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Abstract

In this thesis, we investigate methods for the practical and accurate localization
of Internet performance problems. The methods we propose belong to the field
of network loss tomography, that is, they infer the loss characteristics of links
from end-to-end measurements. The existing versions of the problem of network
loss tomography are ill-posed, hence, tomographic algorithms that attempt to
solve them resort to making various assumptions, and as these assumptions do
not usually hold in practice, the information provided by the algorithms might
be inaccurate. We argue, therefore, for tomographic algorithms that work under
weak, realistic assumptions.

We first propose an algorithm that infers the loss rates of network links from
end-to-end measurements. Inspired by previous work, we design an algorithm
that gains initial information about the network by computing the variances of
links’ loss rates and by using these variances as an indication of the congestion
level of links, i.e., the more congested the link, the higher the variance of its loss
rate. Its novelty lies in the way it uses this information—to identify and char-
acterize the maximum set of links whose loss rates can be accurately inferred
from end-to-end measurements. We show that our algorithm performs signifi-
cantly better than the existing alternatives, and that this advantage increases
with the number of congested links in the network. Furthermore, we validate its
performance by using an “Internet tomographer” that runs on a real testbed.

Second, we show that it is feasible to perform network loss tomography in
the presence of “link correlations,” i.e., when the losses that occur on one link
might depend on the losses that occur on other links in the network. More pre-
cisely, we formally derive the necessary and sufficient condition under which the
probability that each set of links is congested is statistically identifiable from
end-to-end measurements even in the presence of link correlations. In doing
so, we challenge one of the popular assumptions in network loss tomography,
specifically, the assumption that all links are independent. The model we pro-
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pose assumes we know which links are most likely to be correlated, but it does
not assume any knowledge about the nature or the degree of their correlations.
In practice, we consider that all links in the same local area network or the same
administrative domain are potentially correlated, because they could be sharing
physical links, network equipment, or even management processes.

Finally, we design a practical algorithm that solves “Congestion Probability
Inference” even in the presence of link correlations, i.e., it infers the probability
that each set of links is congested even when the losses that occur on one link
might depend on the losses that occur on other links in the network. We model
Congestion Probability Inference as a system of linear equations where each
equation corresponds to a set of paths. Because it is infeasible to consider an
equation for each set of paths in the network, our algorithm finds the maximum
number of linearly independent equations by selecting particular sets of paths
based on our theoretical results. On the one hand, the information provided by
our algorithm is less than that provided by the existing alternatives that infer
either the loss rates or the congestion statuses of links, i.e., we only learn how
often each set of links is congested, as opposed to how many packets were lost
at each link, or to which particular links were congested when. On the other
hand, this information is more useful in practice because our algorithm works
under assumptions weaker than those required by the existing alternatives, and
we experimentally show that it is accurate under challenging network conditions
such as non-stationary network dynamics and sparse topologies.

Keywords:

Network Loss Tomography, Network Measurements, Network Monitoring,
Link-loss Inference, Congestion Probability, Correlated Links



Zusammenfassung

In der vorliegenden Doktorarbeit untersuchen wir Methoden für die praxisnahe
und genaue Feststellung von Leistungsproblemen in Internetverbindungen. Die
vorgeschlagenen Methoden gehören dem Feld der Netzwerkverlusttomographie
an, das heisst sie berechnen Verlusteigenschaften von Links mit Hilfe von Mes-
sungen zwischen Endpunkten. Die existierenden Versionen von Netzwerkver-
lusttomographie sind generell unterbestimmt, daher machen die tomographis-
chen Algorithmen zu ihrer Lösung verschiedene Annahmen. Weil diese An-
nahmen in der Praxis aber nicht immer erfüllt werden, sind die Informationen
welche die Algorithmen berechnen teilweise ungenau. Demzufolge plädieren wir
für tomographische Algorithmen die mit schwachen, realistischen Annahmen
funktionieren.

Zuerst stellen wir einen neuen Algorithmus zur Berechnung von Link-Verlusten
vor, das heisst einen Algorithmus der Verlustraten von Netzwerklinks auf Grund
von Messungen zwischen Endpunkten berechnet. Inspiriert von existierenden
Arbeiten entwickeln wir einen Algorithmus welcher die Anfangsinformationen
über das Netzwerk durch das Berechnen von Varianzen von Link-Verlustraten
gewinnt: je mehr ein Link überlastet ist, desto höher ist die Varianz seiner
Verlustrate. Seine Neuheit liegt in der Art wie diese Informationen verwen-
det werden - zum Identifizieren und Beschreiben der grössten Menge von Links
deren Verlustraten mit Endpunkt-Messungen genau berechnet werden können.
Wir zeigen dass unser Algorithmus signifikant höhere Leistungen erbringt als
existierende Alternativen, und dass diese Vorteile mit einer steigenden Anzahl
von überlasteten Links im Netzwerk zunehmen. Ausserdem überprüfen wir seine
Leistung mit einem “Internet-Tomographen” in einer echten Testumgebung.

Zweitens zeigen wir dass Netzwerkverlusttomographie in der Anwesenheit
von “Link-Korrelation” angewendet werden kann, das heiss wenn die Verlus-
trate welche in einem Link auftritt von den Verlustraten von anderen Links im
Netzwerk abhängen kann. Wir beweisen dass unter bestimmten wohldefinierten
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Bedingungen die Wahrscheinlichkeit, dass jede Menge von Links überlastet ist
auf Grund von Endpunkt-Messungen statistisch berechnet werden kann, auch in
der Gegenwart von korrelierten Links. Dadurch lösen wir uns von einer verbre-
iteten Annahme in der Netzwerkverlusttomographie, nämlich von der Annahme
dass alle Links im Netzwerk unabhängig sind. Unser Modell nimmt an, dass
wir wissen, welche Links wahrscheinlich korreliert sind, aber es verlangt keine
Annahme über die Art oder den Grad der Korrelation. In der Praxis behandeln
wir alle Links in einem lokalen Netzwerk oder im selben Administrationsbereich
als möglicherweise korreliert, denn diese Links können physische Verbindungen,
Netzwerkanlagen oder auch Verwaltungsprozesse gemeinsam haben.

Schlussendlich entwickeln wir einen praktikablen Algorithmus zur Berech-
nung der Überlastungswahrscheinlichkeit welcher die Link-Korrelation berück-
sichtigt, das heisst er berechnet die Wahrscheinlichkeit dass jede Menge von
Links überlastet ist auch wenn die auftretenden Verluste auf einem Link von
den Verlusten auf anderen Links im Netzwerk abhängen. Wir modellieren die
Berechnung der Überlastungswahrscheinlichkeit als ein System von linearen Gle-
ichungen, so dass jede Gleichung einer Menge von Pfaden entspricht. Weil es
nicht praktikabel ist, eine Gleichung für jede Menge von Pfaden im Netzw-
erk zu berücksichtigen findet unser Algorithmus die grösste Anzahl von linear
unabhängigen Gleichungen durch das Auswählen von bestimmten Mengen von
Pfaden, basierend auf unseren theoretischen Resultaten. Auf der einen Seite
liefert die Berechnung der Überlastungswahrscheinlichkeit weniger Informatio-
nen als herkömmliche Alternativen, welche entweder Verlustraten oder Überlas-
tungszustände von Links berechnen, das heisst wir erfahren nur, wie oft eine
Menge von Links überlastet ist, aber nicht wie viele Pakete auf einem Link
verloren gingen, oder welche Links wann überlastet waren. Auf der anderen
Seite ist diese Information in der Praxis nützlicher weil unser Algorithmus unter
schwächeren und anspruchsvolleren Annahmen funktioniert als existierende Al-
ternativen, und wir zeigen experimentell dass er bei anspruchsvollen Netzw-
erkbedingungen wie nicht-stationären Netzwerken und dünnbesetzten Topolo-
gien akkurat ist.

Stichwörter:

Netzwerkverlusttomographie, Netzwerkmessung, Netzwerküberwachung, Link-
Verlustberechnung, Überlastungswahrscheinlichkeit, Korrelierte Links
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Chapter 1

Introduction

1.1 Motivation

The practical and accurate localization of Internet performance problems is one
of the main challenges that network administrators face today. The Internet is a
worldwide system of interconnected computer networks that rapidly evolves in
an open, unregulated environment. "When something breaks in the Internet, it
is hard to figure out what went wrong and even harder to assign responsibility." 1

The difficulty arises from the lack of a central authority in both technological
implementation and in establishing policies for access and usage; it is also due to
the heterogeneous nature of the Internet. Solving this problem is, nevertheless,
crucial in order to guarantee quality of service, verify Service Level Agreements
(SLAs), improve network management, enable dynamic routing, and to filter out
anomalous or malicious traffic. For example, if the network links that experience
excessive loss or delay are known, then real-time applications such as Voice over
IP (VoIP) and Video on Demand (VoD) could bypass these links and provide
improved user-level performance, or Internet Service Providers (ISPs) would be
able to verify if a SLA has been violated and ask for compensation.

In order to localize Internet performance problems, we would ideally need
timely and accurate information about the behavior of each network equipment.
Suppose that it were possible to collect statistics at each network link. These
statistics would include dropped packets rates, delays, connectivity, and avail-
able bandwidth. Based on these statistics, we could identify problematic links
and pinpoint their particular problems, e.g., an overloaded link that drops pack-

1from "Looking Over the Fence at Networks: A Neighbor’s View of Networking Research",
by Committees on Research Horizons in Networking, National Research Council, 2001.
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2 CHAPTER 1. INTRODUCTION

ets. Unfortunately, this method does not scale to large networks: The collection
of such statistics on the Internet imposes a high overhead in terms of traffic delay,
computation, communication, and hardware requirements [CCL+04]. Moreover,
ISPs regard such statistics as highly confidential and are not willing to make
them available to their peers or customers.

Network tomography, however, is an alternative method that provides link
statistics without the cooperation of ISPs and with little or no effect on the
network load. In essence, network tomography estimates links’ characteristics
from end-to-end measurements. Specifically, if we can measure the performance
of network paths and we know which links are traversed by each path, then we
can use network tomography to infer the characteristics of links traversed by
the measured paths.

In this thesis, we focus on network loss tomography, where the goal is to infer
links’ loss characteristics from end-to-end measurements. Current tomographic
algorithms attempt to infer either the loss rates of links (i.e., the percentage
of packets dropped at each link), or the congestion statuses of links (i.e., infer
whether each link is good or congested, where a link is considered congested if it
drops more than a certain percentage of the packets it receives). Unfortunately,
neither the loss rates, nor the congestion statuses of links are identifiable from
end-to-end measurements. Therefore, tomographic algorithms that attempt to
infer these quantities must resort to making various assumptions. We discuss
and compare these algorithms and their assumptions in Sections 2.4 and 2.5.

Even though network loss tomography is a promising method for determining
the loss characteristics of links, in practice, hardly any tomographic algorithm is
ever used. The reason for this discrepancy is that state-of-the-art tomographic
algorithms cannot assess the accuracy of the information they provide: For
most of the assumptions made by these algorithms, there is no way to verify
if they hold in a particular network. When the assumptions on which these
algorithms rely are not fulfilled, the estimates of the loss characteristics of links
may be inaccurate, moreover, there is no way of knowing to what extent they
are inaccurate.

In this thesis, we argue for tomographic algorithms that rely on weaker as-
sumptions, verifiable in practice. We believe this is the fundamental property
that would make network tomography practical. By providing concrete exam-
ples that work in practical scenarios, we show that such algorithms are not
confined to the "Island of Utopia."
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1.2 Outline

In this thesis, we investigate whether the problem of network loss tomography
can be accurately solved under more realistic assumptions than those required
by state-of-the-art tomographic algorithms.

First, we formally describe the problem of network loss tomography in Chap-
ter 2. We distinguish two versions of the problem of network loss tomography in
the literature: continuous loss tomography, whose goal is to infer the loss rates
of links (Section 2.2), and Boolean loss tomography, whose goal is to determine
whether each link is good or congested (Section 2.2). We review state-of-the-art
algorithms that address these problems in Section 2.4, and we compare them
with respect to their assumptions in Table 2.1.

In Chapter 3, we focus on the continuous loss tomography problem, and
propose a new link-loss inference algorithm: Netscope. Our algorithm com-
bines first- and second-order moments of end-to-end measurements in a way
that significantly outperforms the existing alternatives. We validate Netscope’s
performance using an “Internet tomographer” that runs on a real testbed, i.e.,
PlanetLab [Pla].

In Chapter 4, we show that it is feasible to perform network loss tomography
in the presence of "link correlations," i.e., when the losses that occur on one link
depend on the losses that occur on other links in the network. More precisely, in
the presence of link correlations, we formally derive the necessary and sufficient
condition under which the probability that each set of links is congested is
statistically identifiable from end-to-end measurements.

Finally, in Chapter 5, we design a practical algorithm that solves “Conges-
tion Probability Inference” in the presence of link correlations, i.e., our algorithm
infers with which probability each set of links is congested under the link corre-
lation model proposed in Chapter 4. On the one hand, the information provided
by our algorithm is less than that provided by the existing alternatives that infer
either the loss rates or the congestion statuses of links, i.e., we only learn how
often each set of links is congested, as opposed to how many packets were lost
at each link, or to which particular links were congested when. On the other
hand, this information is more useful in practice, because our algorithm works
under assumptions weaker than those required by the existing alternatives, and
we experimentally show that it is accurate under challenging network conditions
such as non-stationary network dynamics and sparse topologies.
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1.3 Contributions

In this thesis, we make the following contributions:

1. We propose Netscope, a new tomographic algorithm that infers the network
links’ loss rates from end-to-end measurements (Chapter 3). Netscope uses
a novel combination of first- and second-order moments of end-to-end mea-
surements to identify and characterize the maximum set of links whose loss
rates can be accurately inferred by network tomography. Netscope is robust
in the sense that it requires no parameter tuning, moreover, its advantage
over the existing alternatives increases with the number of congested links in
the network.

We have built an “Internet tomographer” that runs on PlanetLab nodes and
uses Netscope to infer the loss rates of links located between them. We use
some of the measured paths for inference and others for validation, and we
show that the results are consistent.

2. We show that it is feasible to perform network loss tomography in the pres-
ence of “link correlations,” i.e., when the losses that occur on one link depend
on the losses that occur on other links in the network (Chapter 4). More pre-
cisely, we formally derive the necessary and sufficient condition under which
the probability that each set of links is congested is statistically identifiable
from end-to-end measurements even in the presence of link correlations,. In
doing so, we challenge one of the popular assumptions in network loss tomog-
raphy, specifically, the assumption that all links are independent. Our model
assumes we know which links are most likely to be correlated, but it does not
assume any knowledge about the nature or the degree of their correlation.
In practice, we consider that all links in the same local area network or the
same administrative domain are potentially correlated, because they may be
sharing physical links, network equipment, or even management processes.

3. We have designed a practical algorithm that solves “Congestion Probability
Inference” in the presence of link correlations, i.e., our algorithm infers with
which probability each set of links is congested under the link correlation
model proposed in Chapter 4 (Chapter 5). We model Congestion Probability
Inference as a system of linear equations where each equation corresponds
to a set of paths. Because it is infeasible to consider an equation for each
set of paths in the network, our algorithm finds the maximum number of
linearly independent equations by selecting particular sets of paths based
on our theoretical results. Our algorithm works under the weakest set of
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assumptions to date, and we experimentally show that it is accurate under
challenging network conditions such as non-stationary network dynamics and
sparse topologies.

We experimentally show that, in the scenario of an ISP that wants to monitor
the performance of its peers, it is more useful to solve Congestion Probability
Inference than Boolean loss tomography, because the latter cannot be solved
accurately enough in practice. We do not attribute the blame to the limi-
tations of any particular tomographic algorithm, rather to the fundamental
difficulty of solving Boolean loss tomography.
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Chapter 2

Network Loss Tomography

Network tomography estimates performance parameters based on traffic mea-
surements at a limited number of nodes. Extracting the hidden information
from traffic measurements is an inference problem, hence, the term network to-
mography proposed by Vardi [Var96]. Two forms of network tomography have
been studied in the literature: origin-destination tomography and link-level in-
ference. Origin-destination tomography estimates path-level parameters from
measurements made on individual links; the goal is to determine the intensity
of network traffic between all origin-destination pairs, a key input to routing
algorithms. The second problem, link-level inference estimates the characteris-
tics of network links from path measurements at a limited number of vantage
points. This form of network tomography can be used to collect statistics about
network links and pinpoint the problematic ones. Throughout the rest of this
thesis, we use the term network tomography to refer exclusively to the link-level
inference problem.

In this chapter, we describe the network loss tomography problem, i.e., the
inference of links’ loss characteristics from path measurements, and we discuss
the state-of-the-art approaches that address it. The rest of this chapter is or-
ganized as follows: We describe the model used by network loss tomography in
Section 2.1. We present two versions of the loss tomography problem: continu-
ous loss tomography in Section 2.2 and Boolean loss tomography in Section 2.3.
We review related work in Section 2.4, discuss common assumption in loss to-
mography in Section 2.5, state our viewpoint in Section 2.6, and conclude in
Section 2.7.

7



8 CHAPTER 2. NETWORK LOSS TOMOGRAPHY

2.1 Network Model

Network loss tomography takes as input the network topology and the loss
rates of paths, and it outputs the loss characteristics of network links. There
are various methods to gather the input data: For example, the measurements
to obtain the loss rates of paths may be either active (by generating probe
traffic) or passive (by monitoring or sampling extant traffic), based on either
multicast or unicast traffic, etc. In this thesis, we do not discuss in depth the
various methods that can be used to obtain the input data, but we do describe
a concrete technique to gather this data in Section 3.6.

In this section, we present the models for the input data. The statistical
inverse nature of the network tomography problem and the large number of
network links demand the simplest possible models for network traffic that ig-
nore many intricacies of packet transport. The focus is shifted from detailed
mathematical modeling of network dynamics to careful handling of traffic mea-
surements, large-scale computations, and model validation [CHRY02].

2.1.1 Network Topology

Links and Paths. We model the network as a directed graph G = {V,E},
where the set of nodes V represents the network elements, and the set of edges E
represents the one-way communication links. A node is either a host that gen-
erates and/or receives network traffic, or a router that relays network traffic (an
Ethernet switch or an IP router). The set of hosts V H and the set of routers V R

do not overlap, i.e., V H ∩ V R = ∅. Each edge represents a logical link between
two network elements. An edge does not necessarily correspond to a physical
link; it may represent an IP-level or a domain-level-link – in general, a sequence
of physical links between two network elements. The underlying nature of each
node and edge depends on the method used for building the network graph. For
instance, if an operator relies on traceroute [Jac89] to build the network graph,
then each node in the resulting graph represents a layer-3 network element and
each edge represents an IP-level link. Throughout this thesis, we use the term
link to refer to an edge in the network graph.

We define a path as a sequence of links starting from a host and ending at
another host. We denote the set of all paths in the network by P . If a path
pi ∈ P traverses a link ej ∈ E, then we write ej ∈ pi. A path never traverses a
link more than once, i.e., there are no routing loops. All links participate in at
least one path, i.e., there are no unused links.
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Figure 2.1: A toy topology. Hosts V H = {v1, v2, v4, v5}. Routers V R = {v3}.
Links E = {e1, e2, e3, e4}. Paths P = {p1, p2, p3}.

As an example, we consider the toy topology in Figure 2.1. In this topology,
node v3 is a router, while nodes v1,v2,v4, and v5 are hosts. The set of links
is E = {e1, e2, e3, e4}, and the set of paths that traverse these links is P =
{p1, p2, p3}.

Routing matrix. Given a network graph G = {V,E}, and a set of paths P ,
we compute the routing matrix R of dimension |P | × |E|, where |P | denotes
the number of paths, and |E| denotes the number of links. Each row in the
routing matrix R corresponds to a path in P , while each column corresponds
to a link in E. The entry Ri,j = 1 if path pi traverses link ej , and Ri,j = 0
otherwise (The i-th row in R corresponds to path pi and the j-th column in R
corresponds to link ej). In Figure 2.1, we show the routing matrix of our toy
topology.

The rank of the routing matrix R is the number of linearly independent
columns of R. We say that R has full-column-rank when all its columns are
linearly independent, i.e., Rank(R) = |E|, and we say that R is rank-deficient
when Rank(R) < |E|.

A fundamental assumption required by network tomography is that the rout-
ing matrix is stable.

Assumption 1. Routing Stability: The routing matrix does not change
throughout the measurement period.

This assumption is violated when there are routing changes during the mea-
surement period. In order to minimize the error introduced by the fact that the
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routing matrix changes, we must measure the network topology frequently such
that we detect when a path has changed, and we discard it from our measure-
ments.

From end-to-end measurements, we cannot distinguish between links tra-
versed by the exact same paths. When such links are consecutive, we can
merge them into one single logical link [NT07a]. All our network topologies are
pre-processed in this manner. When such links are not consecutive, network
tomography cannot identify their performance characteristics. The condition
that no two links are traversed by the exact same paths is equivalent to the
requirement that all columns in the routing matrix are distinct.

Assumption 2. Link Identifiability: All columns in the routing matrix are
distinct.

All tomographic algorithms require as input the network topology in the
form of the routing matrix R, for which the Routing Stability and the Link
Identifiability assumptions hold.

Input 1. The Routing Matrix: The network topology represented by the
routing matrix R.

2.1.2 Path Loss Rates

In addition to the network topology, loss tomography also requires as input the
loss rates of all paths in P .

We divide time into even slots called snapshots, such that an experiment
consists of N consecutive snapshots. We model the transmission rate of path pi

during the n-th snapshot with the random variable φ̂pi
(n), which is the fraction

of packets that are delivered correctly to their destination out of all packets sent
on pi during the n-th snapshot, with n = 1, . . . , N . We model the loss rate of
path pi during the n-th snapshot with the random variable 1−φ̂pi

(n). Similarly,
we model the transmission rate of link ej during a snapshot with the random
variable φ̂ej

(n), which is the fraction of packets that are delivered correctly to
their next link out of all packets send on ej during that snapshot. We model the
loss rate of link ej during the n-th snapshot with the random variable 1−φ̂ej

(n).

Most tomographic algorithms require as input the loss rate of each path
in P during a single snapshot, i.e., N = 1. Throughout this thesis, we refer
to such algorithms as single-snapshot algorithms. Recent work [NT07a, NT07b]
has shown that we can gain additional information about the network, e.g., the



2.2. CONTINUOUS LOSS TOMOGRAPHY 11

probability that each link is congested or the variances of the loss rate of links,
if we consider measurements over multiple consecutive snapshots, i.e., N > 1.
Throughout this thesis, we refer to such algorithms as multiple-snapshot algo-
rithms. On one hand, the additional information allows multiple-snapshot algo-
rithms to bypass two important assumptions generally made by single-snapshot
algorithms: (i) all links are equally likely to be congested, and (ii) the number
of congested links is small. On the other hand, in order to be able to gather
measurements over multiple-snapshots, the characteristics of links must remain
stable for a longer period of time. Hence, multiple-snapshot algorithms need to
make an additional assumption compared to single-snapshot algorithms.

Assumption 3. Stationarity: For any link ej, the random variables φ̂ej
(n),

n = 1, . . . , N , are identically distributed.

Thus, the behavior of each path and each link can be modeled as a stationary
random process. Given a path pi, since all random variables φ̂pi

(n), with n =
1, . . . , N , are identically distributed, we denote by φ̂pi

the transmission rate of
path pi during any snapshot. Similarly, given a link ej , we denote by φ̂ej

the
transmission rate of link ej during any snapshot.

For both single-snapshot and multiple-snapshot algorithms, we formally de-
scribe the path loss rates required as input.

Input 2. Path Loss Rates: The loss rates of all paths represented by the
random variables 1− φ̂pi

, with pi ∈ P , in each snapshot.

In conclusion, all tomographic algorithms require as input the network topol-
ogy represented by the routing matrix R and the path loss rates represented by
the random variables 1− φ̂pi

, for all pi ∈ P , in each snapshot.

2.2 Continuous Loss Tomography

Continuous loss tomography infers the loss rates of network links in a given
snapshot, i.e., it determines the value of the random variables φ̂ej

, for all ej ∈ E,
in that particular snapshot. The gist behind continuous loss tomography is to
establish a linear relationship between the loss rate of a path and the loss rates
of all links traversed by that path. Towards this goal, it needs to make certain
assumptions about the loss rates of network links.
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2.2.1 Assumptions

In order to be able to establish linear relationships between the loss rates of
paths and those of links, continuous loss tomography makes two assumptions.

Assumption 4. Link Independence: The transmission rates of links, i.e.,
the random variables φ̂ej , for all ej ∈ E, are independent.

This assumption implies that the losses that occur on a link are independent
from the losses that occur on any other link in the network. The Link In-
dependence assumption, which is justified by earlier work [Duf06, PQW03],
considerably simplifies the network tomography problem as later discussed in
Section 4.2.

Assumption 5. Loss Uniformity: The fraction of packets lost on link is the
same for all paths traversing that link.

This assumption requires that paths experience the same performance degrada-
tion on the shared links. In order for it to hold, the number of probe packets
sent by active measurements or the number of packets sampled by passive mea-
surements must be large enough. The loss uniformity assumption is justified
in [NT07b].

2.2.2 Problem Statement

If the Link Independence and the Loss Uniformity assumptions hold, the trans-
mission rate of path pi is given by the product of the transmission rates of all
links traversed by path pi,

φ̂pi
=
∏

ej∈pi

φ̂ej
.

If we take the logarithm of the above equation, we get a linear equation, i.e.,

log φ̂pi
=
∑

ej∈pi

log φ̂ej
. (2.1)

Let Ypi
= log φ̂pi

, for all paths pi ∈ P , and Xej
= log φ̂ej

, for all links ej ∈ E.
We group these variables in two vectors: Y = [Ypi ]pi∈P , and X = [Xej ]ej∈E ,
and based on Equation 2.1, we form the system of linear equations:

Y = R ·X, (2.2)
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where Y is the vector of available measurements, X is the vector of unknowns,
and R is the routing matrix. Because the routing matrix R is always rank-
deficient as shown in [NGK+09], the system in Equation 2.2 is undetermined,
and we need additional information to identify the vector of unknowns X, and
subsequently, the loss rate 1 − φ̂ej

of each link ej ∈ E. Link-loss inference
algorithms differ in the way they gather this additional information and the
assumptions they make in order to solve Equation 2.2.

2.3 Boolean Loss Tomography

The emergence of Boolean loss tomography is motivated by the observation
that usually there is only one link on a path that is responsible for the majority
of the losses on the path, and in many cases it suffices to know the locations
of these links. Unlike continuous loss tomography, which determines the loss
rates of links during a snapshot, Boolean loss tomography aims for the simpler
goal of identifying if the loss rates of links exceed a certain threshold. We say
that a link ej is congested if its transmission rate φ̂ej

is below a link-congestion
threshold tl. Similarly, we say that a path pi is congested if its transmission
rate φ̂pi

is below a path-congestion threshold tp. A link or a path that is not
congested is considered good. The goal of Boolean loss tomography is to estab-
lish a relationship between the congestion status of a path, and the congestion
statuses of all links traversed by that path. Boolean loss tomography was first
stated in [Duf06], where the authors discussed the necessary assumptions, and
described the problem statement.

2.3.1 Assumptions

In order to establish a relationship between the congestion status of a path
and those of links traversed by that path, Boolean loss tomography makes the
following assumption.

Assumption 6. Separability: A path is good if and only if all the links it
traverses are good.

Consequently, a path is congested if at least one of the links it traverses is
congested. This assumption is closely related to the problem of setting the
link-congestion threshold tl, and the path-congestion threshold tp. Previous
work [Duf06] argues for a path-congestion threshold tp that depends on the
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number of links d on each path, i.e., tp = 1 − (1 − tl)d and proposes a value
of tl = 0.01.

2.3.2 Problem Statement

In order to formally describe Boolean loss tomography, we introduce two defi-
nitions:

Definition 2.0.1. The random variable Zej
is the indicator of the congestion

status of link ej during a snapshot, i.e.,

Zej
=
{

1, if link ej is congested in that snapshot
0, otherwise.

Definition 2.0.2. The random variable Wpi
is the indicator of the congestion

status of path pi during a snapshot, i.e.,

Wpi =
{

1, if path pi is congested in that snapshot
0, otherwise.

If the Separability assumption holds, we can establish a relationship in Boolean
algebra between the congestion status of a path and the congestion statuses of
all links traversed by that path:

Wpi
=
∨

ej∈E

Ri,j · Zej
, for all pi ∈ P. (2.3)

Unfortunately, also in the case of Boolean loss tomography, the congestion sta-
tuses of links are generally not uniquely identifiable (see Section 5.4.1), hence,
Boolean tomographic algorithms make various assumptions in order to find the
congested links.

2.4 State of the Art

The term of network tomography was proposed by Vardi [Var96], the first to
rigorously study the problem of estimating origin-destination traffic intensities
from link measurements. The dual problem, link-level inference, arose as a
consequence of the fact that, in large-scale networks, we cannot rely on the
network to cooperate in characterizing its own behavior.
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Figure 2.2: The simplest tree topology. Hosts V H = {v1, v3, v4}. Routers
V R = {v2}. Links E = {e1, e2, e3}. Paths P = {p1, p2}.

2.4.1 Multicast-based and Emulated Multicast Methods

The first approaches to the loss tomography problem appeared in the context
of multicast traffic. The Multicast-based Inference of Network-internal Charac-
teristics (MINC) Project [min] stimulated much work that relies on multicast
probes to infer the characteristics of links [CDHT99, DPPT01, BDPT02, DHT+,
ABF+00]. The gist is that multicast probes introduce correlation in the end-
to-end losses measured by receivers. This correlation can be used to infer the
loss characteristics of links in the network. Consider the network depicted in
Figure 2.2. If a multicast probe is sent by node v1 to both receivers, node v3 and
node v4, but the probe arrives only at node v4, and not at node v3, then we can
immediately infer that the loss occurred on link e2. This is because successful
reception at host v4 implies that the multicast probe was forwarded by node
v2. By sending many multicast probes from source v1 to receivers v3 and v4,
we can infer the loss rates on the two links e2 and e3. Furthermore, using the
system in Equation 2.2 for the network in Fig. 2.2, we can infer the loss rate on
link e1. One of the pioneering approaches that fully analyzed this method for a
multicast tree is described in [CDHT99]. The authors developed maximum like-
lihood estimators (MLEs) for the loss rates of links, and showed that the inferred
link loss rates converge to the true loss rates as the number of multicast probes
increases. This approach proposed for multicast trees is further extended to a
collection of trees in [BDPT02]. The authors of [BDPT02] establish necessary
and sufficient conditions for the identifiability of link loss rates from end-to-
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end multicast measurements, and propose two algorithms that estimate the loss
rates for a set of links of interest.

Nevertheless, most networks do not support multicast due to scalability lim-
itations since the routers need to maintain state for each multicast group. Fur-
thermore, routers treat multicast traffic differently than unicast traffic, and since
most traffic is unicast, concerns arise about the accuracy of the estimates of the
loss rates of links. Hence, new tomographic methods emerged that emulated
multicast probes with trains of back-to-back unicast probes [CN00, DPPT01].
The authors of [CN00] propose a measurement technique based on losses expe-
rienced by unicast back-to-back probe pairs. The motivation of their approach
is that if two back-to-back packets are sent on a link, and the first packet suc-
cessfully traverses the link, then it is highly likely that the second packet will
also traverse the link successfully. Consider a node vk in a multicast tree, and
denote by βk the conditional probability that the second packet of a pair arrives
at node vk, given that the first packet of the pair arrived successfully at node vk.
The authors argue that the conditional probabilities βk, with vk ∈ V , are close
to 1. Consequently, by sending two back-to-back packets from the same source
to two different receivers, they can exploit the correlation between packet-pair
losses on common subpaths. Based on this measurement scheme, the authors
develop algorithms for likelihood analysis and estimation of the link loss rates
and of the conditional probabilities βk, k = 1..|V |. This approach was later
extended in [TCN01]. However, estimating both the link loss rates and the con-
ditional probabilities βk is a very hard problem, and when one or more of the
conditional probabilities βk are less than one, then a systematic bias is intro-
duced into the estimation process and the maximum likelihood estimators are
not consistent. For example, in the two-leaf tree in Fig. 2.2, if β1 < 1, then the
approach in [CN00] overestimates the loss rate on link e1, and underestimates
the loss rates on links e2 and e3.

The method proposed by [DPPT01] resembles closely the one described
in [CN00]. It proposes a measurement procedure based on stripes, compos-
ite probes of unicast back-to-back packets whose collective statistical properties
closely resemble those of a multicast packet. The difference from [CN00] is that
stripes which consist of several packets are used as opposed to pairs of packets.
The authors argue that this results in significantly higher correlation, and that
the length and the width of a stripe can be adjusted such that the conditional
probabilities βk are close to 1. Furthermore, they extend the estimator devel-
oped for multicast trees [CDHT99] to comply with the striped unicast probing
technique and show that the bias introduced by imperfect correlations can be
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compensated by using wider stripes if the coalescence property holds, i.e., suc-
cessful transmission of a packet in the stripe becomes more likely when more
other packets from the stripe have been successfully transmitted.

Emulated multicast approaches remove the need for multicast deployment
at the cost of somehow lower accuracy and higher administrative costs. The
challenge is that the packets in a stripe must have identical experiences when
traversing common portions on their paths to their destination. However, con-
gestion events may not affect all packets in a stripe uniformly. For example,
correlations within stripes is not perfect when the duration of the congestion
event is narrower than the temporal width of the stripe, or when the conges-
tion event starts or stops during the transmission of the stripe. Furthermore,
packets in a stripe may become uncorrelated because of packet-dropping in the
routers on the basis on Random Early Detection (RED). In addition, the au-
thors of [SB07] show that crafted probe streams can be problematic on testbeds
deployed across the Internet, e.g., PlanetLab [Pla]. The host systems in such
testbeds are usually overloaded, which can significantly alter the temporal spac-
ing between packets. Therefore, custom software as the one developed by [SB07]
must be used in order to guarantee stripe timings. Last, but not least, the algo-
rithms used to infer the link loss rates in these approaches are computationally
expensive for real-time applications in large networks. For a general overview of
the tomographic methods based on multicast traffic, or on unicast traffic that
emulates multicast, we refer the reader to [CHRY02, CCL+04].

2.4.2 Unicast-based Boolean Loss Tomography Methods

The shortcomings of tomographic methods based on multicast or emulated mul-
ticast traffic, motivated the development of inference algorithms that can work
with readily available measurements. The key idea is that even if the probes
are not temporally correlated, it is still expected that two probe streams which
traverse a given link over the same period of time, exhibit some correlations in
performance. But without strong temporal correlations between probe packets,
the link loss rates are not statistically identifiable from end-to-end measure-
ments [Duf06]. Thus, the methods that followed [PQW03, Duf06, BMT05,
NT07a] considered the simpler goal of identifying the congested links, i.e., iden-
tifying if the link loss rates exceed some threshold, instead of computing their
actual values. These approaches solve the Boolean network tomography prob-
lem stated in Equation 2.3 by making additional assumptions, one of the most
common being that there are only few congested links in the network.
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The pioneering work in Boolean tomography was proposed by [PQW03]. The
authors developed three techniques to infer the congested links in the network:
Random Sampling, Linear Optimization, and Bayesian Inference using Gibbs
Sampling. The first two methods Random Sampling and Linear Optimization
are biased in the sense that they favor parsimonious solutions, i.e., they prefer to
assign high loss rates to a small number of links. The third approach, Bayesian
Inference using Gibbs Sampling is based on solid theoretical foundations. The
gist is to determine the posterior distribution P (X|Y), where X represents the
logarithm of the link loss rates, and Y represents the logarithm of the end-to-
end loss rates. If the distribution is known, we can obtain samples from this
distribution, where a sample represents an assignment of loss rates to links that
explains the end-to-end measurements. For each link, we compare all sampled
loss rates against a threshold, if the link has high loss rates in most samples,
then we infer that the link is congested. Since it is very hard to compute
the distribution P (X|Y) directly, the authors construct a Markov chain whose
stationary distribution equals exactly this distribution. If the Markov chain runs
sufficiently long, it converges to its stationary distribution, and the samples can
be drawn from this distribution. The main problem with this approach is that
it is very computationally expensive, and it takes long to obtain the stationary
distribution of the underlying Markov chain. For example, the authors could
not simulate this approach for a real topology with a realistic number of nodes.

In [Duf06], the author abstracts the properties required in order to be able to
apply Boolean network tomography in practice. Boolean network tomography
partitions links and paths into good or congested, depending whether their loss
rate is below, or respectively, above a given threshold. The threshold is differ-
ent for links and for paths, and the relation between the two thresholds is of
great importance. The key property that enables us to detect a congested link
from end-to-end measurements is separability, i.e., the Separability Assumption
discussed in Section 2.3. A partition is called separable when a path is con-
gested if and only if at least one of its links is congested. Yet in order to find
the link-congestion threshold and the path-congestion threshold for a separa-
ble partition, the domain for link loss rates cannot be continuous, i.e., there
must be a gap between the maximum allowed loss rate of a good link and the
minimum allowed loss rate of a congested link. Since separability cannot be ver-
ified in practice, the author proposes the notion of weak separability, for which
it is always possible to determine the link-congestion threshold and the path-
congestion threshold. A partition is called weakly separable when a path being
congested implies that at least one of the links it traverses is congested. Weak
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separability means that paths with all good links are correctly identified, but
some congested links may go undetected. Finally, the author proposes a sim-
ple algorithm, the Smallest Consistent Failure Set (SCFS) inference algorithm,
that determines the congested links in a tree topology. The algorithm iteratively
infers as congested the link that can explain the largest number of congested
paths in the tree. The SCFS algorithm is extended to general topologies in
[DTDD07].

COBALT [BMT05] is a heuristic-based inference algorithm that assigns to
each link a confidence interval which represents the likelihood of that link to be
congested. The confidence interval depends on the number of congested paths
the link belongs to, and on the relative loss rates of these paths. The authors
compare COBALT with the methods described in [PQW03] and [Duf06], and
conclude that when the fraction of congested links increases, the detection rate
of congested links drops dramatically for all three approaches.

Most Boolean tomography approaches work under the assumption that all
links are equally likely to be congested. However, the work in [NT07a] showed
that this assumption is not needed, provided we can take multiple snapshots of
the network in order to learn the probability that each link is congested. The
authors prove that the probability that each link is congested is statistically
identifiable from end-to-end measurements, for all links in the network, if and
only if all columns in the routing matrix are distinct. They propose an algo-
rithm which takes as input multiple consecutive snapshots of the network, and
computes the probability that each link is congested. The learnt probabilities
are then used as prior information, together with the most recent snapshot, to
find the congested links using a Maximum A-Posteriori(MAP) estimator. The
authors reduce the problem to a convex optimization problem, and propose a
heuristic to solve it. Since this approach outputs the most probable solution, it
gives inaccurate results when the most probable solution does not include the
actual congested links in the network.

2.4.3 Unicast-based Continuous Loss Tomography Methods

The work of [NT07a] brings a new twist in the world of network tomography:
one can use multiple consecutive snapshots to gather additional information
about the network. This idea gave rise to the question of whether one can
use the additional information available from multiple consecutive snapshots to
determine the loss rates of links. The first approach that tried to answer this
question is the work by [NT07b]. The gist is that losses due to congestion occur
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in bursts, and therefore, loss rates of congested links have high variances. Unlike
the link loss rates themselves, the variances of the link loss rates are statisti-
cally identifiable under certain well-defined conditions. The authors propose an
algorithm that takes as input multiple consecutive snapshots, and outputs the
variance of the loss rate of each link, for all links in the network. They argue
that there exists a monotonic dependence between the mean and the variance
of the loss rates of a link, i.e., a link with a very low loss rate variance has a
very low loss rate. They suggest a technique that eliminates the links with low
variance from the system in Equation 2.2 (it approximates by zero the loss rate
of links with low variance) until a system of full column rank is obtained. We
can then solve the reduced system to obtain the loss rate of links with high
variances. The problem with this approach is that in order to obtain a system
of full column rank, we must usually eliminate many links, i.e., approximate
their loss rate by zero. This increases the probability that the loss rate of a
congested link is approximated by zero. Thus, we end up introducing noise in
our measurements which leads to inaccurate results.

Recently, given the advances in compressed sensing, and the similitudes be-
tween compress sensing and network tomography, i.e., compress sensing tries
to recover a sparse signal, while most work in network tomography assumes
congestion is sparse, there is interest to apply compress sensing approaches to
the problem of network tomography. The work of [SQZ06] advertises L1 norm
minimization with non-negativity constraints for solving the system in Equa-
tion 2.2, under the assumption that most links in the network are good. Though
elegant, this technique often mis-classifies a good link as congested, achieving
thus a high false positive rate. Nevertheless, combined with other tomographic
methods, this technique can significantly increase their accuracy.

In [ZCB06], the authors argue that current tomographic techniques are bi-
ased because of the statistical assumptions they make about the network. As
opposed to previous work that required various assumptions in order to iden-
tify the link characteristics, they propose to determine the characteristics of
minimal identifiable sequences of links (MILS), i.e., sequences of links whose
properties can be uniquely identified from end-to-end measurements. Thus,
this technique cannot compute the loss rate of each individual link, and unfor-
tunately, when dealing with sparse topologies, it is often the case that a MILS
represents an entire path. For a finer granularity, this technique can be used as a
complement to other approaches, like Bayesian Inference using Gibbs sampling
method [PQW03], improving their accuracy.
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2.4.4 Non-Tomographic Methods

Other approaches that determine the loss rates or the congestion statuses of
links have been proposed in the literature. These methods differ in that they
do not attempt to solve the network tomography problem, either continuous
loss tomography (Section 2.2) or Boolean loss tomography (Section 2.3). These
methods can be divided in two categories: shared congestion techniques and
router-based techniques.

Methods that detect shared congestion of flows use the correlations between
different flows to identify the shared bottlenecks. The correlations are computed
based either on individual probe delivery or on the variations in the throughput
of the flows. The cross-correlation between two flows that have a common end-
point is compared against the autocorrelation of each flow. If the former is
greater than the latter, then the common links traversed by the two flows are
congested. The authors of [RKT02] propose such a technique that detects the
points of congestion in the network. This technique is later extended in [HBB00],
where new packet probing techniques are considered. More recently, a new
method [AdVE07] analyzes throughput correlations among TCP flows in order
to infer shared congestion.

Router-based techniques [MSWA03, ZC07] compute the loss rate of links by
relying on router support rather than end-to-end measurements. The gist of
these methods is that they send special crafted probes directly to the routers
located at the endpoints of the link of interest. From the replies of the routers,
these techniques compute the loss rate of that particular link. Since these tech-
niques require that each link is measured separately, they do not scale very well
to large networks. Furthermore, router-based techniques depend heavily on the
cooperation of routers. Unfortunately, for security and performance reasons,
many routers do not respond to special crafted probes or limit their response
rates to such probes.

2.5 Common Assumptions in Loss Tomography

In this section, we discuss the most common assumptions encountered in net-
work loss tomography. As mentioned in Section 2.1, all tomographic algorithms
make two assumptions about the network topology, namely, that all paths re-
main stable throughout the experiment (the Routing Stability assumption), and
that no two links are traversed by the exact same paths (the Link Identifiability
assumption). In addition to these two assumptions, multiple-snapshot algo-
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rithms require that the behavior of each link can be modeled as a stationary
random process (the Stationarity assumption).

Continuous loss tomography and Boolean loss tomography enforce their own
specific assumptions. If the goal is to determine the loss rates of links (Sec-
tion 2.2), then all paths traversing a common link must experience similar per-
formance degradation on that link (the Loss Uniformity assumption) and the
loss rates of links are independent (the Link Independence assumption). If the
goal is to determine only the congestion statuses of links (see Section 2.3), then
the threshold separating good paths from congested ones must be such that a
good path implies that all its links are good (the Separability assumption).

Apart from the above general assumptions required to formulate the net-
work tomography problem, each tomographic algorithm makes its own specific
assumptions. We discuss below some of the most popular assumptions required
by tomographic algorithms.

Assumption 7. Probe Correlation: The network supports measurements
that require perfect or strong temporal correlation between probes.

This assumption is demanded by multicast-based approaches or by approaches
that emulate multicast traffic with stripes of unicast probes. The strong tem-
poral correlation between probes that belong to different flows ensures similar
performance degradation on the links shared by all flows. In the case of a mul-
ticast tree, this can overcome the challenge that the loss rates of links are not
statistically identifiable from end-to-end measurements.

Assumption 8. Sparse Congestion: The percentage of congested links in
the network is low.

The low percentage of congested links in the network plays an important role
in tackling the undetermined problem of network tomography. Nevertheless,
tomographic algorithms should not assume extremely sparse congestion, other-
wise they will produce inaccurate results at a time when they are most needed,
i.e., when the network is faced with serious congestion problems.

Assumption 9. Link Homogeneity: All links are equally likely to be con-
gested.

In a heterogeneous network like the Internet, the assumption that all links have
the same prior probability of being congested is unrealistic. The work in [ZCB06]
reported that links at the core of the network have typically lower probabilities
of being congested than links located at the edge of the network. Algorithms
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which assume link homogeneity must carefully consider its implications on the
accuracy of the results.

Table 2.1 shows a comparison of state-of-the-art tomographic algorithms
with respect to the assumptions we have discussed so far. Note that some
of these algorithms make other specific assumptions not shown in this table.
It is important to note that the assumptions vary in strength, and that de-
pending on the network, some assumptions may hold while others may not
be satisfied. Consequently, the algorithm which requires the smallest num-
ber of assumptions is not necessary the best for all networks. For exam-
ple, in Table 2.1, the multicast-based algorithms make the fewest assump-
tions, however it is extremely hard to enforce in practice the Probe Correla-
tion assumption. Furthermore, some of the algorithms in Table 2.1, i.e., the
multicast-based algorithms [CDHT99, CN00, DPPT01] and the SCFS algo-
rithm [Duf06], only work on tree topologies or on forest of trees, but not on
mesh topologies. Last but not least, the algorithms differ in the type of in-
formation they provide. Continuous tomography algorithms like the multicast-
based [CDHT99, CN00, DPPT01], NetDiagnoser [DTDD07], Netquest [SQZ06],
and LIA [NT07b] determine the loss rate of links, while the Boolean tomogra-
phy algorithms like the SCFS [Duf06], MCMC [PQW03], and CLINK [NT07a]
determine only if the loss rate of links exceeds a given threshold, and not their
actual value.

2.6 Adding the Salt

In the context of network loss tomography, the loss characteristics of links are
identifiable if it is theoretically possible to learn their true values from an infinite
number of end-to-end measurements. Mathematically, different assignments of
the loss characteristics to links must generate different probability distributions
of the paths’ loss characteristics. Therefore, identifiability is a crucial property
of link characteristics in order for inference to be possible. In general, without
support for multicast traffic, neither the loss rates nor the congestion status of
links are identifiable from end-to-end measurements. Tomographic techniques
try to counterbalance this with various assumptions as discussed in Section 2.5.

There exist many sophisticated tomographic algorithms in the literature;
they differ in the assumptions they make and the information they provide.
These algorithms would be of great use for network debugging, improved quality
of service, and automatic recovery from failures. Yet, none of these algorithms
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are ever used in practice, because they cannot assess the accuracy of the results
they provide. If the assumptions that an algorithm makes are not fulfilled for
a given network, then the results may be arbitrarily erroneous. And for most
common assumptions in network tomography, there is no practical way to verify
if they hold for a given network. Therefore, we argue for tomographic algorithms
that work with weaker assumptions, verifiable in practice. We believe this is
the fundamental property that can make network tomography practical.

2.7 Conclusions

In this section, we have described the network loss tomography problem, i.e., the
inference of link-loss characteristics from end-to-end measurements. We have
considered both the continuous and the Boolean versions of the loss tomogra-
phy problem. We have discussed state-of-the-art tomographic algorithms and
compared them with respect to their output and their assumptions. Finally,
we have presented our own perspective on network tomography and stated the
problems we want to address in our work.
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Chapter 3

Netscope: A Link-Loss
Inference Algorithm

In this chapter, we focus on continuous loss tomography, whose goal is to de-
termine the loss rates of network links. As we have seen in Section 2.2, this
problem is ill-posed, i.e., the loss rates of links are not statistically identifiable
from end-to-end measurements.

We propose Netscope, a link-loss inference algorithm, that significantly out-
performs the alternatives by using a novel combination of first- and second-order
moments of end-to-end measurements. Inspired by previous work [NT07b], we
design an algorithm that gains initial information about the network by com-
puting the variances of the loss rates of links and by using these variances as
an indication of the congestion level of links, i.e., the more congested the link,
the higher the variance of its loss rate. Its novelty lies in the way it uses this
information–to identify and characterize the maximum set of links whose loss
rates can be accurately inferred from end-to-end measurements.

The rest of this chapter is organized as follows: We discuss the assump-
tions made by our algorithm in Section 3.1. We give a high-level description of
our algorithm in Sections 3.2 and we dive into the details in Section 3.3. We
present an accuracy analysis in Section 3.4, evaluate Netscope’s performance
in Section 3.5, describe a PlanetLab tomographer that runs our algorithm in
Section 3.6 and conclude in Section 3.7.

27
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3.1 The Taming of The Assumptions

In this section, we discuss the assumptions required by our link-loss inference
algorithm. These assumptions are inherited from the algorithm in [NT07b],
which inspired our algorithm.

The Probe Correlation assumption demands multicast-like measurement probes
in order to ensure that flows experience similar performance degradation on the
shared links. Probe Correlation is a strong assumption since most networks
do not support multicast traffic. Fortunately, recent work [NT07b, PQW03,
SQZ06] has shown that Probe Correlation is not a necessary assumption in con-
tinuous loss tomography. The measurement probes can be unicast, provided
that the fraction of probes lost at each link is the same for all paths traversing
that link, i.e., the Loss Uniformity assumption, which has been justified for a
large enough number of measurement probes [NT07b], holds.

The Link Homogeneity assumption implies that all links, regardless of their
nature or of their location in the network, are equally likely to be congested.
This assumption may fail in a heterogeneous network like the Internet. For
example, links at the edge of the network are more likely to be congested than
links located at the core of the network [ZCB06]. Fortunately, previous work
has observed that the variance of the loss rate of a link can be used as a good
indication of the level of congestion of that link, i.e., the more congested the
link, the higher the variance of its loss rate [NT07b].

Unlike the loss rates themselves, the variances of the link loss rates are
statistically identifiable from end-to-end measurements if there are no fluttering
paths in the network [V.P96, NT07b].

Assumption 10. No Fluttering Paths: Two paths never meet at one link,
diverge, and then meet again at another link.

Therefore, if two paths share two links ej and ek, then they necessarily share all
links in between ej and ek. We call any two paths that violate this assumption
fluttering paths. Fluttering paths may occur as a consequence of load balancing
at routers or after a routing failure (during the convergence period to establish
a new route). To handle fluterring paths, we must measure the topology fre-
quently, and if such paths appear, we should keep only the measurements on
one of the paths.

In order to compute the variances of link loss rates, we must consider multiple
consecutive snapshots of the network. As explained in Section 2.1.2, when doing
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so, we assume that the behavior of each link can be modeled as a stationary
random process, i.e., we make the Stationarity assumption.

Similar to [NT07b], we assume monotonicity of the variances of the link loss
rates:

Assumption 11. Monotonicity of Link-Loss Variance: For any link ej,
the variance of Xej

is a non-decreasing function of the corresponding link loss
rate 1− φ̂ej

.

This assumption has been shown to hold based on Internet measurements [V.P96,
ZDPS01], including recent PlanetLab experiments with more than two million
samples of path loss rates [NT07b].

The Sparse Congestion assumption implies that only few links are responsible
for most congested paths in the network. As opposed to previous work that relies
heavily on this assumption, we identify m, the maximum number of links for
which we can compute the loss rates, and we compute the loss rates of the m
most congested links. However, when there are more than m congested links
in the network, our inference may become inaccurate. In this sense, we present
an accuracy analysis in Section 3.4. Furthermore, we experimentally show in
Section 3.5 that our algorithm significantly outperforms the alternatives as the
fraction of congested links in the network increases from 5% to 25%.

In conclusion, apart from the basic assumptions discussed in Section 2, which
are required in order to formulate continuous loss tomography when using mul-
tiple consecutive snapshots of the network, our algorithm assumes No Route
Fluttering, Monotonicity of Link-Loss Variance, and Sparse Congestion.

3.2 The Skyline

Our algorithm, Netscope, solves continuous loss tomography, i.e., it takes as in-
put the routing matrixR and the logarithm of the transmission rates of paths Y,
and it outputs the logarithm of the transmission rates of all network links X.
More precisely, similar to all other link-loss inference algorithms, it must find
the real solution of Equation 2.2. The amount of information available from
this equation depends on the properties of the routing matrix: If R was full-
column-rank, we can solve Equation 2.2 and obtain X. If R is rank-deficient,
then there are many different X’s that satisfy Equation 2.2.

Unfortunately, routing matrices are always rank deficient [NGK+09], which
means that we need additional information to identify the real solution X. Re-
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searchers have proposed three approaches for gathering this additional infor-
mation: One approach is to assume strong temporal correlation between the
measurement probes, achievable in a multicast environment [CDHT99] or with
back-to-back probes that emulate multicast [CN00, DPPT01]. Another ap-
proach is to formulate continuous loss tomography as an optimization problem:
of all possible solutions, pick the one that meets a certain practical constraint,
for example, includes the least number of congested links [SQZ06]. A third
approach is to first compute the variances of link loss rates, then use this infor-
mation to identify links with negligible loss rate, thereby reducing the number
of possible solutions [NT07b]. All these methods are discussed in detail in Sec-
tion 2.4.

Our intent is to be practical: we want to build an actual “Internet tomog-
rapher”, i.e., a system that runs on an overlay of Internet hosts, and infers the
loss rates of links between them. This leads us away from the (real or emulated)
multicast approach. However, Netscope combines elements from both the sec-
ond and third approaches outlined above with a new technique, in a way that
achieves significantly higher accuracy.

The main idea of our algorithm is the following: suppose that we have
a network with n links, and an ordering of all these links according to their
loss rates. We consider the first k links in this ordering, i.e., the k links least
likely to be congested, and we approximate their loss rate by zero. By doing
so, we reduce the number of unknowns in Equation 2.2 by k. If k is large
enough, Equation 2.2 becomes solvable, and we can compute the loss rate of the
remaining n − k links by solving this equation. On the other hand, if k is too
large, we might approximate the loss rate of some congested link by zero, and
our inference becomes inaccurate (which is exactly the flaw of the algorithm
proposed in [NT07b]). Our algorithm identifies the minimum possible k and
the optimal set of k links such that Equation 2.2 is solvable.

3.3 Under the Microscope

A key concept of our algorithm is the notion of basis. We define a basis as a
set of links B ⊆ E whose corresponding columns in the routing matrix R are
linearly independent and which contains exactly |B| = Rank(R) links. Given a
basis B, the set of links E is partitioned into two parts: B and K = E \B. If we
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know the loss rates of all links in K, we can plug these into Equation 2.2, and
then, compute the loss rates of all links in B by solving:

RBXB = Y−RKXK (3.1)

where RK is the matrix formed by the columns of R which correspond to the
links in K, XK is the vector of the logarithm of the transmission rates of links
in K, RB is the matrix formed by the columns of R which correspond to the
links in B, and XB is the vector of the logarithm of the transmission rates of
links in B. Unlike Equation 2.2, Equation 3.1 has a unique solution since the
fact that B is a basis implies that RB is full-column-rank. Thus, the maximum
number of links whose loss rates can be computed by solving Equation 3.1 is
|B| = Rank(R).

For a given network, there exist multiple bases B ⊆ E and we can solve
Equation 3.1 for any of them. The gist is to find a basis B such that we know
the loss rates of all links in K = E \ B. The intuition is the following: Suppose
we are told which are the congested links. If we can find a basis B that contains
all congested links, then we can approximate by zero the loss rate of all links
in K and compute the loss rates of all links in B by solving Equation 3.1. If
such a basis does not exist, we can consider the basis B which contains the
most congested links; if the remaining congested links outside B are few and
not highly congested, we can compute the loss rates of the link in B by solving
Equation 3.1. This is precisely what Netscope does, with the difference that it
cannot know exactly which are the congested links, thus, it uses an approximate
ordering of the links by loss rate, as provided by [NT07b].

Our algorithm consists of three steps. First, it computes an approximate
ordering of all links in E by loss rate, as proposed in [NT07b]. Second, it
determines a basis B which includes the most congested links in E as they
appear in the ordering from the previous step. Third, it approximates the loss
rate of all links in K = E \ B by zero, and it computes the loss rates of all
links in B by solving Equation 3.1. We now describe each of these steps in more
detail. The pesudo-code for Netscope is given by Algorithm 3.1.

3.3.1 Ordering Links by Loss Rate

In this step, we order all links in E by loss rate. The Monotonicity of Link-
Loss Variance assumption implies that the less congested a link, the lower the
variance of its loss rate. Therefore, an ordering of links by the variance of their
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loss rate is also an ordering of links by their loss rate. We have seen in Section 3.1
that, under certain well-defined conditions, the variances of the link loss rates
are identifiable. We use the algorithm described in [NT07b] to compute the
variance of the loss rate of each link. Next, we order all links in E by decreasing
loss rate variance, and we obtain the ordering OE = 〈e1, e2, ..., e|E|〉, where ei

has higher variance than ej , when j > i. If the Monotonicity of Link-Loss
Variance Assumption holds, then this is also an approximate ordering of links
by decreasing loss rate.

3.3.2 Finding the Optimal Basis

The goal of this step is to find the basis B that contains the most congested
links. More precisely, we want to partition E into a basis B and another set K,
such that B meets the following constraint: given an ordering OE of the links
by decreasing loss rates, the basis B maximizes the number of links in B ∩ Ô,
for any prefix Ô =< e1, e2, .., em > of this ordering, where m ≤ |E|. We call B
the optimal basis in the sense that B contains the most congested links.

In order to compute the optimal basis B, we order the columns of the routing
matrix R according to the ordering OE obtained in the previous step, and we
apply Gaussian elimination [GL96] to R. The Gaussian elimination algorithm
computes a basis for the routing matrix R by iterating over its columns: if the
current column forms a linearly independent set with the columns correspond-
ing to the links already selected for the basis, then we add the corresponding
link to the basis; otherwise, we discard this link. The output of the Gaussian
elimination algorithm is the optimal basis B we are searching for. We assign
all links which are not in the optimal basis B to K. Since we iterate starting
from the most congested links, our algorithm construct a basis that, from the
practical point of view, contains the most congested links.

3.3.3 Computing the Loss Rates of Links

In this step, we compute the loss rates of all links in the optimal basis B, which
contains the most congested links. Previously, we have partitioned the set of
links E into the optimal basis B and the set of remaining links K. If the columns
in R correspoding to all congested links are linearly independent, K contains
the least congested links. We approximate the loss rates of all links in K by zero,
and use these values in Equation 3.1. Since matrix RB is full-column-rank, we
can directly compute the loss rates of all links in B by solving Equation 3.1 using
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Algorithm 3.1 The Netscope Algorithm
Input: E the links in the network

R the routing matrix
Y the logarithm of the transmission rates of all paths

Output: X the logarithm of the transmission rates of all links

Ordering Links by Loss Rate
1 compute the variance of the loss rate of each link in E
2 determine OE, an ordering of links in E by decreasing loss rate variance

Finding the Optimal Basis
3 arrange the columns in R according to OE

4 compute the optimal basis B by applying Gaussian Elimination to R

Computing the Loss Rates
5 approximate the loss rate of all links in K = E \ B by zero, i.e., XK = 0
6 compute XB by minimizing ‖Y−RBXB‖+ λ‖XB‖

return X = [XB,XK]

standard techniques. However, when approximating the links in K by zero, we
introduced some noise in our measurements. Therefore, we apply “L1 norm min-
imization with non-negativity constraints” [SQZ06], i.e., we want to minimize
the expression ‖Y − RBXB‖ + λ‖XB‖, where λ is a configurable parameter,
under the constraint that XB has non-negative elements. This optimization
chooses an XB that may not exactly satisfy Equation. 3.1, but minimizes the
corresponding error (hence the first term of the objective function) and favors
solutions that involve fewer congested links (hence the second term). We use
the default value λ = 0.01 proposed in [SQZ06], but in our case, this parameter
does not play an essential role in computing the loss rates of links, hence, it can
also be set to zero.

3.4 Accuracy Analysis

The main source of inaccuracy in our algorithm is the approximation by zero
of the loss rate of links outside the optimal basis. We now study the impact of
this approximation. In this section only, we abuse the language by saying that
links are linearly independent when their corresponding columns in the routing
matrix R are linearly independent.
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The performance of our algorithm depends on whether all congested links
are linearly independent. If all congested links form a linearly independent
set, then the optimal basis found by Netscope contains all of them, and our
algorithm correctly sets to zero only the loss rate of good links. However, if
some of the congested links are linear combinations of other congested links,
then there exists no basis that contains all congested links, and, inevitably,
Netscope incorrectly sets to zero the loss rate of some of the congested links.
More precisely, it approximates by zero the loss rate of the congested links
that (i) are linear combinations of other congested links and (ii) are the least
congested. In conclusion, Netscope computes accurately the loss rates of links
if all congested links form a linearly independent set. As the number of linearly
dependent congested links increases, the performance of our algorithm decreases.

Because the congested links that form a linearly dependent set are the main
cause of inaccuracy in our algorithm, we estimate the number of these links
and how this number scales with network size. First, we consider the worst-
case scenario, that is, the maximum number of congested links that are linearly
dependent. We know that themaximum number of linearly dependent congested
links is upper-bounded by the total number of linearly dependent links in a
network, which is equal to |E| −Rank(R) for any network. To understand how
this number changes with the network size, we studied the scalability properties
of the rank of the routing matrix Rank(R), and formally derived a lower bound
for it (the proof can be found in [NGK+09]):

Rank(R) ≥ |E| − α|V R| (3.2)

where |V R| is the number of routers in the network and α depends on the
network topology, more precisely, on how paths meet and split at each router.
This bound tells us that there can be no more than α linearly dependent links per
router; these are the links that, if congested, introduce error in our inference. For
network topologies collected from the PlanetLab testbed by running traceroute
between 400 nodes, α was around 1.2. Our PlanetLab topologies are sparse,
because we only consider complete paths, i.e., all the routers on the path must
answer to traceroute probes, and we enforce a maximum number of paths per
host in order to avoid overloading the network. In practice, topologies may be
significantly denser, which implies a smaller value of α. Therefore, there can be
no more than a couple of linearly dependent links per router.

Nevertheless, it is unlikely that all these “problematic” links happen to be
simultaneously congested. Therefore, we also consider the average case scenario,
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that is, the expected number of congested links which form a linearly dependent
set. This quantity depends on the congestion patterns in the network, that
is, the localization of failures. We investigate the expected number of linearly
dependent congested links for two congestion patterns: (i) “random,” where all
links have the same probability of being congested, and (ii) “edge,” where links
located closer to the end-hosts are more likely to be congested. The latter was
inspired by the fact that congestion in the Internet happens typically at the
edge of the network. For our PlanetLab topologies, we choose a certain fraction
of the links in the network which are located either (i) at random locations or
(ii) toward the edge of the network, and we compute the expected number of
linearly dependent links among the chosen links.

Table 3.1 shows the results for a representative 4000-link topology: if we
choose a subset of 400 links from this topology, on average 1.2 of these links are
linearly dependent on the others, both when all links have the same probability
of being chosen, and when links located closer to the end-hosts are favored. In
other words, if 10% of the links are congested, then only 0.3% of these congested
links are linearly dependent, hence introduce error in our inference. Moreover,
even when the number of congested links increases to 25% of the network links,
fewer than 3% of these links are linearly dependent.

5% 10% 15% 20% 25%
random 0.072 0.326 0.764 1.502 2.53
edge 0.042 0.308 0.696 1.522 2.75

Table 3.1: Percentage of the expected number of linearly dependent links within a
set of chosen links. The links are chosen either at random — “random”, or links
located closer to the end-hosts are preferred — “edge”. The number of chosen
links varies from 5% to 25% of all network links. The results are averaged over
1000 runs on a PlanetLab topology with 4000 links.

3.5 Evaluation

Simulator. We have built a simulator, in which the network is represented
as a graph, with vertices corresponding to nodes and edges corresponding to
links. Each experiment consists of multiple snapshots; unless otherwise stated,
we consider 30 snapshots per experiment. In the beginning of each experiment,
we chose which links will be congested throughout the experiment by using one
of the following methods: (i) "random", where all links are equally likely to be
congested, or (ii) "edge", where links located toward the edge of the network are
more likely to be congested. The latter setting allows us to simulate scenarios
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where congestion happens mostly close to the end-hosts, which is often the case
in Internet. In each snapshot, we assign loss rates to all links. We use the same
loss model as [NT07b] (also similar to the models used in [PQW03, SQZ06]),
which assigns loss rates uniformly distributed between 0 and 0.002 to good
links, and between 0.05 and 1 to congested links. We have also experimented
with other loss models, but the results were similar. In order to determine the
loss rates of paths in each snapshot, we send 1000 packet probes on each path.
We determine the packets that get lost at a link through independent Bernoulli
processes, i.e., packets are dropped with a fixed probability such that we respect
the loss rate assigned to that link. We consider a link whose loss rate is above
0.01 as lossy and a link whose loss rate is below this threshold as good.

On the positive side, our simulator captures the fact that the actual loss
rates of paths are, in practice, different from the measured loss rates of paths.
We capture this, because we measure the loss rate of each path as the fraction of
packets successfully received along that path, which is what a real measurement
tool does. On the negative side, we determine which packets get lost through
independent Bernoulli processes, which means that we miss the potential inter-
dependencies between successive probes. To our defense, this is the standard
way to evaluate tomographic techniques, and simulations with Gilbert losses
report similar results.

Topologies. We use real Internet topologies, collected in the following man-
ner: we got hold of as many PlanetLab nodes as we could (400 was the max-
imum) and ran traceroute between them to identify the set of routers on each
path; we discarded all paths with incomplete traceroute results. Even though
we repeated the above process several times to collect different topologies, they
all look similar in terms of in- and out-degree of the nodes and, hence, yield
similar results. Thus, we show results that correspond to one topology of 4000
links (the largest we were able to collect) and note that these are consistent
with the results we got from all topologies.

Alternative Techniques. We compare Netscope to other three link-loss
inference techniques: “Norm” (L1-norm minimization with non-negativity con-
straints) [SQZ06], “MultiNorm,” a modified version of Norm described below,
and “LIA” [NT07b].

Norm is essentially Netscope’s third step without the other two (see Sec-
tion 3.3.1): it simply takes Equation 2.2 and solves it using the norm-minimization
approach outlined in Section 3.3.3. Norm applies the “L1-norm minimization
with non-negativity constraints” to all the links in the network, while Netscope
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applies the minimization only to the links in the optimal basis. A direct com-
parison between Norm and Netscope would be in some sense unfair, because,
unlike Netscope, Norm does not use information from previous snapshots; as
a result, Norm more often mis-classifies a good link as lossy. To make a fair
comparison, we introduce “MultiNorm,” a modified version of Norm, which
(just like Netscope and LIA) uses information from previous snapshots: instead
of applying L1-norm minimization on all the links in the network, it applies
it only on links that were lossy in more than T% of the previous snapshots.
Essentially, MultiNorm tries to enforce a certain amount of “stability” across
different rounds, i.e., if L1-norm minimization happens to mis-classify a good
link as lossy, MultiNorm corrects the mistake, as long as it is infrequent. As
expected, MultiNorm’s performance depends on the threshold T . We found
that T = 75% gave good results in all our simulation scenarios, hence we show
results obtained with this threshold.

LIA shares the same first step described in Section 3.3.1 with Netscope. In
the second step, it partitions the set of links E into two sets, B∗ and K∗, as
follows: it goes over the links in E, starting from the lowest-ranked link, i.e.,
the least congested link according to the ordering obtained in the first step, and
greedily removes links until the columns in the routing matrix of the remaining
links form a linearly independent set, or a pre-configured minimum number of
links is reached; at that point, all the remaining links are assigned to B∗, while
all the removed links are assigned to K∗. The problem with the approach taken
by LIA is that when it removes links from E, it also implicitly removes some
paths, namely, the paths that do not traverse any of the links in B∗. Removing
paths from R is risky as it causes more linear dependence among the columns of
the links in B∗. Note that this is different from Netscope’s second step: Netscope
removes links optimally, so as to identify a basis for E, without removing any
paths. In contrast, LIA removes links greedily, until it identifies any set of
links whose columns in the routing matrix are linearly independent; in many
cases, it never identifies such a set and has to stop at an arbitrary point, when
the next link to be removed has a loss rate variance above a certain threshold.
Therefore, LIA is sensitive to the threshold that specifies when a link has a loss
rate variance which is too high in order to approximate its loss rate by zero. As
a result, the set B∗ ends up being significantly smaller than Rank(R)—which
means that LIA freezes significantly more links than necessary. Moreover, LIA
uses the least squares method in order to infer the loss rate of links in B∗, which
is less accurate than “L1-norm minimization with non-negativity constraints”
since the measurements might be noisy.
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Netscope is essentially a combination of Norm and LIA plus our optimal-
basis selection algorithm described in Section 3.3.2. However, Netscope is robust
in the sense that it requires no parameter tuning, unlike MultiNorm which uses
a threshold to reduce the number of good links misclassified as lossy, or LIA,
which needs a threshold to determine when a link has a high loss rate variance
and its loss rate cannot be approximated by zero. Hence, comparing Netscope’s
performance to the one achieved by each of these two techniques alone is essential
in quantifying the value of our contribution.

Metrics. We use four metrics: The detection rate specifies the fraction of
the lossy links that were correctly identified as lossy. The false positive rate
specifies the fraction of the links identified as lossy that were actually good.
For a given link, the absolute error is the absolute difference between the link’s
actual loss rate and the one inferred by the algorithm. For example, an absolute
error of 0.1 means that a link has L% loss and we incorrectly inferred it has
L ± 10% loss. For a given link, the error factor is the actual loss rate of the
link divided by its inferred loss rate, or the other way around, such that the
outcome is always larger than 1 [BDPT02]. In our graphs, we show the mean
absolute error (and error factor) of the lossy links only; otherwise, given that
the number of lossy links is relatively small (5% to 25%) the errors in inferring
the loss rates of the lossy links would be diluted.

Random Congestion. We look at the performance of the four techniques
outlined above for different fractions of lossy links. Fig. 3.1 shows the results
when the lossy links are randomly selected. We make the following observations:

When there are only few lossy links, all techniques perform well, with Netscope
having a small advantage by all metrics; as the number of lossy links increases,
the gap between Netscope’s performance and that of the other techniques widens,
especially regarding the false-positive rate, the absolute errors, and the error fac-
tors. For instance, when 20% of the links are lossy, Netscope detects 94% of the
lossy links (MultiNorm, the best alternative, detects 85%) with a false-positive
rate of 16% (31% for MultiNorm) and a mean absolute error of 7.5% for the lossy
links (14% for MultiNorm). Our interpretation is the following: Of all the X’s
that satisfy Equation 2.2, Norm chooses one that minimizes the error between
the measurements and the link loss rates, and has the fewest congested links.
The larger the number of congested links in the network, the larger the number
of different X’s that satisfy Equation 2.2, hence, the less likely it is for Norm to
pick the right solution without any additional information. MultiNorm achieves
better performance than Norm by using information from previous rounds, how-
ever, it still suffers from the same flaw as Norm. In contrast, Netscope uses the
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Figure 3.1: Performance as a function of the fraction of lossy links, when lossy
links are randomly chosen.

additional information derived from the variance-based ordering of the links to
discard unlikely solutions.

LIA performs well when there are only few lossy links in the network, but
its performance degrades quickly as the number of lossy links increases. Among
all four techniques, LIA does the worst in terms of identifying the actual link
loss rates. Because of its greedy nature, LIA ends up approximating by zero the
loss rates of significantly more links than necessary; as the number of lossy links
increases, this has a worse impact on performance, because the links whose loss
rates is approximated by zero are more likely to be lossy. These results show
that it is not enough to just use the additional information provided by the
variance-based ordering, it is also important to use it the right way.

Congestion at the Edge. Next, we look at the performance of the four
techniques when the lossy links are located closer to the end-hosts. Fig. 3.2
shows the performance as the fraction of lossy links in the network increases.
We observe that the gap between Netscope and Norm widens when the lossy
links are mostly at the network edge—when 10% of the links are lossy, Norm
has more than twice Netscope’s false-positive rate, three times its mean absolute
error, and five times its mean error factor. This may be due to the fact that
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Figure 3.2: Performance as a function of the fraction of lossy links, when lossy
links are located closer to the end-hosts.

Norm favors solutions that involve fewer congested links; such solutions tend to
involve links that participate in many paths—hence, are not at the edge of the
network. MultiNorm performs better than Norm, but its mean absolute error
is still two times higher than the one achieved by Netscope.

Fig. 3.3 shows the cumulative distribution function of the absolute errors
(the difference between the actual and the inferred loss rates) and the error
factors for the lossy links, for the particular case where 15% of the links in the
network are lossy. With Netscope, 80% of the lossy links have an absolute error
of less than 0.06, which means that, if a link has L% loss, we infer that it has a
loss in the range L ± 6%, while the best alternative, MultiNorm, infers that it
has a loss in the range L± 16%, so it is 10% worse in identifying the actual link
loss rates. Similarly, for 80% of the lossy links Netscope has an error factor of
less than 10, while MultiNorm, the best alternative, achieves an error factor of
less than 150.
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Figure 3.3: Cumulative distribution function of the absolute error (the difference
between the actual and the inferred loss rate) and of the error factors for the
lossy links, when 15% of the network links are lossy.

3.6 An Internet Tomographer

We now present an “Internet tomographer”, i.e., a distributed system that runs
on top of an overlay of PlanetLab nodes [Pla], collects Internet topologies, and
infers the loss rates of their links using our algorithm described in Section 3.3.
It consists of multiple “beacons” (PlanetLab nodes) that exchange probes and
a “manager” (a server) that orchestrates the beacons and collects/processes all
their measurements.

The Manager. The manager is the heart of our tomographer: It runs
a TCP server that listens for beacon registrations. In the beginning of every
snapshot, it contacts all registered beacons, informs them what measurements
to perform, and waits for the results. Once all beacons have reported their mea-
surements, the manager runs our link-loss inference algorithm (Algorithm 3.1).

The Beacons. Each beacon runs a TCP and a UDP server, the former for
communicating with the manager and the latter for receiving probes from other
beacons. When joining the system, the beacon “registers” by sending its IP
address and TCP server port number to the manager. In reponse, it receives, in
the beginning of each snapshot, the names of a set of target beacons that it must
probe. It sends two kinds of probes to each target: (i) traceroute probes, to
discover the sequence of links between itself and the target; (ii) UDP probes, to
measure the loss rate of the path between them. At the end of the snapshot, the
beacon sends the results to the manager; after the first snapshot, to minimize
traffic, it only sends incremental updates of the traceroute results.

Traceroute Probing. Each beacon uses traceroute to identify the sequence
of links between itself and each target beacon; the manager combines the results
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to derive the link-level topology of the network covered by the paths between
the communicating beacons. The derived topology may contain inaccuracies,
for two reasons: (i) Some Internet routers do not respond to ICMP probes or
limit the rate at which they do; as a result we discard all incomplete paths
(ii) Routers sometimes respond to different traceroute probes using different
IP addresses, depending on the interface on which the probe was received; we
use the sr-ally tool to map such addresses to a single router [SWA03], however,
that tool does not guarantee 100% accuracy. Due to this factor, what appear
as distinct nodes or links in the derived topology may actually correspond to a
single node or link.

UDP Probing. Each beacon sends UDP probes to multiple target beacons,
a probe carrying a 12-byte sequence number. In order to avoid overloading
PlanetLab nodes, a beacon probes around 30 targets, each target once every
10msec. The target beacon that receives UDP probes from a certain source
beacon, uses the corresponding sequence numbers to estimate the loss rate of
the path between itself and the source; it computes one loss-rate estimate out
of 30sec worth of data. We also randomize the order in which beacons probe
their targets, to avoid generating traffic bursts on the targets. At the end of
each snapshot, all beacons send their path-loss estimates to the manager.

Experiments. The results presented in this section correspond to mea-
surements collected from January 19, 2009 9:40:06 PM to January 26, 2009
11:28:07 AM, which corresponds to 800 measurement snapshots. We engaged
about 400 PlanetLab nodes, which resulted in a derived topology of about 9, 000
links and half as many routers. We should clarify that each node acting as a
beacon probed about 30 targets, i.e., we did not establish paths between all
pairs of nodes. We should also note that many of the participating nodes were
highly loaded during the experiments, which led to non-negligible packet loss
on (at least) the first and last link of each path; this explains why we observed
congested links and paths with more than one congested link.

3.6.1 Validation of Link-Loss Inference

One of the limitations of testing our algorithm on PlanetLab is that we cannot
directly measure its accuracy—since we have no way of knowing the actual loss
rates that we are estimating. Instead, we use the indirect validation method
proposed in [PQW03], where the path loss rates measured in each snapshot are
divided into two sets: the inference set is used as the input to our link-loss
inference algorithm, while the validation set is used to validate its results. The
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Figure 3.4: Cumulative distribution of the validation error (the difference be-
tween the computed and the measured path loss rate) for the PlanetLab exper-
iments.

partition is done in such a way that every link is represented in both sets, i.e., for
every link ej ∈ E, there exists at least one path in both sets that includes that
link. The link loss rates inferred by our algorithm are then used to compute the
path loss rates for the validation paths. For a given validation path, we use the
term “validation error” to refer to the difference between the computed (from
the inferred link loss rates) and the measured path loss rate.

Figure 3.4 shows the validation error for different paths. We observe that
70% of the paths have 0 validation error, while 94% have a validation error
below 1%.

3.6.2 Loss Characteristics of Internet Links

We close with a summary of the statistics we collected using our PlanetLab
tomographer: On average, about 83% of links, in each snapshot, had negligible
loss rate, while only 4% had a loss rate above 0.05 (Figure 3.5(a)). More than
half of the congested links in each snapshot were links located at the network
edge; these were also the links with the highest loss rate (Figure 3.5(b)). About
18% of paths had one congested link, while less than 5% had 2 or more congested
links (Figure 3.5(c)). Finally, about 62% of congested links were one or two hops
away from the network edge, while less than 5% were more than 5 hops away
(Figure. 3.5(d)).

We state these without further discussion, as an in-depth analysis of Internet
loss characteristics is outside the scope of this thesis. We should also clarify that
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Figure 3.5: Loss statistics. The numbers on the y-axes and the pie percentages
are averages over 800 snapshots.

these numbers correspond to a period of 7 days and concern a small fraction of
Internet links.

3.7 Conclusions

In this chapter, we have presented Netscope, a tomographic algorithm that in-
fers the loss rates of network links from end-to-end measurements. Netscope
combines two state-of-the-art approaches with a novel technique in a way that
significantly outperforms the existing alternatives. Our algorithm identifies the
links with negligible loss rate by computing the variances of the link loss rates,
as proposed in [NT07b]. Its novelty lies in the way it uses this information –
unlike the algorithm in [NT07b] that greedily infers any link that has a loss
rate variance below a certain threshold as non-congested, Netscope identifies an
optimal set of links whose loss rates can be inferred from end-to-end measure-
ments. It then applies “L1-norm minimization with non-negativity constraints”
as described in [SQZ06] to find the solution that explains the end-to-end mea-
surements. Netscope is robust in the sense that it requires no parameter tun-
ning. Furthermore, the advantage of our algorithm over the existing alternatives
increases with the number of congested links in the network.
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We have validated Netscope’s performance using PlanetLab experiments:
We have built a “Internet tomographer” that runs on PlanetLab nodes and
infers the loss rates of links located between them; we have used some of the
measured paths for inference and others for validation, and we have shown that
the results are consistent.
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Chapter 4

Boolean Tomography on
Correlated Links

In this chapter, we challenge the traditional perspective on network loss tomog-
raphy. All state-of-the-art tomographic approaches follow a conventional path:
Their goal is to infer certain link characteristics that are generally1 not statisti-
cally identifiable from end-to-end measurements, and in doing so, they assume
that all links are independent (the Link Independence assumption described in
Section 2.2). In these circumstances, we envision answering the following ques-
tions: (Q1) Is the Link Independence assumption necessary in order to solve the
network tomography problem? and (Q2) Are there any loss characteristics of
links statistically identifiable from end-to-end measurements if not all links are
independent?

The Link Independence assumption is widely used by tomographic algo-
rithms as shown in Table 2.1, but there is no evidence that it holds in practice.
In fact, there are practical scenarios in which links are correlated, that is, the
losses that occur on one link might depend on the losses that occur on other links
in the network. For example, if we know the network topology at the IP-level
or at the domain-level, then links in the same local area network, or the same
administrative domain, are potentially correlated because they might be shar-
ing physical links, network equipment, and even management processes. When
such link correlations are present in the network, the loss characteristics of links
inferred by current tomographic algorithms may be inaccurate, moreover, there
is no way of knowing to what extent they are inaccurate.

1Except in the case of a tree topology, where the loss rates of links are statistically identi-
fiable from end-to-end measurements if the network supports multicast traffic.

47
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We take the first step toward applying network tomography on correlated
links. We show that if we partly lift the Link Independence assumption and
allow for some link correlations, we can still correctly estimate certain loss char-
acteristics of links. In particular, in the context of Boolean loss tomography, we
formally derive the necessary and sufficient condition under which the probabil-
ity that each set of links is congested is statistically identifiable from end-to-end
measurements in the presence of link correlations.

Our answers to the raised questions are: (Q1) Under certain well-defined
conditions, network tomography works on correlated links; and (Q2) there are
certain loss characteristics of links, specifically, the probability that each set
of links is congested, that under certain conditions are statistically identifiable
from end-to-end measurements even in the presence of correlated links.

The rest of this chapter is organized as follows: We describe several practi-
cal scenarios in which links are correlated in Section 4.1. We introduce our link
correlation model in Section 4.2 and discuss identifiable link loss characteristics
in Section 4.3. We explain the conditions under which the probability that each
set of links is congested is identifiable from end-to-end measurements in the
presence of correlated links in Section 4.4. We give insights into our theoreti-
cal results in Sections 4.5 and 4.6, and finally, prove the theoretical results in
Section 4.7.

4.1 The Forgotten Existence of Correlated Links

State-of-the-art tomographic approaches implicitly assume that all links are
independent, i.e., the Link Independence assumption discussed in Section 2.2.
Nevertheless, there exist practical scenarios in which links are correlated, that
is, the losses which occur on one link may depend on the losses which occur on
other links in the network. In this section, we describe a few such scenarios.

A factor playing a leading role in the existence of correlated links is in-
complete knowledge of the network topology. This affects all tomographic ap-
proaches since the loss tomography problem takes as input the network topology.

The ISP curious about its peer. Consider the scenario where the op-
erator of an Internet Service Provider (ISP) wants to estimate the quality of
service offered by a peer. Since the operator does not have direct access to the
peer’s links, she turns to network tomography. The operator measures the loss
characteristics on some of the paths which transit the peer, and uses traceroute
to discover the underlying network topology, it then applies one of the state-
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Figure 4.1: An example of correlated links caused by the use of Multiprotocol
Label Switching(MPLS) which routes packets based on labels rather than IP
addresses. There are two types of MPLS routers: Label Edge Routers (LER)
that push/pop labels on packets, and Label Switch Routers (LSR) that perform
routing based on these labels. The LSRs remain undiscovered from end-to-end
measurements, causing the virtual paths between the LERs to appear as links
in the network topology. These links are potentially correlated as they share
undiscovered physical links (the dashed lines).

of-the-art tomographic techniques to estimate the loss characteristics of links
traversed by the measured paths. But without insider information, she cannot
know if all these links are independent. The peer might be using Multiprotocol
Label Switching (MPLS) for internal routing, i.e., in order to avoid complex
lookups in the routing table, some routers handle packets based on short labels
rather than long IP addresses. Each label determines a virtual path, that is, a
sequence of physical links, between two distant MPLS-capable routers. There
are two types of MPLS routers: Label Edge Routers (LER) that push/pop la-
bels on packets, and Label Switch Routers (LSR) that perform routing based
on these labels. As shown in Figure 4.1, the LSRs remain undiscovered from
end-to-end measurements; therefore, the virtual paths between the LERs ap-
pear as links in the network topology measured by the operator. These links
are potentially correlated as they share undiscovered physical links.

Furthermore, it may also be the case that the operator does not care to have
visibility into the internals of other domains—she is only trying to determine
whether the peer is honoring a service-level agreement (SLA). In this case, the
network topology is at the granularity of domain-level (as opposed to physical
or IP-level): intermediate nodes in the resulting network graph represent border
routers, i.e., routers located at the entry/exit points of a domain. Links between
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Figure 4.2: An example of correlated links when applying network tomography
on a domain-level topology. Inside the domain, only border routers E, G, and
H located at the entry/exit points of the domain, and links EG and EH con-
necting these border routers are visible in the topology. Links EG and EH are
correlated as they share the undiscovered physical link between border router E
and internal router F .

border routers of the same administrative domain are potentially correlated,
because they may be sharing physical links, as well as management processes.
For example, in Figure 4.2, inside the domain, only border routers E, G, and
H, and links EG and EH connecting these border routers are visible in the
topology. Links EG and EH are correlated as they share the undiscovered
physical link between border router E and internal router F .

The operator monitoring her network. Even in the scenario of an
operator who wants to monitor the quality of links in her own domain in a
non-intrusive manner using network tomography, it is still problematic to as-
sume that all links are independent. Suppose the operator relies on traceroute
to discover the underlying network topology of her domain. This may seem
unreasonable at first as one might assume that an operator already knows the
topology of her own domain. Yet, in practice, the operator of a large network,
e.g., a university-campus network, does not always have access to all areas and
equipment of the network. Moreover, given that paths change in response to
network conditions, the operator does not always know which links compose
each path. In this scenario, the operator misses all nodes that do not respond
to traceroute probes, necessarily including all network elements operating be-
low layer three. In the resulting network graph, nodes represent layer three
elements; hence, links between nodes located in the same local-area network
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Figure 4.3: An example of correlated links caused by an Ethernet switch in a
local-area network. The Ethernet switch operates below layer three; it does not
appear in the IP-level topology. Links AB and AC are correlated as they share
the physical link between node A and the Ethernet switch.

are potentially correlated, because they may be sharing physical links. This
scenario is depicted in Figure 4.3, where links AB and AC located in the same
local-area network are correlated as they share the physical link between node
A and the Ethernet switch.

In the above scenarios, the network topology is not completely known and
may include correlated links. Therefore, the operator using a tomographic tech-
nique that assumes Link Independence, cannot assess the accuracy of the es-
timated loss characteristics of links, it cannot tell if and to what extent these
estimates are accurate.

Correlated links are not strictly the consequence of incomplete knowledge of
the network topology, they may arise from other causes than MPLS switches or
Ethernet switches not visible at layer three. For example, a bad implementation
of a network protocol deployed at a router might cause some of its outgoing links
to experience synchronous failures, and thus, be correlated; or a denial-of-service
attack might cause a particular set of links to be simultaneously congested. To
conclude, correlated links do exist in practice; it is unrealistic to discard them
and assume that all links are independent.
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4.2 Link Correlation Model

The reason why current tomographic algorithms rely on the Link Independence
assumption is that network tomography tries to solve a hard problem: both
continuous and Boolean loss tomography are ill-posed. Under the perspective
that all links are independent, network tomography is more approachable. Given
the variety of reasons that cause correlated links, the different nature and degree
of link correlations, and the fact that any increase in the number of correlated
links implies that we need to consider additional joint probability distributions of
the random variables describing the characteristics of these links, it is difficult
to study network tomography on correlated links. The challenge is to find a
link correlation model that is universal across the various causes of correlated
links, and at the same time realistic, but without unnecessarily complicating the
network tomography problem. In this section, we propose a model that takes
into account correlated links.

Correlated Links. Two links are statistically independent (for brevity,
just independent) if the losses that occur one link are independent from the
losses that occur on the other link. In the context of Boolean loss tomography
(see Section 2.3), if two links ej and ek are independent, then the congestion
status of link ej during a snapshot cannot affect the congestion status of link ek

during the same or any other snapshot; more formally, the random variables Zej

and Zek
are independent (or, equivalently, since they are Bernoulli random

variables, uncorrelated) from each another. By definition, two links that are
not independent, are correlated.

Correlation Sets. Unlike previous work which assumes that all links are
independent, our work considers a different perspective: we assume that a link
may be correlated only with a specific set of other links. More precisely, we
partition the set of links E into correlation sets {C1, C2, . . . } such that any two
links belonging to different correlation sets are independent. Links within the
same correlation set are potentially correlated, in the sense that they may be
either correlated or independent, but this information is not available to us;
hence, to stay on the safe side, we presume that they can be correlated.

Definition 4.0.3. A correlation set Cp is a set of potentially correlated links
such that:

∀ ej , ek ∈ E s.t. ej ∈ Cp, ek 6∈ Cp, Zej
is independent from Zek

.
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v1 v2

e1 e2

e3 e4
p1
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Figure 4.4: A toy topology with correlated links. Hosts V H = {v1, v2, v4, v5}.
Routers V R = {v3}. Links E = {e1, e2, e3, e4}. Paths P = {p1, p2, p3}.
Correlation sets C = {{e1}, {e2}, {e3, e4}}. Correlation subsets S =
{{e1}, {e2}, {e3}, {e4}, {e3, e4}}.

For example, in Figure 4.4, {e3, e4} is a correlation set which implies that link
e3 is independent from links e1 and e2, but is potentially correlated with link e4.

Definition 4.0.4. C is the set of all correlation sets.

For example, in Figure 4.4, C = {{e1}, {e2}, {e3, e4}}. Thus, links e3 and e4

are the only potentially correlated links, while links e1 and e2 are independent
with respect to all other links.

If all links in the network are independent, the set of links E is partitioned
into |E| correlation sets, one for each link, i.e., C = {{e1}, {e2}, . . . , {e|E|}}. At
the other extreme, if all links in the network are potentially correlated, there
is only one correlation set that includes all links, i.e., C = {{e1, e2, . . . , e|E|}}.
Note that it is not a mistake to assign two independent links to the same cor-
relation set since we do not assume that links within the same correlation set
are necessarily correlated. On the other hand, our model is violated if two
correlated links belong to different correlation sets.

The Correlation Sets Assumption. In our work, the assumption that
links are independent is substituted by the assumption that we know the corre-
lation sets.

Assumption 12. Correlation Sets: Links are grouped into known corre-
lation sets such that any two links belonging to different correlation sets are
independent.
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Our link correlation model is useful in scenarios where the operator knows
which links are most likely to be correlated. For instance, consider the scenario
where an operator uses network tomography to monitor the quality of links in
her domain and relies on traceroute to discover the domain’s topology (Sce-
nario "The operator monitoring her network" described in Section 4.1). In this
context, it makes sense for the operator to map each local-area network discov-
ered through traceroute to one correlation set. The links in each correlation set
are potentially correlated, because they may be sharing physical links and/or
management processes.

Alternatively, consider the scenario where the operator of one administrative
domain uses network tomography to determine whether a set of neighboring
domains are honoring their SLA, but does not have visibility into the internals
of these domains, because they use MPLS for internal routing (Scenario "The
ISP curious about its peer" described in Section 4.1). In this context, it makes
sense for the operator to map each administrative domain to one correlation set.
As above, the links in each correlation set are potentially correlated, because
they may be sharing physical links and/or management processes.

Nevertheless, our link correlation model is limited in scenarios where the op-
erator does not know which links may be correlated, e.g., when an unpredictable
traffic pattern affects the congestion status of multiple otherwise uncorrelated
links. For instance, consider an operator that uses network tomography to in-
vestigate a denial-of-service attack. Unless the links heavily congested by the
attack are part of the same local area network, or the botnet’s structure and
targets are known, there is no way to guess the link-correlation pattern caused
by the attack. Hence, the operator would mislabel these links as uncorrelated,
introducing inaccuracies in the model.

Furthermore, in practice, the size of the correlation sets plays an important
role. As correlation sets grow in size, it is increasingly more difficult to solve
the network tomography problem because we need to consider additional joint
probability distributions of the random variables describing the characteristics
of links. For instance, under the assumption that all links are potentially corre-
lated, the amount of information provided by network tomography is minimal.

Correlation subset. In our analysis, we often refer to the notion of a
correlation subset, i.e., a non-empty subset of some correlation set.

Definition 4.0.5. A correlation subset Sk is a set of potentially correlated links
such that

Sk 6= ∅ and Sk ⊆ Cp for some Cp ∈ C.
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Note that a correlation subset belongs to only one correlation set, but a corre-
lation set Cp has 2|Cp| − 1 correlation subsets. For example, in Figure 4.4, the
set of links {e3, e4} is a correlation subset because links e3 and e4 belong to
the same correlation set. However, the set of links {e1, e2} is not a correlation
subset because links e1 and e2 belong to different correlation sets, and are in-
dependent. As opposed to a set of independent links where each link may be
studied in isolation from the others, a correlation subset may conceal a common
cause of congestion.

Definition 4.0.6. S is the set of all correlation subsets.

For example, in Figure 4.4, the set of all correlation subsets is S = {{e1}, {e2},
{e3}, {e4}, {e3, e4}}.

4.3 Identifiable Link Characteristics

In Chapter 2, we have seen that generally neither the loss rates nor the con-
gestion statuses of links are identifiable from end-to-end measurements, and
that current tomographic algorithms try to counterbalance this with various as-
sumptions. We propose a different perspective, namely, we believe that slightly
less detailed loss characteristics of links are more useful in practice if they are
identifiable from end-to-end measurements.

The work in [NT07a] already gave valuable insights into this topic: in the
context of Boolean loss tomography, the probability that a link is congested is
identifiable from end-to-end measurements provided that all links are indepen-
dent, i.e., the Link Independence assumption holds. Nevertheless, as motivated
in Section 4.1, we prefer to keep our distance from this assumption since it
is a strong premise, violated in practical scenarios. Therefore, we ask the fol-
lowing question: under our correlation model described in Section 4.2, is the
probability that each link is congested statistically identifiable from end-to-end
measurements? In this section, we sketch the answer to this question with a toy
example.

Consider the topology in Figure 4.4. Under the assumption that all links are
independent, the tomographic algorithm in [NT07a] forms a system of equations
where the unknowns are the probability that each link is congested, for all links
in E. Suppose that path p1 is good, under the Separability assumption, the
probability of this event is equal to the probability that both links e1 and e3

are good. If the Link Independence assumption holds, this probability is the
product of the marginal probabilities forming the first equation in Equation 4.1,



56 CHAPTER 4. BOOLEAN TOMOGRAPHY ON CORRELATED LINKS

where Zej
is the congestion status of link ej given by Definition 2.0.1. In the

same way, we can express the probability that each path and each pair of paths
is good and form the remaining equations in Equation 4.1.

P (Wp1 = 0) = P (Ze1 = 0, Ze3 = 0) = P (Ze1 = 0)P (Ze3 = 0)

P (Wp2 = 0) = P (Ze1 = 0, Ze4 = 0) = P (Ze1 = 0)P (Ze4 = 0)

P (Wp3 = 0) = P (Ze2 = 0, Ze4 = 0) = P (Ze2 = 0)P (Ze4 = 0)

P (Wp2 = 0,Wp3 = 0) = P (Ze1 = 0, Ze2 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze2 = 0)P (Ze4 = 0) (4.1)

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0, Ze3 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze3 = 0)P (Ze4 = 0)

P (Wp1 = 0,Wp3 = 0) = P (Ze1 = 0, Ze2 = 0, Ze3 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze2 = 0)P (Ze3 = 0)P (Ze4 = 0)

The resulting system has four unknowns (one for each link) and four linearly
independent equations; hence, we can solve this system using standard linear
algebra techniques and determine the probability that each link is good. The
probability that a link is congested is the complement with respect to 1 of the
probability that the link is good, i.e., P

(
Zej

= 1
)

= 1−P
(
Zej

= 0
)
, for all links

ej ∈ E. Thus, this algorithm relies on the Link Independence assumption in
order to form the system in Equation 4.1 and to compute the probability that
each link is congested. If this assumption is violated, the system is incorrect
and consequently, the estimated probabilities are inaccurate. For example, in
Figure 4.4, if links e3 and e4 are indeed correlated, then P (Ze3 = 0, Ze4 = 0) 6=
P (Ze3 = 0)P (Ze4 = 0), and the last two equations of the system in Equation 4.1
are wrong.

However, if we take into account that fact that links e3 and e4 are potentially
correlated, we obtain the system in Equation 4.2.

As opposed to the system in Equation 4.1 formed under the Link Independence
assumption, we have an extra unknown, namely, the probability that links e3

and e4 are simultaneously good, i.e., P (Ze3 = 0, Ze4 = 0). But if we consider
only the first four equations of the system in Equation 4.2, we can ignore the
extra unknown, and obtain a system of four linearly independent equations and
four unknowns, namely, P

(
Zej

= 0
)
, with j = 1 . . . 4. Thus, even if links e3 and
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e4 are potentially correlated, we can still determine the probability that each
link is congested.

P (Wp1 = 0) = P (Ze1 = 0, Ze3 = 0) = P (Ze1 = 0)P (Ze3 = 0)

P (Wp2 = 0) = P (Ze1 = 0, Ze4 = 0) = P (Ze1 = 0)P (Ze4 = 0)

P (Wp3 = 0) = P (Ze2 = 0, Ze4 = 0) = P (Ze2 = 0)P (Ze4 = 0)

P (Wp2 = 0,Wp3 = 0) = P (Ze1 = 0, Ze2 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze2 = 0)P (Ze4 = 0) (4.2)

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0, Ze3 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze3 = 0, Ze4 = 0)

P (Wp1 = 0,Wp3 = 0) = P (Ze1 = 0, Ze2 = 0, Ze3 = 0, Ze4 = 0)

= P (Ze1 = 0)P (Ze2 = 0)P (Ze3 = 0, Ze4 = 0)

In conclusion, there are scenarios where the probability that each link is
congested is identifiable from end-to-end measurements without the need to
assume that all links are independent. In the next section, we discuss the
identification conditions that make it possible to determine these probabilities.

4.4 Identification Condition

We want to determine whether it is feasible to identify from unicast end-to-end
measurements the probability that each link is congested without assuming that
all links are independent. Theorem 4.1 provides an answer based on the link
correlation model described in Section 4.2, it states that under certain well-
defined conditions, the probability that each link is congested is identifiable
from end-to-end measurements.

Theorem 4.1. For any network graph and any partition of links into correlation
sets, if Assumptions 1, 3, 6, and 12 (Routing Stability, Stationarity, Separability
and Correlation Sets) hold, then the probability that any set of links is congested
is identifiable from end-to-end measurements if and only if Condition 1 (Iden-
tifiability++) is satisfied.

Proof. The proof is given in Section 4.7.

Condition 1. Identifiability++: Any two correlation subsets are not tra-
versed by the same paths.
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The Identifiability++ condition generalizes a fundamental condition of net-
work tomography, that any two links are not traversed by exactly the same
paths, i.e., the Link Identifiability assumption discussed in Section 2.1.1. Intu-
itively, this earlier condition captured the fact that, when two links participate
in exactly the same paths, there is no way to differentiate between the two links
based only on end-to-end observations even if all links are independent. We
generalize this condition to correlated links to say that, when two groups of
potentially correlated links participate in exactly the same paths (and assuming
we know nothing about the nature of the correlation), there is no way to differ-
entiate between the two groups based only on end-to-end observations. Indeed,
in the particular case when all links are independent, our condition becomes
exactly the earlier condition.

To better illustrate this condition, we define the path coverage function
Paths(E) which maps a set of links E ⊆ E to the set of paths that traverse at
least one of these links.

Definition 4.1.1. The path coverage function applied to a set of links E ⊆ E

is:
Paths(E) = { pi ∈ P | pi 3 ej for some ej ∈ E }.

For example, in Figure 4.4, Paths({e1, e3}) = {p1, p2}, and Paths({e1, e2}) =
{p1, p2, p3}. Using this definition, we can restate the Identifiability++ condition
as:

∀ Sk,Sl ∈ S, Paths(Sk) 6= Paths(Sl), (4.3)

with S given by Definition 4.0.6.

We test whether the Identifiability++ condition holds for the toy topology in
Figure 4.5. Indeed, each correlation subset Sk ∈ S is traversed by a different set
of paths Paths(Sk). Intuitively, this allows us to measure the probability that
the paths which traverse each correlation subset are congested and infer, from
that, the probability that the links in each correlation subset are congested.

To illustrate the challenge introduced by link correlations, we also consider
the scenario depicted in Figure 4.6, where the Identifiability++ condition does
not hold. In this case, correlation subsets {e1} and {e2, e3} are traversed by
the same set of paths {p1, p2}. As a result, we cannot distinguish between the
probability that e1 is congested and the probability that e2 and e3 are simulta-
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Sk ∈ S Paths(Sk)
{e1} {p1, p2}
{e2} {p3}
{e3} {p1}
{e4} {p2, p3}
{e3, e4} {p1, p2, p3}

Figure 4.5: A toy topology with correlated links where the Identifiability++
condition holds, i.e., each correlation subset Sk is traversed by a different set of
paths Paths(Sk). Hosts V H = {v1, v2, v4, v5}. Routers V R = {v3}. Links E =
{e1, e2, e3, e4}. Paths P = {p1, p2, p3}. Correlation sets C1 = {e1}, C2 = {e2},
and C3 = {e3, e4}. Correlation subsets S = {{e1}, {e2}, {e3}, {e4}, {e3, e4}}.

neously congested. If links e2 and e3 were uncorrelated, we would not have this
problem; we could form the system of equations as explained in Section 4.3:

P (Wp1 = 0) = P (Ze1 = 0)P (Ze2 = 0)

P (Wp2 = 0) = P (Ze1 = 0)P (Ze3 = 0)

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0)P (Ze2 = 0)P (Ze3 = 0)

which has three unknowns, i.e., P
(
Zej

= 0
)
with j = 1 . . . 3, and three linearly

independent equations; thus, we can solve this system and determine the prob-
ability that each link is congested. Nevertheless, in our example links e2 and e3

are correlated, hence, the correct system of equations is:

P (Wp1 = 0) = P (Ze1 = 0)P (Ze2 = 0)

P (Wp2 = 0) = P (Ze1 = 0)P (Ze3 = 0)

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0)P (Ze2 = 0, Ze3 = 0)

which has four unknowns, i.e., P
(
Zej

= 0
)
with j = 1 . . . 3, and P (Ze2 = 0, Ze3 = 0),

but only three linearly independent equations. Therefore, this system is unde-
termined, and in this case, we cannot compute accurately the probability that
each link is congested. This un-identifiability problem is not a consequence of
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Sk ∈ S Paths(Sk)
{e1} {p1, p2}
{e2} {p1}
{e3} {p2}
{e2, e3} {p1, p2}

Figure 4.6: A toy topology with correlated links where the Identifiability++
condition does not holds, i.e., each correlation subset Sk is not traversed by a
different set of paths Paths(Sk). Hosts V H = {v1, v3, v4}. Routers V R = {v2}.
Links E = {e1, e2, e3}. Paths P = {p1, p2}. Correlation sets C1 = {e1}, and
C2 = {e2, e3}. Correlation subsets S = {{e1}, {e2}, {e3}, {e2, e3}}.

the algorithm we are using, but is intrinsic to the network tomography prob-
lem. The Identifiability++ condition is both necessary and sufficient in order
to identify the probability that each set of links is congested.

4.5 Congestion Probability

One one hand, the probability that a link is congested is less detailed information
than the congestion status or the loss rate of the link. As opposed to the
congestion status of a link, which provides the exact times when the link was
congested or the loss rate of the link, which represents the fraction of packets
lost at that link, the congestion probability of a link tells us only how often the
link is congested. For example, instead of knowing that link ej was congested
precisely 20 minutes ago (in the case of the congestion status) or that it lost 5%
of the packets in the last hour (in the case of the loss rate), we only know that
link ej was congested 15% of the time during the last hour. On the other hand,
the probability that each link is congested can be obtained accurately under
weaker assumptions than those required by current tomographic algorithms as
stated by Theorem 4.1.

The probability that each link is congested represents valuable information
for network diagnosis, routing algorithms and SLA verification. Consider the
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scenario where the operator of an ISP wants to monitor the quality of service
offered by its most important peers. In particular, for each peer, the operator
wants to understand: how often the peer is responsible for connectivity/per-
formance problems encountered by the customers; how frequently the peer is
congested and how its congestion level changes over the course of a day or a
week. If the operator knows the probability that each intra-domain link inside
the peer’s network is congested, she already has the answer to these questions.
In short, this information is very powerful for an ISP since it enables the oper-
ator to take the right decisions with respect to its peers.

Theorem 4.1 establishes the identification conditions not only for the prob-
ability that each individual link is congested, i.e., P

(
Zej

= 1
)
for all ej ∈ E,

but also for the probability that all links in a set are simultaneously congested,
i.e., P

(
∩ej∈E {Zej

= 1}
)
for all E ⊆ E. We call the probability that link ej is

congested, the congestion probability of link ej , and the probability that all links
in a set E ⊆ E are congested, the congestion probability of link set E . Compared
to the congestion probabilities of individual links, the congestion probabilities
of link sets provide additional information about the network at no additional
measurement cost, because the same end-to-end measurements are used. For
example, the congestion probabilities of link sets give valuable insights into
which network links are actually correlated, and how strong their correlation is.
Remember that the correlation sets defined in Section 4.2 have may-semantics:
links in the same correlation set may be correlated, but they do not need to be.
If we know which links in the network are actually correlated, we can improve
the network diagnosis phase. For instance, if the probability that all outgoing
links of a router are simultaneously congested is high, then most likely something
is wrong with the router itself. Furthermore, if the Correlation Sets assumption
holds, we can use the congestion probabilities of link sets to reduce the size of
the correlation sets. Finally, the congestion probabilities of link sets would be
useful for routing algorithms, e.g., in order to compute disjoint paths which do
not traverse links that tend to fail together.

If the Correlation Sets assumption holds, then links belonging to different
correlation sets are independent; hence, we can express the congestion proba-
bility of link set E as:

P

 ⋂
ej∈E
{Zej

= 1}

 =
∏
Cp∈C

P

 ⋂
ej∈E∩Cp

{Zej
= 1}

 ,
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with C given by Definition 4.0.4. A set of links E ∩ Cp is either the empty
set or a correlation subset since it belongs to correlation set Cp. In the lat-
ter case, (E ∩ Cp) ∈ S with S given by Definition 4.0.6. For exam-
ple, in Figure 4.5, we have P (Ze1 = 1, Ze2 = 1) = P (Ze1 = 1)P (Ze2 = 1) as
links e1 and e2 belong to different correlation sets and are independent, but
P (Ze1 = 1, Ze3 = 1, Ze4 = 1) = P (Ze1 = 1)P (Ze3 = 1, Ze4 = 1) as links e3 and
e4 are potentially correlated. Therefore, the congestion probability of a link
set can be expressed as a product of the congestion probabilities of various
correlation subsets.

In conclusion, if we know the congestion probability of correlation subset Sk,
for all Sk ∈ S, then it is straightforward to compute the congestion probability
of all possible sets of links. For example, in Figure 4.4, we need to know the
congestion probability of each individual link, i.e., P

(
Zej

= 1
)
with j = 1 . . . 4,

and the probability P (Ze3 = 1, Ze4 = 1). In the particular case when all links
are independent, it is sufficient to know the congestion probability of each link
in order to able to compute the congestion probability of all possible sets of
links.

4.6 Illustration of Theoretical Results

In this section, we illustrate how the proof of Theorem 4.1 works using the
topology in Figure 4.5 where the Identifiability++ condition holds, and the
topology in Figure 4.6 where the Identifiability++ condition does not hold.
Our goal is to identify the congestion probabilities of all sets of links from the
probabilities that sets of paths are congested, where the latter are available from
end-to-end measurements. As explained in Section 4.5, the quantities of interest
can be computed if we know the congestion probability of each correlation subset
Sk ∈ S, with Sk given by Definition 4.0.5. Hence, a key contribution of the proof
of Theorem 4.1 consists of showing that we can, indeed, compute all these |S|
probabilities, if and only if the Identifiability++ condition holds.

4.6.1 Definitions and Notations

We start by defining and providing compact notation for certain terms that
appear frequently in our illustration. All defined symbols are summarized in
Table 4.1.
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Definition 4.1.2. The network state S is the set of all congested links during
a snapshot:

S ≡ { ej ∈ E | Zej = 1 },

with Zej
given by Definition 2.0.1.

For example, in Figure 4.5, if links e1 and e3 are good, whereas e2 and e4 are
congested, then S = {e2, e4}. Under the Separability assumption, a congested
path must traverse at least one congested link. From Definition 4.1.1 of the path
coverage function, Paths(S) is equal to the set of all congested paths during a
snapshot, i.e.,

Paths(S) = { pi ∈ P | Wpi = 1 }, (4.4)

with Wpi
given by Definition 2.0.2. For example, in Figure 4.5, if S = {e2, e4},

then Paths(S) = {p2, p3}.

Definition 4.1.3. The state SCp
of correlation set Cp is the set of all congested

links in Cp during a snapshot:

SCp
≡ { ej ∈ Cp | Zej

= 1 },

with Cp given by Definition 4.0.3, and Zej
given by Definition 2.0.1.

The network state is the union of the states of all correlation sets, i.e.,

S =
⋃
Cp∈C

SCp . (4.5)

with C the set of all correlation sets (Definition 4.0.4). For example, in Fig-
ure 4.5, if links e1 and e3 are good, whereas e2 and e4 are congested, then
SC1 = ∅, SC2 = {e2}, and SC3 = {e4}. Since for any two links that belong to
different correlation sets ej ∈ Cp and ek ∈ Cq, p 6= q, the congestion statuses
Zej

and Zek
are statistically independent (Definition 4.0.3), it is also the case

that the states of any two correlation sets SCp and SCq , p 6= q, are statistically
independent.

Given a correlation subset Sk ∈ S that belongs to a correlation set Cp, i.e.,
Sk ⊆ Cp, we refer to the following events:

Definition 4.1.4. SCp = Sk is the event that the links in correlation subset Sk

are the only congested links in correlation set Cp.
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For example, in Figure 4.5, SC3 = {e4} is the event that link e4 is congested,
whereas link e3 is good.

Definition 4.1.5. Paths(S) = Paths(Sk) is the event that the paths traversing
links in correlation subset Sk are the only congested paths in the network.

For example, in Figure 4.5, Paths(S) = Paths({e4}) is the event that paths p2

and p3 are congested, whereas p1 is good.

Finally, for each correlation subset Sk ⊆ Cp, we define its congestion fac-
tor αSk

.

Definition 4.1.6. The congestion factor αSk
of correlation subset Sk is:

αSk
=

P
(
SCp = Sk

)
P
(
SCp

= ∅
) .

This expresses how often the links in Sk are the only congested links in cor-
relation set Cp compared to how often all links in Cp are good. Note that
P
(
SCp

= ∅
)
6= 0 because there is a non-zero probability that all paths in the

network are good.

4.6.2 The Identifiability++ condition is sufficient.

Using the example in Figure 4.5, we first illustrate that, if the Identifiabil-
ity++ condition holds, then we can identify the probability that all links in
each correlation subset are congested, i.e., P

(
Zej

= 1
)
with j = 1 . . . 4, and

P (Ze3 = 1, Ze4 = 1).

Setup. Consider the event that all paths are good. By the Separability assump-
tion, this implies that all links are good. Using the definitions in Section 4.6.1,
we obtain:

P (Paths(S) = ∅) = P (S = ∅) = P (SC1 = ∅) P (SC2 = ∅) P (SC3 = ∅) . (4.6)

From end-to-end measurements, we can measure the probability that all paths
are good.

We consider each correlation subset Sk ∈ S and the event that the paths
traversing links in Sk are the only congested paths in the network, that is,
the event Paths(S) = Paths(Sk). From end-to-end measurements, we can also
measure the probabilities of these events.
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Step 1. Consider the event that Paths({e3}) = {p1} is the only congested
path in the network. Since paths p2 and p3 are good, then links e1, e2 and
e4 are good, and link e3 must be congested, i.e., the network can only be in
state S = {e3}:

SC1 SC2 SC3 S Paths(S)

∅ ∅ {e3} {e3} {p1}

Hence, we can write:

P (Paths(S) = {p1}) = P (SC1 = ∅) P (SC2 = ∅) P (SC3 = {e3}) .

If we divide this by Equation 4.6, we get

P ( Paths(S) = {p1} )
P ( Paths(S) = ∅ ) = P ( SC3 = {e3} )

P ( SC3 = ∅ ) = α{e3},

where α{e3} is the congestion factor of {e3} given by Definition 4.1.6. Since
both the numerator and denominator of the left-most term can be measured,
we can compute α{e3}.

Step 2. Consider the event that Paths({e1}) = {p1, p2} are the only congested
paths in the network. Since path p3 is good, links e2 and e4 are good; hence,
either e1 is the only congested link, or e1 and e3 are the only congested links,
i.e., the network can only be in state S = {e1} or in state S = {e1, e3}:

SC1 SC2 SC3 S Paths(S)

{e1} ∅ ∅ {e1} {p1, p2}
{e1} ∅ {e3} {e1, e3} {p1, p2}

Therefore, we can write:

P ( Paths(S) = {p1, p2} ) = P (SC1 = {e1}) P (SC2 = ∅) P (SC3 = ∅)

+ P (SC1 = {e1}) P (SC2 = ∅) P (SC3 = {e3}) .

If we divide this by Equation 4.6, we get

P ( Paths(S) = {p1, p2} )
P ( Paths(S) = ∅ ) = (1 + α{e3}) α{e1}.

Since both the numerator and denominator of the left-most term can be mea-
sured, and we have already computed α{e3}, we can now compute α{e1}.
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Step 3. With the same rationale, we compute all congestion factors αSk
, for all

correlation subsets Sk ∈ S. The gist is that, thanks to the Identifiability++
condition, we can order the correlation subsets and compute their congestion
factors such that each factor depends only on terms that can be measured or
have already been computed. In our particular example, a possible ordering is
〈{e3}, {e2}, {e1}, {e4}, {e3, e4}〉.

Step 4. According to Lemma 4.3, once we have computed all congestion factors,
we can derive P

(
Zej = 1

)
for all j = 1 . . . 4, and P (Ze3 = 1, Ze4 = 1). Once

we know these 5 probabilities, we can easily compute the rest since links which
belong to different correlation sets are independent, e.g., P (Ze1 = 1, Ze3 = 1) =
P (Ze1 = 1) P (Ze3 = 1).

4.6.3 The Identifiability++ condition is necessary.

Using the example in Figure 4.6, we now illustrate that, if the Identifiability++
condition does not hold, then we cannot always identify the probability that
each set of links is congested from end-to-end measurements.

Setup. As in the previous example, we can measure the probability that all
paths are good, i.e.,

P (Paths(S) = ∅) = P (S = ∅) = P (SC1 = ∅) P (SC2 = ∅) . (4.7)

Step 1. Consider the event that Paths({e2}) = {p1} is the only congested path in
the network. Exactly as in the previous example, we can divide the probability
that p1 is the only congested path in the network, by Equation 4.7, and compute
α{e2}. Similarly, we can consider the event that Paths({e3}) = {p2} is the only
congested path in the network, and compute α{e3}.

Step 2. Consider the event that Paths({e1}) = {p1, p2} are both congested. In
this case, the network can be in one of the following states:

SC1 SC2 S Paths(S)

{e1} ∅ {e1} {p1, p2}
{e1} {e2} {e1, e2} {p1, p2}
{e1} {e3} {e1, e3} {p1, p2}
{e1} {e2, e3} {e1, e2, e3} {p1, p2}
∅ {e2, e3} {e2, e3} {p1, p2}
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Hence, we can write:

P (Paths(S) = {p1, p2}) = P (SC1 = {e1}) P (SC2 = ∅)

+ P (SC1 = {e1}) P (SC2 = {e2})

+ P (SC1 = {e1}) P (SC2 = {e3})

+ P (SC1 = {e1}) P (SC2 = {e2, e3})

+ P (SC1 = ∅) P (SC2 = {e2, e3}) .

If we divide this by Equation 4.7, we get:

P (Paths(S) = {p1, p2})
P (Paths(S) = ∅) = α{e1}(1 + α{e2} + α{e3} + α{e2,e3}) + α{e2,e3}.

This is the only equation where the congestion factors α{e1} and α{e2,e3} ap-
pear, i.e., we have only one equation for two unknowns. Furthermore, there is
no additional information that we can obtain from end-to-end measurements:
In the context of Boolean loss tomography, we can only measure the con-
gested paths in the network. Hence, we must compute the congestion fac-
tors from the probabilities that sets of paths are congested. In the case that
P (Paths(S) = {p1, p2}) 6= 0, we cannot compute all congestion factors.

4.7 Theoretical Results

In this section, we introduce additional definitions and notations that we will
later use in order to prove Theorem 4.1. All our symbols are summarized in
Table 4.1.

4.7.1 A Partial Ordering of Correlation Subsets

Definition 4.1.7. The precedence relation between two correlation subsets
Sk,Sl ∈ S is:

Sk ≺ Sl ≡ |Paths(Sk)| < |Paths(Sl)|,

where |Paths(Sk)| is the number of paths traversing links in Sk given by Defini-
tion 4.1.1.

The fact that Sk ≺ Sl implies that the links in Sk are traversed by fewer paths
than the links in Sl. For example, in Figure 4.5, we have Paths({e3}) = {p1},



68 CHAPTER 4. BOOLEAN TOMOGRAPHY ON CORRELATED LINKS

and Paths({e1}) = {p1, p2}; since |Paths({e3})| = 1 < 2 = |Paths({e1})|, we
obtain {e3} ≺ {e1}.

Definition 4.1.8. OS is a partial ordering of all the correlation subsets in S

induced by the precedence relation given by Definition 4.1.7.

That is, the correlation subsets in OS are ordered by the number of paths that
traverse links in these subsets. In Figure 4.5, a possible partial ordering is
OS = {{e3}, {e2}, {e1}, {e4}, {e3, e4}}.

4.7.2 Some Basic Probabilities

In this section, we formally express the probabilities of the basic events defined
in Section 4.6.1. We will use these probabilities in the proof of Theorem 4.1.

Network State Probability

From Definitions 4.1.2, and 4.1.3,

SCp = S ∩ Cp, for all Cp ∈ C. (4.8)

When S = E , with E ⊆ E, i.e., only the links in E are congested, Equation 4.8
yields SCp = E ∩Cp, for all correlation sets Cp ∈ C. A set of links E ∩Cp is either
the empty set when no links in E belong to correlation set Cp, or a correlation
subset since it is included in correlation set Cp. For example, in Figure 4.5,
suppose links e1 and e3 are good, whereas links e2 and e4 are congested, then
the network state is S = {e2, e4}, and the states of the correlation sets are
SC1 = S ∩ {e1} = ∅, SC2 = S ∩ {e2} = {e2}, and SC3 = S ∩ {e3, e4} = {e4}.

We consider the probability that the network is in state S = E , with E ⊆ E.
Since we assume independence between correlation sets, i.e., the Correlation
Sets assumption, from Equations 4.5 and 4.8, we get:

P ( S = E ) = P

 ⋂
Cp∈C

SCp
= E ∩ Cp

 =
∏
Cp∈C

P
(
SCp

= E ∩ Cp

)
. (4.9)

Next, we express the ratio of the probability that the network is in state
S = E to the probability that all links in the network are good, i.e., S = ∅.
From Equation 4.9, and Definition 4.1.6, we obtain:
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P ( S = E )
P ( S = ∅ ) =

∏
Cp∈C

P
(
SCp = E ∩ Cp

)
∏
Cq∈C

P
(
SCq

= ∅
) =

∏
Cp∈C

P
(
SCp

= E ∩ Cp

)
P
(
SCp

= ∅
)

=
∏
Cp∈C

s.t. E∩Cp 6=∅

αE∩Cp
. (4.10)

All Paths Are Good

Consider the event that all paths in P are good, i.e., Paths(S) = ∅ (Defini-
tion 4.1.5). We express the probability of this event using the Separability
assumption, in particular, its implication that, if all paths in P are good, then
necessarily all links in E are good. From Equation 4.9, we obtain:

P (Paths(S) = ∅) = P (S = ∅) =
∏
Cp∈C

P
(
SCp

= ∅
)
. (4.11)

Some Paths Are Congested

Consider the event that all paths traversing links in correlation subset Sk are
congested, while all other paths in the network are good, i.e., Paths(S) =
Paths(Sk) (Definition 4.1.5). We express the probability of this event as:

P (Paths(S) = Paths(Sk)) =
∑

E⊆E s.t.
Paths(E)=Paths(Sk)

P (S = E) . (4.12)

Clearly, one possible set of links is E = Sk, i.e., the links in Sk are the only
congested links in the network, but there may be other sets of links which are
spread across different correlation sets. Therefore, we can rewrite Equation 4.12
as:

P (Paths(S) = Paths(Sk)) = P ( S = Sk ) +
∑

E⊆E,E6=Sk s.t.
Paths(E)=Paths(Sk)

P (S = E) .

(4.13)

We now develop Equation 4.13 further by considering the following: Since
Sk is a correlation subset, there must be one correlation set that contains Sk,
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which we denote by Cq, i.e., Sk ⊆ Cq. We partition all possible network states
E ⊆ E, for which E 6= Sk and Paths(E) = Paths(Sk), into two sets: the states
where E ∩ Cq = Sk (the links in Sk are the only congested links in correlation
set Cq) and the states where E ∩ Cq 6= Sk:

P (Paths(S) = Paths(Sk)) = P ( S = Sk )

+
∑

E⊆E,E6=Sk s.t. E∩Cq=Sk,
Paths(E)=Paths(Sk)

P ( S = E )

+
∑

E⊆E s.t. E∩Cq 6=Sk,
Paths(E)=Paths(Sk)

P ( S = E ) . (4.14)

Note that the condition E ∩ Cq 6= Sk ensures that E 6= Sk since Sk ⊆ Cq.
Furthermore, if we use Equation 4.9, we obtain:

P ( Paths(S) = Paths(Sk) ) = P
(
SCq = Sk

) ∏
Cp∈C,p6=q

P
(
SCp = ∅

)

+ P
(
SCq

= Sk

) ∑
E⊆E,E6=Sk s.t. E∩Cq=Sk,

Paths(E)=Paths(Sk)

 ∏
Cp∈C,p 6=q

P
(
SCp

= E ∩ Cp

)

+
∑

E⊆E s.t. E∩Cq 6=Sk,
Paths(E)=Paths(Sk)

 ∏
Cp∈C

P
(
SCp

= E ∩ Cp

) . (4.15)

Finally, if we divide by Equation 4.11, we obtain:

P ( Paths(S) = Paths(Sk) )
P ( Paths(S) = ∅ ) = αSk

(1 + ΓSk
) + ΓS̄k

(4.16)

where

ΓSk
=

∑
E⊆E,E6=Sk s.t. E∩Cq=Sk,

Paths(E)=Paths(Sk)

 ∏
Cp∈C,p 6=q
E∩Cp 6=∅

αE∩Cp

 , (4.17)

and

ΓS̄k
=

∑
E⊆E s.t. E∩Cq 6=Sk,
Paths(E)=Paths(Sk)

 ∏
Cp∈C
E∩Cp 6=∅

αE∩Cp

 . (4.18)



4.7. THEORETICAL RESULTS 71

Illustration

Consider the toy topology in Figure 4.5, correlation subset Sk = {e3, e4}, and
the event (Paths(S) = Paths(Sk) = {p1, p2, p3}), i.e., all paths are congested.
In this case, the network is in one of the following states:

S SC1 SC2 SC3
E1 = {e3, e4} ∅ ∅ {e3, e4}
E2 = {e1, e3, e4} {e1} ∅ {e3, e4}
E3 = {e2, e3, e4} ∅ {e2} {e3, e4}
E4 = {e1, e2, e3, e4} {e1} {e2} {e3, e4}
E5 = {e1, e2} {e1} {e2} ∅
E6 = {e1, e2, e3} {e1} {e2} {e3}
E7 = {e1, e2, e4} {e1} {e2} {e4}
E8 = {e1, e4} {e1} ∅ {e4}

In this particular case, Sk ⊆ C3, that is, q = 3. The first state is E1 = Sk =
{e3, e4}. For the next three states Ei with i = 2 . . . 4, we have Ei ∩ C3 = Sk

and Ei 6= Sk, whereas for the rest of the states Ei with i = 5 . . . 8, we have
Ei ∩ C3 6= Sk. Hence, if we apply Equations 4.14 and 4.15, we obtain:

P ( Paths(S) = Paths({e3, e4}) ) = P (S = E1) +
4∑

i=2
P (S = Ei) +

8∑
i=5

P (S = Ei)

= P ( SC1 = ∅ ) P ( SC2 = ∅ ) P ( SC3 = {e3, e4} )
+ P ( SC1 = {e1} ) P ( SC2 = ∅ ) P ( SC3 = {e3, e4} )
+ P ( SC1 = ∅ ) P ( SC2 = {e2} ) P ( SC3 = {e3, e4} )
+ P ( SC1 = {e1} ) P ( SC2 = {e2} ) P ( SC3 = {e3, e4} )
+ P ( SC1 = {e1} ) P ( SC2 = {e2} ) P ( SC3 = ∅ )
+ P ( SC1 = {e1} ) P ( SC2 = {e2} ) P ( SC3 = {e3} )
+ P ( SC1 = {e1} ) P ( SC2 = {e2} ) P ( SC3 = {e4} )
+ P ( SC1 = {e1} ) P

(
S2 = ∅

)
P ( SC3 = {e4} ) .
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When we divide by Equation 4.11, we obtain:

P ( Paths(S) = Paths({e3, e4}) )
P ( Paths(S) = ∅ ) = α{e3,e4}(1 + Γ{e3,e4}) + Γ{e3,e4}

= α{e3,e4}(1 + α{e1} + α{e2} + α{e1}α{e2}︸ ︷︷ ︸
Γ{e3,e4}

)

+ α{e1}α{e2}(1 + α{e3} + α{e4}) + α{e1}α{e4}︸ ︷︷ ︸
Γ{e3,e4}

.

4.7.3 Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1 which states that under
certain well-defined conditions, the congestion probability of link set E is iden-
tifiable from end-to-end measurements, for all possible link sets E ⊆ E. First,
we introduce the lemmas used in this proof.

Lemma 4.2. For any correlation subset Sk ∈ S, ΓSk
and ΓS̄k

given by Equa-
tions 4.17 and 4.18, depend only on congestion factors αSl

(Definition 4.1.6) of
correlation subsets Sl ∈ S such that Sl ≺ Sk (Definition 4.1.7).

Proof. Consider a correlation subset Sk ∈ S (Definition 4.0.5). From Equa-
tions 4.17, and 4.18, we know that ΓSk

and ΓS̄k
depend only on congestion

factors αE∩Cp
, where Cp is a correlation set (Definition 4.0.3), and E ⊆ E is a

set of links such that E 6= Sk and Paths(E) = Paths(Sk), with Paths(E) the path
coverage function given by Definition 4.1.1.

First, we show that all correlation subsets Sl 6= Sk whose congestion fac-
tors αSl

appear in ΓSk
or ΓS̄k

, satisfy Sl ≺ Sk. In order for αSl
to appear in

ΓSk
or ΓS̄k

, Sl = E ∩Cp, where Cp is the correlation set of Sl, and E ⊆ E satisfies
Paths(E) = Paths(Sk). Therefore, Paths(Sl) = Paths(E ∩ Cp) ⊆ Paths(E), and
consequently, Paths(Sl) ⊆ Paths(Sk). We distinguish two cases:

(a) Paths(Sl) = Paths(Sk). Correlation subsets Sl and Sk are traversed by the
same paths. But according to Identifiability++ condition, there exist no
two correlation subsets traversed by the same paths. Hence, it must be the
case that Sl = Sk, which contradicts our hypothesis.

(b) Paths(Sl) ⊂ Paths(Sk). Correlation subset Sl is traversed by fewer paths
than Sk, i.e., |Paths(Sl)| < |Paths(Sk)|. Therefore, we obtain Sl ≺ Sk.

Second, we show that the congestion factor αSk
cannot appear in ΓSk

and ΓS̄k
.

We denote by Cq the correlation set of Sk. From Equation 4.17, ΓSk
depends
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only on congestion factors αE∩Cp
, where p 6= q, hence, the congestion factors

of correlation subsets that belong to Cq do not appear in this term, and con-
sequently, αSk

cannot appear in this term. Similarly, from Equation 4.18, ΓS̄k

depends on congestion factors αE∩Cp
, where if p = q, then E ∩ Cq 6= Sk, hence,

the congestion factor αSk
cannot appear in this term as well.

In conclusion, all correlation subsets Sl ∈ S whose congestion factors αSl

appear in ΓSk
or ΓS̄k

, satisfy Sl ≺ Sk.

Lemma 4.3. The congestion probability of links set E, i.e., P

 ⋂
ej∈E

{Zej
= 1}

,

is uniquely determined from the congestion factors αSk
(Definition 4.1.6) of cor-

relation subsets Sk ∈ S, for all sets of links E ⊆ E.

Proof. As discussed in Section 4.5, the congestion probability of any set of links
can be expressed as the product of the congestion probabilities of various corre-
lation subsets. Therefore, it suffices to show that we can compute the congestion
probabilities of all possible correlation subsets Sk ∈ S (Definition 4.0.5).

We prove our lemma for each correlation set Cp ∈ C (Definition 4.0.3). More
precisely, we show that if we know the congestion factors αSk

of all correlation
subsets Sk ⊆ Cp, we can determine the probability P

(
∩ej∈E {Zej

= 1}
)
for any

set of links E ⊆ Cp.

First, we compute the probability of the event SCp = ∅ with SCp given by
Definition 4.1.3, i.e., all links in correlation set Cp are good:

P
(
SCp = ∅

)
= 1− P

(
SCp 6= ∅

)
= 1−

∑
Sk⊆Cp,Sk 6=∅

P
(
SCp = Sk

)
= 1−

∑
Sk⊆Cp,Sk 6=∅

αSk
P
(
SCp

= ∅
)
.

Since we know the congestion factors αSk
of all correlation subsets Sk ∈ Cp, we

can compute P
(
SCp

= ∅
)
from the above equation:

P
(
SCp = ∅

)
= 1

1 +
∑

Sk⊆Cp,Sk 6=∅

αSk

.
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Using this result, we can compute the probability of the event SCp
= Sk, i.e.,

the links in Sk are the only congested links in correlation set Cp, for all Sk ⊆ Cp:

P
(
SCp

= Sk

)
= αSk

P
(
SCp

= ∅
)

= αSk

1 +
∑

Sl⊆Cp,Sl 6=∅

αSl

. (4.19)

Finally, we determine the probability that all links in E are congested for
any set of links E ⊆ Cp. The links in E ⊆ Cp are simultaneously congested if
and only if all links belonging to correlation subsets Sk ⊆ Cp with E ⊆ Sk are
simultaneously congested. From the law of total probability and Equation 4.19,
we obtain:

P

 ⋂
ej∈E

{Zej = 1}

 =
∑
Sk⊆Cp

s.t. E⊆Sk

P
(
SCp = Sk

)
=

∑
Sk⊆Cp

s.t. E⊆Sk

αSk

1 +
∑

Sl⊆Cp,Sl 6=∅

αSl

.

Lemma 4.4. The congestion factors αSk
(Definition 4.1.6) of all correlation

subsets Sk ∈ S, are uniquely determined from the congestion probabilities of link

sets E ⊆ E, i.e., P

 ⋂
ej∈E

{Zej
= 1}

.

Proof. We prove the lemma for each correlation set Cp ∈ C (Definition 4.0.3).
More precisely, we show that if we know the probability P

(
∩ej∈E {Zej

= 1}
)

for any set of links E ⊆ Cp, we can determine the congestion factors αSk
of all

correlation subsets Sk ⊆ Cp.

We order all correlation subsets Sk ⊆ Cp in decreasing order of the number
of links in each subset, that is, correlation subset Sl comes before correlation
subset Sk in this ordering if Sl contains more links then Sk. Following this order,
we compute for each correlation subset Sk ⊆ Cp, the probability of the event
SCp

= Sk with SCp
given by Definition 4.1.3, i.e., the links in Sk are the only

congested links in Cp. By applying the law of total probability for the events
that links in correlation subsets belonging to Cp are congested, we obtain:

P
(
SCp

= Sk

)
= P

 ⋂
ej∈Sk

{Zej
= 1}

− ∑
Sl⊆Cp

s.t. Sk⊂Sl

P
(
SCp

= Sl

)
.



4.7. THEORETICAL RESULTS 75

Therefore, in order to compute P
(
SCp

= Sk

)
, we need to know the probabilities

P
(
SCp = Sl

)
, for which Sk ⊂ Sl ⊆ Cp. The condition Sk ⊂ Sl implies that

correlation subset Sk contains fewer links than correlation subset Sl. Hence, Sl

comes before Sk in our ordering, which implies that we have already computed
the probability P

(
SCp

= Sl

)
in a previous step.

Once we have determined the probabilities P
(
SCp = Sk

)
, for all Sk ⊆ Cp, we

can compute the probability that all links in correlation set Cp are good:

P
(
SCp = ∅

)
= 1−

∑
Sk⊆Cp

Sk 6=∅

P
(
SCp = Sk

)
.

Finally, we determine the congestion factors using Definition 4.1.6:

αSk
=

P
(
SCp = Sk

)
P
(
SCp

= ∅
) ,

for all correlation subsets Sk ⊆ Cp.

Proof of Theorem 4.1

Proof. Identifying the congestion probabilities of all sets of links is equivalent
with identifying the congestion factors of all correlation subsets given by Def-
inition 4.1.6: If the congestion factors αSk

are known for all Sk ∈ S, then we
can compute the congestion probabilities of all links sets E ⊆ E (Lemma 4.3).
On the other hand, if the congestion probability of link set E is known for all
possible sets of links E ⊆ E, then we can determine the congestion factors αSk

,
for all Sk ∈ S (Lemma 4.4). Therefore, in order to prove our theorem, it suffices
to show that the congestion factors are identifiable from end-to-end measure-
ments if and only if the Identifiability++ condition holds, i.e., no two correlation
subsets are traversed by exactly the same paths.

The Identifiability++ condition is sufficient. First, we show that if the
Identifiability++ condition holds, then all congestion factors are identifiable
from end-to-end measurements. We prove this case by induction on the partial
ordering OS given by Definition 4.1.8.

Initial Step. Let S1 be the first element in the partial ordering OS . We will
prove that we can compute the congestion factor αS1 from Equation 4.16.

First, we show by contradiction that E = S1 is the only network state which
satisfies Paths(E) = Paths(S1) with Paths(E) the path coverage function given
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by Definition 4.1.1. Suppose that there is another network state E ′ 6= S1, which
satisfies Paths(E ′) = Paths(S1). We denote by Cq the correlation set of S1. We
will show that (i) E ′∩Cp = ∅, for all Cp ∈ C, with p 6= q, and that (ii) E ′∩Cq = S1.

Proposition (i). If E ′ ∩ Cp 6= ∅ for some correlation set Cp, with p 6= q, then
the congestion factor αE′∩Cp

must appear in either ΓS1 given by Equation 4.17
(if E ′ ∩ Cq = S1) or in ΓS̄1

given by Equation 4.18 (if E ′ ∩ Cq 6= S1). From
Lemma 4.2, we know that all congestion factors αE′∩Cp

which appear in ΓS1

or ΓS̄1
must satisfy (E ′ ∩ Cp) ≺ S1. Since correlation subset S1 is the first

element in the ordering OS , there cannot be another correlation subset E ′ ∩ Cp

that comes before S1 in this ordering. Thus, we obtain that E ′ ∩ Cp = ∅ for all
Cp ∈ C, with p 6= q.

Proposition (ii). From Proposition (i), we know that E ′ ∩ Cp = ∅, for
all Cp ∈ C, with p 6= q, which implies that either E ′ 6= ∅ or E ′ ⊆ Cq. Now,
E ′ 6= ∅ because Paths(E ′) = Paths(S1) 6= ∅, hence, E ′ is a correlation subset.
From the Identifiability++ condition, we know that no two correlation subsets
are traversed by the same paths; thus, E ′ = S1.

Propositions (i) and (ii) imply that E ′ = E = S1 is the only network state
which satisfies Paths(E) = Paths(S1). Therefore, Equation 4.17 yields that:

ΓS1 =
∑

E=S1,E6=S1 s.t. E∩Cq=S1,
Paths(E)=Paths(S1)

 ∏
Cp∈C,p 6=q
E∩Cp 6=∅

αE∩Cp

 = 0,

since E = S1 contradicts the fact that E 6= S1. Furthermore, Equation 4.18
yields that:

ΓS̄1
=

∑
E=S1 s.t. E∩Cq 6=S1,
Paths(E)=Paths(S1)

 ∏
Cp∈C
E∩Cp 6=∅

αE∩Cp

 = 0,

since E = S1 and S1 ⊆ Cq contradict the fact that E ∩ Cq 6= S1.

As a result, from Equation 4.16, we obtain:

αS1 = P ( Paths(S) = Paths(S1) )
P ( Paths(S) = ∅ )

where the term on the right is obtained through end-to-end measurements.
Thus, we can compute αS1 .
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Induction Step. Consider a correlation subset Sk ∈ S, and its correlation set Cq,
i.e., Sk ⊆ Cq. We assume that we know the congestion factors αSl

of all cor-
relation subsets Sl ≺ Sk. We will prove that we can compute αSk

from Equa-
tion 4.16.

First, we consider the case when P (Paths(S) = Paths(Sk)) = 0. From Equa-
tion 4.13, we obtain P ( S = Sk ) = 0, which implies that P

(
SCq = Sk

)
= 0,

and consequently, αSk
= 0.

Second, we consider the case when P (Paths(S) = Paths(Sk)) 6= 0. According
to Lemma 4.2, ΓSk

and ΓS̄k
depend only on congestion factors αSl

of correla-
tion subsets Sl ∈ S, for which Sl ≺ Sk. From the induction hypothesis, we
know all these congestion factors; therefore, we can compute ΓSk

and ΓS̄k
from

Equations 4.17 and 4.18, and determine αSk
from Equation 4.16 as:

αSk
= 1

1 + ΓSk

(
P ( Paths(S) = Paths(Sk) )

P ( Paths(S) = ∅ ) − ΓS̄k

)
,

where the term on the right is obtained through end-to-end measurements.

The Identifiability++ condition is necessary. We will now show that if
the Identifiability++ condition does not hold, then the congestion factors of all
correlation subsets are not identifiable for all possible probability distributions
of the congested links. More precisely, we prove that if there are two correlation
subsets Sl and Sk such that Paths(Sl) = Paths(Sk), then the congestion fac-
tors αSl

and αSk
are not identifiable from end-to-end measurements when the

probability distribution of the congested links is such that:

P (S = E) > 0 only if E ∈ {∅,Sl,Sk,Sl ∪ Sk}, (4.20)

where S is the network state given by Definition 4.1.2.

In the context of Boolean loss tomography, we can learn from end-to-end
measurements only the congested paths in each snapshot. Therefore, in order
to compute the congestion factors of the correlation subsets, we can only use
the probability that sets of paths are congested. For the probability distribution
of the congested links in Equation 4.20, the possible network states and their
outcome visible from end-to-end measurements is:
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S Description Paths(S)

E1 = ∅ all links are good Paths(E1) = ∅

E2 = Sl only the links in Sl are congested Paths(E2) = Paths(Sl)

E3 = Sk only the links in Sk are congested Paths(E3) = Paths(Sk)

E4 = Sl ∪ Sk only the links in Sl ∪ Sk are congested Paths(E4) = Paths(Sl ∪ Sk)

From the hypothesis, we know that Paths(Sl) = Paths(Sk) = Paths(Sl ∪ Sk),
hence, the probability distribution of the congested paths is such that:

P (Paths(S) = P) > 0 only if P ∈ {∅,Paths(Sl)}. (4.21)

We consider the probability of the event (Paths(S) = Paths(Sl)) (Defini-
tion 4.1.5), i.e., the only congested paths in the network are the paths that
traverse links in correlation subset Sl:

P (Paths(S) = Paths(Sl)) =
4∑

i=2
P (S = Ei)

= P (S = Sl) + P (S = Sk) + P (S = Sl ∪ Sk) .

If we divide by Equation 4.11, we obtain:

P (Paths(S) = Paths(Sl))
P (Paths(S) = ∅) = P (S = Sl)

P (S = ∅) + P (S = Sk)
P (S = ∅) + P (S = Sl ∪ Sk)

P (S = ∅) .

(4.22)

We distinguish two cases: (i) Sk and Sl belong to different correlation sets and
(ii) Sk and Sl belong to the same correlation set. Because of Equation 4.9, in
Case (i), Equation 4.22 becomes:

P (Paths(S) = Paths(Sl))
P (Paths(S) = ∅) = αSl

+ αSk
+ αSl

αSk
, (4.23)

while in Case (ii), Equation 4.22 becomes:

P (Paths(S) = Paths(Sl))
P (Paths(S) = ∅) = αSl

+ αSk
+ αSl∪Sk

. (4.24)

From Equation 4.21, we know that P (Paths(S) = P) = ∅, for all P 6∈
{∅,Paths(Sk)}, and Equation 4.16 yields:

0 = αSj
(1 + ΓSj

) + ΓS̄j
,
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for any other correlation subset Sj ∈ S, with Sj 6∈ {Sk,Sl,Sk ∪Sl}. As a result,
in both Case (i) and Case (ii), we cannot identify the congestion factors αSk

and αSl
using only Equation 4.23 or respectively, 4.24.

In conclusion, we have shown that the Identifiability++ condition is both
necessary and sufficient in order to identify the congestion probabilities of all
link sets.

4.8 Conclusion

In this chapter, we have studied network loss tomography on correlated links.
Previous works in network tomography implicitly assume that all links are inde-
pendent. Nevertheless, there are practical scenarios in which links are correlated
as they share physical links, network equipment, or even management processes.
When such correlations occur in practice, the links’ loss characteristics esti-
mated by current tomographic algorithms might be inaccurate, moreover, there
is no way of knowing to which extent they are inaccurate. We have proposed a
model that takes into account correlated links. In particular, our model assumes
that we know which links are most likely to be correlated (e.g., links from the
same local area network or the same administrative domain), without assuming
anything about the nature or the degree of their correlations (e.g., we do not
assume knowledge of any correlation coefficients). For this correlation model,
we have formally derived the necessary and sufficient condition under which it
is feasible to identify the probability that all links in a set are congested, for all
possible sets of links. Therefore, the congestion probability of each set of links
can be obtained accurately under weaker assumptions than those required by
state-of-the-art tomographic algorithms.
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Symbol Definition
E ⊆ E a set of links
Cp a correlation set
C the set of all correlation sets
Sk a correlation subset
S the set of all correlation subsets

Paths(E) all paths traversing links in E
P
(
Zej

= 1
)

the congestion probability of link ej

P
(
∩ej∈E {Zej = 1}

)
the congestion probability of link set E

P
(
∩ej∈Sk

{Zej
= 1}

)
the congestion probability of correlation subset Sk

S the network state equal to the set of all congested
links during a snapshot

SCp the state of correlation set Cp equal to all congested
links in Cp during a snapshot

Paths(S) all congested paths in the network during a snapshot
S = E the event that the links in E are the only congested

links in the network
SCp

= Sk the event that the links in correlation subset Sk ⊆ Cp

are the only congested links in correlation set Cp

Paths(S) = Paths(Sk) the event that the paths traversing links in
correlation subset Sk are the only congested paths
in the network

αSk
the congestion factor of correlation subset Sk

Sk ≺ Sl the links in correlation subset Sk are traversed by
fewer paths than the links in correlation subset Sl

OS a partial ordering of all correlation subsets in S
induced by the precedence relation "≺"

Table 4.1: Symbols defined in Chapter 4.



Chapter 5

A Different Loss Tomography

In this chapter, we argue for a different loss tomography: Congestion Probabil-
ity Inference that computes the probability that each set of links is congested.
Our motivation comes from the fact that both the continuous and Boolean loss
tomography problems are ill-posed, that is, neither the loss rates, nor the conges-
tion statuses of links are generally identifiable from end-to-end measurements.
State-of-the-art tomographic algorithms try to counterbalance this with various
assumptions as discussed in Section 2.5. Unfortunately, these assumptions do
not usually hold in practice and can lead to inaccurate estimates of the loss
characteristics of links. We do not attribute the blame to the limitations of par-
ticular tomographic algorithms, rather to the fundamental difficulty of solving
the traditional versions of network loss tomography.

Congestion Probability Inference, however, is a well-posed problem under
certain well-defined conditions: Under the assumption that all links are indepen-
dent (the Link Independence assumption described in Section 4), this problem
is well posed and there exists an algorithm that solves it [NT07a]. Under the
assumption that links are grouped into known correlation sets (the Correlation
Sets assumption described in Section 4.2), this problem is well-posed if and only
if no two sets of potentially correlated links are traversed by the same paths,
i.e., the Identifiability++ condition holds (Theorem 4.1). As our principle is to
rely on the weakest set of assumptions possible, we study Congestion Probabil-
ity Inference in the latter case, i.e., in the context of the link correlation model
introduced in Section 4.2.

We model Congestion Probability Inference as a system of linear equations
where each equation corresponds to a set of paths. Because it is not practically
feasible to consider an equation for each set of paths in the network, we design

81
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an algorithm that finds the maximum number of linearly independent equations
by selecting particular sets of paths based on our theoretical results. On one
hand, the information provided by our algorithm is less than that provided
by the existing alternatives that infer either the loss rates or the congestion
statuses of links, i.e., we only learn how often each set of links is congested,
as opposed to how many packets were lost at each link, or which particular
links were congested when. On the other hand, we show that this information
is more useful in practice, because our algorithm works under the weakest set
of assumptions to date, and we experimentally show that it is accurate under
challenging network conditions such as non-stationary network dynamics and
sparse topologies.

The rest of this chapter is organized as follows: We formally describe the
problem of Congestion Probability Inference in Section 5.1, and we propose an
algorithm which solves it in Section 5.2. We explain our choice of a different loss
tomography with a practical scenario in Section 5.3. We compare Congestion
Probability Inference with Boolean loss tomography in Sections 5.4 and 5.5, and
we conclude in Section 5.6.

5.1 Congestion Probability Inference

In this section, we describe the problem of Congestion Probability Inference,
whose goal is to determine, for each set of links E ⊆ E, the probability that
all links in E are congested. Similar to Boolean loss tomography, Congestion
Probability Inference separates links and paths into good or congested such
that a path is good if and only if all the links it traverses are good, i.e., the
Separability assumption holds. Therefore, we use the same random variables
defined in Section 2.3 to describe the congestion status of a link and that of
a path: the random variable Zej as the indicator of the congestion status of
link ej (Definition 2.0.1), and the random variable Wpi

as the indicator of the
congestion status of path pi (Definition 2.0.2). In this case, the quantities of
interest are the congestion probabilities of sets of links defined in Section 4.5,
that is, P

(
∩ej∈E {Zej = 1}

)
for all set of links E ⊆ E.

We have already formally shown that in the context of the link correlation
model described in Section 4.2, the congestion probability of each set of links
is identifiable from end-to-end measurements under certain well-defined condi-
tions (Theorem 4.1). Moreover, the proof of Theorem 4.1, which is a proof by
construction, describes an algorithm that solves Congestion Probability Infer-
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Assumption Description
Routing Stability a fundamental assumption of network tomography
Stationarity a fundamental assumption of multiple-snapshot

algorithms
Separability the assumption made by Boolean loss tomography
Correlation Sets the assumption made by our link correlation model
Identifiability++ no two correlation subsets are traversed by
(necessary and the same paths
sufficient condition)

Table 5.1: Assumptions and conditions required by Congestion Probability
Inference.

ence. Unfortunately, this algorithm is impractical because it does not yield a
linear system of equations that we can easily solve in practice. We now propose
a practical algorithm which enables us to compute the congestion probabilities
of sets of links.

5.1.1 Assumptions

All assumptions made by Congestion Probability Inference were already de-
scribed in the previous chapters. For clarity, we summarize them here. Apart
from the fundamental assumptions made by network tomography about the
topology (the Routing Stability assumption), and the end-to-end measurements
(the Stationarity assumption for multiple-snapshot algorithms), Congestion Prob-
ability Inference inherits two more assumptions from Boolean loss tomography
and the link correlation model described in Section 4.2. In particular, Con-
gestion Probability Inference relies on the Separability assumption introduced
in Section 2.3, which states that a path is good if and only if all the links
it traverses are good, and on the Correlation Sets assumption introduced in
Section 4.2, which assumes that we know which links are most likely to be cor-
related. According to Theorem 4.1, under these assumptions, the congestion
probabilities of sets of links are identifiable from end-to-end measurements, if
and only if no two correlation subsets are traversed by the same paths (the
Identifiability++ condition holds). We summarize all the assumptions required
by Congestion Probability Inference in Table 5.1.

5.1.2 Problem Statement

We now establish a relationship between the quantities of interest and the in-
formation available from end-to-end measurements.
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We model Congestion Probability Inference as a system of linear equations
where each equation corresponds to a different set of paths P ⊆ P , more pre-
cisely, to the probability that all paths in P are good, i.e., P (∩pi∈P {Wpi = 0}).
Each unknown in our system of equations corresponds to a correlation subset
Sk ∈ S as given by Definition 4.0.5, more precisely, to the probability that all
links in Sk are good, i.e., P

(
∩ej∈Sk

{Zej = 0}
)
. As explained in Section 4.5, if

we know the probability that all links in a correlation subset Sk are good, for all
correlation subsets Sk ∈ S, we can easily compute the congestion probabilities
of all sets of links, and consequently, solve Congestion Probability Inference.

For a better illustration of our system of equations, we define the link cov-
erage function Links(P) which maps a set of paths P ⊆ P to the set of all links
traversed by at least one of these paths.

Definition 5.0.1. The link coverage function applied to path set P ⊆ P is:

Links(P) = { ej ∈ E | ej ∈ pi for some pi ∈ P}.

For example, in Figure 5.1, Links({p1}) = {e1, e3}, Links({p1, p2}) = {e1, e3, e4}.
The link coverage function is not the dual of the path coverage function given
by Definition 4.1.1, i.e.,

P ⊆ Paths(Links(P)), for all P ⊆ P,

and
E ⊆ Links(Paths(E)), for all E ⊆ E.

For example, in Figure 5.1,

{p1} ⊆ Paths(Links({p1})) = Paths({e1, e3}) = {p1, p2},

and
{e1} ⊆ Links(Paths({e1})) = Links({p1, p2}) = {e1, e3, e4}.

Consider the scenario that all paths in a set P ⊆ P are good. By the
Separability assumption, this implies that all links traversed by these paths,
i.e., the links in Links(P), are good. Therefore, we can write:

P

 ⋂
pi∈P
{Wpi

= 0}

 = P

 ⋂
ej∈Links(P)

{Zej
= 0}

 .
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If the Correlation Sets assumption holds, then links belonging to different cor-
relation sets are independent; hence, we can group links by correlation sets
(Definition 4.0.3):

P

 ⋂
pi∈P
{Wpi = 0}

 =
∏
Cp∈C

P

 ⋂
ej∈Links(P)∩Cp

{Zej = 0}

 . (5.1)

A set of links Links(P) ∩ Cp, with P ⊆ P and Cp ∈ C, is either the empty set if
none of the links traversed by paths in P belongs to Cp, or a correlation subset
because it belongs to correlation set Cp. In Figure 5.1, if we apply Equation 5.1
to path set {p1}, we obtain:

P (Wp1 = 0) = P (Ze1 = 0, Ze3 = 0)

= P (Ze1 = 0) P (Ze3 = 0) .

Similarly, if we apply Equation 5.1 to path set {p1, p2}, we obtain:

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0, Ze3 = 0, Ze4 = 0)

= P (Ze1 = 0) P (Ze3 = 0, Ze4 = 0) .

Equation 5.1 establishes a relationship between the probability that sets of
paths are good and the probabilities that links belonging to various correlation
subsets are good. Furthermore, if we take the logarithm of Equation 5.1, we
obtain a linear equation. The probability that all paths in P are good can be
measured directly from end-to-end measurements, for all sets of paths P ⊆ P ,
while the probabilities that all links belonging to various correlation subsets are
good represent the unknowns.

5.2 A Congestion Probability Inference Algorithm

In this section, we design an algorithm which solves Congestion Probability
Inference, that is, it infers the congestion probabilities of sets of links from end-
to-end measurements. Our algorithm does not make any additional assumptions
other than the basic assumptions of Congestion Probability Inference summa-
rized in Table 5.1.

In order to solve Congestion Probability Inference, a straightforward ap-
proach is to apply Equation 5.1 to all possible sets of paths in the network,
to reduce this to a system of linearly independent equations, and to solve the
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v4 v5

v3

v1 v2

e1 e2

e3 e4
p1

p2

p3

Figure 5.1: A toy topology with correlated links where the Identifiability++
condition holds, i.e., no two correlation subsets are traversed by the same paths.
Hosts V H = {v1, v2, v4, v5}. Routers V R = {v3}. Links E = {e1, e2, e3, e4}.
Paths P = {p1, p2, p3}. Correlation sets C1 = {e1}, C2 = {e2}, and C3 =
{e3, e4}. Correlation subsets S = {{e1}, {e2}, {e3}, {e4}, {e3, e4}}. We consider
two scenarios: (Scenario A) path p1 is good in all snapshots, whereas paths p2
and p3 are congested in at least one snapshot, and (Scenario B) all three paths
are congested in at least one snapshot.

latter. However, there are 2|P | possible sets of paths in the network, and pro-
cessing 2|P | equations is practically infeasible for any topology with more than
a few tens of paths. Under the Link Independence assumption, the algorithm
in [NT07a] tries to determine the congestion probabilities of individual links by
applying Equation 5.1 only to paths and to pairs of paths. However, in this case,
there is no guarantee that the resulting system of equations is not undetermined.
We address this challenge by using a novel technique that under the Correlation
Sets assumption, forms the maximum number of linearly independent equations
possible, without applying Equation 5.1 to all sets of paths.

5.2.1 Definitions and Notations

First, we introduce some basic definitions and notations. We illustrate the
defined symbols in Table 5.2 by considering two possible scenarios for the toy
topology in Figure 5.1. In Scenario A, from end-to-end measurements, we see
that path p1 is good in all snapshots, whereas paths p2 and p3 are congested
in at least one snapshot. In Scenario B, from end-to-end measurements, we see
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that all three paths are congested in at least one snapshot. All our symbols are
summarized in Table 5.5.

The Potentially Congested Links

Since Boolean loss tomography is ill-posed, we cannot tell which links are con-
gested during a snapshot just by looking at the congested paths during that
snapshot. Nevertheless, for some of the links, the congestion status is visible
from end-to-end measurements: If during a snapshot, at least one of the paths
traversing link ej is good, then by the Separability assumption, link ej is also
good during that snapshot. Furthermore, if in each snapshot of the experi-
ment, one of the paths traversing link ej is good, then link ej remains good
throughout all snapshots, and consequently, its congestion probability is zero,
i.e., P

(
Zej

= 1
)

= 0. In this case, we say that link ej is almost surely good as
end-to-end measurements ensure it is good. We refer to a link which is not al-
most surely good as potentially congested since its congestion probability maybe
different than zero.

Definition 5.0.2. Ê is the set of all potentially congested links in the network.

Therefore, all links which are not in Ê have zero congestion probability. In
Figure 5.1, Scenario A, links e1 and e3 are almost surely good, while links e2

and e4 are potentially congested, i.e., Ê = {e2, e4}. In Scenario B, all links are
potentially congested, i.e., Ê = {e1, e2, e3, e4}.

A Potentially Congested Correlation Subset

Definition 5.0.3. A correlation subset Sk ∈ S (Definition 4.0.5) is potentially
congested if Sk ⊆ Ê.

Therefore, a potentially congested correlation subset Sk satisfies two conditions:
(i) Sk is a non-empty subset of some correlation set Cp, i.e., Sk ⊆ Cp with Sk 6= ∅,
and (ii) all links in Sk are potentially congested, i.e., Sk ⊆ Ê.

Definition 5.0.4. Ŝ is any ordering of all potentially congested correlation
subsets.

Note that we do not impose a specific order on Ŝ, the only requirement is that it
contains all potentially congested correlation subsets. In Figure 5.1, Scenario A,
there are two possible orderings of the potentially congested correlation subsets
Ŝ = 〈{e2}, {e4}〉 and Ŝ = 〈{e4}, {e2}〉. In Scenario B, one of the possible
orderings is Ŝ = 〈{e1}, {e2}, {e3}, {e4}, {e3, e4}〉.



88 CHAPTER 5. A DIFFERENT LOSS TOMOGRAPHY

Next, we define the notion of the complement of a potentially congested
correlation subset:

Definition 5.0.5. The complement of Sk ∈ Ŝ (Definition 4.0.5) is

Sk = (Cp \ Sk) ∩ Ê,

where Cp is the correlation set of Sk.

Hence, Sk consists of all potentially congested links in correlation set Cp exclud-
ing the links in Sk. In Figure 5.1, Scenario A, {e2} = ∅ and {e4} = ∅, while in
Scenario B, {e1} = ∅, {e2} = ∅, {e3} = {e4}, {e4} = {e3}, and {e3, e4} = ∅.

The Potentially Congested Link Coverage Function

The potentially congested link coverage function L̂inks(P) maps a set of paths P
to the set of all potentially congested links traversed by at least one of these
paths.

Definition 5.0.6. The potentially congested link coverage function applied to
paths set P ⊆ P is:

L̂inks(P) = { e ∈ Ê | e ∈ p for some p ∈ P}.

If we consider the link coverage function given by Definition 5.0.1, then

L̂inks(P) = Links(P) ∩ Ê. (5.2)

In Figure 5.1, Scenario B, L̂inks({p1, p2}) = {e1, e3, e4}, and L̂inks({p2, p3}) =
{e1, e2, e4}, whereas in Scenario A, L̂inks({p1, p2}) = {e4} and L̂inks({p2, p3}) =
{e2, e4} as links e1 and e3 are almost surely good.

By definition, the potentially congested link coverage function has the fol-
lowing properties: for any path sets P,Q ⊆ P ,

Q ⊆ P ⇒ L̂inks(Q) ⊆ L̂inks(P), (5.3)

L̂inks(Q∪ P) = L̂inks(Q) ∪ L̂inks(P). (5.4)

For example, in Figure 5.1, Scenario B:

L̂inks({p1}) = {e1, e3} ⊆ {e1, e3, e4} = L̂inks({p1, p2}),
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Scenario A Scenario B
Description only path p1 is good each path is congested

in all snapshots in at least one snapshot

Ê {e2, e4} {e1, e2, e3, e4}

Ŝ Ŝ = 〈{e2}, {e4}〉 Ŝ = 〈{e1}, {e2}, {e3}, {e4}, {e3, e4}〉

S̄k, Sk ∈ Ŝ {e2} = ∅, {e4} = ∅ {e1} = ∅, {e2} = ∅, {e3} = {e4},
{e4} = {e3}, {e3, e4} = ∅

L̂inks(P) L̂inks({p1, p2}) = {e4} L̂inks({p1, p2}) = {e1, e3, e4}
L̂inks({p2, p3}) = {e2, e4} L̂inks({p2, p3}) = {e1, e2, e4}

Table 5.2: An illustration of the symbols defined in Section 5.2.1 in two possible
scenarios for the topology in Figure 5.1.

L̂inks({p1, p2}) = {e1, e3, e4} = {e1, e3} ∪ {e1, e4} = L̂inks({p1}) ∪ L̂inks({p2}).

5.2.2 The System of Equations

The unknowns in Equation 5.1 are the probabilities that all links in a correla-
tion subset Sk are good, for all Sk ∈ S. However, for some of the correlation
subsets, we already know these probabilities: If correlation subset Sk contains
only almost surely good links, i.e., if Sk∩Ê = ∅ with Ê given by Definition 5.0.2,
then the probability that all links in Sk are good is equal to 1. Furthermore, if
we are only interested in the probability that all links in any correlation subset
Sk ∈ S are good, we can ignore the almost surely good links in Sk because these
links remain good throughout all snapshots. Thus,

P

 ⋂
ej∈Sk

{Zej
= 0}

 = P

 ⋂
ej∈Sk∩Ê

{Zej
= 0}

 , for all Sk ∈ S. (5.5)

Note that for any correlation subset Sk ∈ S, the term Sk ∩ Ê is either the
empty set when all links in Sk are almost surely good, or a potentially congested
correlation subset, and in this case, (Sk∩Ê) ∈ Ŝ with Ŝ given by Definition 5.0.4.
Therefore, in order to solve Congestion Probability Inference, it suffices to know
the probabilities that all links belonging to potentially congested correlation
subsets in Ŝ are good.
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If we use Equation 5.5 in Equation 5.1, we obtain:

P

 ⋂
pi∈P
{Wpi

= 0}

 =
∏
Cp∈C

P

 ⋂
ej∈(Links(P)∩Cp)∩Ê

{Zej
= 0}


=
∏
Cp∈C

P

 ⋂
ej∈L̂inks(P)∩Cp

{Zej
= 0}

 , (5.6)

where L̂inks(P) is the potentially congested link coverage function given by
Definition 5.0.6.

In Figure 5.1, Scenario B, since all paths are congested in at least one snap-
shot, then all links are potentially congested, and Equation 5.6 applied to path
set {p1, p2} reads:

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0)P (Ze3 = 0, Ze4 = 0) .

In Figure 5.1, Scenario A, since path p1 is good in all snapshots, then only links
e2 and e4 are potentially congested, whereas e1 and e3 are almost surely good,
and Equation 5.6 applied to path set {p1, p2} reads:

P (Wp1 = 0,Wp2 = 0) = P (Ze4 = 0) .

Therefore, in Scenario A, we can determine the probability that link e4 is good
as it is equal to the probability that paths p1 and p2 are both good.

Note that if we take the logarithm of Equation 5.6, we obtain a linear equa-
tion:

logP

 ⋂
pi∈P
{Wpi

= 0}

 =
∑
Cp∈C

logP

 ⋂
ej∈L̂inks(P)∩Cp

{Zej
= 0}

 . (5.7)

We denote by P̂ an ordering of path sets (it does not necessarily include all
possible path sets). We apply Equation 5.7 to each path set in P̂, and we recast
these equations in a vector form:

V = Matrix(P̂, Ŝ) U (5.8)



5.2. A CONGESTION PROBABILITY INFERENCE ALGORITHM 91

where Ŝ is any ordering of the potentially congested correlation subsets,

V = [logP (∩pi∈P {Wpi
= 0})]P∈P̂ (5.9)

is the vector of available measurements,

U = [logP
(
∩ej∈Sk

{Zej = 0}
)
]Sk∈Ŝ

(5.10)

is the vector of unknowns, and Matrix(P̂, Ŝ) is the matrix associated to the
system of equations. Each row in Matrix(P̂, Ŝ) corresponds to a path set P ∈ P̂,
whereas each column corresponds to a potentially congested correlation subset
Sk ∈ Ŝ.

In Figure 5.1, Scenario B, suppose that Ŝ = 〈{e1}, {e2}, {e3}, {e4}, {e3, e4}〉.
if we take P̂ = {{p1}, {p1, p2}} and we apply Equation 5.7 to each path set in P̂,
we obtain:

logP (Wp1 = 0) = logP (Ze1 = 0) + logP (Ze3 = 0) ,

logP (Wp1 = 0,Wp2 = 0) = logP (Ze1 = 0) + logP (Ze3 = 0, Ze4 = 0) .

We recast these equations in vector form as described by Equation 5.8, and we
obtain:

[
logP (Wp1 = 0)

logP (Wp1 = 0,Wp2 = 0)

]
︸ ︷︷ ︸

V

=
[

1 0 1 0 0
1 0 0 0 1

]
︸ ︷︷ ︸

Matrix(P̂,Ŝ)



logP (Ze1 = 0)
logP (Ze2 = 0)
logP (Ze3 = 0)
logP (Ze4 = 0)

logP (Ze3 = 0, Ze4 = 0)


.

︸ ︷︷ ︸
U

(5.11)

In our analysis, we will often refer to the following terms:

Definition 5.0.7. Row(P, Ŝ) is the row in Matrix(P̂, Ŝ) (Equation 5.8) corre-
sponding to path set P ∈ P̂.

Therefore, if P is the i-th path set in the ordering P̂, then the i-th row of
Matrix(P̂, Ŝ) is Row(P, Ŝ). For example, in the matrix in Equation 5.11, the
first row is Row({p1}, Ŝ), whereas the second row is Row({p1, p2}, Ŝ).
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Definition 5.0.8. The coverage indicator αP,Sk
is the element of Matrix(P̂, Ŝ)

(Equation 5.8) at the intersection of the row of path set P ∈ P̂ and of the column
of correlation subset Sk ∈ Ŝ, i.e.,

αP,Sk
=

1 if L̂inks(P) ∩ Cp = Sk

0 otherwise
,

where Cp is the correlation set of Sk.

In Figure 5.1, Scenario B, in the example in Equation 5.11, α{p1},{e3} = 1 be-
cause L̂inks({p1})∩{e3, e4} = {e3}, but α{p1,p2},{e3} = 0 because L̂inks({p1, p2})∩
{e3, e4} = {e3, e4} 6= {e3}.

5.2.3 Theoretical Results

In this section, we formally show that in order to solve Congestion Probability
Inference, we do not need to apply Equation 5.7 to all possible set of paths
in the network. More specifically, we identify a particular type of paths sets,
which we call redundant, and which have the following property: Equation 5.7
applied to a redundant path set is a linear combination of Equation 5.7 applied
to non-redundant path sets. As a result, we can discard all redundant path sets
which represent a big fraction of all path sets and apply Equation 5.7 only to
non-redundant path sets.

A Redundant Path Set

Definition 5.0.9. A path set P is called redundant if there is no potentially
congested correlation subset Sk ∈ Ŝ such that P ⊆ Paths(Sk) \ Paths(Sk), with
Sk the complement of Sk given by Definition 5.0.5, and Ŝ by Definition 5.0.4.

In the particular case where all links are independent, i.e., when the Link In-
dependence assumption holds, Definition 5.0.9 yields that a path set P is re-
dundant if there is no potentially congested link which is shared by all paths
in P. For example, in the toy topology in Figure 5.1, suppose that all links are
independent and potentially congested. This setup is described in Table 5.3. In
this case, path set {p1, p3} is redundant since there is no potentially congested
link which is traversed by both paths p1 and p3.
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Sk ∈ Ŝ Sk Paths(Sk) Paths(Sk) Paths(Sk) \ Paths(Sk)
{e1} ∅ {p1, p2} ∅ {p1, p2}
{e2} ∅ {p3} ∅ {p3}
{e3} ∅ {p1} ∅ {p1}
{e4} ∅ {p2, p3} ∅ {p2, p3}

Table 5.3: The scenario when all links in the toy topology in Figure 5.1 are
independent and potentially congested. Path set {p1, p3} is redundant since for
all Sk in Ŝ, {p1, p3} 6⊆ Paths(Sk) \ Paths(Sk).

Theorem 5.1 states that Equation 5.7 applied to a redundant path set P is a
linear combination of the same equation (5.7) applied to path sets Q ⊂ P. We
can already see this in the example described in Table 5.3. Indeed,

logP (Wp1 = 0,Wp3 = 0) = logP (Wp1 = 0) + logP (Wp3 = 0) , (5.12)

that is, Equation 5.7 applied to path set {p1, p3} is the sum of Equation 5.7
applied respectively to path sets {p1} and {p3}. Using Definition 5.0.7, Equa-
tion 5.12 implies that:

Row({p1, p3}, Ŝ) = Row({p1}, Ŝ) + Row({p3}, Ŝ).

The Partition of a Path Set.

Consider a path set P ⊆ P , and a potentially congested correlation subset
Sk ∈ Ŝ (Definition 5.0.4). We denote by Cp the correlation set of Sk, i.e.,
Sk ⊆ Cp, and by Sk the complement of Sk given by Definition 5.0.5. We
partition P into the three following path sets:

PCp
= { p ∈ P | L̂inks({p}) ∩ Cp = ∅ } (5.13)

PSk
= { p ∈ P | L̂inks({p}) ∩ Sk 6= ∅ } (5.14)

PSk
= Paths(Sk) \ Paths(Sk). (5.15)

The set PCp
contains the paths in P which do not traverse any potentially

congested link in correlation set Cp (Equation 5.13). The set PSk
contains the

paths in P which traverse at least one link in Sk (Equation 5.14). Finally, the
set PSk

contains the paths in P which traverse at least one link in Sk, but do
not traverse any link in Sk (Equation 5.15).
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Definition 5.0.10. For a path set P ⊆ P , and a correlation subset Sk ∈ Ŝ,
ΩP,Sk

is defined as:

ΩP,Sk
= { Q ⊆ PSk

| αQ,Sk
= 1 }.

where αQ,Sk
is the coverage indicator given by Definition 5.0.8, and PSk

is the
path set defined by Equation 5.15.

In Figure 5.1, Scenario B, consider path set P = {p1, p2, p3} and the potentially
congested correlation subset Sk = {e4}. In this case, Cp = C3 = {e3, e4} and
Sk = {e4} = {e3}. Therefore, we obtain PCp

= ∅ since all three paths traverse
one of the links in correlation set C3, PSk

= {p1} since path p1 is the only
path which traverses link e3, and PSk

= {p2, p3}. Finally, we get ΩP,Sk
=

{{p2}, {p3}, {p2, p3}}.

The Core Theorem

In this section, we formally show that Equation 5.7 applied to a redundant path
set P is a linear combination of Equation 5.7 applied to all path sets Q ⊂ P.
More specifically, in the context of the system described in Equation 5.8, we
prove that the vectors Row(Q, Ŝ) given by Definition 5.0.7, with Q ⊆ P, form a
linearly dependent set for any ordering of the potentially congested correlation
subsets Ŝ.

Theorem 5.1. A redundant path set P ⊆ P satisfies

∑
Q⊆P

(−1)|Q|Row(Q, Ŝ) = 0, (5.16)

where Ŝ is any ordering of the potentially congested correlation subsets, and
Row(Q, Ŝ) is given by Definition 5.0.7.

Proof. In order to prove that Equation 5.16 holds, it is sufficient to show that,
for any correlation subset Sk in Ŝ,

∑
Q⊆P

(−1)|Q|αQ,Sk
= 0, (5.17)
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where αQ,Sk
is the coverage indicator of path set Q and correlation subset Sk as

given by Definition 5.0.8. For convenience, we introduce the following notation

ΓP,Sk
=
∑
Q⊆P

(−1)|Q|αQ,Sk
.

Since αQ,Sk
only takes values 1 or 0, we can rewrite ΓP,Sk

as

ΓP,Sk
=

∑
Q⊆P

s.t. αQ,Sk
=1

(−1)|Q|. (5.18)

We will prove that ΓP,Sk
= 0, for all potentially congested correlation sub-

sets Sk ∈ Ŝ.

Consider a potentially congested correlation subset Sk ∈ Ŝ, and the correla-
tion set Cp to which it belongs, i.e., Sk ⊆ Cp. We partition P in three path sets
P = PCp

∪ PSk
∪ PSk

, as described in Equations 5.13, 5.14, and 5.15.

Proposition (ii) from Lemma 5.3 states that all path sets Q ⊆ P, for which
Q ∩ PSk

6= ∅, satisfy αQ,Sk
= 0. Thus, the coverage indicator αQ,Sk

might be
different than 0 only if Q ⊆ PSk

∪ PCp
. Therefore, Equation 5.18 becomes:

ΓP,Sk
=

∑
Q⊆PSk

∪PCp

s.t. αQ,Sk
=1

(−1)|Q|. (5.19)

Furthermore, from Lemma 5.3, Proposition (iii), we know that for any path
set Q ⊆ PSk

∪PCp
, αQ,Sk

= 1 if and only if Q∩PSk
∈ ΩP,Sk

, with ΩP,Sk
given

by Definition 5.0.10. Hence, we can rewrite Equation 5.19 as:

ΓP,Sk
=

∑
Q⊆PSk

∪PCp

s.t. Q∩PSk
∈ΩP,Sk

(−1)|Q|. (5.20)

Note that if ΩP,Sk
= ∅, then ΓP,Sk

= 0, which concludes our proof. In the rest
of this proof, we assume that ΩP,Sk

6= ∅.

We group all path sets Q ⊆ PSk
∪ PCp

, with Q ∩ PSk
∈ ΩP,Sk

, by their
projection on ΩP,Sk

, that is, Equation 5.20 reads:

ΓP,Sk
=

∑
O∈ΩP,Sk

∑
Q⊆PSk

∪PCp

s.t. Q∩PSk
=O

(−1)|Q|. (5.21)
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For any path set Q ⊆ PSk
∪ PCp

, we can write:

Q = (Q∩ PSk
) ∪ (Q∩ PCp

) = O ∪ V,

where O = Q ∩ PSk
and V = Q ∩ PCp

. Since O ∩ V = ∅, we can recast
Equation 5.21 as:

ΓP,Sk
=

∑
O∈ΩP,Sk

∑
V⊆PCp

(−1)|O|+|V| =
∑

O∈ΩP,Sk

(−1)|O|
∑
V⊆PCp

(−1)|V|. (5.22)

Next, we focus on the right-most sum in Equation 5.22, and we obtain:

∑
V⊆PCp

(−1)|V| =
|PCp

|∑
m=1

∑
V⊆PC̄p

s.t.|V|=m

(−1)m =
|PCp

|∑
m=1

(−1)m

(
|PC̄p
|

m

)
= 0, (5.23)

because the Binomial theorem yields that
∑n

m=1(−1)m
(

n
m

)
= 0 for any positive

integer n > 0.

Finally, by combing Equation 5.23 and Equation 5.22, we get ΓP,Sk
= 0, for

any potential congested correlation subset Sk in Ŝ, which concludes our proof.

Puzzle pieces

In this section, we present two lemmas which we use in the proof of Theorem 5.1.

Lemma 5.2. For any redundant path set P ⊆ P , and for any potentially con-
gested correlation subset Sk ∈ Ŝ, whose correlation set is Cp,

PCp
6= ∅,

with PCp
given by Equation 5.13.

Proof. We prove our lemma by contradiction. Assume that there is a path set
P ⊆ P , and a potentially congested correlation subset Sk ∈ Ŝ, whose correlation
set is Cp, such that path set P is redundant and PCp

= ∅.

We define Sl = L̂inks(P) ∩ Cp, where L̂inks(P) is the potentially congested
link coverage function applied to path set P given by Definition 5.0.6. Note
that Sl may be the same as or different than Sk since in the definition of PCp

we only consider correlation set Cp. Let S̄l be the complement of Sl given
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by Definition 5.0.5. We will prove that path set P cannot be redundant be-
cause Sl ∈ Ŝ and P ⊆ Paths(Sl) \Paths(S̄l), which contradicts Definition 5.0.9.
Toward this goal, we must show that (i) Sl ∈ Ŝ, (ii) P ⊆ Paths(Sl), and
(iii) P ∩ Paths(S̄l) = ∅.

(i) First, we show that Sl 6= ∅, and Sl ∈ Ŝ. From the contradiction hypoth-
esis, PCp

= ∅; therefore, for any path pi ∈ P, Equation 5.13 yields that:

∅ 6= L̂inks({pi}) ∩ Cp ⊆ L̂inks(P) ∩ Cp = Sl. (5.24)

By definition, Sl is a correlation subset (Sl ⊆ Cp) and Sl contains only potentially
congested links (Sl ⊆ L̂inks(P)). Since Sl 6= ∅, Definition 5.0.3 yields that
Sl ∈ Ŝ.

(ii) Second, we show that P ⊆ Paths(Sl). From Equation 5.24, we know
that ∅ 6= L̂inks({pi}) ∩ Cp ⊆ Sl, for all paths pi ∈ P. Hence, any path pi ∈ P
traverses at least one link in Sl, which by the definition of the path coverage
function (Definition 4.1.1), implies that pi ∈ Paths(Sl).

(iii) Third, we show that P ∩ Paths(S̄l) = ∅. From Definition 5.0.5:

∅ = Sl ∩ S̄l = (L̂inks(P) ∩ Cp) ∩ S̄l = L̂inks(P) ∩ S̄l.

For any path pi ∈ P:

L̂inks({pi}) ∩ S̄l ⊆ L̂inks(P) ∩ S̄l = ∅.

By definition, all links in S̄l are potentially congested. Since L̂inks({pi})∩S̄l = ∅,
for any pi ∈ P, none of the paths in P traverses any link in S̄l, which implies
that P ∩ Paths(S̄l) = ∅.

We conclude that there is a potentially congested correlation subset, namely Sl,
such that P ⊆ Paths(Sl) \Paths(S̄l), which contradicts the fact that path set P
is redundant. Therefore, PC̄p

6= ∅.

Lemma 5.3. Consider a path set P ⊆ P and a potentially congested correla-
tion subset Sk ∈ Ŝ, which belongs to correlation set Cp. For any path set Q ⊆ P,

(i) L̂inks(Q∩ PCp
) ∩ Cp = ∅;

(ii) if Q∩ PSk
6= ∅, then αQ,Sk

= 0;
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(iii) if Q ⊆ PSk
∪ PCp

, then αQ,Sk
= 1 if and only if Q∩ PSk

∈ ΩP,Sk
;

where P = PCp
∪PSk

∪PSk
is the partition of P described by Equations 5.13, 5.14,

and 5.15, αQ,Sk
is the coverage indicator given by Definition 5.0.8, and ΩP,Sk

is given by Definition 5.0.10.

Proof. We prove subsequently each of the three propositions.

Proposition (i). We apply the potentially congested link coverage func-
tion to path set PCp

as given by Definition 5.0.6, and we expand the term
L̂inks(PCp

) ∩ Cp using the rule in Equation 5.4:

L̂inks(PCp
) ∩ Cp = L̂inks(

⋃
pi∈PCp

pi) ∩ Cp =
⋃

pi∈PCp

L̂inks({pi}) ∩ Cp.

From Equation 5.13, L̂inks({pi}) ∩ Cp = ∅, for all paths pi ∈ PCp
. Therefore,

L̂inks(PCp
)∩Cp = ∅. Next, we apply the rule in Equation 5.3 to Q∩PCp

⊆ PCp
:

L̂inks(Q∩ PCp
) ∩ Cp ⊆ L̂inks(PCp

) ∩ Cp = ∅,

which concludes our proof of (i).

Proposition (ii). We prove this proposition by contradiction. Suppose that
there is a path set Q ⊆ P, such that Q ∩ PSk

6= ∅ and αQ,Sk
= 1. From

Definition 5.0.8, αQ,Sk
= 1 if and only if L̂inks(Q) ∩ Cp = Sk. Using the rule

in Equation 5.3 we obtain:

Sk = L̂inks(Q) ∩ Cp ⊇ L̂inks(Q∩ PSk
) ∩ Cp,

where Sk is the complement of Sk given by Definition 5.0.5. Since Sk ⊆ Cp, the
above expression implies that:

Sk ⊇ L̂inks(Q∩ PSk
) ∩ Sk.

On the other hand, Sk ∩ Sk = ∅; hence, the only possible explanation is that
L̂inks(Q∩ PSk

) ∩ Sk = ∅. This implies that either Q ∩ PSk
= ∅ or Sk = ∅.

However, if Sk = ∅, then by Equations 5.14, PSk
= ∅, and consequently, Q ∩

PSk
= ∅. Therefore, Q∩ PSk

= ∅, which contradicts our hypothesis.



5.2. A CONGESTION PROBABILITY INFERENCE ALGORITHM 99

Proposition (iii). Since we know from the hypothesis that Q ⊆ PSk
∪ PCp

,
using the rules in Equations 5.4 and 5.3, we can expand the term L̂inks(Q)∩Cp

as:

L̂inks(Q) ∩ Cp = L̂inks(Q∩ (PCp
∪ PSk

)) ∩ Cp

= L̂inks((Q∩ PCp
) ∪ (Q∩ PSk

)) ∩ Cp

=
(
L̂inks(Q∩ PCp

) ∪ L̂inks(Q∩ PSk
)
)
∩ Cp

=
(
L̂inks(Q∩ PCp

) ∩ Cp

)
∪
(
L̂inks(Q∩ PSk

) ∩ Cp

)
.

From Proposition (i), L̂inks(Q∩ PCp
) ∩ Cp = ∅; thus:

L̂inks(Q) ∩ Cp = L̂inks(Q∩ PSk
) ∩ Cp. (5.25)

By Definition 5.0.8 and Equation 5.25, we conclude that:

αQ,Sk
= αQ∩PSk

,Sk
(5.26)

Because of Equation 5.26, if αQ,Sk
= 1, then αQ∩PSk

,Sk
= αQ,Sk

= 1;
hence, Q ∩ PSk

∈ ΩP,Sk
by Definition 5.0.10. Conversely, if Q ∩ PSk

∈ ΩP,Sk
,

then Definition 5.0.10 implies that αQ∩PSk
,Sk

= 1, and Equation 5.26 yields
αQ,Sk

= 1. Hence, αQ,Sk
= 1 if and only if Q∩ PSk

∈ ΩP,Sk
.

5.2.4 The Algorithm

In this section, based on the theoretical results presented in Section 5.2.3, we
propose an algorithm that solves Congestion Probability Inference. Our algo-
rithm finds the maximum number of linearly independent equations possible,
by applying Equation 5.6 to "wisely chosen" non-redundant sets of paths (Defi-
nition 5.0.9).

Our algorithm computes the probability that all links in Sk are good, for
all potentially congested correlation subsets Sk ∈ Ŝ, with Ŝ given by Defini-
tion 5.0.4. If we know these probabilities, we can easily determine the conges-
tion probabilities of all sets of links. For example, in Figure 5.1, Scenario B, if
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we know the probabilities P
(
Zej

= 0
)
with j = 1 . . . 4, and P (Ze3 = 0, Ze4 = 0),

we can compute:

P
(
Zej

= 1
)

= 1− P
(
Zej

= 0
)
, j = 1 . . . 4,

P (Ze3 = 1, Ze4 = 1) = 1− P (Ze3 = 1)− P (Ze4 = 1) + P (Ze3 = 0, Ze4 = 0) .

Since we assume that links which belong to different correlation sets are inde-
pendent, the congestion probability of the other sets of links can be expressed
as products of these 5 probabilities, i.e.,

P (Ze1 = 1, Ze2 = 1) = P (Ze1 = 1)P (Ze2 = 1) .

The input to the algorithm is any ordering Ŝ of all the potentially congested
correlation subsets. The output is an ordering of path sets P̂ to which we apply
Equation 5.6 to form a system as depicted in Equation 5.8. If the Identifiabil-
ity++ condition holds, then this system has an unique solution, hence, we can
solve it and determine the quantities of interest.

First, we form an initial list of path sets P̂ (lines 1 to 4). We ensure that
each correlation subset Sk ∈ Ŝ is traversed by at least one of the path sets
in P̂, namely, path set Paths(Sk) \ Paths(Sk), where Sk is the complement of
Sk given by Definition 5.0.5 (lines 2 and 3). We illustrate with an example.
Suppose that, in Figure 5.1, all correlation subsets are potentially congested
and we pick ordering Ŝ = 〈{e1}, {e2}, {e3}, {e4}, {e3, e4}〉. After line 4 has been
executed, P̂ consists of the path sets in the last column of the following table:

Sk Sk Paths(Sk) Paths(Sk) Paths(Sk) \ Paths(Sk)

{e1} ∅ {p1, p2} ∅ {p1, p2}
{e2} ∅ {p3} ∅ {p3}
{e3} {e4} {p1} {p2, p3} {p1}
{e4} {e3} {p2, p3} {p1} {p2, p3}
{e3, e4} ∅ {p1, p2, p3} ∅ {p1, p2, p3}
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Algorithm 5.1 Selection of Path Sets
Input: Ŝ: a list of potentially congested correlation subsets
Variables: P̂: a list of path sets

P: a path set
Sk: a correlation subset

1: P̂ ← 〈〉
2: for all Sk ∈ Ŝ do
3: P ← Paths(Sk) \ Paths(Sk)
4: P̂ ← P̂ + P

5: A← Matrix(P̂, Ŝ)
6: N← NullSpace (A)

7: repeat
8: for all Sk ∈ SortByHammingWeight(Ŝ,N) do
9: for all P ⊆ Paths(Sk) \ Paths(Sk) do
10: r← Row(P, Ŝ)
11: if ||rN|| > 0 then
12: P̂ ← P̂ + P
13: N← NullSpaceUpdate (N, r)
14: go to line 15
15: until N has no columns left

16: return P̂

Notation:
A \ B: subtract set B from set A
P̂ + P: add path set P to list of path sets P̂

That is, P̂ = {{p1, p2}, {p3}, {p1}, {p2, p3}, {p1, p2, p3}}. If we apply Equa-
tion 5.6 to each of the path sets in P̂, we obtain:

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0)P (Ze3 = 0, Ze4 = 0)

P (Wp3 = 0) = P (Ze2 = 0)P (Ze4 = 0)

P (Wp1 = 0) = P (Ze1 = 0)P (Ze3 = 0)

P (Wp2 = 0,Wp3 = 0) = P (Ze1 = 0)P (Ze2 = 0)P (Ze4 = 0)

P (Wp1 = 0,Wp2 = 0,Wp3 = 0) = P (Ze1 = 0)P (Ze2 = 0)P (Ze3 = 0, Ze4 = 0)
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Next, we take the logarithm of each of these equation as depicted in Equation 5.7
and we derive the system in Equation 5.8:

log P
(

Wp1 = 0, Wp2 = 0
)

log P
(

Wp3 = 0
)

log P
(

Wp1 = 0
)

log P
(

Wp2 = 0, Wp3 = 0
)

log P
(

Wp1 = 0, Wp2 = 0, Wp3 = 0
)


︸ ︷︷ ︸

V

=


1 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 1 0
1 1 0 0 1


︸ ︷︷ ︸

Matrix(P̂,Ŝ)


log P

(
Ze1 = 0

)
log P

(
Ze2 = 0

)
log P

(
Ze3 = 0

)
log P

(
Ze4 = 0

)
log P

(
Ze3 = 0, Ze4 = 0

)

 .

︸ ︷︷ ︸
U

In this case, Matrix(P̂, Ŝ) in Equation 5.8 has full column rank, which means
that we can solve our system and compute, for each correlation subset, the
probability that all links in that subset are good, hence, also the congestion
probability of each set of links in the network. In general, however, the resulting
system of equations is under-determined, and we continue with the second part
of the algorithm.

We augment the initial list of path sets P̂ by iteratively adding path sets
such that we increase the rank of the associated matrix Matrix(P̂, Ŝ) (lines 5
to 15). More specifically, we first compute the matrix A associated with the
initial list of path sets P̂ (line 5), as well as a matrix N, whose columns span the
null space of A (line 6); the latter can be done using standard techniques, like
singular value decomposition or QR factorization. Next, we iteratively identify
a path set P such that adding r = Row(P, Ŝ) (Definition 5.0.7) to the system
matrix, increases the latter’s rank, and we add P to P̂ (lines 10 to 12). Every
time we add a new path set to P̂, we update the matrix N, such that its columns
always span the null space of Matrix(P̂, Ŝ) (line 13). We stop the iteration when
N is left with 0 columns, i.e., the loop in line 7 finishes (line 15).

Selecting a Useful Path Set

We first discuss the problem of identifying a new set of paths P such that
Row(P, Ŝ) (Definition 5.0.7) increases the rank of the system matrix.

The fundamental theorem of linear algebra states that the null space of a
matrix is the orthogonal complement of its row space. In our case, in order for a
vector r to increase the rank of the system matrix, it is necessary and sufficient
that r is not orthogonal to the null space basis N, i.e., ||rN|| > 0. Therefore,
we are looking for a path set P such that the vector Row(P, Ŝ) satisfies this
condition. If such a path set exists, our algorithm is guaranteed to find it,
because it iterates over all non-redundant (Definition 5.0.9) sets of paths (lines



5.2. A CONGESTION PROBABILITY INFERENCE ALGORITHM 103

8 and 9) and tests whether each of them satisfies the corresponding condition
(lines 10 and 11).

However, to save time, the algorithm orders the sets of paths such that it
first tries those that are more likely to satisfy the condition (this is the role of
the SortByHammingWeight function). Intuitively, if the i-th element of vector r
is non-zero and the i-th row of matrix N has many non-zero elements, then
||rN|| > 0 is likely to be true. Thus, our algorithm picks the row of N with
the largest number of non-zero elements (the largest Hamming weight); suppose
that this row corresponds to correlation subset Sk (line 8). Then, it looks for
any path set P which traverses Sk (line 9), and picks the first one that satisfies
the condition (lines 10 to 11). The SortByHammingWeight helps us pick the
correlation subset Sk—it outputs an ordering of the correlation subsets in Ŝ

such that the first element in that ordering corresponds to the row of matrix N
with the largest Hamming weight. Therefore, so far we have considered any
potentially ordering of the correlation subsets Ŝ; now we choose this particular
ordering in order to speed up the computation.

Nevertheless, iterating over all possible subsets of path set Paths(Sk) \
Paths(Sk), for all Sk ∈ Ŝ, can be time consuming, therefore, in order to speed
up the computation, we propose the heuristic described in Section A.1. Even
though this heuristic does not consider all possible path sets, in practice, it al-
ways find the maximum number of linearly independent rows. Furthermore, this
heuristic can be used in combination with Algorithm 5.1: if the heuristic cannot
find all linearly independent rows, we can always switch back to the complete
version of the algorithm to find the missing rows, if any, without loosing the
path sets already discovered by the heuristic.

Updating the Null Space Basis

In this section, we present an algorithm which incrementally updates the null
space basis of the system’s matrix. Computing the null space of a matrix
with thousands of rows takes a significant amount of time, and doing this
at every iteration would render the algorithm practically useless. Instead,
the NullSpaceUpdate function (Algorithm 5.2) updates the null space incre-
mentally, i.e., given the null space computed in the previous iteration, it effi-
ciently updates the null space. The correctness of this algorithm is ensured by
Lemma 5.4.
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Algorithm 5.2 NullSpaceUpdate
Input: N: a matrix of size n×m

r: a row vector of n elements

1: return
(

In − N∗1r
rN∗1

)
N∗2:m

Notation:
In: the identity matrix of size n
N∗1: the 1-st column of matrix N
N∗2:m: the matrix formed by taking columns 2 to m of N

Lemma 5.4. A matrix A of dimension m× n and rank u, is expanded with a
row r that increases the rank of the matrix, i.e.,

A′ =
[

A
r

]
, (5.27)

where rank(A′) = u+ 1. Then, a basis1 of the null space of A′ can be computed
as:

N′ =
(

In −
N∗1r
rN∗1

)
N∗2:(n−u), (5.28)

where In is the identity matrix of dimension n, N is a basis of the null space
of matrix A, N∗1 is the first column of matrix N, and N∗2:(n−u) is the matrix
formed by columns 2 to (n− u) of matrix N.

Proof. The null space of matrix A has dimension n− u, while the null space of
matrix A′ has dimension n − u − 1. We denote by N a basis of the null space
of A, and by N′ a basis of the null space of A′. The matrix N′ must satisfy
two conditions: (i) each column of N′ is orthogonal to each row of A′ (the null
space of a matrix is the orthogonal complement of its row space), and (ii) the
rank of N′ must be n− u− 1.

The null space of matrix A′ is a subspace of the null space of A. Therefore,
we can write each column of N′ as a linear combination of the columns of N:

N′ = NT, (5.29)

where T is a transformation matrix of dimension (n− u)× (n− u− 1). Equa-
tion 5.29 ensures that each column of N′ is orthogonal to each row of A, but for

1We write a basis as a matrix whose columns are the vectors of the basis.
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Condition (i) to hold, we also require that the new row vector r is orthogonal
to N′:

rN′ = 0. (5.30)

We combine Equations 5.29 and 5.30, and we obtain:

rNT = 0. (5.31)

Since we assume that we know a basis N of the null space of matrix A and the
row vector r, we can determine rN. In fact, Equation 5.31 is an undetermined
system of linear equations with n−u equations, and (n−u)·(n−u−1) unknowns,
i.e., the entries in the transformation matrix T.

We consider a transformation matrix T of the following form:

T =
[

β

In−u−1

]
, (5.32)

where In−u−1 is the identity matrix of dimension n−u−1, and β a row matrix of
dimension 1× (n−u−1). We choose this form for the transformation matrix T
to ensure that the rank of T is n − u − 1, and consequently, that N′ has full
column rank, as required by Condition (ii).

Next, we use the transformation matrix defined in Equation 5.32, to solve the
system of linear equations in Equation 5.31. After some algebraic manipulations,
we obtain:

β = −
rN∗2:(n−u)

rN∗1
, (5.33)

where N∗1 is the first column of matrix N, and N∗2:(n−u) is the matrix formed
by columns 2 to (n− u) of matrix N.

In conclusion, we have determined a transformation matrix T, which we can
use in Equation 5.29 to find a basis N′ of the null space of A′. The formula
that we obtain is the one in Equation 5.28.

Properties of the Algorithm

In this section, we discuss a few important properties of our algorithm.

Completeness. Our algorithm is complete in the sense that if we apply Equa-
tion 5.7 to all path sets in the ordering P̂ returned by the algorithm, we ob-
tain the maximum number of linearly independent equations (which can be
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obtained by applying Equation 5.7 to all sets of paths). This is true regardless
whether the Identifiability++ condition holds or not. The proof is immedi-
ate: we have seen in Section 5.2 (Theorem 5.1) that Equation 5.7 applied to
a redundant path set P is a linear combinations of Equation 5.7 applied to all
non-redundant path sets. Furthermore, by definition, a redundant path set is
one for which there is no potentially congested correlation subset Sk ∈ Ŝ such
that P ⊆ Paths(Sk) \ Paths(Sk). Our algorithm iterates over all potentially
congested correlation subsets Sk ∈ Ŝ (line 8 of Algorithm 5.1), and over all sets
of paths included in Paths(Sk) \ Paths(Sk) (line 9 of Algorithm 5.1), therefore
it covers all path sets that are not redundant, i.e., all path sets which might
generate linearly independent equations.

Complexity. The complexity of our algorithm is O(n3
1 + n2

12n2n3), where
n1 = |Ŝ| is the number of potentially congested correlation subsets, n2 =
maxSk∈Ŝ

|Paths(Sk)| is the maximum number of paths which traverse the same
potentially congested correlation subset (see Definition 4.1.1), n3 is the nullity of
the initial system matrix A. We express complexity as a function of these three
parameters, because any one of them can dominate the other two, depending
on the topology and the congestion scenario.

The first term, O(n3
1), is the complexity of the initial computation of the null

space (line 5) using singular value decomposition. This is a standard operation,
and we need to do it only once, in the beginning of the algorithm.

The second term, O(n2
12n2n3), is the complexity of searching for linearly

independent rows (lines 7 to 15): We iterate over all n1 potentially congested
correlation subsets, and for each such correlation subset, we consider all possible
sets of paths that cover it, which is bounded by 2n2 . Furthermore, for each
considered path set, we test for the condition in line 11, which has complexity
O(n1n3).

We have experimental evidence that a tighter upper bound exists: The sec-
ond step, i.e., searching for linearly independent rows, can be replaced by the
heuristic described in Section A.1, which is always able to find all linearly inde-
pendent rows needed, and has complexity O(n4n

3
1n3), where n4 = maxSk∈Ŝ

|Sk|
is the maximum size of a potentially congested correlation subset.

When the Identifiability++ condition does not hold. Our algorithm is
independent of the Identifiability++ condition in the sense that even if the Iden-
tifiability++ condition does not hold, if we apply Equation 5.6 to all path sets
in the ordering P̂ returned by the algorithm, we obtain the maximum number
of linearly independent equations. The difference is that if the Identifiability++
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condition holds, then we obtain a system of equations with an unique solution,
which ensures that we can compute the congestion probabilities of all sets of
links. If the Identifiability++ condition does not hold, then we might not be
able to compute all these probabilities as stated by Theorem 4.1.

The main reason why we cannot completely solve Congestion Probability
Inference when the Identifiability++ condition does not hold, is that the re-
sulting system of equations might be undetermined. We have already discussed
such an example for the toy topology in Figure 4.6 in Section 4.3. In this case,
our algorithm terminates when there are no more path sets to consider, i.e., the
loop in line 8 finishes without finding any new path set. This condition replaces
the condition in line 15 of Algorithm 5.1.

Another reason why we cannot completely solve Congestion Probability In-
ference when the Identifiability++ condition does not hold, is that some cor-
relation subsets do not appear if we apply Equation 5.6 to all possible sets of
paths (see Lemma 5.5). In this case, the resulting system of equations may or
may not be under-determined. Consider the toy topology in Figure 5.2, where
the Identifiability++ condition does not hold as correlation subsets {e1, e2} and
{e2} are traversed by the same paths, namely, {p1, p2}. Suppose that all links
are potentially congested, then a possible ordering of the potentially congested
correlation subsets is Ŝ = {{e1}, {e2}, {e1, e2}, {e3}}. If we apply Equation 5.6
to all possible set of paths, we obtain:

P (Wp1 = 0) = P (Ze1 = 0, Ze2 = 0)

P (Wp2 = 0) = P (Ze2 = 0)P (Ze3 = 0)

P (Wp1 = 0,Wp2 = 0) = P (Ze1 = 0, Ze2 = 0)P (Ze3 = 0) .

Since the probability that link e1 is good, i.e., P (Ze1 = 0), does not appear in
any of these equations, we cannot estimate its value. However, the system of
equations has 3 unknowns and 3 linearly independent equations, thus, we can
compute all probabilities that appear in these equations. Therefore, we can
determine the congestion probabilities P (Ze2 = 1) and P (Ze3 = 1), but not the
probabilities P (Ze1 = 1) and P (Ze1 = 1, Ze2 = 1). As stated by Lemma 5.5,
the reason why link e1 does not appear in any equation is because there is no
sets of paths which covers this link, without covering other links from the same
correlation set, i.e.,

Paths({e1}) \ Paths({e1}) = Paths({e1}) \ Paths({e2}) = {p1} \ {p1, p2} = ∅.
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Figure 5.2: A toy topology with correlated links where the Identifiability++
condition does not hold, i.e., correlation subsets {e2} and {e1, e2} are traversed
by the same paths {p1, p2}. Hosts V H = {v1, v2, v4}. Routers V R = {v3}. Links
E = {e1, e2, e3}. Paths P = {p1, p2}. Correlation sets C = {{e1, e2}, {e3}}.
Correlation subsets S = {{e1}, {e2}, {e1, e2}, {e3}}.

Therefore, when the Identifiability++ condition does not hold, we remove from
the list of potentially congested correlation subsets Ŝ, all correlation subsets
Sk for which Paths(Sk) \ Paths(Sk) = ∅, since we know from Lemma 5.5 that
these correlation subsets cannot appear in any equation. This will be the new
input to Algorithm 5.1. In the example in Figure 5.2, a possible input to our
algorithm is Ŝ = {{e2}, {e1, e2}, {e3}}.

Nevertheless, as we will see in Section 5.2.5, even if the Identifiability++
condition does not hold, we can still compute accurately the congestion proba-
bility of most of the potentially congested correlation subsets Sk ∈ Ŝ for which
the Identifiability++ condition holds, that is, when there is no other correlation
subset Sl ∈ Ŝ such that Paths(Sk) = Paths(Sl). Therefore, whether the Iden-
tifiability++ condition holds or not for a correlation subset Sk is an indication
of whether the congestion probability of Sk can be likely estimated accurately
or not.

In order to apply our algorithm to a network where the Identifiability++
condition does not hold, we need to make the following small changes to Algo-
rithm 5.1:

. remove from Ŝ all correlation subsets Sk for which Paths(Sk)\Paths(Sk) = ∅;
this is the new input of the algorithm.
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. replace the condition in line 15, by the condition that the loop in line 8
finishes without finding any new path set.

Lemma 5.5. A correlation subset Sk ∈ Ŝ, for which Paths(Sk)\Paths(Sk) = ∅,
satisfies αP,Sk

= 0, for all path sets P ⊆ P , with αP,Sk
given by Defini-

tion 5.0.8.

Proof. Consider a correlation subset Sk ∈ Ŝ, and a path set P ⊆ P . Condition
Paths(Sk) \ Paths(Sk) = ∅ implies that Paths(Sk) ⊆ Paths(Sk), that is, if a
path traverses a link in Sk, then it also traverses a link in Sk. We consider
any path set P ⊆ P , and we partition it as described in Equations 5.13, 5.14,
and 5.15. We obtain that PSk

= ∅ since there is no path which traverses a
link in Sk, without traversing a link in Sk. Consequently, Definition 5.0.10
yields ΩP,Sk

= ∅. From Lemma 5.3, Propositions (ii) and (iii), we know that if
ΩP,Sk

= ∅, then αP,Sk
= 0.

In conclusion, if Paths(Sk) \ Paths(Sk) = ∅, then αP,Sk
= 0 for all path

sets P ⊆ P . Hence, correlation subset Sk ∈ Ŝ does not appear in Equation 5.6
applied to all possible sets of paths.

When correlation sets are too large. The main challenge of our algorithm
is the size of the correlation sets. If a correlation set is too large, then it is
not possible to compute the congestion probability of all potentially congested
correlation subsets. For example, given a correlation set Cp, if all links in Cp are
potentially congested, then we need to compute 2|Cp| probabilities, where |Cp| is
the number of links in correlation set Cp.

We deal with this challenge by computing the congestion probability of only
some of the potentially congested correlation subsets. For example, we can
configure our algorithm to compute only the congestion probability of individual
links, i.e., the congestion probability of the correlation subsets Sk ∈ S, for
which |Sk| = 1. Similarly, we can configure our algorithm to compute only
the congestion probability of individual links and of pairs of links, i.e., the
congestion probability of the correlation subsets Sk ∈ S, for which |Sk| ≤ 2. To
a certain extent, we are free to choose the correlation subsets for which we want
to compute the congestion probabilities. Suppose we are interested to compute
the congestion probabilities of only some particular correlation subsets. In this
case, we must do the following changes to Algorithm 5.1:

. remove from Ŝ the correlation subsets we are not interested in; this is the
new input to the algorithm.
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. a path set P is added to P̂ (lines 4 and 12) if and only if αP,Sk
= 0 for

all correlation subsets that we have removed from Ŝ, i.e., none of the removed
correlation subsets appears in Equation 5.6 applied to any path set P ∈ P̂.

However, in this case, even if the Identifiability++ condition holds, depending
on the set of correlation subsets we are interested in, the resulting system of
equations might not have a unique solution as we discard some of the path sets.
This defines the extent of freedom we have to choose the correlation subsets
we are interested in. On the other hand, for more "conservative" choices of the
correlation subsets we are interested in, e.g., we want to compute the conges-
tion probability of individual links, we have practical evidence that when the
Identifiability++ condition holds, we can indeed compute all these probabilities.

5.2.5 Evaluation

We now look at the performance of our algorithm and compare it to the to-
mographic algorithm in [NT07a], which computes the congestion probability of
individual links under the assumption that all links are independent. In order
to better distinguish between the two, we label our algorithm Correlation be-
cause it assumes Correlation Sets, and the algorithm in [NT07a] Independence
because it assumes Link Independence.

As explained in Section 5.2.4, we can configure our algorithm to compute the
congestion probabilities of only some of the correlation subsets. Depending on
the scenario we are simulating, we configure our algorithm to infer only the con-
gestion probability of individual links similar to the Independence algorithm, or
the congestion probability of all correlation subsets, or when the correlation sets
are too large, the congestion probabilities of a maximum number of correlation
subsets depending on our computational resources2.

Metrics. To evaluate the performance of each algorithm, we look at the
absolute error between the actual congestion probability of a link or of a corre-
lation subset and the congestion probability as computed by the algorithm. For
instance, if the actual congestion probability of a correlation subset is 0.5, but
the algorithm thinks it is 0.1, then the absolute error is 0.4.

We use two ways to illustrate the performance of each algorithm: (i) We
plot the mean of the absolute error for all potentially congested links (Def-
initions 5.0.2) or potentially congested correlation subsets (Definition 5.0.3).
(ii) We plot the cumulative distribution function (CDF) of the absolute error,

2Currently, on an Intel Core Quad @ 2.4GHz machine, our algorithm can compute roughly
the congestion probabilities of 5000 correlation subsets
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for all the potentially congested links/ correlation subsets. For a perfect al-
gorithm, this CDF would be a single point at x = 0, y = 100%. In general,
the earlier the CDF hits the y = 100% line, the better the performance of the
corresponding algorithm.

Topologies. We use two kinds of topologies: the Sparse topologies are real
topologies given to us by an ISP; the Brite topologies are synthetic topologies.

Each Sparse topology was obtained as follows: The operator of the ISP
performed traceroute from a few end-hosts located inside her network toward a
large number of external end-hosts; she discarded all incomplete paths. In this
way, she collected a router-level graph (where each vertex corresponds to an IP
router and each edge corresponds to an IP-level link). Moreover, she mapped
each IP router to an Autonomous System (AS) and created an AS-level graph,
where each vertex corresponds to a border router and each edge corresponds
to either an inter-domain link between border routers of peering ASes, or an
intra-domain path between two border routers of the same AS (see Section 4.1,
scenario "The ISP curious about its peer"). In general, an ISP wants to monitor
its peers at the AS level (it is not interested in each peer’s internals), hence, we
use the AS-level graph as the network topology. The router-level graph tells us
how the links in the AS-level graph are correlated—if a router-level link becomes
congested, then all the AS-level links that share this router-level link become
congested at the same time.

Each Brite topology also consists of a router-level and an AS-level graph,
each derived using the corresponding module of the Brite topology genera-
tor [Bri].

For the Correlation algorithm which relies on the Correlation Sets assump-
tion, we define, for both kinds of topologies, one correlation set per AS, i.e., all
links that belong to one AS are assigned to the same correlation set. In short,
since we do not know which links of each AS are correlated, we assume that all
links that belong to the same AS may be correlated. To define correlation sets
in this manner, we need to map each link in the network graph to an AS, but
no additional information, e.g., correlation factors between different links.

We show results for a representative Sparse topology of about 2000 links
and a representative Brite topology of about 1000 links, each of them with
1500 paths—the results for other topologies were similar. Furthermore, the
Identifiability++ condition holds only for the Brite topology.

Simulator. In the beginning of each experiment, we determine the prob-
ability that each (AS-level) link is congested and the degree of correlation be-
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tween congested links (depending on whether they share underlying router-level
links). In the experiments that we present here, a certain percentage of the
links are assigned a positive congestion probability chosen at random between 0
and 1. Which particular links have a positive probability of congestion differs,
depending on the scenario we are simulating.

Each experiment consists of multiple snapshots. In the beginning of each
snapshot, we flip a biased coin for each link, to determine whether the link will
be good or congested, such that we respect the individual and joint probabilities
of congestion determined in the beginning of the experiment; if we determine
that a link will be good (resp. congested) in this interval, we randomly assign
to it a packet-loss rate between 0 and 0.01 (resp. 0.01 and 1), according to the
loss model in [PQW03] (and similar to the loss models in [SQZ06, NT07a]). In
each interval, packets are sent along each path; for each packet that arrives at a
given link, we flip a biased coin to determine whether it will be dropped or not,
such that we respect the packet-loss rate assigned to the link in the beginning
of the interval.

Scenarios. We consider the following scenarios:

• Random Congestion: In this scenario, the links that have a positive con-
gestion probability are chosen at random.

• Concentrated Congestion: In this scenario, the links that have a posi-
tive probability of congestion are chosen to be located toward the edge of the
network, i.e., there is no congestion at the core.

• No Independence: In this scenario, the links that have a positive probability
of congestion are chosen such that each of them is correlated with at least one
other.

Performance when the Identifiability++ condition holds. We first
look at the performance of the two algorithms when the Identifiability++ con-
dition holds, i.e., the congestion probabilities of all correlation subsets are iden-
tifiable from end-to-end measurements.

In order to assess the benefits of taking into account link correlation, we
simulate first the No Independence scenario for the Brite topology (Figure 5.3).
For a fair comparison, we configure the Correlation algorithm to compute only
the congestion probability of individual links, similar to the Independence algo-
rithm.

First, we observe that the performance of the Correlation algorithm scales
well as the percentage of links with a positive congestion probability increases
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(b) Breakdown of the mean of the absolute error when 10% of the links
have a positive congestion probability.

Figure 5.3: Performance of the two algorithms in the No Independence sce-
nario when the Identifiability++ condition holds. Both algorithms infer the
congestion probability of individual links. Brite topology.

from 5% to 25%: for the Correlation algorithm, the mean of the absolute error
stays below 0.03, while, for the Independence algorithm, the mean increases
up to 0.14 (Figure 5.3(a)). Furthermore, the gap between the performance of
the two algorithms widens as congestion increases, because more congestion im-
plies that more correlated links are congested, and the Independence algorithm
introduces a larger error by ignoring correlated links.

Second, we observe that, for the Independence algorithm, the error intro-
duced by ignoring link correlation dominates (accounts for more than 80% of)
the other factors. Figure 5.3(b) shows a breakdown of the mean of the absolute
error for the two algorithms when 10% of the links have a positive congestion
probability. One error factor is the insufficient “learning” of the congestion
probabilities of the paths; this accounts for 70% of the mean absolute error for
the Correlation algorithm and 14% for the Independence algorithm. We should
note that this error factor can be mitigated by considering more snapshots per
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Figure 5.4: CDF of the absolute error in the No Independence scenario when
the Identifiability++ condition holds. The Correlation algorithm infers the
congestion probabilities of all correlation subsets that are potentially congested,
whereas the Independence algorithm infers the congestion probability of all po-
tentially congested links. Brite topology. 10% of the links have a positive
congestion probability.

experiment (i.e., computing the congestion probabilities of links over longer pe-
riods of time), but that would also worsen the granularity of the results (we
want to be able to compute the congestion probabilities of links over minutes
or, perhaps, hours, but not days).

A smaller error factor is “non-separability”: to determine whether a path is
congested, we compare the packet-loss rate on that path to a threshold; hence,
it is possible to mis-classify a congested path as good (or vice versa), which
causes the Separability assumption to be violated and introduces noise in the
measurements. We found all other error factors (e.g., the numerical error when
solving the system of equations) to be negligible (below 1% of the mean of the
absolute error).

Next, we look at the performance of the Correlation algorithm when com-
puting the congestion probabilities of all correlation subsets (Figure 5.4). We
consider again the No Independence scenario for the Brite topology when 10% of
the links have a positive congestion probability. For the Correlation algorithm,
we plot the CDF of the absolute error of the congestion probabilities of all cor-
relation subsets that are potentially congested, whereas for the Independence
algorithm, we plot the CDF of the absolute error of the congestion probabili-
ties of all potentially congested links. In this case, the number of potentially
congested correlation subsets is roughly three times larger than the number of
potentially congested links. We observe that the Correlation algorithm signif-
icantly outperforms the Independence algorithm: The Correlation algorithm
computes the congestion probability of 90% of the correlation subsets that are
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Figure 5.5: Mean of the absolute error in various scenarios when the Identi-
fiability++ condition holds and the congestion probabilities of links change in
time. Both algorithms infer the congestion probability of individual links. Brite
topology. 10% of the links have a positive congestion probability.

potentially congested with an absolute error of less than 0.1, whereas the Inde-
pendence algorithm infers the congestion probability of 90% of the potentially
congested links with an absolute error of less than 0.4.

Finally, we look at the performance of the two algorithms when the con-
gestion probabilities of links change in time. Figure 5.5 shows the mean of the
absolute error in the Random Congestion, Correlated Congestion and No In-
dependence scenarios. In this case, we configure the Correlation algorithm to
compute only the congestion probability of individual links, similar to the Inde-
pendence algorithm. We see that even under non-stationary network dynamics,
the Correlation algorithm performs well with an absolute error below 0.7.

Performance when the Identifiability++ condition does not hold.
We now look at the performance of the two algorithms when the Identifiabil-
ity++ condition does not hold, i.e., we cannot identify from end-to-end mea-
surements the congestion probabilities of all correlation subsets.

We consider the performance of the two algorithms for the Sparse topology,
in the No Independence scenario. This topology contains large correlation sets,
therefore, we configure the Correlation algorithm to compute the congestion
probabilities of a maximum number of correlation subsets depending on our
computational resource; these probabilities include also the congestion prob-
abilities of all individual links. The Correlation algorithm computes roughly
twice the number of probabilities inferred by the Independence algorithm. Fig-
ure 5.6(a) shows the CDF of the absolute error, when 10% of the links have a
positive congestion probability. In this case as well, we see that the Correlation
algorithm significantly outperforms the Independence algorithm: The Correla-
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Figure 5.6: Performance of the two algorithms in the No Independence scenario
when the Identifiability++ condition does not hold. The Correlation algorithm
infers the congestion probabilities of a maximum number of potentially con-
gested correlation subsets depending on our computational resources, whereas
the Independence algorithm infers the congestion probability of all potentially
congested links. Sparse topology. 10% of the links have a positive congestion
probability.

tion algorithm computes the congestion probability of 80% of the correlation
subsets that are potentially congested with an absolute error of less than 0.1,
whereas the Independence algorithm infers the congestion probability of 80%
of the potentially congested links with an absolute error of less than 0.6. Fur-
thermore, if we plot separately the CDF of the absolute error of the potentially
congested correlation subsets for which the Identifiability++ condition holds
and of the ones for which this condition does not hold, we see that the Cor-
relation algorithm can compute accurately the congestion probabilities of the
former, i.e., of the correlation subsets for which the Identifiability++ condition
holds.
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Figure 5.7: Mean of the absolute error in various scenarios when the Iden-
tifiability++ condition does not hold and the congestion probabilities of links
change in time. Both algorithms infer the congestion probability of individual
links. Sparse topology. 10% of the links have a positive congestion probability.

Finally, we also consider the case when the congestion probabilities of links
change in time for the Sparse topology. Figure 5.5 shows the mean of the
absolute error for the Sparse topology in the Random Congestion, Correlated
Congestion and No Independence scenarios, when 10% of the links have a posi-
tive congestion probability. We configure the Correlation algorithm to compute
only the congestion probability of individual links, similar to the Independence
algorithm. We see that the Correlation algorithm performs as well as in the
case of the Brite topology, whereas the Independence algorithm is much more
inaccurate. The reason is that the Sparse topology involves large correlation
sets, hence, two congested links are more likely to belong to the same correla-
tion set. Since the Independence algorithm ignores these correlations, it learns
the congestion probability badly.

5.3 A Practical Scenario

Our choice of a different loss tomography is motivated by practical evidence.
We have talked to the operator of a European Tier-1 ISP (the “source ISP”)
who wanted to monitor the behavior and performance of its most important
peers. In particular, for each peer, the operator of the source ISP wanted to
understand: when the peer is responsible for performance problems encountered
by the customers of the source ISP; how frequently the peer is congested and
how its congestion level changes over the course of day or week; how well the peer
reacts to exceptional situations like Border Gateway Protocol (BGP) failures,
flash crowds, or distributed denial-of-service attacks. The source ISP does not
have access to its peers’ networks and cannot directly monitor their links; it can
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only perform end-to-end measurements, i.e., monitor a number of paths from
its own network to various Internet end-hosts. In this context, the operator of
the source ISP asked us: can we apply network tomography to these end-to-end
measurements to answer some or all of the above questions?

At first, this scenario sounded like a good match for Boolean loss tomog-
raphy algorithms [PQW03, Duf06, DTDD07, NT07a], which monitor a set of
paths during a snapshot and infer which particular links on these paths were
congested during that snapshot. In order to assess weather Boolean loss tomog-
raphy can provide trustworthy information in this scenario, we have obtained
a real network topology from the operator of the source ISP on which we have
tested these algorithms under various congestion patterns. The operator of the
source ISP obtained this topology by performing traceroute from a few end-hosts
located inside her network toward a large number of external end-hosts.

Unfortunately, Boolean loss tomography turned out to be too hard a prob-
lem in this scenario. State-of-the-art tomographic algorithms performed signif-
icantly worse than expected (Section 5.4), even when adjusted and fine-tuned
to the scenario. Our initial reaction was to focus on the limitations of existing
algorithms and design a new one that would overcome them; we found that
each feature or twist we added to our algorithm to improve it came at the cost
of significant complexity, yet brought little benefit—in the end, all algorithms
that we tried performed very well under certain conditions (randomly congested
links, link independence, stationary network dynamics, dense topologies) and
equally badly under the opposite conditions which are more realistic. To con-
clude, in the scenario considered, we could not solve Boolean loss tomography
with sufficient accuracy to be useful.

We argue that, in this scenario, the “right” problem to solve is Congestion
Probability Inference, i.e., infer, for each set of links in the network, the prob-
ability that the links in this set are congested. This is less information than
what would be provided by Boolean loss tomography: the source ISP learns
only how frequently each set of links of each peer are congested, as opposed to
which particular set of links of each peer are congested when. On the other
hand, in practice, this information is more useful, because it can be obtained
accurately under weaker assumptions and more challenging network conditions.
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5.4 Limitations of Boolean Loss Tomography

In this section, we show that even though Congestion Probability Inference
shares the same foundation with Boolean loss tomography, it does not inherit
the limitations of the latter.

5.4.1 Boolean Loss tomography is ill-posed

The goal of Boolean loss tomography is to determine the set of congested links
during a snapshot from the set of congested paths during that snapshot [Duf06].
This problem is ill-posed: for all network graphs3, given the set of congested
paths, there may be multiple possible solutions (sets of congested links) that
could have led to this outcome. For example, in Figure 5.1, suppose that all
three paths are congested during a snapshot; there are 8 possible sets of links
that if congested would have led to this outcome: {e1, e4}, {e1, e2}, {e3, e4},
{e1, e3, e4}, {e1, e2, e3}, {e1, e2, e4}, {e2, e3, e4}, and {e1, e2, e3, e4}.

Since Boolean loss tomography is an ill-posed problem, no algorithm can
solve it exactly, that is, identify the congested links without false negatives or
positives for all possible sets of congested paths (Lemma 5.6). Nevertheless, it is
possible to compute an approximation of the set of congested links that is close to
the actual solution when certain additional assumptions hold. Therefore, what
distinguishes different Boolean loss tomography algorithms from one another is
the set of additional assumptions that each of them relies on.

Lemma 5.6. In any network where the topology is not the complete graph,
Boolean loss tomography is ill-posed.

Proof. We will show that there is no network where the set of congested links
is identifiable for all possible sets of congested paths, with the exception of the
trivial network in which the topology is a complete graph, i.e., hosts are directly
interconnected.

If the topology is not the complete graph, there is at least one node which
acts as a router. We denote by Ein the set of ingress links of this router, and by
Eout the set of its egress links. In the network tomography model (Section 2.1),
links are unidirectional , thus, Ein ∩ Eout = ∅. Furthermore, since a path must
start and terminate at a host, all paths that enter the router must also exit the
router, hence, Paths(Ein) = Paths(Eout).

3Except for the trivial case when end-hosts are directly interconnected.
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Suppose that the set of congested paths is Paths(Ein). In this case, there are
at least two possible sets of links, namely, Ein and Eout that if congested would
have led to this outcome. Therefore, there is no one-to-one mapping between
the set of congested links and the set of congested paths available from end-to-
end measurements. In conclusion, we cannot identify the set of congested links
for all possible sets of congested paths.

5.4.2 Analysis of Tomographic Algorithms

In this section, we analyze three state-of-the-art algorithms which attempt to
solve the Boolean loss tomography problem for mesh networks: (i) Sparsity
(originally called Tomo4) [DTDD07], an adaptation of Duffield’s inference algo-
rithm for trees [Duf06] to mesh networks; (ii) Bayesian-Independence (originally
called CLINK) [NT07a]; and (iii) Bayesian-Correlation, a new algorithm that
we developed for this work [GAT11]. We experimentally show that neither of
them performs accurate inference in the practical scenario described in Sec-
tion 5.3. Our point is not that these algorithms are not good (we pick them
precisely because they represent the state-of-the-art). Instead, we argue that
any Boolean loss tomography algorithm is bound to be accurate in some scenar-
ios and inaccurate in others, and there is no evidence that the scenarios favored
by one algorithm occur more frequently than those favored by the others.

The Bayesian algorithms (Bayesian-Independence and Bayesian-Correlation)
attempt to solve the Boolean loss tomography problem by using the congestion
probabilities of links or respectively, of correlation subsets as prior information.
Toward this goal, they pose Boolean loss tomography as a Maximum Likelihood
Estimation (MLE) problem: of all the possible solutions, where a solution con-
sists of the set of congested links, it looks for the one that occurred with the
highest probability.

Intuition

First, we explain through toy examples the sources of inaccuracy introduced by
each algorithm.

Sparsity[DTDD07]. The gist behind this algorithm is that a few congested
links are responsible for many congested paths. Under the assumption that all
links are equally likely to be congested, i.e., the Link Homogeneity assumption

4We use new names for the existing algorithms, in order to better distinguish them from
each other.
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introduced in Section 2.5, Sparsity “favors” links that participate in a higer
number of congested paths, i.e., the larger the number of congested paths in
which a link participates, the more likely it is to be labeled as congested. For
example, in the toy topology of Figure 5.1, if all three paths are congested,
Sparsity will infer that the congested links are {e1, e4} because each of them
participates in two congested paths whereas each of the other links participate
in only one congested path.

Sparsity works best in scenarios where congestion is concentrated in a few
links. This is not the case, for instance, when there exists a lot of congestion
at the edge of the network, i.e., many links adjacent to end-hosts are congested
at the same time. For example, in Figure 5.1, if links e3 and e4 are both
congested, which will cause all paths to be congested, and Sparsity will pick
solution {e1, e4}, i.e., it will miss one congested link and falsely blame one good
link.

Bayesian-Independence[NT07a]. This algorithm consists of two steps:
(i) Congestion Probability Inference, which monitors the network and learns the
probability with which each solution occurs, and (ii) Bayesian Inference, which
looks at the status of paths during each snapshot and determines which set
of links were most likely congested during that snapshot, based on the output
of the previous step. For example, in Figure 5.1, if all paths are congested,
Bayesian-Independence will consider all 8 possible solutions and pick the one
that occurs with the highest probability.

The Congestion Probability Inference step monitors the congestion statuses
of paths, learns the probability that each set of paths is congested and, from
these, under the Link Independence assumption, computes the probability that
each link is congested. We illustrate with the example of Figure 5.1: First,
the method computes the probability that path p1 is good, which is equal to
the probability that link e1 and link e3 are both good, and forms the first
equation in Equation 4.1. In the same way, it computes the probability that
each path and each pair of paths is good and forms the remaining equations
in Equation 4.1. The resulting system has four unknowns (one for each link)
and four linearly independent equations, hence, gives us the probability that
each link is good. Assuming Link Independence, we can easily compute the
probability of each particular solution, e.g., the probability of solution {e1, e3}
is P (Ze1 = 1) P (Ze2 = 0) P (Ze3 = 1) P (Ze4 = 0).

Bayesian-Independence needs the Link Independence assumption, in order
to form equations by combining probabilities related to different links. As
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previously pointed out in Section 4.1, this assumption does not always hold
in practice, which causes Bayesian-Independence to compute some probabil-
ities incorrectly, leading to incorrect inference. For example, suppose that,
in Figure 5.1, links e1 and e2 are always good, while e3 and e4 are perfectly
correlated (either both are congested or both are good). This means that
P (Ze3 = 0, Ze4 = 0) 6= P (Ze3 = 0) P (Ze4 = 0), and the last two equations in
Equation 4.1 are wrong. As a result, Bayesian-Independence incorrectly deter-
mines that {e1, e4} is the solution with the highest probability and always picks
it over the correct one {e3, e4}.

A more subtle source of inaccuracy in the Bayesian Inference step is the fol-
lowing: Bayesian-Independence determines whether link ej was congested dur-
ing a particular snapshot based on the probability that link ej is congested dur-
ing any snapshot. More formally, under the Stationarity assumption, Bayesian-
Independence uses as estimate for the value of random variable Zej its expected
value E[Zej

] = P
(
Zej

= 1
)
. We illustrate with an example. Suppose that the

Congestion Probability Inference module observes the network in Figure 5.1 for
an hour and determines the following probabilities:

P (Ze1 = 1, Ze2 = 0, Ze3 = 0, Ze4 = 0) = 0.3.

P (Ze1 = 1, Ze2 = 0, Ze3 = 1, Ze4 = 0) = 0.1.

This means that, during the one hour of monitoring, {e1} was the only con-
gested link in the network for 30% of the time, while {e1, e3} were the only
congested links in the network for 10% of the time. Now suppose that during
the last 1-minute interval within this hour, the congested paths are {p1, p2}; the
Bayesian Inference module determines that there are two possible solutions for
this interval, {e1} and {e1, e3}, and picks the first one (because it has a higher
probability associated with it). In essence, Bayesian Inference determines that
this solution is more likely to have occurred during the last minute, because it
occurred more frequently over the last hour.

In practice, we cannot tell whether this estimation is valid, unless we have
“insider information” on network conditions. For example, consider a link that
is normally congested very rarely, and the Congestion Probability Inference step
correctly computes a low congestion probability for it; suppose this link incurs
a technical failure or comes under a flooding attack and becomes severely con-
gested for a few time intervals; unless we already know when this failure/attack
occurs and how long it lasts, Bayesian Inference will not pick this link as con-
gested as it has a low congestion probability associated with it. So, even if



5.4. LIMITATIONS OF BOOLEAN LOSS TOMOGRAPHY 123

Congestion Probability Inference correctly computes for what fraction of time
a link is congested, Bayesian Inference cannot use this information correctly
because it inevitably picks the expected value of a random variable for its value.

Finally, the Bayesian Inference step is an NP-complete problem, hence,
Bayesian-Independence uses an approximate algorithm to pick the solution that
occurred with the highest probability, which means that it may not always pick
the right one.

To summarize, Bayesian-Independence introduces three additional sources
of inaccuracy: the Link Independence assumption (used in both steps), the fact
that it approximates the value of the random variable Zej

with its expected
value (in the Bayesian Inference step), and the use of an approximate algorithm
to pick the solution that occurred with the highest probability (also in the
Bayesian Inference step).

Bayesian-Correlation [GAT11]. In an effort to remove one source of
inaccuracy, we developed a new algorithm that takes into account link cor-
relations. It is similar to Bayesian-Independence , i.e., it also consists of a
Congestion Probability Inference and a Bayesian Inference step, however, in-
stead of the Link Independence assumption, it relies on the Correlation Sets
assumption. In the Congestion Probability Inference step, we use our algorithm
described in Section 5.2.4. For instance, in the example of Figure 5.1, it treats
P (Ze3 = 0, Ze4 = 0) as an extra unknown, as opposed to mistakenly breaking
it into P (Ze3 = 0) P (Ze3 = 0), and forms the equations in Figure 4.2. The
resulting system has 5 unknowns (one for each link plus one for the pair of
correlated links {e3, e4}) and 5 linearly independent equations. Hence, we can
determine these 5 probabilities by solving the system of equations, and com-
pute the probability of each solution, e.g., the probability of solution {e1, e3} is
P (Ze1 = 1) P (Ze2 = 0) P (Ze3 = 1, Ze4 = 0).

Nevertheless, taking link correlations into account comes at the price of in-
troducing extra unknowns, and we can compute all of them if and only if the
Identifiability++ condition holds. For instance, in the example of Figure 4.6,
it is impossible to compute the probability that {e1} is good or the probability
that {e2, e3} are both good. The intuition is the following: both these sets of
links are traversed by the same set of paths {p1, p2}; this makes it impossible to
distinguish one pair from the other based on path observations and to compute
the probability that each pair is good. So, the Congestion Probability Inference
step of Bayesian-Correlation cannot always compute the probability of all solu-
tions, because the the Identifiability++ condition does not always hold. As a
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Sparsity Bayesian-Independence Bayesian-Correlation
Step 1 Step 2 Step 1 Step 2

Routing Stability × × × × ×
Link Identifiability × × ×
Stationarity × × × ×
Separability × × × × ×
Link Homogeneity ×
Link Independence × × ×
Correlation Sets × ×
Identifiability++ × ×
Other approx./ × × ×heuristic

Table 5.4: Sources of inaccuracy for Boolean loss tomography algorithms:
assumptions, conditions, and approximations/heuristics.

result, the Bayesian Inference step does not have all the information it needs to
pick the likeliest solution.

To summarize, Bayesian-Correlation introduces three additional sources of
inaccuracy: the Correlation Sets assumption and the Identifiability++ condi-
tion (used in both steps) and—like Bayesian-Independence—the fact that it
approximates the values of random variables with their expected values and the
use of an approximate algorithm to pick the solution that occurred with the
highest probability (in the Bayesian Inference step).

Conclusion. We have seen that each algorithm introduces its own sources
of inaccuracy (summary in Table 5.4), and there is no basis for arguing that one
algorithm covers more cases than the others.

Experiments

We now look at the performance of the three algorithms under various scenarios
(Figure 5.8). We assume that Routing Stability, Separability, and Correlation
Sets always hold, because this is the weakest set of assumptions under which we
can solve Boolean loss tomography; the rest of the assumptions and conditions
in Table 5.4 may or may not hold, depending on the scenario.

We use the same simulator, topologies and scenarios as the ones described
in Section 5.2.5. In all scenarios, 10% of the links have a positive congestion
probability.

Metrics. We consider two metrics: during a particular time interval, the
detection rate of an algorithm is the fraction of congested links that the algo-
rithm correctly identified as congested; the false positive rate of an algorithm is
the fraction of links incorrectly identified as congested out of all links inferred
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as congested by the algorithm. Each detection rate and false-positive rate we
show is an average over 1000 time intervals.

Random Congestion (Brite). As we see in Figure 5.8, all Inference
algorithms perform equally well: on average, they identify 90% of the congested
links and miss fewer than 2% of them (except for Bayesian-Independence which
misses 10%).

The intuition is the following. The Brite topology models a full AS-level
topology, hence, it is relatively “dense,” i.e., paths tend to criss-cross. This is
good for Inference algorithms, because the denser the topology, the fewer the
possible solutions to each observation—which means that the heuristic/approxi-
mate aspect of each algorithm is exercised less. Bayesian-Independence performs
slightly worse, because it assumes that links are independent, whereas, during
several snapshots, some of the congested links happen to be correlated (share
an underlying router-level link).

Concentrated Congestion (Brite). As we see in Figure 5.8, Sparsity’s
detection rate drops to 75%, while its false-positive rate rises to 10%. This
happens because Sparsity assumes Link Homogeneity and picks links that are
traversed by many congested paths, hence it is more likely to pick solutions that
involve links located close to the core of the network. This result does not imply
that Sparsity is worse than the other algorithms—just that it performs worse
in this particular scenario.

No Independence (Brite). As we see in Figure 5.8, Bayesian-Independence’s
detection rate drops below 80%, while its false-positive rate rises to 25%; this
happens because its Congestion Probability Inference step assumes Link Inde-
pendence, hence, learns the probability of each set of links incorrectly.

No Stationarity (Brite). This scenario is similar to the No Independence
scenario, plus the congestion probabilities of links change in time. As we see in
Fig. 5.8, it is the turn of Bayesian-Correlation’s detection rate to drop below
80%; this happens because its Bayesian Inference step assumes that a solution
is more likely to have occurred during the last time interval, just because it
occurred more frequently throughout the entire experiment.

Sparse Topology. This scenario is the Random Congestion scenario ap-
plied to the Sparse topology. As we see in Figure 5.8, all Inference algorithms
suffer. The fact that Bayesian-Independence has a 90% detection rate should
not be mistaken for success: it achieves this by aggressively marking links as
congested, which results in a 45% false-positive rate.
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The intuition is the following. The Sparse topology was created by running
traceroute from the source ISP to various Internet end-hosts. However, most
traceroutes returned incomplete/inconclusive results and had to be discarded,
which resulted in a “sparse” view, where few paths intersect one another. This
is bad for Boolean loss tomography algorithms, because the sparser the topol-
ogy, the less information we obtain about the link characteristics from end-to-
end measurements—which means that each algorithm has to rely more on its
heuristic/approximate aspect to pick a solution. Note that we did not in any
way engineer this scenario to make the algorithms fail as we did in the previous
scenarios—we did not introduce extra link correlations or non-stationarity.

We should clarify that the Sparse topology is the most complete topology
that the ISP operator was able to collect with the resources (the monitoring
points) she had at her disposal. One might argue that, if the operator had
done a better job and collected a more complete (less sparse) topology, the al-
gorithms would have performed better. This is true, however, in our experience
from working with the operator, piecing together a topology from traceroutes
is a complex task—some routers respond to a traceroute probe through a dif-
ferent interface than the one where the probe was received, some routers do not
respond to traceroute probes at all, while load-balancing interferes with tracer-
oute results. Hence, we think it is fair to assume that operators are typically
not able to collect complete topologies.

Conclusion. Because of the ill-posed nature of Boolean loss tomography,
any Boolean loss tomography algorithm can perform badly under certain net-
work conditions, and there is no evidence that such conditions do not occur
in practice. Moreover, all algorithms perform badly on Sparse topologies—
in particular, each algorithm performs worse on Sparse topologies under easy
conditions (random congestion) than on Brite topologies under worst-case con-
ditions (congestion at the edges for Sparsity, link correlations for Bayesian-
Independence, and non-stationarity for Bayesian-Correlation).

5.5 Why a Different Loss Tomography?

In this section, we argue that it makes more sense to solve Congestion Proba-
bility Inference rather than Boolean loss tomography.

Ideally, Boolean loss tomography provides the source ISP with the conges-
tion status of each link in the network during each snapshot. This information
would enable the source ISP to attribute blame to a peer for a particular connec-
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tivity/performance problem faced by the source ISP’s customers and/or request
compensation in case a Service Level Agreement (SLA) has been violated. How-
ever, we have seen in Section 5.4 that for the Sparse topology, state of the art
Boolean loss tomography algorithms yield a detection rate as low as 68% and a
false positive rate as high as 47%; attributing blame or extracting compensation
is practically impossible based on this level of accuracy.

Congestion Probability Inference provides less information than Boolean loss
tomography: if accurately solved, it would provide the source ISP with the
congestion probability of each set of links in the network, i.e., how frequently
each set of links are congested, but not which particular links were congested
when.

On the other hand, our algorithm described in Section 5.2.4 (Step 1 of
Bayesian-Correlation) solves Congestion Probability Inference with fewer sources
of inaccuracy than Boolean loss tomography algorithms:

• It assumes Routing Stability, Stationarity, Separability, and Correla-
tion Sets—a weaker set of assumptions than those assumed by Sparsity and
Bayesian-Independence.

• Unlike the Bayesian algorithms (Bayesian-Independence and Bayesian-
Correlation), our algorithm does not need to solve a NP complete problem.

• Unlike the Bayesian algorithms, our algorithm does not need to ap-
proximate the value of random variables with its expected values: if we compute
that P

(
Zej

= 1
)

= 0.3 over N snapshots, we interpret this as “ej was congested
for 30% of the N snapshots.” In contrast, the Bayesian algorithms use the same
information to infer during which particular snapshot ej was congested. When
network conditions change over time, the Bayesian algorithms may make the
wrong decision as discussed in Section 5.4; our result, however, still holds, be-
cause it concerns the average behavior of the link over the N snapshots, and
not the diagnosis of the congested links over a single snapshot.

5.6 Conclusion

In this chapter, we have argued for a different loss tomography, namely, Con-
gestion Probability Inference that computes the congestion probability of each
set of links, that is, it determines how often all links belonging to each set are
congested. Unlike continuous or Boolean loss tomography that are ill-posed,
Congestion Probability Inference is well-posed under certain well-defined con-
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ditions. Consequently, tomographic algorithms solving this problem can work
under weaker assumptions than those required by algorithms solving one of
the traditional versions of loss tomography (either continuous or Boolean loss
tomography). We have designed an algorithm solving Congestion Probability
Inference under the weakest set of assumptions made by any tomographic al-
gorithm to date. We have shown that in the scenario of an ISP that wants
to monitors the performance of its peers, our algorithm provides trustworthy
information under challenging conditions such as sparse topologies and non-
stationary network dynamics.
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Symbol Definition

Ê the set of all potentially congested links

Sk ∈ S,Sk ⊆ Ê a potentially congested correlation subset

Ŝ an ordering of all potentially congested correlation subsets

Sk the complement of Sk ∈ Ŝ

P ⊆ P a path set

P̂ an ordering of path sets

Paths(Sk) all paths traversing links in Sk

Links(P) all links traversed by paths in P

L̂inks(P) all potentially congested links traversed by paths in P

αP,Sk
= 1 L̂inks(P) ∩ Cp = Sk, where Cp is the correlation set of Sk

Row(P, Ŝ) a row vector where each element corresponds to αP,Sk
,

with Sk ∈ Ŝ

Matrix(P̂, Ŝ) a matrix where each row corresponds to Row(P, Ŝ),
with P ∈ P̂

PCp
the paths in P which do not traverse any potentially
congested link in correlation set Cp

PSk
the paths in P which traverse links in Sk, the complement
of correlation subset Sk ∈ Ŝ.

PSk
the paths in P which traverse links in correlation subset
Sk ∈ Ŝ, but do not traverse links in Sk.

ΩP,Sk
the set of all path sets Q ⊆ PSk

such that αQ,Sk
= 1

Table 5.5: Symbols used in Chapter 5.



Chapter 6

Conclusion

In this thesis, we have strived to bring network loss tomography closer to prac-
tice. Toward this goal, we have designed tomographic algorithms that work
under assumptions weaker than those required by state-of-the-art algorithms.

Our first contribution is in the context of continuous loss tomography, we
have proposed Netscope, an algorithm that infers the loss rates of network links
from end-to-end measurements (Chapter 3). Inspired by previous work [NT07b],
we have designed an algorithm that gains initial information about the network
by computing the variances of the loss rates of links, and by using these variances
as an indication of the congestion level of links, i.e., the more congested the link,
the higher the variance of its loss rate. Its novelty lies in the way it uses this
information—to identify and characterize the maximum set of links whose loss
rates can be accurately inferred from end-to-end measurements. We have shown
that our algorithm performs significantly better than the alternatives, and that
this advantage increases with the number of congested links in the network.
Furthermore, Netscope is robust in the sense that it requires no parameter
tunning. We validated Netscope’s performance by using PlanetLab experiments:
We have built a “Internet tomographer” that runs on PlanetLab nodes and infers
the loss rates of links located between them; we have used some of the measured
paths for inference and others for validation, and we have shown that the results
are consistent.

Second, we have shown that it is feasible to perform network loss tomography
in the presence of "link correlations," i.e., when the losses that occur on one link
depend on the losses that occur on other links in the network (Chapter 4). More
precisely, we have formally derived the necessary and sufficient condition under
which the probability that each set of links is congested is statistically identi-

131



132 CHAPTER 6. CONCLUSION

fiable from end-to-end measurements even in the presence of link correlations.
In doing so, we have challenged one of the popular assumptions in network loss
tomography, specifically, the assumption that all links are independent. The
model we have proposed assumes we know which links are most likely to be cor-
related, but it does not assume any knowledge about the nature or the degree
of their correlation. In practice, we consider that all links in the same local area
network or the same administrative domain are potentially correlated, because
they might be sharing physical links, network equipment, or even management
processes.

Finally, we have designed a practical algorithm that solves “Congestion Prob-
ability Inference” even in the presence of link correlations, i.e., our algorithm
infers the probability that each set of links is congested under the link correlation
model proposed in Chapter 4 (Chapter 5). We modeled Congestion Probability
Inference as a system of linear equations where each equation corresponds to
a set of paths. Because it is infeasible to consider an equation for each set of
paths in the network, our algorithm finds the maximum number of linearly inde-
pendent equations by selecting particular sets of paths based on our theoretical
results. On the one hand, the information provided by our algorithm is less
than that provided by the existing alternatives that infer either the loss rates or
the congestion statuses of links, i.e., we only learn how often each set of links is
congested, as opposed to how many packets were lost at each link, or to which
particular links were congested when. On the other hand, this information is
more useful in practice because our algorithm works under assumptions weaker
than those required by the existing alternatives, and we experimentally show
that it is accurate under challenging network conditions such as non-stationary
network dynamics and sparse topologies.
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A.1 A Heuristic to Speed Up the Algorithm

We can speed up Algorithm 5.1 by using the following heuristic: instead of
considering all possible subsets of path set Paths(Sk)\Paths(Sk) as described in
line 9 of Algorithm 5.1, we will consider only some of these subsets, namely, the
ones more likely to generate a row which will increase the rank of the system’s
matrix. Given a subset Sk ∈ Ŝ, we know that the row generated by path set
P = Paths(Sk)\Paths(Sk) is already in the system’s matrix because of the initial
phase in lines 1-4 of Algorithm 5.1. The intuition is that in order to obtain
a new linearly independent row, it is sufficient to slightly "disturb" this path
combination by removing some of the paths in P. Our heuristic (Algorithm A.1)
considers all potentially congested correlation subsets Sl ∈ Ŝ which are covered
by the paths in P (line 10), and checks if the path set P \ Paths(Sl) satisfies
the necessary condition (lines 11-13). If this test fails, it also checks whether
removing from P the paths which traverse individual edges in Sl will generate
a linearly independent row (lines 16-21).

In practice, our heuristic was always able to find the maximum number of
linearly independent rows. However, we do not have a theoretical result which
shows that this heuristic is complete.
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Algorithm A.1 Heuristic for Selection of Path Sets
Input: Ŝ: a list of potentially congested correlation subsets
Variables: P̂: a list of path sets

P: a path set
Sk: a correlation subset

1: P̂ ← 〈〉
2: for all Sk ∈ Ŝ do
3: P ← Paths(Sk) \ Paths(Sk)
4: P̂ ← P̂ + P

5: A← Matrix(P̂, Ŝ)
6: N← NullSpace (A)

7: repeat
8: for all Sk ∈ SortByHammingWeight(Ŝ,N) do
9: P ← Paths(Sk) \ Paths(Sk)

10: for all Sl ∈ Ŝ such that Sl ⊆ L̂inks(P) do
11: r← Row(P \ Paths(Sl), Ŝ)
12: if ||rN|| > 0 then
13: P̂ ← P̂ + P \ Paths(Sl)
14: N← NullSpaceUpdate (N, r)
15: go to line 22

16: for all ej ∈ Sl do
17: r← Row(P \ Paths({ej}), Ŝ)
18: if ||rN|| > 0 then
19: P̂ ← P̂ + P \ Paths({ej})
20: N← NullSpaceUpdate (N, r)
21: go to line 22
22: until N has no columns left

23: return P̂

Notation:
A \ B: subtract set B from set A
P̂ + P: add path set P to list of path sets P̂
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Appendix B

Notations

The notations used throughout this thesis are summarized in Table B.1. Chap-
ters 4 and 5 have their own notations tables located at the end of the respective
chapter.

The assumptions that we refer to throughout this thesis are summarized in
Table B.2.
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Notation Definition
G the network graph
E the set of all links
V the set of all nodes
V H the set of all hosts
V R the set of all routers
P the set of all paths

ej ∈ E a link
vl ∈ V a node
pi ∈ P a path
ej ∈ pi path pi traverses link ej

E ⊆ E a set of links
P ⊆ P a set of paths

Links(P) all links traversed by paths in P
Paths(E) all paths that traverse links in E

R the routing matrix
Rank(R) the rank of the routing matrix
Xej

the logarithm of the transmission rate of link ej

Ypi the logarithm of the transmission rate of path pi

Zej
the congestion status of link ej

Wpi
the congestion status of path pi

C the set of all correlation sets
Cp ∈ C a correlation set
S the set of all correlation subsets

Sk ∈ S a correlation subset
|A| the number of elements in set A

φ̂ej (n) the transmission rate of link ej during snapshot n
φ̂pi

(n) the transmission rate of path pi during snapshot n

Table B.1: Notations.
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Assumption Definition Section
Routing Stability The routing matrix does not change Section 2.1.1

throughout the measurement period.
Link Identifiability All columns in the routing matrix Section 2.1.1

are distinct.
Stationarity For any link ej , the random Section 2.1.2

variables φ̂ej (n), n = 1, . . . , N , are
identically distributed.

Link Independence The transmission rates of links, i.e., Section 2.2
the random variables φ̂ej

, for all ej ∈ E,
are independent.

Loss Uniformity For any link ej , the fraction of Section 2.2
packets lost on link ej is the same
for all paths traversing the link.

Separability A path is good if and only if all the Section 2.3
links it traverses are good.

Probe Correlation The network supports measurements Section 2.5
that require perfect or strong
temporal correlation between probes.

Sparse Congestion The percentage of congested links in Section 2.5
the network is low.

Link Homogeneity All links are equally likely to be Section 2.5
congested.

No Fluttering Paths Two paths never meet at one link, Section 3.1
diverge, and then meet again at another
link.

Monotonicity of For any link ej , the variance of Xej is a Section 3.1
Link-Loss Variance non-decreasing function of the

corresponding link loss rate 1− φ̂ej .
Correlation Sets Links are grouped into known Section 4.2

correlation sets such that any two links
belonging to different correlation sets
are independent.

Identifiability++ Any two correlation subsets are Section 4.4.
not traversed by the same paths.

Table B.2: Assumptions used by various network loss tomography algorithms.
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