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Abstract—Polar codes provably achieve the capacity of a

wide array of channels under successive decoding. This asaas

infinite precision arithmetic. Given the successive naturef the

decoding algorithm, one might worry about the sensitivity d the

performance to the precision of the computation. I
We show that even very coarsely quantized decoding al- Q

gorithms can lead to excellent performance. More concretg|

we show that under successive decoding with an alphabet of

cardinality only three, the decoder still has a threshold aul

this threshold is a sizable fraction of capacity. More genaelly,

we show that if we are willing to transmit at a rate § below &

. . . 0 1
capacity, then we need onlyclog(1/6) bits of precision, wherec . I .
is g uni)\//ersal constant. yelog(1/9) P Fig. 1. The maximum achievable rate of a simple three message

decoder, called the decoder with erasures, for differer@ncél
families. From top to bottom: the first curve correspondsefamily
|. INTRODUCTION of binary erasure channels (BEC) where the decoder withuszas
) ) . is equivalent to the original SC decoder and, hence, the rmanxi
Polar coding schemes provably achieve the capacity gdhievable rate is the capacity itself. The second curveesponds
several classes of channels including binary memoryle®s syto the family of binary symmetric channels (BSC). The thitdve

metric (BMS) channels. Since the invention of polar codeé®rresponds to the family of binary additive white Gaussiaannels
by Arikan, [1], a large body of work has been done t AWGN). The curve at the bottom corresponds to a univemaet
. . ’ ’ . . d th hievabl te by the decod ith .
investigate the pros and cons of polar codes in differeng ' 0" the achievable rate by the decoder with erasures
practical scenarios. In [3], the authors propose methods to

compute the_compound gapacity of polar codes, deched Und&filies. As one can see from this figure, in particular for
the successive cancellation (SC) decoder, over a g'Ver_‘fsetcf?annels with high capacity, the fraction of the capacist th
BMS chznnels gnd shé)w .thit polstrbglc_)desf are nothunlv%rqg ‘achieved by this simple decoder is closeltoi.e., even
Inﬁ[g] an [6]hg|ven a desire h_pro b? llity 0 edrrglr, tkel tea hthis extremely simple decoder almost achieves capacity. We
off between the maximum achievable rate and block-lengthgper show that, more generally, if we want to achieve a rat

considered. In [7], [8] and [9], efficient constructions aflgr 5 below capacity € > 0), then we need at mostlog(1/5)
codes are considered. Recently, in [11] the authors gémrabits of precision

the successive cancellation decoder to a proper successiv\?he significance of our observations goes beyond the pure

list bdetjz_lqtdefr an?] r?pl;)lrt tkhlat Wti:]h .SUCh a_(;jec?;ljer_ the err(%mputational complexity which is required. The main st
probability Tor Short block-iengths 1S considerably imped .neck in the implementation of large high speed coding system
(at the cost of an increase in complexity proportional to “?s typically memory. Therefore, if one can find decoders \whic
work with only a few bits per message then this can make the
Wifterence whether a coding scheme can be implemented or
not.

The outline of the paper is as follows. Section Il gives afbrie

th . t f the decod iaht hreview of polar codes and successive decoding. In Sectlon I
€ successive nature of the decoder, one might worry review an equivalent model which will form the basis for

well such a scheme performs under a finite precision deco [ of our analysis. Section IV contains the main statements

A priori it is not clear whether such a coding scheme sti f the paper which are proved in Section V and Section VI .
shows any threshold behavior and, even if it does, how t%%ction VIl concludes the paper

behavior scales in the number of bits of the decoder.

We show that in fact polar coding is extremely robust with
respect to the quantization of the decoder. In Figure 1, we
show the achievable rate using a simple successive decofleBasic setting and definitions
with only three messages, called the decoder with erasures, ot 717 . v _ Y be a BMS channel, wher& = {0, 1}.

when transmission takes place over several important @anpg¢ I(W) € [0,1] denote the mutual information between
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1015, Switzerland{seyedhamed.hassani, rudiger.urbai@epfl.ch. inputs. We call this the symmetric mutual information. ®nc

sive decoding. We ask whether such a coding schemodisst
More precisely, the standard analysis of polar codes under s
cessive decoding assumes infinite precision arithmetieer@i

Il. POLAR CODES



we assumed?” to be symmetric/ (W) is in fact the capacity in time N(log N + 1). For the sake of briefness, we do not

of W. fully describe the functionality of the SC decoder and reder
Let G2 = [19]. The generator matrix of polar codes i1] for a detailed description.

defined through the Kronecker powers 6%, denoted by

Gy = G$". Throughout the paper, the variabléé and [1l. QUANTIZED SC DECODER

n are related asvV = 2". Let us quickly review how the |etR* = RU{+0c0} and consider a functio@(z) : R* —
generator matrix of polar codes is constructed. Consider th* that is symmetric (i.e., Q(x) = Q(—x)). We define the

N x N matrix Gy and let us label the rows of the matrixQ-quantized SC decoder as a decoder in which the function
Gy from top to bottom by0,1,---,N — 1. Now assume () is applied to the output of any computation that the decoder
that we desire to transmit binary data over the chamlieht does. We denote such a decoder by $CDlore precisely, the
rate R < I(W) with block-lengthN. One way to accomplish decoder SCH computes the log-likelihoods of the received
this is to choose a subsgtC {0,---,N — 1} of size NR  symbols from the channel and applies the functipto them.
and to construct a vectdr)' ' = (Us,--- ,Uy_1) inaway These new numbers are then fed into the SC algorithm to
that it contains ourN R bits of data at positions if and estimate further messages. However, after computing every
contains, at positions not i, some fixed value (for example new message, the functi@pis applied and the new quantized
0) which is known to both the encoder and decoder. We thefessage is used for further computations. Finally, theevafu

send the codeword()' ' = Uy’ 'Gy through the channel the j-th bit, if not frozen, is decided according to the sign of
W. We refer to the sef as the set ofthosen indiceor jts corresponding computed message. If positive= 0, if
information indicesand the sefZ is called the set ofrozen (), the value ofi; is decided by flipping a fair coin, and if
indices The choice of these indices is specific to the Chanf\@égative,ﬂi - 1.

W and in general for two different channels it is different. Typically, the purpose of the functio® is to model the
([3]). The chosen indices of the channil are identified case where we only have finite precision in our computations
by using the following procedure on each of the indicgserhaps due to limited available memory or due to other
i€{0,---,N —1}. Letu/ "' be a randomly and uniformly hardware limitations. Hence, the computations are correct
chosen vector from{0,1}"V and lety)’~' be the result of within a certain level of accuracy which the functiaf
transmitting the vector) ' = u{'~'Gy throughN parallel models. Thus, let us assume that the range)o a finite
copies ofiV. Assume that we want to estimate the value:pf set 9 with cardinality | Q|. As a result, all the messages
(denoted byii;) given the received outpyt) ' and the values passed through the decoder SgBelong to the seQ.

of the previous bitsig, - - - , u;—1. The optimal decision in this  In this paper we consider a simple choice of the function
regard is to compute the probabilitipéy) ", u{ ' |u; = 0)  Q that is specified by two parameters: The distance between

andp(yy ~',ug ' |u; = 1) and to decide on the value af |evelsA, and truncation threshold/. Given a specific choice

by comparing the probabilities. These probabilities defineof A/ and A, we defineQ as follows:
BMS channel between; and the “observationly)’ —*, u{™")

) ) z 4 LA M
which is denoted by (" : {0,1} — YV x {0,1}*"* and [&+318, z € (0. M,
whose law is given by Qz) = {% B %WA, € [-M,0), @)
N—-1
[ — i— 1 — . .
W e uf ) = WZ I W [ (g G- sign(z) M, otherwise
N—-1 5—
it 770 1) Note here that| Q| =1+ 2i.. A graphical illustration ofQ)

It is easy to see that givefy) "', uj '), we can decode,; 'S 9VeN N Fig. 2.

very reliably if and only if the channdﬂ/](\;) is very close to Q(x)
being noise-less (i.e., its capacity is very closé }oA crucial

fact here is that the channe{:ﬂ/f\})} have the property that

asn grows large, a fraction of (W) of them tend to become a“
noise-less (i.e., have capacity close ltpand a fraction of
1—I(W) of them tend to become completely noisy (i.e., have
capacity close td). As a result, given a rat& < I(W), a

natural way to choose the information indices is to choose th
NR indices such as that their corresponding channHJ’](VZ)
has the largest capacity. At the decoder, thedijts - - ,un_1
are decoded one by one. That is, the tbitis decoded after
ug, -+ -u;—1. If 7 is a frozen index, its value is known to the
decoder. If not, using the outptygﬁV*1 and the estimates of

>
P

ug, -+ ,u;—1, the decoder computes the log-likelihood ratio
N—-1 i—1,_  _ .
(r) log plyg o 1ui=0) 5n4 decides the value of hardly.
p(y g |ui=1)

It can be shown that by a clever exploitation of the structufés. 2. The functionQ(z) for |Q| =9 and M = 4A.
of G, one can estimate the lIr's for all the information bits



IV. MAIN STATEMENT All nodes at leveD correspond to independent observations

Theorem 1 (Main Statementionsider transmission over a°f the output of the channél’, assuming that the input &

BMS channelV using polar codes and a SgDwith message " other words, assuming that the all-zero codeword has been
alphabetQ. transmitted, theV independent observations that result from

. For |Q| = 3, we provide methods to precisely computﬁassmg each of thé&y codebits throughV are fed into the

the maximum rate that can be achieved reliably when t gttom ofT'(2) for further processing. ) .
transmission takes place ovéf and we use polar codes " example for7'(3) (that isn = 3, b = 011 andi = 3) is
with the decoding algorithm SCf2 In particular, such shown in Fig. 3.
maximum rates are plotted for different channel families
in Figure 1. Also, in Figure 1 a universal lower bound
for the maximum achievable rate is given. The methods
used here are extendable to other quantized decoders.
« We can achieve up to an additive gapé > 0, below
the capacityl (W) with log |Q] < clog(1/9).
Discussion:In short, polar codes are very robust to quantiza-
tion within the decoder. In particular for BMS channels with
capacity close td, very little is lost by quantizing. And as
we discussed in the introduction, a reduction of the message w W W W W W W w
alphabet can be crucial for the hardware implementation gf 3 Tree representation of the tree-chaniB) (W°11). The 3-bit
such schemes. binary expansion o8 is b1b2b3 = 011 (note thatb; is the most significant
Our proof strategy is the following. We describe a generfl)- The pair beside each node is the label assigned to it.
framework of how to analyze the asymptotic performance of N1 ,
guantized decoders. We first apply our general frameworkCVeN the channel OUtPUt ve_ctoyo and .assuming
to the so-called decoder with erasures. This decoder haéh?tt the values of the bits prior ta; are given, 1€,
message alphabet of siz2 As we will see, this decoder “0 ;_P"Zf;l’“i—l = 0, we novyv_ci)mlp_ulte the proba_bllltles
achieves the fraction indicated in Figure 1. We then descriB¥0 %0 |ui = 0) and p(yg ~ " ug— |u; = 1) via a

a general family of quantized decoders and prove how fUNPIe message passing procedure on the equivalent tree
performance scales. channell’(i). We attach to each node (i) with label (j, k)

a messagem;; and we update the messages as we go up

towards the root node. We start with initializing the messag

) ) at the leaf nodes of'(:). For this purpose, it is convenient

A_.. Equivalent tree channel model and analysis of the probfb- represent the channel in the log-likelihood domain; far.

bility of error the node with label0, k) at the bottom of the tree which
Since we are dealing with a linear code, a symmetric chagerresponds to an independent realizatiollgfwe plug in the

nel and symmetric decoders throughout this paper, witlwmst | |og-likelihood ratio (lIr) log(%g’; {?g) as the initial message

of generality we confine ourselves to thd-zero codeword mo. 1. That is,

(i.e., we assume that all the’s are equal ta)®. In order to

V. GENERAL FRAMEWORK FORANALYSIS

better visualize the decoding process, the following dedini mo g = log(w). 3
is handy. Wy 1)

Definition 2 (Tree Channels of Heigh): For eachi < Next, the SC decoder recursively computes the messages
{0,1,---,N — 1}, we introduce the notion of théth tree (llr's) at each level via the following operations: If the des

channel of heighi which is denoted byr'(i). Let b, ...b, at level; are variable nodes (i.eh; = 1), we have

be then-bit binary expansion of. E.g., we have fon = 3,

0 = 000, 1 = 001, ..., 7 = 111. With a slight abuse of My k = Mj—12k + Mj_12k+1, (4)
notation we qsg’ andbl <oby, interchan.geably. Note that forand if the nodes at level are check nodes (i.eb; = 0), the
our purpose _|t is shghtly more convenient to denote thet,learﬁessage that is passed up is :

(most) significant bit a$,, (b;). Each tree channel consists . .

of n+ 1 levels, namely, ..., n. It is a complete binary tree. m; = 2tanh_1(tanh(%m) tanh(%%ﬂ)). (5)
The root is at levelh. At level j we have2™ 7 nodes. For
1 < j < n,if b; =0 then all nodes on leve] are check
nodes; ifb; = 1 then all nodes on level are variable nodes.

In this way, it can be shown that ([1]) the message that we
obtain at the root node is precisely the value

Finally, we give a label for each node in the tré¢i): For . (p(yév‘l,ug‘l |u; = 0)) ®)
each levelj, we label the2”—7 nodes at this level respectively Mn,0 = 108 P L u u=1)

from left to right by (5,0), (5,1),---, (5,27 — 1). . . . .
ght by (5,0), (7, 1), -+, U, ) Given the description afu,, o in terms of a tree channel, it is
lin terms of the analysis of the probability of error, it must hoted that NOW clear that we can use density evolution [12] to compute
since the we are dealing with a symmetric channel and a syrienuietcoder,
for any codeword the average error probability is the saméhasaverage 2To simplify notation, we drop the dependency of the messaggs to
error probability for the all-zero error codeword ([12, @tex 4]) the position: whenever it is clear from the context.



the the probability density function of, o. In this regard, if the node(j, k) is a check node. One can use the density
at each levelj, the random variables:; ; are i.i.d. fork € evolution procedure to recursively obtain the densitieshef
{0,1,---,2"77 — 1}. The distribution of the leaf messagesnessagesi; .

mo,r IS the distribution of the variablmg(%), where  Finally, let £; denote the event that we make an error in
Y ~ W{(y|0). One can recursively compute the distributionlecoding the-th bit, with a further assumption that we have
of my 1, in terms of the distribution ofiv;_1 21, mj—1,2x+1 @nd correctly decoded the previous bits, - - - , u;,—1. In @ similar
the type of the nodes at levgl(variable or check) by using way as in the analysis of the original SC decoder, we get

the relations (4), (5) with the fact that the random variable

. . ii - 1

my—1,2k ANAM; -1 9041 are i.d, o PI(E,) = Pr(rit,0 < 0) + 5Pr(ri,0 =0).  (12)
Finally, note that by the all-zero codeword assumptionmive 2 ’

the outputy)’ ~* and the value of previous bitg, - - - , u;_1,

Hence, one way to choose the information bits for the algo-
rithm SCDy, is to choose the bits; according to the least
values of PtE;).

Note here that, since all of the densities takes their value
in the finite alphabet, the construction of such polar codes
1 can be efficiently done in timé&(| Q|2N log N). We refer
Pr(E;) = Pr(mp,0 < 0) + §Pr(mn_,0 =0), (7) the reader to [1] to see how such a construction can be done.

the value ofu; is incorrectly decoded if eithem,, o < 0 or
my,o = 0 and we choose the value of to bel ( This happens
with probability %). Thus, denotingF; as the event that we
make and error on théth bit within the above setting, we
obtain

and the block error probability of polar codes using the
information setZ and SC decoder is upper bounded by

P, < Z Pr(E;). 8)

i€l

C. Gallager Algorithm

Since our aim is to show that polar codes under successive
decoding are robust against quantization, let us investiga
B. Equivalent tree-channel model and quantized density e €xtreme case. The perhaps simplest message-passing type
lution decoder one can envision is the Gallager algorithm. It works
with single-bit messages. Does this simple decoder havea no

An important point to note here is that with the deCOdezrero threshold? Unfortunately it does not, and this is easy t

SCDy, the distribution of the messages in the tr&gs) is

different than the corresponding ones that result from the . .
- P 9 . . . “We start with the equivalent tree-channel model. For each
original SC decoder. Hence, the choice of the informatio

indices is also specified by the choice of the functipas well cqwanneli of the polar code we have such a tree of heighnd

as the channdli’. To be more precise, in order to analyze thn each layer, nodes are either all check nodes or all variabl

error probability when we use the algorithm Sgne should nodes

note that since the functio®(z) is a symmetric function Since messages are only a single b't', the “state” of .the
aroundz — 0 and the channel is also a BMS channel decoder at levej can be described by a single non-negative

the block error probability is equal to its value when w&Umber, namely the probability that the message at Igvel

assume that the all-zero codeword has been sent. SimilaiSgncorrect. Assume that we transmit over a BBC Let

_ 1 ; ; : _
the analysis of the original SC decoder, we further assurfie = ? € (0,3). We are interested in the evolution of.

that the codeword sent is the all-zero codeword and we flxiS €volution depends of course on the sequence of levels,
the i-th bit and consider its equivalent tree-chanfiél). Our 1-€- it depends on Wh'Ch tree channel we are conS|d§r|ng.
objective is now to analyze the distribution of the messagesASSUMe that:; is given and that the next level consists of
in 7'(i) assuming that the algorithm S@Dis performed and check nodes. In this case the error probability increaseseM

. . . i — 1
the previous bitsi, - - - ,u;_, are decoded correctly (i.e., wePrecisely,z; 1 = 2x;(1 — xj_) > z; whenz; € (0, 5_)- In
know that all of them ar®). other words, the state deteriorates. What happens if the nex

For each labe(j, k) in T(i), let the random variablen; level consists of variable nodes instead? A little thoudloes

represent the messages at this label. The messagedake thatin this case;, = x;, i.e., there is no change at all. This
their values in the discrete s@ (range of the functior). IS true since if both incoming messages agree we can make

At the leaf nodes of the tree we plug in the message a decision on the outgoing message, but if they differ we can
W 0) only guess. This gives usj 1 = 27 + z;(1 — z;) = z;.
Mok = Q(log((yiu)), 9) Since in either case, the state either becomes worse or
Wy 1) stays unchanged, no progress in the decoding is achieved,
and the update equation fai; ;) is irrespective of the given tree. In other words, this decoder
iy = Qi 1ok + 10, ) (10) has a threshold of zero. As we have seen, the problem is the
gk =12k T T L2k L) processing at the variable nodes since no progress is achiev
if the node(j, k) is a variable node and there. But since we only have two incoming messages there
X . i1 98 M1 2%41 is not much degree of freedom in the processing rules. It is
;= Q(2tanh™ (tanh(— 5 ) tanh( —="))),  doubtful if any message-passing decoder with only a sibgle-

(11) message can do better.



D. 1-Bit Decoder with Erasures which occurs with probabilityn?. Hence,D~ takes the value

Motivated by the previous example, let us now add or® With probability p + m?. o u
message to the alphabet of the Gallager decoder, i.e., we als!n order to compute the distribution of the messageso
add the possibility of having erasures to the above mentiondt & given leveln, we use the method of [1] and define
Gallager algorithm. In this regard, the functi@{z) becomes the polarization procesp),, as follows. Consider the random

the sign function, i.e., variable L(Y') = log(%), whereY ~ W(y|[0). The
stochastic proces®,, starts from the rv.Dy = Q(L(Y))
oo x>0, :
defined as
Qxz)y=< 0 =x=0, (13)

0 < 0. 00 w.p. p = Pr(L(Y) > 0),
, Dy={ 0 W.p. e = Pr(L(Y) = 0), (17)

As a result, all messages passed by the algorithm ke oo w.p.m = PrL(Y) < 0).

on only three possible value§:-co, 0, co}. In this regard, the

decoding procedure takes a very simple form. The algorith@@d forn > 0

starts by quantizing the channel output to one of the three D swp. L
values in the selQ = {—o0,0,00}. At a check node we D1 :{ 1 (18)

take the product of the signs of the incoming messages ) ) ) )
and at a variable node we have the natural addition rdiéere the plus and minus operations are given in (15), (16).

(04 0o+ —00,0+ 0+0 andoo < 0o + 00,00 < 00+ 0 2) Analysis of the proces®,,: Note that the output of
and —co + —00 + —00, —00 « —oo + 0 ). Note that on processD,, is a itself a random variable of the form given
the binary erasure channel, this algorithm is equivaleriheo In (14). Hence, we can equivalently represent the proégss
original SC decoder. with a triple (m,,, e,,, pr ), Where the coupled processes, e,,

Our objective is now to compute the maximum possible raf®d P, are evolved using the relations (15) and (16) and we
that the decoder SCfcan achieve reliably for a BMS channePWays haven,, +e, +p, =1. .
W. We denote such quantity (W, Q). The analysis is done Following along the same lines as the analysis of the
in three steps: original SC decoder, we first claim that asgrows large,

1) The density evolution procedur@p analyze the perfor- the processD,, will become polarized, i.e., the output of the
mance of this algorithm, first note that since all our messag’0cessD,, will almost surely be a completely noiseless or a
take their values in the se®, then all the random variablesCOmpletely erasure channel.

that we consider have the following form Lemma 4:The sequenceD,, = (pn,€n,mn),n = 0}
converges almost surely to a random variablg, such that
o0 W.p-p, D, takes its value in the sdf(1,0,0), (0,1,0)}.
D=<¢ 0 w.p. e, (14)

Proof: We first show that the process,, is a super-
martingale which converges a.s.@From (15) and (16) we
Here, the numberg, e, m are probability values such thatobtain,
p+ e+ m = 1. Let us now see how the density evolves

—00 W.p. m.

m% + 2mpen + 2mypn

through the tree-channels. For this purpose, one shouté tra E[mpy1|m,] = 5

the output distribution of the relations (10) and (11) whiea t m2

input messages are two i.i.d. copies of a Fvwith pdf as in =My — 7" < my.
(14).

Lemma 3:Given two i.i.d. versions of a r.vD with distri- AS @ result, sincen,, is also bounded it converges a.s. to a
bution as in (14), the output of a variable node operation, (14Mit V. mo. The a.s. convergence and boundedness: pf

denoted byD*, has the following form also implies that
1
0 W.p. p + 2pe, E[mni1 —mn] = —=E[m2] — 0.
Dt={ 0 w.p. €2 + 2pm, (15) 2
—00  W.p.m? + 2em. Hence,m,, — 0 almost surely. In the same way, consider the

Also, the check operation (11), yield3~ with the following process:,.. We have

faw 00 w.p. p* + m?, Elentalenl = en+ 2pncn. (19)
D =< 0 wp.1—(1-¢e)? (16) Hence, the process, is a bounded sub-martingale which
—00 W.p. 2pm. converges a.s. to a r.¥.,. This would imply that
Proof: The proof follows by a straight forward compu- Elent1 — en] = 2E[ppen] — 0.

tation of the corresponding probabilities for™ and D—. As )

an example, leD;, D, be two i.i.d. copies ofD that are fed Now, sincep, =1 — e, —m, andm, — 0, we get
into the check operation (11). We know that withas in (13), Elen(1 — en)] — 0.

the check operation is just multiplication of the signs. Ekn
to have D~ = oo, we should either hav®; = co, D; = oo Thus, e, ia either0 or 1 and considering the fact that., =
which occurs with probability? or D; = —c0, Dy = —oo 0, the proof follows. [ |



We now aim to compute the value 6f(W, Q) = Pr(D = - +1
(1,0,0)), i.e., the ratio of the noiseless indices. The value

of Pr(Ds = (1,0,0)) is dependent on the starting channel

R
D, that is given in (17) and is the highest rate that we can /" ?

achieve with the 1-Bit Decoder with Erasures. In this regard A
a convenient approach is to find a functign D — R such _1 1
that f((0,1,0)) =0 and f(0,0,1) = 1 and for anyD € D P
%(f(D*) + f(D7)) = f(D). Fig. 4. The equivalent channel for the densify given in (14).
With such a functionf, the procesg f(D.,,)}n>0 iS a martin-
gale and consequently we have(Px, = (1,0,0)) = f(Dy). Z(D) = 2./mp + e, (26)

Therefore, by computing the deterministic quanifyD,) we
obtain the value of? (W, Q). However, finding a closed form
for such a function seems to be a difficult taskistead, our

idea is to look for alternative functions, denotedgyD — R, that another example af is the functiong(D) = I(D), i.e.,

f#acrrt]inth;;)tzg q %fﬁfi&fzgnls e?assuepelj_emgglggjle e(rsag\;\}hﬁ capacity functional. We clearly havé(1,0,0)) = 1 and
g g 9 bp ﬁ ,1,0) = 0. It is also easy to see that since the funct{®n

bounds on the value of PP, = (1,0,0)) as follows. Assume s a not an iniective function. we have
we have a functiory : D — R such thatg((0,1,0)) = 0 and ) '

E(D)=1-p—e/2, (27)

wherehs(-) denotes the binary entropy function. We now show

1,0,0) =1 and f D e D, _
s an1 nEe —I(D+);I(D ) < 1(p).
5@(DT) +9(D7)) < g(D). (20)

We now find suitable candidates for the functidn We

postpone the proof of the following lemma to the appendices.
Lemma 5: Define the functiorh(D) ash(D) = p—4,/pm

P(D = (1,0,0)) < E[g(Dn)]. (21) for D € D. We haveh(D = (1,0,0)) = 1, k(D = (0,1,0)) =

The quantityE[¢(D,,)] decreases by and we have 0 and
PDx = (1.0,0) = lm Elg(D,).  (22)

Then, the proces$g(D,,)}n>0 is a super-martingale and for
n >0 we have
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In a similar way, on can search for a functién: D — R ical , h hat the f i )
which 1((0,1,0)) = 0 andh(1,0,0) = 1 and Numer2|ca experiments show that the unctiol9)?, (1 -
) Z(D))* are also good candidates fbr However, an explicit

—(h(D*) + h(D7)) > h(D). (23) proof of the fact that these functions satisfy the relati2@)(
2 _ ~ may be a difficult task.
Then {h(Dn)}n>o is a sub-martingale, the quantities Gjven a BMS channelV’, one can numerically compute

E[r(Dy)] are increasing wit, and C (W, Q) with arbitrary accuracy: Consider the two functions
Pr(De = (1,0,0)) = lim E[h(D,)]. (24) 9(D) = I(D) and h(D) = I(D)*. At time n € N, the
n—oo

processD,, given in (18) with staring density), given in
It remain to find some suitable candidates fprand h. It (17) has2” possible possible outputs of the form (14) with
can be easily checked that one exampledas the function equal probability. Hence, the valu&g(D,,)] andE[h(D,,)]
g(D) =1 —e. To come up with more interesting examplescan be explicitly computed in tim@(2"). Letn € N be such
we first consider an equivalent representation of a genefitatE[g(D,,)] —E[h(D,,)] < é. Since the value of (W, Q) is
density D that sometimes provides a good insight to choosgindwiched betwee[h(D,,)] andE[h(D,,)], thenE[h(D,,)]
candidates forg and h. A density D as in (14) can be provides a lower bound o@'(W, Q) which no further from it
equivalently represented as a simple BMS channel giventifan . The curves in Figure 1 have been plotted with these
Fig. 4. This equivalence stems from the fact that for suaibnsiderations. Also, for a chann8l' with capacity I(W)
a channel, conditioned on the event that the symbblhas and error probabilityZ(17), we have
been sent, the distribution of the output is precisBlyWith

a slight abuse of notation, we also denote the corresponding BOW) < 1—1I(W) (29)
BMS channel byD. In particular, it is an easy exercise to show - 2 '
that the capacity( D)), Bhattacharyya parametef (D)) and
the error probability £(D)) of the densityD are given as | nerefore,
p .
I(D)=(m+p)(1— ho(——)), 25 f C(D,Q) < C(W,Q), 30
(D) = (m+p)(1 = hal =) (25) oM, €D @) < COV.Q) (30)

3The function f clearly exists as one trivial candidate for it D) = . . . .
P(Dos = (1,0,0)), where Doo is the limiting rv. that the process @nd this leads to the universal lower bound obtained in

{Dn}n>0 With starting valueDy = D converges to. Figure 1.



3) Scaling behavior and error exponerih the last step, we VI. TRADE-OFF BETWEEN THE NUMBER OF BITS AND THE
need to show that for the rates bela¥V, Q) the block-error GAP TO CAPACITY

probability decays td for large block-lengths. In the previous section we have considered a particular fam-
Lemma 6:Let D € D. We have ily of decoders. We have seen that not only a small number of
Z(D™) < 2Z(D), (31) Mmessages suffice to achieve a considerable fraction of tgpac
2(D*) < 2(Z(D))% (32) but that by increasing the alphabet size this fraction duick
= : converges to capacity. Let us make this second observation
Hence, for transmission ratg < C(W, Q) and block-length Precise now and prove the second part of Theorem 1. Consider
N = 27, the probability of error of SCP, denoted by @ BMS channell/’ and assume that we need a¢n ?Igorithm
Lo _ _(5—N” log 3 SCDy, such that is capable of achieving rates ug td’) —d,
Feq(N, R) salisfiesP. o(N, B) = o(2 " ) for § < =52 gyheDr%d < 1 is a positive constant (fat > 3 the 1-bit decoder

Finally, we mention one major drawback of the 1-bit decod H i< alread 4 choi . h
with erasures and that is the fact the the speed of the pol t erasures IS aiready a good ¢ oice). We first note that our
timate goal is to find suitable parametévs and A so that

ization is further decreased compared to the original chlany

polarization process. As a result, by using the 1-bit decootg'e algorithms SC@ is capable_of achievi_ng a rate at least
with erasures, we need to construct longer codes that po\gj ), H d. We dbenote the maxm:jum achievable rate of the
codes with the original SC decoder. In Figure 5 we ha gorithm SCD, by C(W, Q). In order to compute(W, Q),

plotted the block-error probability of polar codes of diiat W& should precisely compute the ratio of the good indices
block-lengths with the 1-bit decoder with erasures. among th_e se{0,1,---, N —1} when_N grows large. Here,
we don't intend to compute the precise valueCdfiv, Q) but

to provide universal lower bound ati(W, Q) that are already
applicable for proving the theorem.

The proof consists of three steps. We first consider the
original SC decoder and choose an integgrlarge enough
R so that forn > ngy, at least a fractiod (W) — g of the sub-
4t ~u| A channels at levet have Bhattacharyya value less thar?”.

More precisely, we have fat > ny

logo(Pe) o5

Pr(Z, < e *") > I(W) — d (36)

] 2
i As a result, if we perform the original SC decoding, then

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ at leveln at least a fractionl (W) — ¢ of the sub-channels

T em e ow oW ew 0w W oe o g are very perfect. LeZ,, 4 denote thezset of indices of these
sub-channels. We now tune the parametefsand A for a
Fig. 5. Empirical value of the probability of error/t) in terms decoder SCB (with function @ given in (2)) in a way that
of rate (R) for the decoder with erasures. For top to bottom, thfhe algorithm SCR still decodes perfectly on the indices

curves correspond to block-leng®® with n = 14, 15,16, 17. The . . .
transmission takes place over the B8CQ{) which has capacity that belong to the sef, 4. Hence, in the first step, we fix

equal to+. For this channel, the decoder with erasures is capabile© N and assume we are using a polar code of lerjth
of achieving at most the rate46 with very large block-lengths (the We intend to find candidates fav/ and A in terms ofn so

value0.46 has been computed by the methods given in Section V-DZhat the messages that we get by the algorithm SQibth
such candidates folM and A, are suitably close the their
%ounterpart in the original SC decoder.

We conclude this section by providing a lower bound o
how fast the proces8g, ,, = Z(D,,) polarizes.

Lemma 7:Fora,b € (0,1), define the process A. First step: How to choosé/ and A
yob .= 78.,(1 - ZQ,n)b- (33) Cor_mder tha‘-th channel with its channel_tree rlmdel. That
is a binary tree witm + 1 levels0, 1, - - - , n with 2”77 nodes
We have at the j-th level. The nodes are categorized into two types:
E[Y,""] < (7, (34) variable nodes and check nodes. Also, depending on the value

of 4, all the nodes at each level are either variable of all are
check nodes. Also, recall that for each nodeTifi) with
Z(DY)*(1 - Z(D*))*+ Z(D7)*(1 — Z(D~))* label (j,k), we denote bym; the corresponding message
Cap = S 2Z(D)e(1 — Z(D))b * that is passes by the original SC decoder aing, denotes
(35) the corresponding messages of the $CHhlgorithm. The
Here, D denotes the space of all the random variables thatimary problem that we consider here is as follows: Cornside
have the form as in (14m a specific realization of independent uses of the chaiiiel
Remark:Note that the optimization problem in (35) can bat each of the leaves of the tree; By using the original SC
reformulated as &-dimensional optimization problem. Also,decoder, this realization results in a specific value at toe r
as an example fot = b = % we have(, ;, = 0.9045. node. Now, consider the same recursive computation process

where(, ; is the given by,




with the following extra operations of the value that comesy the original SC decoder at its root note is denotedhyy.
out of each computation: Using the result of Lemma 11 in the appendices we obtain

1) After .each of the computati_ons we also perturb the Pr(mno > 2n+1) > 1 —el™™. (41)
resulting value by at most a fixed valde _ _ N
2) If the absolute value of the output is larger than a fixddow. by using Lemma 9 and (41), at levelwith probability

value M, we replace the value byoo according to its at leastl —e'=" —16(n + 1)(2)*" > 1 — 16(n + 2)(2)*",

sign. at an indexi € Z, 4, the algorithm SCIg outputs the4oo
mgssage. This implies that a& Z,, 4 the distribution of the
messages that we get by the algorithm SCEBtochastically
dominates the following distribution

It is easy to see that the operations (1) and (2) are given
better analyze the algorithm SEDIn this regard, how should
we choose the values dff and A so that the final message
that is computed at the top of the tree, i#, o is not too D= { 0o W.p.1—16(n+2)(2)%", (42)
far from its counterpart in the original SC decoder, ire,, ¢? T - w.p. 16(n + 2)(%)2".

First assumel/ = co. As a result, the operation (2) is oty |et ¢, be the final ratio of the perfect sub-channels that
app[|ed anymore. Straight forvyard computation shows jhat tare branched from e T, It is now easy to see that; is
partial derivatives of the functions(x, y) andc(z, y), which 5 ver hounded by the ratio that we get by plugging the density
correspond to (4) and (5) respectively, given by D, given in (42), into the 1-bit decoder with erasures. In this

vz, y) =z +y (37) Way, by using Lemma 5 we obtain forc Z,, 4
o(z,y) == 2tanh_1(tanh(§) tanh(%)), (38) C; > p—4apm > 1—16(n+2)(§)2"—16\/n ¥ 2(%)? (43)
are always bounded above byHence, fora, b € R, we have We thus obtain from (36) and (43)
d 2 2
lv(z +a,z+b) —v(z,y)| < [al +[b], (39 CW,Q)= (I(W)—5)(1—16(n+2)(g)2n—16v"+2(;)”)-
le(x +a,z4+0) —c(z,y)| < |a| + [b]. (40) (44)

As aresult, it is easy to see that assuming that only operatie g Step: Putting things together
(1) is applied, the cumulative error that we get on the tofhef t
tree T'(i) is upper bounded byA2" ", Hence, the following b
lemma follows.

Lemma 8:Consider a quantized SC algorithm in which’

In the last step, we relate the valuésng, and the lower
ound (44) together. We first choose € N such that for
> n; we have

M = < (i.e., only operation (1) is applied). Also, consider the 16(n + 2)(2)271 n 16m<2)n < d (45)
i-th position among the information bits with its correspimd e e 2
binary treeT'(i). Then, for any realization of the channelOne can easily see that for small values &fa suitable
outputs we have|m;, — 1;x| < 27*1A for any label candidate fom, isny = _t= log(§) +o(log(})). However,
(j,k) € T(i). As a result, if we choos& < 2-("*+1) then to have an explicit candidate for; such that (45) holds for
| Mp.0 — Mno| <1 all values ofd, one can fix

Let us now assume that is finite, hence the operation (2)
is a non-trivial operation. Of course, depending on the ealu ny = 310g(a) +17. (46)

of M, the cumulative error varies in a large range. It SeeMBy let n — max(n1,n4). From (44) and (45) it is easy to
that in this case providing worse case bounds as in Lemm e :[hatC(W Q) > I7(W) — d. In other words, by choosing
is a difficult task. Consequently, we seek for bounds thatiho} ;5 "2 A"~ 9-(n+1) for the functionQ) iqiven in (2)
with high probability. We postpone the proof of the followgin '
lemma to the appendices.

Lemma 9:Let M = 2n and A = 2-(*D_ Then with

the algorithm SCI is capable of achieving rates that satisfy
C(W,Q) > I(W) — d. Also, note that we have

probability at leastl — 16(n + 1)(2)?", the following holds: 10| =1+ 2M — 1+ n2nt2,
If TATLmO 75 oo then |mn,0 — ’I”;’Ln,o | <1. A
As a result,
B. Second Step: What happens to the almost perfect channels log Q| ~n+logn +2. (47)

Let us now fixn > ng and consider the algorithm SED Finally, what remains to be done is to relatg to d.
with parameterd/ and A as given in Lemma 9. In this step, Lemma 10:In order to have (36) fofrn > ng, it is enough
we provide a lower bound on the value @fW, Q) which is to let 1 1
equal to the final ratio of the good indices. In order to do,this ng = 7log(=) + 1og(1og(_))2 1 48. (48)
we provide a lower bound only on the final ratio of the good ) d ) d
indices that are branched out from the indices in theZset With such a choice ofy andn, as n (48) and (46), we have
First, we consider the original SC d((a_():oder. By definition wa = 71 andn = ng. Thus, we obtain from (47)
have for each index € Z,, 4 that Z(W,’) < e~2". Consider 1 1
the tree-channél'(:) and recall th:E\t t]r\{e)message that we get log [ Q] = ﬂog(ﬁ) * O(IOg(IOg(E)))'



We have shown that polar codes are very robust with respect
to quantization at the decoder — even very simple decoders— 2,/p (—

VII. CONCLUSION AND OPEN PROBLEMS

—rr
Vpm

+/(p + 2¢)(m + 2¢) + /2(p% + m2)).

with only a few messages achieve a high fraction of the

capacity. This is good news if we are interested in a lowthus, in order to show (28), it is necessary that the righe sid

complexity implementation.
Not all news is good. Numerical calculations indicate th&ightly stronger inequality: Fop + e + m = 1 we have

the speed of the polarization is in general further decbase
by quantization. This means that we need to construct evern 5

longer codes.

A precise characterization of this trade-off, namely th
trade-off between the polarization speed and the quaidizat

would be of considerable practical value.
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APPENDIX

A. Proof of Lemma 5

The fact thath(D

= (1,0,0)) =1, h(D = (0,1,0)) = 0 is

B. Proof of Lemma 6

Note that forD € D, the minus operation given in (16) is
exactly the same as the original minus operation without any
further quantization step, i.e)™ = D @ D. We know from
[1] that for any BMS channel we hav@(W m W) < 2Z(W)
and henceZ(D~) < 2Z(D). To show (32), assuming) =
mA_ o + eAg + pAs . We have from (15),

Z(DT) = 2y/(p? + 2pe)(m? + 2me) + € + 2pm
= 2ypmy/(p + 2¢)(m + 2¢) + € + 2pm
= 2./pmy/(pm + 4€® + 2e(m + p) + €2 + 2pm

W 2P/ (pm + 2e(1 + €)) + €% + 2pm

(%) 2y/pm(y/pm + \/2e(1 +e)) + e + 2pm
= (2ypm+e)® +2y/pm(y/2e(1+¢€) —e)
= Z(D)? +2/pm(\/2e(1 +¢€) —e),

where step (a) follows from the fact that + ¢ + p = 1 and

step (b) follows from the inequality/_a+b \fa +\/_b
Following the above lines, to get (32), it is enough to show

very easy to check and thus it remains to prove (28). Usingat
(15) and (16) we obtain

h(D)
h(D™)

= p? + 2pe — 44/ (p? + 2pe) (m?2 + 2pm),

=p> +m? — 4/ 2pm(p? + m?2).

After some straight forward simplifications, we get
h(D*) + h(D™)

2

2/pm(v/2e(1+¢) —e) < 2Z(D)% — Z(D)?
D)(2y/(2(D)) - Z(D)).

Now, by noting thatZ(D) > 2,/pm, we only need to show
the following,

Vae(l+e) — e < 2/(2(D)) -

Z(D)



=24/2\/pm + e —2,/pm — e.

Rearranging the terms, we should prove

V2e(l+e)+2y/pm < 24/2/pm +e,
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and denote the set of such paths By For a pathP € P,

we define the setS(P) as the set of node$j, k) such
that (4, k) is a variable node and is adjacent to one of the
nodes (j1,k1), -, (Ji—1,ki—1). An example of a pathP,
consider the tree-channel in Figure 3 and fetbe the path

which by dividing both sides bg and then squaring both sidesbetween labelg0,4), (1,2),(2,1),(3,0). For this path we

gives
e(l+e)

5 + pm ++/2pme(l +€) < 2,/pm + e.

Now, sincee < 1, we have@ < 2 and after further
simplifications we finally get to the following relation toqwe.

VI +v/2e(1 +e) <2,

which by noting that,/pm < L™ =
following inequality
1—e
2

2

++v/2e(1+e) <2

It is straight forward to show that the above inequality Isol

for e € [0, 1].

haveS(P) = {(2,0),(1,3)}.
It is an easy exercise to show that the the number of down-
wards paths in a binary tree of heightis equal to

|P| =(n—1)2" 42 (56)

Now, recall that the messages; ;, correspond to the original
SC decoder and the messages;, correspond to the algorithm
SCDy (with M = 2n and A = 2~(™*1)). We know that by

1-¢, reduces to the the all-zero codeword assumption, the messagges have a

symmetric density, i.e., for any real numbee R we have

C. A lower bound on the tail probability for symmetric den-

sities

Lemma 11:Let W be a BMS channels and let the r&.

represent the log-likelihood value of its output, i.8(Y) =

1og(gg } ?g), whereY ~ W (y|0). We have fory > 0

PUL <) < (1+ 3e})Z(W). (51)
Proof: We have

Pr(L <y)=PrL <0)+Pr0<L<y). (52)

Let /(x) denote the pdf of the r.L. We first note that
Z(W) :/ e 2dl(x) (53)

As a result,

Pr(L <0) < Z(W). (54)
Also, since W is symmetric, we have forx > 0:

I(—z) = e ”I(z) and hence from (53) we have&, (W) >
2 [,; e~ 2dl(z). Consequently, we obtain

Y

PrO < L <y)<e? / e 2di(x) < %e%Z(W). (55)
0+
The proof now follows from (52), (54) and (55). [ |

D. Proof of Lemma 9

Throughout the proof we will frequently use the following

definition.

Definition 12: Consider a path P =
(jlakl)a(ankQ)a"' 7(jlakl) in the graph T(Z),
we assume that > 2 and0 < j; < ji_1 < - < 71 < n.

where

Prim;, = x) = e “Pr(m; , = —x). (57)
s a result, we have for any labgl, k)
Ele™™i*] = 1. (58)
Hence, by the Markov inequality we get for> 0
Pr(my < —a) < e*. (59)
Define the evenfy; as
Ey ={¥(j,k) : mjr > —2n+1}. (60)

Using (59) and applying the union bound we obtain
Pr(Ey) > 1 —2nTlel=2n, (61)
Also, define the evenk, as

Ey:={VPeP: Z
(4:k)ES(P)

mjr > (n+3)In2—2n}. (62)

We now claim that

Pr(Ey) > 1 — n22"tie2n, (63)

To show (63) note that for each specific pdthe P s.t. S(P)

is non-empty, the random variablés:; 1. | (j, k) € S(P)} are
independent (This is due to the fact that we feed independent
observations of the chann@l into the leaf nodes of the tree
T'(4)). Hence, by using (58) we get

PY( Z mj, < (n+3)In2—2n)
(4.k)ES(P)
= Pre” Zamesm) Mk > g2ng=(n+3))
E[efz(j,k)esw) mj,k]
e2n9—(n+3)
e~ Mik]

o H(j,k)ES(P) E[
- e2n9—(n+3)
_ 2n+3672n

(64)

The claim (63) now follows by applying the union bound to

In other words,P is a path of length — 1 that starts from all pathsP € P and by using (56) and (64). Finally, we claim

the node(ji1, k1) and continues upwards throudh(:) by
passing through(jy, k2), (js, ks), - --

its endpoint(j;, k;). We call such a path anpwards path

that conditioned on the eveit = F; N Fs, the following hold

and finally reaches for each labelj, k):

1) If i, = oo, thenm;, > (n+3)In2.
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2) if 7 g # oo, then |y —mjx| < (2771 — 1), E. Proof of Lemma 10

3) r ke # —oo. Let {B,}.cn be a sequence of iid Bernoul%il random
Firstly, note that the proof of Lemma 9 follows from the claimvariables. Denote byF, Q, P) the probability space generated
1-3 by inserting(j, k) = (n,0) and noting that by this sequence and IeF,,, 2,,, P,,) be the probability space

generated by By, -, B,). Also, denote byd,, the natural

Pr(Ey N E2) > Pr(Ey) + Pr(Ey) — 1 embedding ofF,, into F, i.e., for everyF € F,

(61),(63)
S 1 —ontlgl=2n _ po2n+d —2n on(F):{(bhb% ,bn,bn+1,"')€Q|(b17"' ,bn)EF}.
2
>1—16(n+ 1)(=)*. We haveP,,(F') = P(6,,(F)). We now couple the procesg,,

e

Hence, it remains to show that conditioned on the event N _

F) N Es, the claims 1-3 hold. We show this by induction. We W, — { Wiy sif By =1, (65)
first show that the claims 1-3 hold for all the messages;, W,_y if B, =0.

i.e., the messages that correspond to the leaf nod@¥©df ag a result,z, = Z(W,,) is coupled with the sequendes; }.
Claim 1 follows the fact thaf\/ = 2n, claim 2 follows from By using the bounds given in [12, Chapter 4] we have the

the definition of the functior@ given in (2) and claim 3 is fg|lowing relationship between the Bhattacharyya paramset
due to the definition off;. Lett € {1,2,---,n}. We now of 7+ W~ andW:

assume that the claims 1-3 hold for all the messaggs

where;j < t — 1 and we show that these claims also hold for Z(W™) = Z(W)?,

all the messages:, . We first prove claim 2. Consider a label  7z(w),/2 — Z(W)2 < Z(W~) < 2Z(W) — Z(W)?.

(t, k). If s, # oo, then eithemin,_q 21,7 —1,2x 7 00 OF

one of the messageﬁt_l72k_l or mt—l,Qk is equa| tooo and As -a. .result, for a BMS Channé/V, the proceSSZn = Z(Wn)
the other is finite and the node k) is a check node (note thatsatisfies ([4, Lemma 3.16])

with the sequencé¢B,;}:

by the induction hypothesis we have;_1 op—1, 71,2k # =7, 2 if B, =1,
—00). In the former case, by the induction hypothesis anﬂnﬂ{ 5 o
claim 2 we have € Zpn-r\/2—Zn1°,2Z,, — Z,n—17] ;if B, =0.
(66)
|0 12k1 — Mi—1261 | < (207D —1)8, Lemma 13:Consider the process, with the starting value
|12k — M1 | < (207D = 1)5, Z(_) - _
(i) Fora,be (0,1), define((a,b) as

and by using (39) and (40) we get claim 2 for the message A
me k. In the latter case, assume w.l.o.g. that 1 2,1 = oo ((a,b) =
and ;1 91, # oo. In this way, by using claim 1 and 2 we sup 2 (1 — 22)% +y2(1 — y)°
get {w€(0,1),y€lzv2—a 2(2—2)]} 2z¢(1 — )’

mi—1,2k—1 > (n+3)In2, We have

1,2k —me—12| < (271 = 1)0. BE[Z8(1 — Z,)") < 28(1 — 20)%C(a,b)".  (67)
Since the nodét, k) is a check node we have, ;. = 11 2. Furthermore, for = 0.82 andb = 0.60 we have(, ;, <
Hence, we can write 0.89.
|k — M| (i) We have

’ = oy B L
= |10k — 2tanh71(tanh(%)tanh(w»| Pr(Z, <272771 ) > 1 - 62(1 +log().  (68)
= |12k — 2tanh71[tanh(W) (i) We have
_ _ _ n—3" | B; 1
+ (tanh(=L2h=t L) 1) tanh( =2k 2] | Prz2 > 1-272" 7= > 1-6(1-23)(1+log(;——).

(@) My 1 on (Gé))
< 1ok —me—1 ok | +2(1— tanh(%%l)) -

i 1 — ¢~ (n+3)In2 Before proving Lemma 13, let us show how the proof of
@7 -1Di+2(1- 1+ e (n+3) 2 Lemma 10 follows from it. Consider the first part of Lemma 13
< 2(2t—1 1) = (2n—t—1 —1)4. with ¢ = 0.82 andb = 0.6 and Letnl € N be such that
N d

a b
Here, the relation (a) follows from the fact that fory € R ElZ;, (1 - Zn,)"] < 2% (70)
we havetanh(:z:_—i—_y) The proof of claim 3 can bg gasHyBy using part (i) of Lemma 13, if we let
followed by a similar argument and hence we omit it here. .
Finally we prove claim 1. Consider a node k) and assume  log(+3) 1
that iy, — oc. ny = oz Cos < 610g(3) + 22, (71)
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then the relation (70) holds universally for any chaniél Note that in terms of the proces$,, the statement of the
We now search for an integer, such that for the following lemma can be phrased as

two events ” 1
P(A, > p22i=Bi) > 1 —

na 2‘10_ﬂ ’
Fi = B; <log(3niloge)}, .
' {; < log(3n1 loge)} Associate to eacliby,--- ,b,) £ w, € Q, a sequence of
na runs” (ri,--- ,TRw,))- This sequence is constructed by the
Ey = {Z B; > ny —log(3n; loge)}, following procedure. We define as the smallest indexe N
i=1 so thatb; 1 # b1. In general, ile’;;ll r; < n then
we have J k—1 k—1
Pr(E1UE2) < Z (72) Tk:min{i| ZTJ' <1< n,biy ¢b2?;1lrj}_zrj'
Jj=1 j=1

First, note that the two events; and F» are equi-probable The process stops whenever the sum of the runs equals

and hence by using th_e union b?“”d we geRM E£2) < penote the stopping time of the processw,,). In words,
2Pr(Ey). Thus, we desire a candidate fos such that

the sequencé, - - - ,b,) starts withb, . It then repeat$;,
d times. Next followr, instances ob,, followed again byr;
Pr(Ey) < 8" (73) instances ob;, and so on. We see that and(r1, - - - , 7x(,))
Now, sinceB;’s are i.i.d. random variables with distributionfu"y describewn = (b, -+ ,bn). Therefore, there is a one-
1 to-one map
Bernoulli(), (73) becomes
ZLEJOg(Bnl loge) | (nz) d (blv T vbn) A {blv (Tlv T ’Tk(wn))}' (80)
= ons = < 3’ Note that we can either havg = 1 or b; = 0. We start with
o L . the first case, i.e., we first assu = 1. We have:
and after a further simplification step, it is sufficient torba N i
([log(3n1loge)] +1) (Llog(&?flog e)J) d Z bi = Z "3
IE < 3 (74) i=1 j odd < k(wn)
By looking more closely at (74) and (70), one can easi§nd k(won)
deduce thab, = log(3)+o(log(3)) is sufficient to fulfill (74). " — Z .
However, one precise candidate to fulfill (74) for all valwés o 7
d<1lis -
2 Analogously, for a realizationby,by,---) 2 w € Q of
Ny = 10g(1) + (1Og(10g(1)))2 + 26. (75) the infinite sequence of random variab};};cy, we can
d d associate a sequence of rufis,rs,---). In this regard,
We now let considering the infinite sequence of random variabBs};cn

1 1 (with the extra conditiorB; = 1), the corresponding sequence
ng =mni+ng = 710g(5) + (10g(1og(3)))2 +48,  (76)  of runs, which we denote byR;, }xcr, is an iid sequence with
P(R; = j) = 4. Let us now see how we can express the
A, in terms of thery, 72, - -+, 74(,,,). We begin by a simple
example: Consider the sequen@e = 1,bs,--- ,bg) and the
Sassociated run sequenge,--- ,r5) = (1,2,1,3,1). We have

and we show that for such a choice of, we have the
statement of Lemma 10.

Proof of Lemma 13For part (ii), Consider two processe
Z' given by Zg§ = Z(W),

u o (Z::fl)2 alf Bn - 17
Zn = { 27 i By =0, (77)

A1 = a02”,
Ag = a02” — To,

. . . . Ay = (ag2™ —12)2" = 2" 7 — 127,
Clearly, Z,, is stochastically dominated b¥“. The following

— r T3 _ 714173 s
lemma partially analyzes the behavior Bf:. Az = (a02™ —12)2" — 14 = ag2" 7T — 132" — 1y,
Lemma 14:For the procesg” (defined in (77)) starting at ~ As = ((ag x 2" —r2) x 2™ —ry) x 2™

Z¥ =2y € (0,1) we have: = @2 T3 py2Ts s g 27
n_ Bj — oritra+r _o—T _ o—(ri+r3)
P(Zﬁ < 2—6221713 ) >1— 21+B\/Z—g. (78) 2MTTs 5(a0 27"y 2 s 7‘4).
In general, for a sequencg,, - - - , b,,) with the associated run

Proof: We analyze the processt,, = —log(ZY) , i.e., o
A n Sequencery, - -, Ti(w,)) We can write:
AO = — IOg(ZO) = ag and "
4 {240 it B, =1, 79 Ay = 2% o< kwn) T - 7 r2Xiciu”s
n+1 — A, —1 7|f B,, = 0. ieven< k(wy,)
— a02zi odd < k(wp) T _Z TZ.Q(* Zj odd < @ i+, odd < k(wn) ;)

4In this paper, all the logarithms are in base 2. i even< k(wy,)
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= [2%i owa< kCom) "] ag — ( Z 17427 X ow< i )] on the quantity E[22:een< m 2" o< Y1 Let X =
i even< k(wy) Zz even< m R;2™ 2jeai<i i We have
= [22?:1 Bi][ao —( Z TZ.Q—ZJ' odd < i 7)), IE[QX]
i even< k(wn,) 00
Our aim is to lower-bound =Y P(Ry = DE[2¥ | Ry =]
Zn B, =1
P(An > 52 i=1 1) 0 1
a X _
:]P’n(ao— Z T‘Z—2_Zj0dd<irj Zﬂ% _Z?Ep |R2_ ]
i even< k(wy) l;l
. 1 Ry X
or, equivalently, to upper-bound => ZEL o |E[227]
1=
P, ( Z 72 Xioa<i’i > qg — B). (81) Ool ) ;
i even< k(wy) = Z ﬁEp?l]
ol T
Forn € N, define the set/,, € F,, as = 2127
b 1 XL
U, = {wn e, | dl < k(wn) : Z Ti27zj odd< i "3 > ao—ﬂ}, < Z lT(EB ])21 ,
i even< | = 2H27 )

Clearly we have:

P Z ri9= SyeticiTs > a0 — B) < Po(Us). where (a) follows from the fact thak;s are iid andX is self-

similar and (b) follows from Jensen inequality. As a resualh,

s evens kfwn) upper bound on the quantif{2X] can be derived as follows.
In the following we show that i{by, -- - , b,) € Uy, then for Ve have
any choice Oﬂ)n+ll (bla e 7bn7 bn+1) S Un+1- We will Only E[2X] < 11 (E[2X])% + 31 (E[QX])i T 71 (E[2X])§
consider the case whén, b,,..1 = 1, the other three cases can 2(27 — 1) 421 — 1) 425 — 1)

be verified similarly. Letv,, = (b1, ,bp—1,bp, = 1) € U,,. The equation — 1 1 1 1 1 ! has
Hence,k(w,) is an odd number (recall that = 1) and the quationy = -3 ¥ Tt 423 -1 + 125 -?
quantity 3. en< ko) T2 2joa<i™ does not depend ononly one real valued solutiop” < 2.87. As a result we have

Tk(wn)- NOW consider the sequencg, 1 = (b1, -+ b, = E[2X] < y* < 2.87. Thus by (82) we obtain

1,1). Since the last bit#, 1) equalsl, thenrye, ) = B R 2.87
Th(w,) @nd the value of the sum remains unchanged. As a P(ao — Z Ri2~ i< < ) < 2a0—B
result (by,- -+ , by, 1) € U,.1. From above, we conclude that ievens m
0;(U;) € 0;11(Uiy1) and as a result Thus, given thatB; = 1, we have:

Pi(Ui) = P(0: (Vi) < P(0i11(Uis1)) = Piga(Uiga). P(A, > 3250 By > 1 - 257

ag—p"
Hence, the  quantity lim,_ o Pn(Uy) — 2a0

limy, oo P(0,(Un)) = lim, o P(UR,0;(U;)) is an upper Or more precisely we have
bound on (81). On the other hand, consider the set

V={weQ|3: Y  r2 Ziw<i’ >q5—f}.
i even< 1 Now consider the casB; = 0. We show that a similar bound
o B applies for A,,. Firstly note that, fixing the value af, the
By the definition ofV’ we havelj2,0;(U;) C V, and as a distribution of R, is as follows:P(R;) = 4 for1 <i < n—1
result, P(U°,0,(U;)) < P(V). In order to bound the proba- andP(R; = n) = 2%1 We have
bility of the setV, note that assuming, = 1, the sequence .
{Ry}ren (i-e., the sequence of runs when associated with tReA» > 52%'=' 7 | B1 = 0)

2.87
2a0—f"

P(A, > g22=15 | B =1)>1—

sequence B; }icn) is an iid sequence WitlP(R; = j) = 57. & s g, o . _
We also have a ;P(An 2 P R =4, By = OF(Ry =] B =0)
Plag— Y. Ri2"Ziow<ifi <p) 82) = > P(A>p25= P | R =i, B = 0)P(R1 =i| B =0)
ieven< m i<ag—B,i<n
_ ) R n
=P( > R2 Ziew<if>q5— ) + > P(Ri=i|Bi=0)
ieven< m i>ag—fF,i<n
) 90— Tjodd< i Rj _ 1 2.87 2
=P 221 even< m Ri2 7 > 2(10 B —
( - ) < Z 2t Qap—B—i + 2a0—8
E[Zzz even< m R;2™ Zj odd < i Rj] i<ag—pB,i<n
< : 2.87(ao — B+ 1)
2008 T T
where the last step follows from the Markov inequal- 3

ity. The idea is now to provide an upper bound™ 522"



Hence, considering the two cases together, we have:

P(A, > p22i=1Bi) > 1 — —

2732
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