Also, recall that for each node inT (i) with
label (j, k), we denote bymj,k the corresponding message
that is passes by the original SC decoder andm̂j,k denotes
the corresponding messages of the SCDQ algorithm. The
primary problem that we consider here is as follows: Consider
a specific realization of independent uses of the channelW
at each of the leaves of the tree; By using the original SC
decoder, this realization results in a specific value at the root
node. Now, consider the same recursive computation process
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with the following extra operations of the value that comes
out of each computation:

1) After each of the computations we also perturb the
resulting value by at most a fixed value∆.

2) If the absolute value of the output is larger than a fixed
valueM , we replace the value by±∞ according to its
sign.

It is easy to see that the operations (1) and (2) are given to
better analyze the algorithm SCDQ. In this regard, how should
we choose the values ofM and∆ so that the final message
that is computed at the top of the tree, i.e.,m̂n,0 is not too
far from its counterpart in the original SC decoder, i.e.,mn,0?
First assumeM = ∞. As a result, the operation (2) is not
applied anymore. Straight forward computation shows that the
partial derivatives of the functionsv(x, y) andc(x, y), which
correspond to (4) and (5) respectively, given by

v(x, y) := x+ y, (37)

c(x, y) := 2 tanh−1(tanh(
x

2
) tanh(

y

2
)), (38)

are always bounded above by1. Hence, fora, b ∈ R, we have

| v(x+ a, x+ b)− v(x, y) | ≤ | a | + | b | , (39)

| c(x+ a, x+ b)− c(x, y) | ≤ | a | + | b | . (40)

As a result, it is easy to see that assuming that only operation
(1) is applied, the cumulative error that we get on the top of the
treeT (i) is upper bounded by∆2n+1. Hence, the following
lemma follows.

Lemma 8:Consider a quantized SC algorithm in which
M =∞ (i.e., only operation (1) is applied). Also, consider the
i-th position among the information bits with its corresponding
binary treeT (i). Then, for any realization of the channel
outputs we have|mj,k − m̂j,k | ≤ 2j+1∆ for any label
(j, k) ∈ T (i). As a result, if we choose∆ ≤ 2−(n+1), then
|mn,0 − m̂n,0 | ≤ 1.

Let us now assume thatM is finite, hence the operation (2)
is a non-trivial operation. Of course, depending on the value
of M , the cumulative error varies in a large range. It seems
that in this case providing worse case bounds as in Lemma 8
is a difficult task. Consequently, we seek for bounds that hold
with high probability. We postpone the proof of the following
lemma to the appendices.

Lemma 9:Let M = 2n and ∆ = 2−(n+1). Then with
probability at least1 − 16(n+ 1)(2

e
)2n, the following holds:

If m̂n,0 6=∞ then |mn,0 − m̂n,0 | ≤ 1.

B. Second Step: What happens to the almost perfect channels

Let us now fixn ≥ nd and consider the algorithm SCDQ
with parametersM and∆ as given in Lemma 9. In this step,
we provide a lower bound on the value ofC(W,Q) which is
equal to the final ratio of the good indices. In order to do this,
we provide a lower bound only on the final ratio of the good
indices that are branched out from the indices in the setIn,d.
First, we consider the original SC decoder. By definition we
have for each indexi ∈ In,d thatZ(W

(i)
N ) ≤ e−2n. Consider

the tree-channelT (i) and recall that the message that we get

by the original SC decoder at its root note is denoted bymn,0.
Using the result of Lemma 11 in the appendices we obtain

Pr(mn,0 ≥ 2n+ 1) ≥ 1− e1−n. (41)

Now, by using Lemma 9 and (41), at leveln with probability
at least1 − e1−n − 16(n + 1)(2

e
)2n ≥ 1 − 16(n + 2)(2

e
)2n,

at an indexi ∈ In,d, the algorithm SCDQ outputs the+∞
message. This implies that ati ∈ In,d the distribution of the
messages that we get by the algorithm SCDQ stochastically
dominates the following distribution

D =

{

∞ w.p. 1− 16(n+ 2)(2
e
)2n,

−∞ w.p. 16(n+ 2)(2
e
)2n.

(42)

Now, let Ci be the final ratio of the perfect sub-channels that
are branched fromi ∈ In,d. It is now easy to see thatCi is
lower bounded by the ratio that we get by plugging the density
D, given in (42), into the 1-bit decoder with erasures. In this
way, by using Lemma 5 we obtain fori ∈ In,d

Ci ≥ p−4√pm ≥ 1−16(n+2)(
2

e
)2n−16

√
n+ 2(

2

e
)n. (43)

We thus obtain from (36) and (43)

C(W,Q) ≥ (I(W )−d

2
)(1−16(n+2)(

2

e
)2n−16

√
n+ 2(

2

e
)n).

(44)

C. Third Step: Putting things together

In the last step, we relate the valuesd, nd and the lower
bound (44) together. We first choosen1 ∈ N such that for
n ≥ n1 we have

16(n+ 2)(
2

e
)2n + 16

√
n+ 2(

2

e
)n ≤ d

2
. (45)

One can easily see that for small values ofd, a suitable
candidate forn1 is n1 = 1

log( e
2 )

log( 1
d
)+ o(log( 1

d
)). However,

to have an explicit candidate forn1 such that (45) holds for
all values ofd, one can fix

n1 = 3 log(
1

d
) + 17. (46)

Now, let n = max(n1, nd). From (44) and (45) it is easy to
see thatC(W,Q) ≥ I(W ) − d. In other words, by choosing
M = 2n and∆ = 2−(n+1) for the functionQ given in (2),
the algorithm SCDQ is capable of achieving rates that satisfy
C(W,Q) ≥ I(W )− d. Also, note that we have

| Q | = 1 +
2M

∆
= 1 + n2n+2.

As a result,

log | Q | ≈ n+ logn+ 2. (47)

Finally, what remains to be done is to relatend to d.
Lemma 10:In order to have (36) forn ≥ nd, it is enough

to let
nd = 7 log(

1

d
) + log(log(

1

d
))2 + 48. (48)

With such a choice ofnd andn1 as in (48) and (46), we have
nd ≥ n1 andn = nd. Thus, we obtain from (47)

log | Q | ≤ 7 log(
1

d
) +O(log(log(

1

d
))).
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VII. C ONCLUSION AND OPEN PROBLEMS

We have shown that polar codes are very robust with respect
to quantization at the decoder – even very simple decoders
with only a few messages achieve a high fraction of the
capacity. This is good news if we are interested in a low-
complexity implementation.

Not all news is good. Numerical calculations indicate that
the speed of the polarization is in general further decreased
by quantization. This means that we need to construct even
longer codes.

A precise characterization of this trade-off, namely the
trade-off between the polarization speed and the quantization
would be of considerable practical value.
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APPENDIX

A. Proof of Lemma 5

The fact thath(D = (1, 0, 0)) = 1, h(D = (0, 1, 0)) = 0 is
very easy to check and thus it remains to prove (28). Using
(15) and (16) we obtain

h(D+) = p2 + 2pe− 4
√

(p2 + 2pe)(m2 + 2pm),

h(D−) = p2 +m2 − 4
√

2pm(p2 +m2).

After some straight forward simplifications, we get

h(D+) + h(D−)

2

= p+
m2

2

− 2
√
pm(

√
pm

2
+
√

(p+ 2e)(m+ 2e) +
√

2(p2 +m2)).

Thus, in order to show (28), it is necessary that the right side
of the above equality is less thanp− 4pm. We now prove a
slightly stronger inequality: Forp+ e+m = 1 we have
√
pm

2
+
√

(p+ 2e)(m+ 2e) +
√

2(p2 +m2)) ≤ 2. (49)

It is easy to see that the above inequality results (23). To prove
(49) we use the fact that
√

(p+ 2e)(m+ 2e) ≤ p+ 2e+m+ 2e

2
= 2− 3

2
(p+m),

and apply it to (49). Thus to have (49), it is sufficient to prove

√
pm2 +

√

2(p2 +m2) ≤ 3

2
(p+m), (50)

by squaring both sides of (50) and some further simplifications
we get to

√

2pm(p2 +m2) ≤ 1

4
(p2 +m2) +

17

4
pm.

The above inequality can easily proved by noting the fact that
for x, y ≥ 0 we havex+ y ≥ 2

√
xy, and hence

1

4
(p2+m2)+

17

4
pm ≥ 2

√

17

16
pm(p2 +m2) ≥

√

2pm(p2 +m2).

B. Proof of Lemma 6

Note that forD ∈ D, the minus operation given in (16) is
exactly the same as the original minus operation without any
further quantization step, i.e.,D− = D � D. We know from
[1] that for any BMS channel we haveZ(W �W ) ≤ 2Z(W )
and henceZ(D−) ≤ 2Z(D). To show (32), assumingD =
m∆−∞ + e∆0 + p∆∞ . We have from (15),

Z(D+) = 2
√

(p2 + 2pe)(m2 + 2me) + e2 + 2pm

= 2
√
pm

√

(p+ 2e)(m+ 2e) + e2 + 2pm

= 2
√
pm

√

(pm+ 4e2 + 2e(m+ p) + e2 + 2pm

(a)
= 2
√
pm

√

(pm+ 2e(1 + e)) + e2 + 2pm

(b)

≤ 2
√
pm(
√
pm+

√

2e(1 + e)) + e2 + 2pm

= (2
√
pm+ e)2 + 2

√
pm(

√

2e(1 + e)− e)

= Z(D)2 + 2
√
pm(

√

2e(1 + e)− e),

where step (a) follows from the fact thatm+ e + p = 1 and
step (b) follows from the inequality

√

(a+b) ≤
√

(a)+
√

(b).
Following the above lines, to get (32), it is enough to show
that

2
√
pm(

√

2e(1 + e)− e) ≤ 2Z(D)
3
2 − Z(D)2

= Z(D)(2
√

(Z(D))− Z(D)).

Now, by noting thatZ(D) ≥ 2
√
pm, we only need to show

the following,
√

2e(1 + e)− e ≤ 2
√

(Z(D))− Z(D)
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= 2
√

2
√
pm+ e− 2

√
pm− e.

Rearranging the terms, we should prove
√

2e(1 + e) + 2
√
pm ≤ 2

√

2
√
pm+ e,

which by dividing both sides by2 and then squaring both sides
gives

e(1 + e)

2
+ pm+

√

2pme(1 + e) ≤ 2
√
pm+ e.

Now, sincee ≤ 1, we have e(1+e)
2 ≤ 2 and after further

simplifications we finally get to the following relation to prove.
√
pm+

√

2e(1 + e) ≤ 2,

which by noting that
√
pm ≤ p+m

2 = 1−e
2 , reduces to the

following inequality

1− e

2
+
√

2e(1 + e) ≤ 2.

It is straight forward to show that the above inequality holds
for e ∈ [0, 1].

C. A lower bound on the tail probability for symmetric den-
sities

Lemma 11:Let W be a BMS channels and let the r.v.L
represent the log-likelihood value of its output, i.e.,L(Y ) =

log(W (Y | 0)
W (Y | 1) ), whereY ∼W (y | 0). We have fory ≥ 0

Pr(L ≤ y) ≤ (1 +
1

2
e

y
2 )Z(W ). (51)

Proof: We have

Pr(L ≤ y) = Pr(L ≤ 0) + Pr(0 < L ≤ y). (52)

Let l(x) denote the pdf of the r.v.L. We first note that

Z(W ) =

∫ ∞

−∞
e−

x
2 dl(x). (53)

As a result,
Pr(L ≤ 0) ≤ Z(W ). (54)

Also, since W is symmetric, we have forx ≥ 0:
l(−x) = e−xl(x) and hence from (53) we have,Z(W ) ≥
2
∫∞
0+

e−
x
2 dl(x). Consequently, we obtain

Pr(0 < L ≤ y) ≤ e
y
2

∫ y

0+
e−

x
2 dl(x) ≤ 1

2
e

y
2 Z(W ). (55)

The proof now follows from (52), (54) and (55).

D. Proof of Lemma 9

Throughout the proof we will frequently use the following
definition.

Definition 12: Consider a path P :=
(j1, k1), (j2, k2), · · · , (jl, kl) in the graph T (i), where
we assume thatl ≥ 2 and 0 ≤ jl < jl−1 < · · · < j1 ≤ n.
In other words,P is a path of lengthl − 1 that starts from
the node(j1, k1) and continues upwards throughT (i) by
passing through(j2, k2), (j3, k3), · · · and finally reaches
its endpoint(jl, kl). We call such a path anupwards path

and denote the set of such paths byP . For a pathP ∈ P ,
we define the setS(P ) as the set of nodes(j, k) such
that (j, k) is a variable node and is adjacent to one of the
nodes (j1, k1), · · · , (jl−1, kl−1). An example of a pathP ,
consider the tree-channel in Figure 3 and letP be the path
between labels(0, 4), (1, 2), (2, 1), (3, 0). For this path we
haveS(P ) = {(2, 0), (1, 3)}.
It is an easy exercise to show that the the number of down-
wards paths in a binary tree of heightn is equal to

| P | = (n− 1)2n+1 + 2. (56)

Now, recall that the messagesmj,k correspond to the original
SC decoder and the messagesm̂j,k correspond to the algorithm
SCDQ (with M = 2n and∆ = 2−(n+1)). We know that by
the all-zero codeword assumption, the messagesmj,k have a
symmetric density, i.e., for any real numberx ∈ R we have

Pr(mj,k = x) = e−xPr(mj,k = −x). (57)

As a result, we have for any label(j, k)

E[e−mj,k ] = 1. (58)

Hence, by the Markov inequality we get forx ≥ 0

Pr(mj,k ≤ −x) ≤ e−x. (59)

Define the eventE1 as

E1 = {∀(j, k) : mj,k > −2n+ 1}. (60)

Using (59) and applying the union bound we obtain

Pr(E1) ≥ 1− 2n+1e1−2n. (61)

Also, define the eventE2 as

E2 := {∀P ∈ P :
∑

(j,k)∈S(P )

mj,k ≥ (n+3) ln 2− 2n}. (62)

We now claim that

Pr(E2) ≥ 1− n22n+4e−2n. (63)

To show (63) note that for each specific pathP ∈ P s.t.S(P )
is non-empty, the random variables{mj,k | (j, k) ∈ S(P )} are
independent (This is due to the fact that we feed independent
observations of the channelW into the leaf nodes of the tree
T (i)). Hence, by using (58) we get

Pr(
∑

(j,k)∈S(P )

mj,k < (n+ 3) ln 2− 2n)

= Pr(e−
∑

(j,k)∈S(P ) mj,k > e2n2−(n+3))

≤ E[e−
∑

(j,k)∈S(P ) mj,k ]

e2n2−(n+3)

=

∏

(j,k)∈S(P ) E[e
−mj,k ]

e2n2−(n+3)

= 2n+3e−2n (64)

The claim (63) now follows by applying the union bound to
all pathsP ∈ P and by using (56) and (64). Finally, we claim
that conditioned on the eventE = E1∩E2, the following hold
for each label(j, k):

1) If m̂j,k =∞, thenmj,k ≥ (n+ 3) ln 2.
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2) if m̂j,k 6=∞, then | m̂j,k −mj,k | ≤ (2j+1 − 1)δ.
3) m̂j,k 6= −∞.

Firstly, note that the proof of Lemma 9 follows from the claims
1-3 by inserting(j, k) = (n, 0) and noting that

Pr(E1 ∩ E2) ≥ Pr(E1) + Pr(E2)− 1
(61),(63)
≥ 1− 2n+1e1−2n − n22n+4e−2n

≥ 1− 16(n+ 1)(
2

e
)2n.

Hence, it remains to show that conditioned on the eventE =
E1 ∩E2, the claims 1-3 hold. We show this by induction. We
first show that the claims 1-3 hold for all the messagesm0,j,
i.e., the messages that correspond to the leaf nodes ofT (i):
Claim 1 follows the fact thatM = 2n, claim 2 follows from
the definition of the functionQ given in (2) and claim 3 is
due to the definition ofE1. Let t ∈ {1, 2, · · · , n}. We now
assume that the claims 1-3 hold for all the messagesm̂j,k

wherej ≤ t− 1 and we show that these claims also hold for
all the messageŝmt,k. We first prove claim 2. Consider a label
(t, k). If m̂t,k 6= ∞, then eitherm̂t−1,2k−1, m̂t−1,2k 6= ∞ or
one of the messageŝmt−1,2k−1 or m̂t−1,2k is equal to∞ and
the other is finite and the node(t, k) is a check node (note that
by the induction hypothesis we havêmt−1,2k−1, m̂t−1,2k 6=
−∞). In the former case, by the induction hypothesis and
claim 2 we have

| m̂t−1,2k−1 −mt−1,2k−1 | ≤ (2(t−1) − 1)δ,

| m̂t−1,2k −mt−1,2k | ≤ (2(t−1) − 1)δ,

and by using (39) and (40) we get claim 2 for the message
m̂t,k. In the latter case, assume w.l.o.g. thatm̂t−1,2k−1 =∞
and m̂t−1,2k 6= ∞. In this way, by using claim 1 and 2 we
get

mt−1,2k−1 ≥ (n+ 3) ln 2,

| m̂t−1,2k −mt−1,2k | ≤ (2t−1 − 1)δ.

Since the node(t, k) is a check node we havêmt,k = m̂t−1,2k.
Hence, we can write

| m̂t,k −mt,k |
= | m̂t−1,2k − 2 tanh−1(tanh(

mt−1,2k−1

2
) tanh(

mt−1,2k

2
)) |

= | m̂t−1,2k − 2 tanh−1
[

tanh(
mt−1,2k

2
)

+ (tanh(
mt−1,2k−1

2
)− 1) tanh(

mt−1,2k

2
)
]

|
(a)

≤ | m̂t−1,2k −mt−1,2k | + 2(1− tanh(
mt−1,2k−1

2
))

≤ (2t−1 − 1)δ + 2(1− 1− e−(n+3) ln 2

1 + e−(n+3) ln 2
)

≤ 2(2t−1 − 1)δ = (2n−t−1 − 1)δ.

Here, the relation (a) follows from the fact that forx, y ∈ R

we havetanh(x + y) The proof of claim 3 can be easily
followed by a similar argument and hence we omit it here.
Finally we prove claim 1. Consider a node(t, k) and assume
that m̂t,k =∞.

E. Proof of Lemma 10

Let {Bn}n∈N be a sequence of iid Bernoulli(1
2 ) random

variables. Denote by(F ,Ω,P) the probability space generated
by this sequence and let(Fn,Ωn,Pn) be the probability space
generated by(B1, · · · , Bn). Also, denote byθn the natural
embedding ofFn into F , i.e., for everyF ∈ Fn

θn(F ) = {(b1, b2, · · · , bn, bn+1, · · · ) ∈ Ω | (b1, · · · , bn) ∈ F}.

We havePn(F ) = P(θn(F )). We now couple the processWn

with the sequence{Bi}:

Wn =

{

W+
n−1 ; if Bn = 1,

W−
n−1 ; if Bn = 0.

(65)

As a result,Zn = Z(Wn) is coupled with the sequence{Bi}.
By using the bounds given in [12, Chapter 4] we have the
following relationship between the Bhattacharyya parameters
of W+, W− andW :

Z(W+) = Z(W )2,

Z(W )
√

2− Z(W )2 ≤ Z(W−) ≤ 2Z(W )− Z(W )2.

As a result, for a BMS channelW , the processZn = Z(Wn)
satisfies ([4, Lemma 3.16])

Zn+1

{

= Zn−1
2 ; if Bn = 1,

∈ [Zn−1

√

2− Zn−1
2, 2Zn − Zn−1

2] ; if Bn = 0.
(66)

Lemma 13:Consider the processZn with the starting value
Z0 = z0.

(i) For a, b ∈ (0, 1), defineζ(a, b) as

ζ(a, b) ,

sup
{x∈(0,1),y∈[x

√
2−x2,x(2−x)]}

x2a(1− x2)2b + ya(1− y)b

2xa(1− x)b
.

We have

E[Za
n(1− Zn)

b] ≤ za0 (1 − z0)
bζ(a, b)n. (67)

Furthermore, fora = 0.82 andb = 0.60 we haveζa,b ≤
0.89.

(ii) We have

Pr(Zn ≤ 2−2
∑n

i=1 Bi
) ≥ 1− 6z0(1 + log(

1

z0
)). (68)

(iii) We have

Pr(Z2
n ≥ 1−2−2n−

∑n
i=1 Bi

) ≥ 1−6(1−z20)(1+log(
1

1− z20
).

(69)

Before proving Lemma 13, let us show how the proof of
Lemma 10 follows from it. Consider the first part of Lemma 13
with a = 0.82 andb = 0.6 and Letn1 ∈ N be such that

E[Za
n1
(1− Zn1)

b] ≤ d

24
. (70)

By using part (i) of Lemma 13, if we let

n1 =
log( d

12 )

log ζa,b
≤ 6 log(

1

d
) + 22, (71)
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then the relation (70) holds universally for any channelW .
We now search for an integern2 such that for the following
two events

E1 = {
n2
∑

i=1

Bi ≤ log(3n1 log e)},

E2 = {
n2
∑

i=1

Bi ≥ n2 − log(3n1 log e)},

we have

Pr(E1 ∪ E2) ≤
d

4
. (72)

First, note that the two eventsE1 andE2 are equi-probable
and hence by using the union bound we get Pr(E1 ∩ E2) ≤
2Pr(E1). Thus, we desire a candidate forn2 such that

Pr(E1) ≤
d

8
. (73)

Now, sinceBi’s are i.i.d. random variables with distribution
Bernoulli(12 ), (73) becomes

∑⌊log(3n1 log e)⌋
i=0

(

n2

i

)

2n2
≤ d

8
,

and after a further simplification step, it is sufficient to have

(⌊log(3n1 log e)⌋+ 1)
(

n2

⌊log(3n1 log e)⌋
)

2n2
≤ d

8
. (74)

By looking more closely at (74) and (70), one can easily
deduce thatn2 = log( 1

d
)+o(log( 1

d
)) is sufficient to fulfill (74).

However, one precise candidate to fulfill (74) for all valuesof
d ≤ 1

2 is

n2 = log(
1

d
) + (log(log(

1

d
)))2 + 26. (75)

We now let

nd = n1 + n2 = 7 log(
1

d
) + (log(log(

1

d
)))2 + 48, (76)

and we show that for such a choice ofnd we have the
statement of Lemma 10.

Proof of Lemma 13:For part (ii), Consider two processes
Zu
n given byZu

0 = Z(W ),

Zu
n =

{

(Zu
n−1)

2 ; if Bn = 1,
2Zu

n−1 ; if Bn = 0,
(77)

Clearly,Zn is stochastically dominated byZu
n . The following

lemma partially analyzes the behavior ofZu
n .

Lemma 14:For the processZu
n (defined in (77)) starting at

Zu
0 = zu0 ∈ (0, 1) we have:

P(Zu
n ≤ 2−β2

∑n
i=1 Bi

) ≥ 1− 21+β
√

zu0 . (78)

Proof: We analyze the process4 An = − log(Zu
n) , i.e.,

A0 = − log(zu0 ) , a0 and

An+1 =

{

2An ; if Bn = 1,
An − 1 ; if Bn = 0.

(79)

4In this paper, all the logarithms are in base 2.

Note that in terms of the processAn, the statement of the
lemma can be phrased as

P(An ≥ β2
∑n

i=1 Bi) ≥ 1− 1

2a0−β
.

Associate to each(b1, · · · , bn) , ωn ∈ Ωn a sequence of
”runs” (r1, · · · , rk(ωn)). This sequence is constructed by the
following procedure. We definer1 as the smallest indexi ∈ N

so thatbi+1 6= b1. In general, if
∑k−1

j=1 rj < n then

rk = min{i |
k−1
∑

j=1

rj < i ≤ n, bi+1 6= b∑k−1
j=1 rj

} −
k−1
∑

j=1

rj .

The process stops whenever the sum of the runs equalsn.
Denote the stopping time of the process byk(ωn). In words,
the sequence(b1, · · · , bn) starts withb1. It then repeatsb1, r1
times. Next followr2 instances ofb1, followed again byr3
instances ofb1, and so on. We see thatb1 and(r1, · · · , rk(ωn))
fully describeωn = (b1, · · · , bn). Therefore, there is a one-
to-one map

(b1, · · · , bn)←→ {b1, (r1, · · · , rk(ωn))}. (80)

Note that we can either haveb1 = 1 or b1 = 0. We start with
the first case, i.e., we first assumeB1 = 1. We have:

n
∑

i=1

bi =
∑

j odd≤ k(ωn)

rj ,

and

n =

k(ωn)
∑

j=1

rj .

Analogously, for a realization(b1, b2, · · · ) , ω ∈ Ω of
the infinite sequence of random variable{Bi}i∈N, we can
associate a sequence of runs(r1, r2, · · · ). In this regard,
considering the infinite sequence of random variables{Bi}i∈N

(with the extra conditionB1 = 1), the corresponding sequence
of runs, which we denote by{Rk}k∈N, is an iid sequence with
P(Ri = j) = 1

2j . Let us now see how we can express the
An in terms of ther1, r2, · · · , rk(ωn). We begin by a simple
example: Consider the sequence(b1 = 1, b2, · · · , b8) and the
associated run sequence(r1, · · · , r5) = (1, 2, 1, 3, 1). We have

A1 = a02
r1,

A3 = a02
r1 − r2,

A4 = (a02
r1 − r2)2

r3 = a02
r1+r3 − r22

r3 ,

A7 = (a02
r1 − r2)2

r3 − r4 = a02
r1+r3 − r22

r3 − r4,

A8 = ((a0 × 2r1 − r2)× 2r3 − r4)× 2r5

= a02
r1+r3+r5 − r22

r3+r5 − r42
r5

= 2r1+r3+r5(a0 − 2−r1r2 − 2−(r1+r3)r4).

In general, for a sequence(b1, · · · , bn) with the associated run
sequence(r1, · · · , rk(ωn)) we can write:

An = a02
∑

i odd≤ k(ωn) ri −
∑

i even≤ k(ωn)

ri2
∑

i < j odd rj

= a02
∑

i odd≤ k(ωn) ri −
∑

i even≤ k(ωn)

ri2
(−∑

j odd< i
rj+

∑
i odd≤ k(ωn) ri)
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= [2
∑

i odd≤ k(ωn) ri ][a0 − (
∑

i even≤ k(ωn)

ri2
−

∑
j odd< i rj )]

= [2
∑n

i=1 Bi ][a0 − (
∑

i even≤ k(ωn)

ri2
−

∑
j odd< i rj )].

Our aim is to lower-bound

P(An ≥ β2
∑

n
i=1 Bi)

= Pn(a0 −
∑

i even≤ k(ωn)

ri2
−

∑
j odd< i rj ≥ β),

or, equivalently, to upper-bound

Pn(
∑

i even≤ k(ωn)

ri2
−

∑
j odd< i

rj ≥ a0 − β). (81)

For n ∈ N, define the setUn ∈ Fn as

Un = {ωn ∈ Ωn | ∃l ≤ k(ωn) :
∑

i even≤ l

ri2
−∑

j odd< i
rj ≥ a0−β}.

Clearly we have:

Pn(
∑

i even≤ k(ωn)

ri2
−

∑
j odd< i rj ≥ a0 − β) ≤ Pn(Un).

In the following we show that if(b1, · · · , bn) ∈ Un, then for
any choice ofbn+1, (b1, · · · , bn, bn+1) ∈ Un+1. We will only
consider the case whenbn, bn+1 = 1, the other three cases can
be verified similarly. Letωn = (b1, · · · , bn−1, bn = 1) ∈ Un.
Hence,k(ωn) is an odd number (recall thatb1 = 1) and the
quantity

∑

i even≤ k(ωn) ri2
−∑

j odd< i
rj does not depend on

rk(ωn). Now consider the sequenceωn+1 = (b1, · · · , bn =
1, 1). Since the last bit (bn+1) equals1, then rk(ωn+1) =
rk(ωn) and the value of the sum remains unchanged. As a
result (b1, · · · , bn, 1) ∈ Un+1. From above, we conclude that
θi(Ui) ⊆ θi+1(Ui+1) and as a result

Pi(Ui) = P(θi(Ui)) ≤ P(θi+1(Ui+1)) = Pi+1(Ui+1).

Hence, the quantity limn→∞ Pn(Un) =
limn→∞ P(θn(Un)) = limn→∞ P(∪ni=1θi(Ui)) is an upper
bound on (81). On the other hand, consider the set

V = {ω ∈ Ω | ∃l :
∑

i even≤ l

ri2
−

∑
j odd< i rj ≥ a0 − β}.

By the definition ofV we have∪∞i=1θi(Ui) ⊆ V , and as a
result,P(∪∞i=1θi(Ui)) ≤ P(V ). In order to bound the proba-
bility of the setV , note that assumingB1 = 1, the sequence
{Rk}k∈N (i.e., the sequence of runs when associated with the
sequence{Bi}i∈N) is an iid sequence withP(Ri = j) = 1

2j .
We also have

P(a0 −
∑

i even≤ m

Ri2
−∑

j odd< i
Rj ≤ β) (82)

= P(
∑

i even≤ m

Ri2
−

∑
j odd< i Rj ≥ a0 − β)

= P(2
∑

i even≤ m Ri2
−

∑
j odd< i Rj ≥ 2a0−β)

≤ E[2
∑

i even≤ m
Ri2

−
∑

j odd< i Rj

]

2a0−β
,

where the last step follows from the Markov inequal-
ity. The idea is now to provide an upper bound

on the quantity E[2
∑

i even≤ m Ri2
−

∑
j odd< i Rj

]. Let X =
∑

i even≤ m Ri2
−

∑
j odd< i Rj . We have

E[2X ]

=
∞
∑

l=1

P(R2 = l)E[2X |R2 = l]

a
=

∞
∑

l=1

1

2l
E[2X |R2 = l]

=

∞
∑

l=1

1

2l
E[2

R1
2l ]E[2

X

2l ]

=

∞
∑

l=1

1

2l(21−
1

2l )
E[2

X

2l ]

b

≤
∞
∑

l=1

1

2l(21−
1

2l )
(E[2X ])

1

2l ,

where (a) follows from the fact thatRis are iid andX is self-
similar and (b) follows from Jensen inequality. As a result ,an
upper bound on the quantityE[2X ] can be derived as follows.
We have

E[2X ] ≤
1

2(2
1
2 − 1)

(E[2X ])
1
2 +

1

4(2
3
4 − 1)

(E[2X ])
1
4 +

1

4(2
7
8 − 1)

(E[2X ])
1
8 .

The equationy = 1

2(2
1
2 −1)

y
1
2 + 1

4(2
3
4 −1)

y
1
4 + 1

4(2
7
8 −1)

y
1
8 has

only one real valued solutiony∗ ≤ 2.87. As a result we have
E[2X ] ≤ y∗ ≤ 2.87. Thus by (82) we obtain

P(a0 −
∑

i even≤ m

Ri2
−∑

j odd< i
Rj ≤ β) ≤ 2.87

2a0−β

Thus, given thatB1 = 1, we have:

P(An ≥ β2
∑

n
i=1 Bi) ≥ 1− 2.87

2a0−β
.

Or more precisely we have

P(An ≥ β2
∑

n
i=1 Bi |B1 = 1) ≥ 1− 2.87

2a0−β
.

Now consider the caseB1 = 0. We show that a similar bound
applies forAn. Firstly note that, fixing the value ofn, the
distribution ofR1 is as follows:P(Ri) =

1
2i for 1 ≤ i ≤ n−1

andP(R1 = n) = 1
2n−1 . We have

P(An ≥ β2
∑n

i=1 Bi |B1 = 0)

=
n∑

i=1

P(An ≥ β2
∑n

i=1 Bi |R1 = i, B1 = 0)P(R1 = i |B1 = 0)

=
∑

i≤a0−β,i≤n

P(An ≥ β2
∑n

i=1 Bi |R1 = i, B1 = 0)P(R1 = i |B1 = 0)

+
n∑

i>a0−β,i≤n

P(R1 = i |B1 = 0)

≤
∑

i≤a0−β,i≤n

1

2i
2.87

2a0−β−i
+

2

2a0−β

≤
2.87(a0 − β + 1)

2a0−β

≤
3

2
a0−β

2

.
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Hence, considering the two cases together, we have:

P(An ≥ β2
∑

n
i=1 Bi) ≥ 1− 2

2
a0−β

2

.


