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Abstract

The connections cortical neurons form are different in each individual human or animal.
Although there are known and determined large scale connections between areas of the brain
that are common across individuals, the local connectivity on smaller scales varies between
individuals. Connections between neurons in a single cortical column are seemingly random
and were thus modeled in theoretical studies using the principle of sparse random networks.

In this thesis I investigate how the simplifications of sparse random networks affect the be-
haviour and plausibility of the network. First, I focus on the global weight distribution in
random sparse networks and test the impact of various weight distributions on network ex-
citability.

Random sparse networks also commonly assume an independent distribution of connections
in the network. Experimental results indicate that this assumption is not true in biological
neuronal networks. In the second part of this thesis it is shown how changes in degree dis-
tributions of the network can be employed to improve the similarity of random networks to
biological observations.

A third aspect studied in this work is the impact of connection strengths on a local level. Net-
work responses to larger stimuli in in vitro experiments are not reproducible by classical sparse
random networks. It is shown how changes in the distributions of local connection strengths
can be used to improve the network response behaviour with respect to these experimental
findings.

Finally, these network adjustments are combined and the adjusted networks are tested on
further data of in vivo recordings. The adjusted networks show a biologically more plausible
behaviour than the random sparse network topologies in all tested scenarios.

Keywords
Computational Neuroscience, Neuronal Networks, Fine-Scale Structure, Weight Distribution,
Degree Distribution
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Zusammenfassung

Verbindungen zwischen Neuronen im Cortex von Mensch und Tier sind von Individuum zu
Individuum verschieden. Obwohl Verbindungen zwischen Gehirnarealen in unterschiedlichen
Individuen ähnlich vorhanden sind, variierern ihre lokalen Verbindungen auf kleineren Skalen.
Neuronale Verbindungen in einer einzelnen corticalen Säule sind annähernd zufällig und
wurden daher in theoretischen Arbeiten mit dünnbesetzten Zufallsnetzwerken simuliert.

In dieser Dissertation untersuche ich, in welcher Weise die Vereinfachungen der Annahme
von dünnbesetzten Zufallsnetzwerken das Verhalten und die Plausibilität dieser Netzwerke
beeinflusst. Hierzu betrachte ich zunächst die globale Gewichtsverteilung in dünnbesetzten
Zufallsnetzwerken und teste den Einfluss verschiedener Gewichtsverteilungen auf die Erreg-
barkeit der Netzwerke.

Dünnbesetzte Zufallsnetzwerke nehmen üblicherweise unabhängig verteilte Verbindungen
im Netzwerk an. Experimentelle Ergebnisse weisen jedoch darauf hin, dass diese Annahme in
biologischen Netzwerken nicht zutrifft. Diese Dissertation zeigt, wie Veränderungen in den
Gradverteilungen des Netzwerks genutzt werden können, um die Ähnlichkeit zu biologischen
Netzwerken zu verbessern.

Ein dritter Aspekt der in dieser Arbeit untersucht wird, ist der Einfluss der Gewichtsverteilung
auf lokalem Niveau. Netzwerkantworten auf größere Stimulationen in in vitro Experimenten
können nicht von klassischen dünnbesetzten Zufallsnetzwerken reproduziert werden. Es wird
gezeigt, wie Änderungen in lokalen Gewichtsverteilungen genutzt werden können, um die
Netzwerkantworten bezüglich dieser Experimente zu verbessern.

Schlussendlich werden all diese Veränderungen kombiniert und die so verbesserten Netz-
werke im Vergleich zu weiteren Daten von in vivo Experimenten getestet. Die verbesserten
Netzwerke zeigen hierbei ein biologisch plausibleres Verhalten als klassische, dünnbesetzte
Zufallsnetzwerke in allen getesteten Szenarios.

Schlüsselworte
Computational Neuroscience, Neuronale Netzwerke, Feinstruktur, Gewichtsverteilung, Grad-
verteilung
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1 Introduction

Random networks are used widely in theoretical studies of neuronal networks. The main

assumption of these networks is that the probability of there being a connection between

any two neurons is independent of other, existing connections in the network. However,

more and more experimental results indicate that biological neuronal networks are not in this

sense random, and, in addition, that the connection strenghts between neurons show a wide

distribution.

In this thesis, I explore the impact of classical assumptions on network structure and behaviour.

In Chapter 2, the assumption that connection strengths can be assumed to be the same for all

connections in a network model is investigated. The impact of multiple weight distributions

is tested by measuring the network excitability. The results indicate that weight distribution

shape has a strong impact on network excitability.

The effects of using more complex connectivity patterns in network construction are investi-

gated in Chapter 3. A network of excitatory and two types of inhibitory neurons is constructed

and the similarity of this network structure to biological observations is quantified. The struc-

ture of the network is then varied and it is shown that moving away from a random network

architecture by altering the local connectivity it is possible to better agree with biological

findings. Specifically, the degree distributions of the network are altered to fit network models

to biological data that cannot be explained by the classical random network model.

1



Chapter 1. Introduction

It is not only experimental data on connectivity that challenge the classical random network

model; in addition experimental paradigms in which multiple cells are stimulated at the same

time cannot be reproduced by classical random networks. This is described in Chapter 4.

I show how this shortcoming can be explained and how specific changes in local weight

distributions can be used to improve the model network response.

The two approaches to improving network connectivity structure and local weight distribu-

tions are combined in Chapter 5. Both approaches are used to construct plausible networks

that can reproduce the response characteristics of biological neural networks as well as the

connectivity structure observed in experiments. The problems with this approach are due

to the high dimensional parameter space that needs to be investigated. These problems are

discussed and solutions presented to reduce the computational complexity of the problem.

After constructing network models that are more biologically plausible than classical networks,

the properties of these networks are investigated in more complex scenarios. In Chapter 6,

the differences between classical and adjusted network models are tested in a simplified

simulation of in vivo up- and downstates. Furthermore, the role of network architecture in

temporal sensory input is investigated.

Finally, shortcomings and perspectives for future work are discussed in Chapter 7. Following

this, a summary of the results presented in this thesis is given.

In this introduction, the concept, construction and role in previous studies of random net-

works is described. Following this, the experimental basis of network connectivity measure-

ments are discussed. These results lead to an interest on non-random network structures,

which are discussed in the following part. Finally, an overview of visualisation and optimisation

techniques used throughout this thesis is given.

2



1.1. Random Network Architectures

1.1 Random Network Architectures

In this section, the concept of random networks is introduced. I show how these networks

can be constructed and what parameters are used. An overview of selected studies that used

random networks is given to highlight their role in theoretical work.

1.1.1 Network Construction

The main assumption of the random sparse architecture is that neurons are uniformly con-

nected. This means that the probability of each neuron being a pre- or postsynaptic neuron

does not depend on the position of the neuron in the network. The reason for the choice

of fixed probabilities is that this fixed scheme does not introduce any more parameters that

would need to be restrained by biological data. The only structural parameter that is needed

for the construction of such a network is the connection probability p. It is also possible to

express the connection probability as the average number of inputs to a single cell:

p = K /N (1.1)

where K is the desired number of inputs per cell and N the size of the network.

The selection of the connections to be formed in the network can be done in many ways.

The prevalent one is to go through all combinations of pairs of neurons and decide if they

should form a connection or not, based on the connection probability p. This approach

leads to quite diverse networks since the number of connections formed is not fixed, but

is distributed binomially around p ×n ×m with n and m being the population size of the

pre- and postsynaptic population. This has the drawback, that all the algorithm must go

through all possible connections and with big populations this can be rather costly in terms of

computational power.

Another approach is to directly draw p ×n ×m pairs of pre- and postsynaptic neurons from

a discrete uniform distribution. This approach constructs the same number of connection

3



Chapter 1. Introduction

each time and is not as complex as the first approach. However, with increasing connection

probability, the chance of choosing the same pre- and postsynaptic neuron pair twice is

not negligible. Thus, this algorithm needs a doublet checking in addition, to avoid multiple

connections. This can be done via a lookup table which stores if a connection was already

formed. In the case of an already existing connection either the pre- or the postsynaptic

neuron is redrawn until a new pair is found. If no such pair exist (or after a sufficient number

of trials), the other neuron is redrawn and the process is repeated until a new connection is

found. It is this algorithm that is used throughout this thesis (also see Appendix A).

1.1.2 Weight Distributions

After choosing a pre- and postsynaptic neuron pair, a synaptic weight is assigned to each con-

nection to control the postsynaptic effect of a connection. A common approach of assigning

synaptic weights to the constructed connections is to assume a uniform connection strength

(Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000), i.e. that each connection is assigned the

same strength.

In contrast, it is also possible to assume specific distributions of synaptic weights which are

sampled for each connection. For example, Vogels and Abbott, 2005 used a general weak

set of synapses and a specific strengthened set for signal propagation. This could be seen as

approximating a skewed or bimodal distribution.

In biological experiments it has been shown that the distribution of synaptic weights is highly

skewed. Many connections have a rather small weight, while very few connections can be

found that have a strong weight (Markram et al., 1997; Lefort et al., 2009; Avermann et al.,

2011). The impact of different types of weight distributions on the excitability of a model

network is the focus of Chapter 2.3.1.
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1.1.3 Types of Network Populations

The term ‘population’ in network models usually refers to groups of neurons with distinct

properties. Here ‘population’ is used to refer to different layers of the cortex (Chapters 2 and

6.2), where each layer is thought to comprise the same type of cells with the same connectivity

properties.

The term ‘population’ is also used for different classes of excitatory and inhibitory cells (from

Chapter 3 onward). Again, the connectivity properties are constant for each cell type pair.

1.1.4 Network Simulations

All simulations are written in pyNN (Davison et al., 2009). This is a simulator independent

language that allows one to program simulations without explicitly using a specific simulator.

The resulting programs can be used with a variety of simulators. The work presented here was

executed using the NEST simulator (Gewaltig and Diesmann, 2007) as the backend.

The NEST simulator is specifically aimed towards an efficient simulation of large scale net-

works with realistic connectivity. Thus, it was chosen as the simulator used in this work. For

an overview of different network simulators see Brette et al., 2007.

1.1.5 Neuron Models

Two different types of neuron model are used throughout this work. For the first part (Chap-

ter 2), leaky integrate-and-fire neurons with exponential postsynaptic currents (Gerstner and

Kistler, 2002) are used. This neuron type integrates synaptic inputs over time and emits a spike

when the voltage crosses a given threshold. In addition, the membrane potential decays over

time to a resting membrane potential, hence the term leaky integrate-and-fire neuron. The

synaptic inputs are modeled via a current step that exponentially decays in time. One of the

main advantages of this model is that it can be simulated very fast and it allows the simulation

of larger networks.
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In later parts from Chapter 3 on, the adaptive exponential integrate-and-fire neuron model

(Gerstner and Brette, 2009) is used. This model is an extension of the standard leaky integrate-

and-fire model. In addition to a fixed threshold, this model uses an exponential term to

simulate spike initiation which allows for a better agreement with biological observations. It

also incorporates subthreshold and spike-triggered adaptation which can be used to model a

variety of different spiking patterns (Naud et al., 2008).

One other difference in the neuron model in Chapters 4 and following is that it is based on

synaptic conductances instead of the current based synapses of the former model. This allows

for accurate modeling of synaptic reversal potentials. In Chapter 6.1, these reversal potentials

will be used to simulate neuronal responses on different depolarisation levels.

1.1.6 Roles of Random Networks

Random sparse networks have been the architecture of choice for many theoretical studies

for a long time (Van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997a; Brunel, 2000;

Vogels and Abbott, 2005; Morrison et al., 2007; Hertz, 2010; Renart et al., 2010). For example,

in Van Vreeswijk and Sompolinsky, 1996, random sparse networks are used to investigate the

irregular spiking activity observed in experimental data. To this end, random networks with

excitatory and inhibitory neurons are constructed so that all neurons receive on average K

excitatory and inhibitory connections as well as K external inputs. The strengths of these

connections are sufficiently strong so that
p

K inputs evoke spikes in postsynaptic cells. The

same synaptic strength is used for all synapses. They are able to show that for a sparse

network with strong synapses, the network can reproduce irregular spiking activity and show

chaotic behaviour that persists even when the network is driven with non-fluctuating external

stimulation. This is due to a balance between excitation and inhibition. The inhibitory activity

cancels the excitatory activity in a way that yields strongly irregular patterns of activity. The

same basic random network is used by Renart et al., 2010 to show that highly shared input does

not necessarily cause correlated spiking in the network. It seems intuitive that shared input

should cause correlated activity. However, in a network with balanced excitation and inhibition
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as described above, correlated excitatory and inhibitory activity can lead to cancellation of

correlations. Thus, the resulting average correlations are low even for highly shared input.

Vogels and Abbott, 2005 also use a random network with fixed connection probabilities. The

network is constructed using excitatory and inhibitory neurons at a ratio of 4:1 respectively.

Two synaptic strengths are used, one for excitatory and one for inhibitory connections. The

goal here is to investigate how signals can be propagated in a random network. A pool of

neurons is defined as the first layer of a propagation chain. Subsequent layers are grouped

by choosing neurons that receive at least three connections from the previous layer. Without

modifications, this chain cannot propagate a signal to be fed into the first layer. The authors

show that through selectively strengthening the synapses along the chain, it is possible to

achieve propagation of an asynchronous signal.

It is also possible to analytically determine the behaviour of random sparse networks (Amit and

Brunel, 1997b; Brunel and Hakim, 1999; Brunel, 2000). In Amit and Brunel, 1997b, the average

firing rates of random sparse networks of excitatory and inhibitory neurons are calculated

analytically using self-consistent analysis. The concept of self-consistent analysis relies on

the assumption that neurons interacting in a closed network, each receiving input from other

neurons that have similar firing statistics to itself. This assumption allows one to calculate

neuronal activity analytically. Brunel, 2000 used a generalisation of this technique on random

sparse networks of excitatory and inhibitory neurons and showed that the resulting spiking

network activity can be separated into four cases. Network activity can either be synchronous

or asynchronous on a global level and single neurons in the network can show either regular

firing or irregular firing. The specific parameter ranges for these four states were determined

analytically and thus provide a complete characteristic of network behaviour for different

parameters. For a review of network activity dynamics, see Vogels et al., 2005.

Sparse random networks have been used to model many different biological observations and

provide insight into how biological neuronal networks may work.
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Chapter 1. Introduction

Figure 1.1: Synaptic Pathway in the Rodent Barrel Cortex
A Deflections of a single whisker on the snout of rodents evokes direct responses in the
Trigeminal nucleus (1). These neurons project to the thalamus (2) and these in turn have
direct projections to neurons in the somatosensory cortex (3) B Somatotopic organisation
of the barrel field. Each whisker (left) is represented at one particular location in the barrel
field of the somatosensory cortex (right). The yellow marker indicates the position of the C2
whisker and the C2 barrel. (Modified from Petersen, 2007)

1.2 Biological Background

In this section, the cortical region of barrel cortex where most of the data used in this thesis

is taken is introduced. Further, it is described how pairwise connectivity is measured, and

some of the problems when investigating network connectivity with pairwise recordings are

indicated. Finally, the use of other experimental techniques to elucidate network connectivity

is described, with particular focus on two optical techniques, namely glutamate uncaging and

channelrhodopsin stimulation.

1.2.1 Barrel Cortex

The modeling approach presented here is based on data from the barrel cortex. This region of

the brain specific to rodents is responsible for processing tactile information from the whiskers,

hairs on the snout of the animal (Petersen, 2007). Figure 1.1 shows the synaptic pathway to the

barrel cortex. In Figure 1.1 A the head of the animal is shown with its whiskers on the snout. A

whisker deflection evokes activity in the trigeminal nucleus which is then transmitted via one

synapse into different parts of the thalamus, constituting multiple pathways. These pathways
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1.2. Biological Background

converge on a single barrel in the somatosensory cortex. Figure 1.1 B shows the somatotopic

organisation of the barrel field. Each whisker is related to one specific barrel in the cortex.

These barrels are about 300µm in diameter in the mouse brain (Lefort et al., 2009).

The somatotopic organisation is a remarkable feature that makes modeling this area inter-

esting. Because of the highly localised representation, models of a relatively small scale may

be sufficient to analyse the information processing. One particular example of the effect of

such a localised representation is given in the temporal integration of sensory information.

Stimulating a single whisker leads to an increased firing probability for neurons in the cor-

responding barrel column (Shimegi et al., 2000; Petersen et al., 2003). This is mostly due to

the somatotopic organisation of the whisker pathway. One important question following this

observation is how does the activity of single neurons change when multiple whiskers are

stimulated?

In Shimegi et al., 2000 two adjacent whiskers are stimulated with varying interstimulus in-

tervals (ISI). During these stimulations, the spiking activity of neurons in the region of the

corresponding barrel columns is recorded. This recorded activity is compared to the linear

sum of activity evoked by stimulating each of the two whiskers in solitude.

The facilitation index (FI) quantifies this comparison. A facilitation index equal to one indi-

cates no difference, while responses larger than expected have a facilitation index greater than

one. A summary of this experiment is shown in Figure 1.2. The recorded cells are binned into

three categories. This categorisation is depicted in the right part of Figure 1.2. The left part

of Figure 1.2 shows the facilitation index of the three classes for multiple trials with different

interstimulus intervals.

The middle population shows strong facilitation for small interstimulus intervals in either di-

rection and shows slight suppression for larger interstimulus intervals. The neurons inside one

barrel (caudal and rostral) show normal activation when their principal whisker is stimulated

first with long interstimulus intervals (negative ISI for caudal, positive ISI for rostral). In the

reverse case a strong suppression is seen, meaning that neurons respond less than expected
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Chapter 1. Introduction

Figure 1.2: Relationship between response interaction and cell location in relation to the
barrel structure in the superficial layers
Left Average facilitation index (FI) for each group of neurons for varying interstimulus intervals
(ISI) Right Locations of recorded cells in layer 2/3. Overlayed is the position of the correspond-
ing layer 4 barrel in dashed lines. Each recorded cell is classified either ‘caudal’, ‘middle’ or
‘rostral’. ‘Middle’ neurons are located adjacent to one-third of each barrel and in the septal
region between barrels. ‘Caudal’ and ‘rostral’ neurons were located in the lateral two-thirds of
each barrel. (Modified from Shimegi et al., 2000)

from the single stimulation trials if the stimulation of the adjacent whisker comes first.

Surprisingly, for the caudal population there is facilitation greater than one if the rostral

whisker is activated 1-3 ms before the caudal whisker. It is hypothesised that the strong

facilitatory effect in the middle group comes from the temporal overlay of excitatory inputs

from both stimulated whiskers. The suppression seen in the rostral and caudal groups may

come from different excitatory and inhibitory connectivity profiles. This data is used in

Chapter 6.2.

1.2.2 Pairwise Connectivity Measurements

To collect data on network connectivity it is necessary to record from multiple neurons at the

same time. The most direct approach is to use intracellular recordings in an in vitro setup.
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This allows the stimulation of single cells to evoke action potentials and at the same time

measure the membrane potential in other cells to infer the connectivity.

An example of this approach from Lefort et al., 2009 is shown in Figure 1.3. Here intrinsic

imaging (Grinvald et al., 1986) is used to locate the C2 barrel before performing the intracellular

recordings. The connectivity of a single barrel is investigated (Figure 1.3 A,B), and the resulting

section of the brain is shown in Figure 1.3 C, left. In the middle, six electrodes for intracellular

recording were lowered into the tissue and six different cells were recorded. The morphology

of those cells is shown in Figure 1.3 C right and D. By stimulating each cell and recording

the responses of the other cells, it is possible to infer a specific connectivity between the six

patched neurons (Figure 1.3 E). The single traces of the stimulation are shown in Figure 1.3 F.

Since the direct membrane potential traces are measured in the intracellular recordings, it

is possible to recover the synaptic strength of each connection. Throughout my work, I use

the unitary postsynaptic potential (uPSP) as measured in these experiments as the value of

synaptic strength or synaptic weight. I also assume that two given cells have at most one

connection. This is not neccessarily the case in biological networks, as two cells can have

multiple synaptic contacts (Feldmeyer et al., 1999). The evoked response of a presynaptic

spike can thus be composed of multiple synapses. The synaptic strength on a single synapse

level, however, is difficult to obtain and thus the unitary postsynaptic potential is used as an

approximation of the real synaptic weight.

This approach is used by multiple studies for a long time (Markram et al., 1997; Feldmeyer et al.,

1999; Holmgren et al., 2003; Feldmeyer et al., 2006; Thomson and Lamy, 2007; Helmstaedter et

al., 2008; Lefort et al., 2009). Although this technique provides a lot of insight into connectivity

in different areas and cell types, it has major drawbacks when trying to investigate network

connectivity on a higher order, since the connections tested are only based on pairwise

measurements.

Only when examining more than two neurons simultaneously, the investigation of higher

order connectivity becomes possible, although it is still difficult since connectivity in the
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Figure 1.3: Whole-cell in vitro
recordings of the mouse C2
barrel column
A Single deflection of the C2
whisker. B Intrinsic imaging
shows a decreased reflectance
at the position of the C2 bar-
rel. C The C2 column is identi-
fied by an injection of fluores-
cent dye into the area found in
B. This injection can be found
in brain slices (left). Record-
ing electrodes are lowered into
the slice (middle). These elec-
trodes were filled with biocytin,
which allowed for the visual-
isation of neuronal structure
(right). D Dendritic recon-
struction of single cells. E Ex-
ample connectivity diagram of
the recorded cells. F Mem-
brane potential traces of the
recorded cells. Each cell was
stimulated to emit a spike and
the responding postsynaptic
neuron responses are shown
for each stimulation. (from
Lefort et al., 2009)
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1.2. Biological Background

cortex is sparse. The chances of finding a group of multiple connected neurons is rather slim

(Lefort et al., 2009). Few studies are able to investigate some features of network connectivity

other than pure pairwise statistics using electrophysiology (Song et al., 2005; Perin et al., 2011).

In these studies, multiple electrodes are used to find interconnected groups of neurons. These

groups are then analysed to quantify the occurrence of specific patterns of interconnected

groups (so called ‘motifs’, Milo et al., 2002). The main conclusion from both publications

is that in general, groups of three or more interconnected neurons are more frequent than

expected from a standard random network.

But even with an outstanding number of 12 electrodes for intracellular recordings (Perin et al.,

2011) the largest group that could be analysed consisted of just 8 neurons which is very small

in the scope of cortical networks. Even cortical networks on a small scale, such as one barrel

consist of thousands of neurons. Thus, methods to acquire data on network connectivity need

to investigate larger groups of neurons.

1.2.3 Network Connectivity Measurements

In recent years, more and more techniques have been developed to circumvent the problems

of electrophysiology. I focus on two developments that have proved to be particularly useful

to the analysis that employed throughout this work. These are the use of glutamate uncaging

and channelrhodopsin (ChR2) for stimulating neurons.

Glutamate Uncaging

Glutamate uncaging is a technique used to stimulate neurons in cortical slices (Callaway and

Katz, 1993; Boucsein et al., 2005; Nikolenko et al., 2007). Glutamate itself is a neurotransmitter,

released from the presynaptic terminal of excitatory neurons and taken up at the postsynaptic

membrane. In the glutamate uncaging technique the whole slice is bathed in a ‘caged’ gluta-

mate compound. This means that everywhere in the slice glutamate is present but due to an

alteration in its molecular structure it is unable to excite neurons.
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Figure 1.4: Connected pairs of excitatory neurons share input
Correlation probabilities for all stimulation sites in each layer for connected (circles) and
unconnected (squares) pairs of recorded neurons. Open circles indicate reciprocal connec-
tions, filled circles unidirectional connections. Mean values for each group are indicated by
horizontal lines. (Modified from Yoshimura and Callaway, 2005)

The configuration of this caged compound changes when exposed to strong light and the

glutamate will be able to excite synapses. Using a two photon laser, the localisation of the

uncaging is sufficiently high to stimulate single neurons (Fino and Yuste, 2011; Packer and

Yuste, 2011). The main advantage here is that it is relatively easy to record from just one cell

intracellularly and test many possible inputs to this cell with the light stimulus. This technique

was used in multiple studies to probe network connectivity (Yoshimura and Callaway, 2005;

Yoshimura et al., 2005; Fino and Yuste, 2011; Packer and Yuste, 2011).

One of the main problems with this technique is that it is nearly impossible to record the

connection strength since the caged glutamate can affect the postsynaptic response (Fino and

Yuste, 2011).

Nevertheless the existence of connections can be extracted from these experiments. The

large number of possible inputs that can be accessed leads to additional information on the

convergence and clustering of connections in comparison with the paired recordings.

In the course of this work (Chapters 3 and 5), results from one set of experiments are used

(Yoshimura and Callaway, 2005; Yoshimura et al., 2005). Here, glutamate uncaging is used to

scan the inputs to pairs of neurons.
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The main finding of the experiments is that connected pairs of excitatory neurons are more

likely to share input from other excitatory cells than unconnected pairs. These findings are

shown in Figure 1.4. Here, the probability of sharing input (correlation probability) is plotted

for pairs of excitatory neurons. The inputs are tested from layer 2/3 (Figure 1.4 left), layer 4

(Figure 1.4 middle) and layer 5 (Figure 1.4 right) with the recorded pair in layer 2/3. The inputs

from layer 2/3 and layer 4 are different for connected and unconnected pairs, while layer 5

input shows no difference.

When taking inhibitory neurons into account, the results indicate that pairs of fast-spiking

and excitatory neuron in layer 2/3 share more input only when they are connected bidirection-

ally, while one-way connected and unconnected pairs show the same, lower level of shared

input. Pairs of excitatory and other (adapting) interneurons share the same amount of input

regardless of the connectivity. This indicates that different cell types show different levels of

fine-scale connectivity.

Channelrhodopsin Stimulation

The second advance that makes network connectivity more accessible is Channelrhodopsin.

This is a light activated sodium channel that was originally found in green algae (Nagel et al.,

2002). Using either genetic manipulations or viral vectors, this channel can be expressed in

neurons (Nagel et al., 2003; Boyden et al., 2005), effectively activating the neurons on a rapid

timescale when illuminated by blue light.

This activation is different from glutamate uncaging in that channelrhodopsin activates the

cells intrinsically since the channel is embedded directly into the membrane. The usage

of channelrhodopsin can be quite similar to that of glutamate uncaging. Using a laser it

is possible to stimulate single neurons and perform a similar scanning of inputs as with

glutamate (Zhang et al., 2006; Wang et al., 2007).

A striking advantage of channelrhodopsin is that it can be genetically targeted to specific

classes of cells and using viral vectors it can also be locally targeted (Aronoff and Petersen,
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Figure 1.5: Channelrhodopsin stimulation in layer 2/3 of mouse barrel cortex
A Example channelrhodopsin stimulation experiment. Left Two-photon image stack. In-
hibitory cells are green, recorded excitatory cells are red and recorded inhibitory cells are
yellow. Middle Firing patterns of recorded cells and postsynaptic responses (Excitatory cells
(EXC, black), inhibitory fast-spiking cells (FS, red) and inhibitory non-fast-spiking cells (NFS,
blue)) Right Postsynaptic potentials (PSP) in response to the channelrhodopsin stimulation for
all recorded cells. Cell 4 (fast-spiking) fired a spike reliably in response to the light stimulation.
B Distribution of peak response amplitudes in response to the light stimulation across all
experiments with spiking cells excluded. C Slopes of postsynaptic potential (PSP) responses.
D Probabilty of cells spiking in response to the stimulation. (Modified from Avermann et al.,
2011)

2008). This can be used to specifically stimulate multiple cells of one type and record the

response of other cells to this complex yet confined stimulus.

Such an approach is used in Avermann et al., 2011 in an in vitro situation. Here, channel-

rhodopsin was used alongside standard pairwise connectivity measurements. This allows the

unravelling of the connectivity parameters of different cell classes. Measurements are taken

from excitatory cells, inhibitory fast-spiking cells and inhibitory non-fast-spiking cells of layer

2/3 of mouse barrel cortex. The results of the channelrhodopsin stimulation are depicted in

Figure 1.5. One example experiment is shown in Figure 1.5 A. The image in Figure 1.5 A left

illustrates the injection site, while the middle panel shows membrane potential recordings
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of the cells labelled on the left responding to a light stimulus. The right hand side shows the

peak amplitude of the recorded cells. One fast-spiking interneuron (cell 4) reliably spikes in

response to the light stimulus. Figure 1.5 B depicts the distribution and mean value of the

peak amplitudes across all experiments, while Figure 1.5 C shows the same for the slope of the

postsynaptic response. Finally, Figure 1.5 D depicts the probability of firing an action potential

in response to the light stimulus for all three cell classes. All classes show a highly skewed

distribution of PSP amplitudes with the fast-spiking populations responding strongest, even

emitting spikes with a probability of about 20%. I use these distributions of PSP amplitudes

shown in Figure 1.5 B in Chapter 4 to compare different network architectures.

A similar approach is used in an in vivo setup by Mateo et al., 2011. Here the same chan-

nelrhodopsin stimulation is applied during ongoing activity. Intracellular in vivo recordings

show periods of silence with almost no spiking activity where the membrane potential is

roughly equal to the resting membrane potential, while other periods show spiking activity

with an average membrane potential that is strongly depolarised in comparison to the resting

potential. These two periods are called down- and upstate respectively, referring to their

average membrane potential.

Applying the channelrhodopsin stimulation reveals two things: first, the membrane potential

amplitude in postsynaptic neurons depends strongly on the state of the network. For upstates,

neurons tend to respond little if at all, while in the downstate neurons respond quite strongly

to the channelrhodopsin stimulation.

The second observation is that the probability of emitting a spike in response to the stimulus

depends on network state and cell type. The spiking probability of excitatory neurons is higher

in the up- than in the downstate, but only to a small degree, whilst the spiking probability of

non-fast-spiking neurons strongly increases from the down- to the upstate. The probability of

a fast-spiking neuron emitting a spike increases in the upstate compared to the downstate

although not significantly. Figure 1.6 shows the spiking probabilities for all populations in the

up and downstate. I reproduce parts of these results with a simplified model of the upstate in
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Figure 1.6: Probability of spiking in response to a channelrhodopsin stimulus in vivo
Shown are the spiking probabilities for excitatory (black), non-fast-spiking (blue) and fast-
spiking (red) cells. Significant inside a population between up and downstate are marked in
teal. (Modified from Mateo et al., 2011)

Chapter 6.1.

Other Network Connectivity Measurements

There are other techniques available that can be used to investigate network connectivity.

The most direct one would be electronmicroscopy (EM). With this technique it is possible

to visualise the synapses and discern with 100% accuracy whether or not two neurons are

connected. The main problem is that due to the extremely high resolution of the acquired

images, the resulting amount of data is very hard to analyse on a sensible timescale. Recently,

studies have shown that it is indeed possible to extract connectivity from EM and that it is also

possible to link this information to in vivo data (Bock et al., 2011). However, the scale at which

this is possible at the moment barely exceeds that of intracellular recordings with a sufficient

number of electrodes.

Another very interesting approach is to use fluorescent markers for the recording of neuronal

responses. The best examples are calcium imaging (Smetters et al., 1999; Peterlin et al., 2000)

and voltage sensitive dyes (Grinvald et al., 1984; Shoham et al., 1999) or voltage sensitive

proteins (Mutoh et al., 2011).

Voltage sensitive dyes have been used in the past to study the activity of neuronal populations

on a relatively large scale (Grinvald et al., 1986; Shoham et al., 1999; Ferezou et al., 2006). Since
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the dyes do not enter the cell bodies of neurons, it is rather difficult to record single cell activity

(Ferezou et al., 2006; Peterka et al., 2011). The use of voltage sensitive dyes is thus a potentially

interesting mechanism for recording multiple neuronal responses at the same time. However,

it is currently not possible to do so at a single cell level. Recently, voltage sensitive proteins

have been developed that are targeting single cells with a very high resolution (Mutoh et al.,

2011). This technique is very recent and will likely provide insights into neuronal responses in

the future.

Calcium imaging is another technique used to visualise neuronal responses (Smetters et al.,

1999; Peterlin et al., 2000). During the action potential of a neuron, there is a transient change

in calcium concentration (Borst and Helmchen, 1998). This change can be made visible by

fluorescent markers. Calcium ions can bind to these markers and change their fluorescence,

thus making transient changes in calcium levels visible. This technique can be used to extract

spike times of populations of neurons with a high precision (Grewe et al., 2010; Lütcke et al.,

2010). This approach is very similar to the classical multi-electrode recordings, where spikes of

multiple neurons at the same time can be extracted. However, since only spikes are recorded,

the extraction of network connectivity is limited. Weak connections may not be sufficient to

elicit a spike and remain largely undetected, while disynaptic connections might be detected

as a single connection, if their activation is sufficiently strong. However, there are studies

which extract this effective connectivity information from spike train data (Pillow et al., 2008;

Gerhard et al., 2011).

Another possibility is to infect certain cells with viruses that are able to propagate through

synapses to other neurons. This would effectively allow the visualisation of all inputs or targets

to a single infected cell, depending on the direction in which the virus travels (Wickersham et

al., 2007). This technique is promising, although it is unknown which proportion of the post-

and presynaptic neurons are labeled and thus the usefulness for complete circuit mapping is

unclear. Another drawback is that in a single experiment only one cell can be targeted in order

to get a clear estimate on the number of connected cells. Thus, acquiring statistics on network

connectivity requires an extremely high number of experiments and is at this stage not feasible.
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In general, this technique is more useful to investigate long-range projections where a larger

volume is infected and predominant projection targets or sources can be distinguished (Mao

et al., 2011).

1.3 Non-random Network Architectures

As pointed out before, theoretical neuronal network models have been using the uniform ran-

dom network paradigm in the past. However, more and more recent studies try to investigate

the role of more complex network structures.

Small-world networks (Watts and Strogatz, 1998) are an important example of complex net-

work structures. They are characterised by groups of highly connected nodes that are linked

to each other through sparse connections. These networks are predominantly found in social

networks (Davidsen et al., 2002). They are also used in modeling economic markets (Janssen

and Jager, 2001) or epidemics (Keeling and Eames, 2005).

Another widely used network structure is the scale-free network (Barabási and Albert, 1999).

These are networks that show no characteristic scale on the number of connections per node.

The distribution of these values over the whole network is called the degree distribution.

The main characteristic of scale-free networks is thus that the degree distributions show no

characteristic scale and are thus powerlaw distributed. This implies also that certain nodes

will have an unexpectedly large number of connections and would serve as ‘hubs’ that gather

and send a lot of information. Examples for scale-free networks are the network of airports

and corresponding flight routes in the United States (Wang and Chen, 2003) or the topology of

the internet (Vazquez et al., 2002).

These network types can be used in computational models (Feldt et al., 2011; Prettejohn et al.,

2011) and show similarities to biological networks. For example, developing hippocampus is

shown to have GABAergic ‘hub’ neurons and thus resembles a scale-free network (Bonifazi et

al., 2009). Another example is that small-world structures have been observed in extracted

connectivity from spike train data in cortex, but the significance of such effects is questionable
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(Gerhard et al., 2011).

Instead of using distinct network structures directly, it is also possible to perform specific

changes to network connections in order to introduce complex patterns. One example of this

is to change the shape of the degree distributions, which can be split into the in-degree and the

out-degree distribution, only counting the incoming and outgoing connections respectively.

This approach has been used by Roxin, 2011 to investigate oscillations in spiking activity.

Here the asynchronous irregular random network model from Brunel, 2000 is used. The

only difference in network structure is that Roxin varies the in- and out-degree distributions

systematically by their variance. The main result shows that broad in-degree distributions

increase oscillatory activity, while broadening the out-degree distribution does not contribute

to oscillations in the spiking activity.

Another approach is taken by Pernice et al., 2011 to characterise the influence of structure

on network activity. Here a mathematical model of interacting point processes is used to

simulate the neuronal network. With this approach it is possible to directly calculate spike

train correlations and firing rates in the network. One of the main results is that the shape of

the out-degree distribution and thus the occurrence of output hubs lead to a strong increase

in spike train correlations in the network.

I use the method of changing degree distributions of the network in Chapters 3 and 5. To

link the resulting networks to existing network types, I quantify the resemblance of a given

network to the small-world structure. I employ the so called small-world-ness (Humphries

and Gurney, 2008) as a quantitative measure of similarity. This is done by computing the

average shortest path length Lr and and the average clustering coefficient Cr and for the uniform

random network and computing the equivalent values L and C for the network to be tested.

The small-world-ness S is then calculated as follows:

S = C

Cr and
∗ Lr and

L
(1.2)
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The shortest path length is the number of nodes that need to be visited when travelling from

one node to another. The average shortest path length is the average of this number across all

pairs of nodes. The clustering coefficient for a single node is the number of existing connec-

tions between neighbouring nodes divided by the maximal possible number of connections

(Watts and Strogatz, 1998). While initially defined for undirected networks, I use an extension

to directed networks where neighbouring nodes are nodes that receive a connection from the

node in question. The clustering coefficient therefore indicates how dense connections are

locally.

It is important to note that all changes to network structure can be done, while keeping the

connection probability of the whole network the same as before. Thus, these more complex

network structures are still in agreement with the basic experimental findings from pairwise

recordings.

In addition to specific structural changes, it is also possible to investigate complex features

in the distributions of synaptic weights. Most experimental approaches that are able to

elucidate complex network structures are unable to report the synaptic strengths. This is

true for calcium imaging, since only spikes are recorded and also for glutamate uncaging

because of the specifics of the stimulation paradigm. However, it has been shown theoretically

that different weight distributions can drastically affect the behaviour of neuronal networks

(Morrison et al., 2007; van Rossum et al., 2008; Koulakov et al., 2009). Thus, the impact of

specific weight distributions might be as important as the network structure itself.

In Chapter 2, I investigate the impact of different global weight distributions on network

excitability. Similar to changing the network structure it is also possible to manipulate the

weight distributions with a more fine-scaled approach, while keeping the global weight dis-

tribution intact. One approach to this fine-scaled change is investigated in Koulakov et al.,

2009. It is shown that networks can have different distributions of spontaneous activity by

only manipulating the local weight distributions. This is done by scaling the incoming or

outgoing weights per neuron with a specific scaling value. These scaling values are drawn in
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a way that keeps the global weight distribution constant. Since the weights are scaled on a

single neuron basis, the local weight distribution is changed. I make use of this approach in

Chapters 4 and 5.

1.4 Visualising High Dimensional Parameter Spaces

The network changes used throughout this thesis result in high dimensional parameter spaces.

To analyse these spaces, I adopt the idea of clutter based dimensional reordering (cbdr)

(LeBlanc et al., 1990; Peng, 2005; Taylor et al., 2006). This technique is used to construct two

dimensional images of high dimensional spaces, revealing their underlying structure. To

construct these images, the algorithm starts with two parameters (p1and p2) that yield a two

dimensional parameter space. Next, two more parameters (p3and p4) are taken and for each

point of this new two dimensional parameter space, p1 and p2 are varied to create a nested

four dimensional parameter space. This process is reiterated until all parameters are used. An

example of this technique being used to scan a set of eight parameters is shown in Figure 1.7.

The constructed dimensional ‘stack’ is not necessarily helpful, as even structured data can

appear as random if displayed in a non-optimal fashion. To optimise the order of parameters,

a measure of goodness is introduced called ‘edginess’. This measures the difference of one

pixel in the image to the four principal neighbours for all pixels and indicates the smoothness

of the image. The desired image should have a low edginess (high smoothness) since similar

areas should be grouped together. The optimisation is done as follows: For a constructed

image, the edginess is computed. Next, two parameters are switched and if the edginess is

lower, the process is repeated until no lower edginess can be found by further switching of two

parameters. The resulting image is then optimal in a sense that it shows the smallest number

of changes across the picture and should therefore sort parameters in their order of impact.

Parameters with almost no impact should be scanned first (see Figure 1.7 A), while parameters

with a strong impact should be scanned last (see Figure 1.7 D).
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Chapter 1. Introduction

Figure 1.7: Example of dimensional
stacking
A Visualization of two conductances
(KCa and Na), with other conductances
set to zero. Each conductance is varied
independently, resulting in a 6x6 grid.
Each square would then be coloured ac-
cording to some property of the corre-
sponding neuron (e.g., spontaneous ac-
tivity type). B To visualize an additional
two conductances, the grid from A is
embedded in a larger grid. The larger
grid scans an additional two conduc-
tances (Kd and CaT), and within each
square of this larger grid is a 6x6 grid
scanning the original two conductances
(KCa and Na). The 6x6 grid in A is found
in the bottom-left corner because it cor-
responds to Kd=0 and CaT=0. Overall,
a 36x36 grid is formed, scanning four
conductances total (Kd, CaT, KCa, and
Na). C This process is then repeated,
embedding the grid from B in another
6x6 grid that scans h and CaS, thus form-
ing a 216x216 grid that scans 6 conduc-
tances. D This process is repeated once
more, embedding the grid from C in
another 6x6 grid that scans leak and
A, thus forming a 1,296x1,296 grid that
scans all 8 conductances. This grid con-
tains a single pixel for each model in the
database (1,296x1,296 = 1.7 million mod-
els). (Modified from Taylor et al., 2006)
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Kd, CaT, h, CaS, leak, A  are zero
KCa, Na  are scanned

h, CaS, leak, A  are zero
Kd, CaT, KCa, Na  are scanned

leak, A  are zero
h, CaS, Kd, CaT, KCa, Na  are scanned

All conductances are scanned
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1.5 Optimisation Techniques

In order to obtain an optimal solution to the investigated parameter spaces, genetic algorithms

are used. Given a specific fitness measure, these algorithms usually use multiple sets of

parameters simultaneously and try to improve their fitness by introducing small changes

to these sets. Two different classes of genetic algorithms are used: swarm optimisation and

evolutionary algorithms.

1.5.1 Particle Swarm Optimisation

In particle swarm optimisation (Kennedy and Eberhart, 1995) the goal is to find the optimal

value of an error surface. To this end, a swarm of multiple sets of parameters called particles

are spread all over the parameter space. Each particle has a specific position (set of parameters)

and speed. The particles move in each timestep to a new set of parameters determined by

the former position and their speed. For each location, the error is evaluated and the best

local error and position is stored. The new speed is then computed by taking into account

the former speed of the particle, the best solution found by the particle and the global best

solution found by any particle in the swarm. This algorithm is iterated until a desired error is

reached or until a sufficient number of steps is reached. This algorithm works best for complex

error spaces and inexpensive error evaluations. I use this algorithm in Chapter 4. Due to the

complexity of the further parameter spaces increasing drastically, I could not use the particle

swarm optimisation in Chapter 5.

1.5.2 Strength Pareto Evolution Algorithm (SPEA-2)

To investigate the high dimensional parameter space in Chapter 5 an evolutionary algorithm

is used. These algorithms use a population of sets of parameters. The main idea is that the

individuals of this population can mate and mutate much like biological individuals. The term

evolutionary algorithm refers to the fact that through the mating and mutations an evolution

is simulated. Mating (or crossover) means that two individuals are combined. For this step,
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the so called two points crossover is used in this work. This means that two parameters are

chosen and all parameters between the two chosen values are taken from the other individual.

The mutation step is applied to a single individual and changes the single parameters. I use a

Gaussian mutation for this step, meaning that each parameter can be modulated by a value

drawn from a Gaussian distribution of mean zero and unit variance.

The most important part of this algorithm is the selection of ‘good’ individuals to carry over

into the next generation. For this the approach of the strength pareto evolution algorithm is

used (SPEA-2, Zitzler and Thiele, 1999; Zitzler et al., 2001). The initial step is that all ‘pareto

dominant’ solutions are chosen for the next step. A solution is pareto dominant, if there are no

solutions that are better in all parameters (Voorneveld, 2003). If the set of all pareto dominant

individuals is smaller than the desired population size, the next population is completed with

the best non-dominant individuals. If the set of dominant individuals is too large for the next

population, the dominant individual that is closest to another dominant individual is removed.

This is iterated until the set has the desired population size.

There is no problem to use multi dimensional fitness values for the pareto dominance evalua-

tion. Thus, I employ this algorithm in Chapter 5 to optimise the solution for the adjustments

of networks in the structural and in the weight domain.
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2 Random Layered Networks

Synaptic weight distributions have been shown to be made of many weak connections and

rare very strong connections (see Chapter 1.2.2). Many theoretical studies do not take into

account these characteristics, but only use a fixed weight per connection (see Chapter 1.1.6).

This chapter investigates the impact of such a simplification on network behaviour.

I constructed model networks with six layers, using three distinct weight distributions. The

effects of these different weight distributions were measured through the excitability of the

network. As a measure of excitability, the threshold of further excitation was introduced. This

threshold was the number of neurons that needed to fire synchronously in order to evoke at

least one further spike in the network.

The beginning of the chapter consists of a description of the biological data used to constrain

the model network. Following this, the construction of the network is discussed, followed

by the description of the three different types of weight distributions. Then, I define the

stimulation paradigm that was employed to probe network excitability, and the measure

used to quantify the network excitability. In the results section, I analyse and explain the

impact of weight distributions on the excitability of the six cortical layers individually. The

results indicate that the sparse strong connections are a key component for the excitability of

networks.
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Chapter 2. Random Layered Networks

2.1 Experimental Basis

Data from intracellular recordings done in slices were used to constrain the network models

(Lefort et al., 2009). As explained in Chapter 1.2.2, these types of recordings are commonly

used to extract connection probabilities and weight distributions. These measurements as

well as recordings of single cell properties were used to constrain the model networks.

2.1.1 Connectivity Data

In Lefort et al., 2009, groups of up to six excitatory neurons are recorded intracellulary. When

stimulating one of these cells to emit a spike, the membrane potentials of the other cells is

recorded (see Chapter 1.2.2 for details of this technique). If one of the other recorded cells

is connected to the stimulated cell, then this cell shows a response to the stimulus in form

of an increase in membrane potential. Single cell stimulations are repeated 20 times per cell

and it is only the average response that is used in further analysis. The amplitude change

in the average membrane potential trace of the postsynaptic cell is taken as the weight of

this connection. Repeating this experiment multiple times with different sets of neurons in

different locations allows to extract weight distributions and connection probabilities across

layers.

The shape of the measured weight distributions is highly skewed. Figure 2.1 shows a histogram

of the synaptic strengths found in the experiments in (Lefort et al., 2009). It can be seen that a

lot of the connections show weak synaptic strengths with some connections having very large

synaptic strengths up to 8 mV.

The results of the analysis of connectivity and evoked amplitudes are summarised in Table 2.1.

In this table, each connection between two layers is described by the previously determined

probability of connection, the mean and the median amplitude change that is evoked and the

total range of recorded amplitudes.
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Table 2.1: Excitatory synaptic connectivity and uEPSP amplitudes in the mouse C2 barrel
column
P denotes the probability of a connection from the pre- to the postsynaptic layer (L). Mean,
median and range are describing the characteristics of the unitary excitatory postsynaptic
potential (uEPSP) evoked by the connection.
(Modified from Lefort et al., 2009)

Presynaptic
L2 L3 L4 L5A L5B L6

L2

P (found/tested) 9.3% (88/950) 12.1% (22/182) 12.0% (25/208) 4.3% (9/209) 0.96% (1/104) 0% (0/50)

mean ± sem 0.64 ± 0.06 mV 0.71 ± 0.15 mV 0.98 ± 0.24 mV 0.52 ± 0.13 mV 0.21 mV

median 0.46 mV 0.59 mV 0.58 mV 0.52 mV

range 0.08 - 3.88 mV 0.04 - 2.67 mV 0.07 - 5.54 mV 0.08 - 1.09 mV

L3

P (found/tested) 5.5% (10/183) 18.7% (96/513) 14.5% (25/172) 2.2% (2/89) 1.8% (3/167) 0% (0/64)

mean ± sem 0.44 ± 0.09 mV 0.78 ± 0.07 mV 0.58 ± 0.13 mV 0.67 mV 0.26 ± 0.08 mV

median 0.35 mV 0.48 mV 0.35 mV 0.32 mV

range 0.09 - 1.02 mV 0.08 - 2.76 mV 0.07 - 3.33 mV 0.15 - 1.19 mV 0.10 - 0.35 mV

L4

P (found/tested) 0.96% (2/208) 2.4% (4/170) 24.3% (254/1046) 0.7% (2/275) 0.7% (1/137) 0% (0/94)

mean ± sem 0.31 mV 0.36 ± 0.09 mV 0.95 ± 0.08 mV 0.48 mV 0.17 mV

median 0.31 mV 0.52 mV

range 0.18 - 0.45 mV 0.22 - 0.61 mV 0.06 - 7.79 mV 0.22 - 0.74 mV

L5A

P (found/tested) 9.5% (20/211) 5.7% (5/87) 11.6% (32/276) 19.1% (178/934) 1.7% (3/174) 0.6% (1/160)

mean ± sem 0.55 ± 0.10 mV 0.93 ± 0.26 mV 0.54 ± 0.09 mV 0.66 ± 0.06 mV 0.24 ± 0.09 mV 0.08 mV

median 0.40 mV 1.09 mV 0.38 mV 0.37 mV 0.19 mV

range 0.08 - 2.03 mV 0.08 - 1.54 mV 0.06 - 1.98 mV 0.05 - 5.24 mV 0.11 - 0.41 mV

L5B

P (found/tested) 8.3% (9/108) 12.2% (20/164) 8.1% (11/136) 8.0% (14/175) 7.2% (40/555) 2% (2/100)

mean ± sem 0.22 ± 0.04 mV 1.01 ± 0.24 mV 0.88 ± 0.25 mV 0.88 ± 0.36 mV 0.71 ± 0.19 mV 0.30 mV

median 0.20 mV 0.51 mV 0.44 mV 0.60 mV 0.29 mV

range 0.09 - 0.47 mV 0.06 - 4.05 mV 0.07 - 2.61 mV 0.13 - 5.45 mV 0.08 - 7.16 mV 0.12 - 0.48 mV

L6

P (found/tested) 0% (0/50) 0% (0/61) 3.2% (3/93) 3.2% (5/158) 7.0% (7/100) 2.8% (15/532)

mean ± sem 2.27 ± 1.72 mV 0.28 ± 0.09 mV 0.49 ± 0.16 mV 0.53 ± 0.19 mV

median 0.96 mV 0.27 mV 0.43 mV 0.26 mV

range 0.17 - 5.67 mV 0.06 - 0.58 mV 0.14 - 1.36 mV 0.09 - 3.00 mV
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Chapter 2. Random Layered Networks

Figure 2.1: Distribution of synaptic strengths
The number of connections having a given synaptic strength is plotted against the measured
unitary excitatory postsynaptic potential (uEPSP) amplitude for all experiments and layers
combined. (Modified from Lefort et al., 2009)

2.1.2 Single Cell Data

To model single cells in the simulation, the leaky integrate-and-fire model was used (see

Chapter 1.1.5 and Gerstner and Brette, 2009). The important parameters for this neuron model

are the resting membrane potential (Resting Vm), the input resistance (Ri n), the membrane

time constant (Tau) and the action potential threshold (AP threshold). Since the neurons are

recorded intracellularly in the experiments, it is possible to extract these parameters from the

single cells in the same experiments as the connectivity measurements.

The resting membrane potential is measured by averaging the membrane potential over 5 ms

prior to any stimulation. The input resistance, membrane time constant and action potential

threshold are extracted from step current injections (Lefort et al., 2009). All parameters are

measured for each cortical layer independently (see Table 2.2).
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Table 2.2: Intrinsic electrophysiological properties of excitatory neurons in the mouse C2
barrel column
Shown are the average resting membrane potential (Resting Vm), input resistance (Ri n), mem-
brane timeconstant (Tau), action potential threshold and amplitude (AP threshold, AP am-
plitude) and the rheobase for all layers. All values are mean ± s.e.m. (from Lefort et al.,
2009)

Layer 2 Layer 3 Layer 4 Layer 5A Layer 5B Layer 6

Resting Vm (mV) -72.0 ± 0.3 -71.4 ± 0.4 -66.0 ± 0.3 -62.8 ± 0.2 -63.0 ± 0.3 -66.8 ± 0.4

Rin (MΩ) 188 ± 3 193 ± 5 302 ± 4 210 ± 3 162 ± 5 277 ± 4

Tau (ms) 28.3 ± 0.3 30.0 ± 0.6 34.8 ± 0.5 37.6 ± 0.6 25.8 ± 0.7 28.2 ± 0.5

AP threshold (mV) -38.3 ± 0.2 -38.7 ± 0.2 -39.7 ± 0.2 -38.9 ± 0.2 -41.1 ± 0.2 -40.2 ± 0.3

AP amplitude - from 
threshold to peak (mV) 72.4 ± 0.4 73.5 ± 0.5 70.9 ± 0.4 70.2 ± 0.5 73.1 ± 0.5 69.9 ± 0.5

Rheobase (pA) 126 ± 3 132 ± 4 56 ± 1 68 ± 2 98 ± 3 76 ± 3

2.2 Network Model

The networks I studied here were standard random sparse networks as described in Chapter 1.1.

To make the networks more related to biology, the experimental results described above were

used to constrain the model networks.

The networks studied in this chapter consist of six different layers as measured in Lefort et al.,

2009. Each layer was represented as a single population of homogeneous neurons sharing

the same parameters (Table 2.2). The connections between layers were modeled according

to the experimental results (Table 2.1). Thus, almost all layers were connected to each other

with different connection probabilities and weight distributions. Beyond the connection

probability, the type of weight distribution was only weakly constrained by the experimental

data.
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2.2.1 Weight Distributions

As described in Chapter 1.1.6, theoretical models use a variety of weight distributions. Here, I

investigated three different weight distributions. First, only a single weight per connection

was used, second a lognormal fit of the experimental data and third the same lognormal

distribution as before, but in which the connections with small weights were pruned.

In this section, I describe each distribution individually and explain how it was fitted to

the available data and how close the similarity of each distribution was to the experimental

observations.

Fixed Single Weight

The simplest weight distribution is to only assign to all connections between two given layers

the same weight. This type of weight distribution is used widely in previous theoretical models

(see Chapter 1.1).

Here, for each pair of layers, the mean evoked amplitude measured in the experiments was

used as the synaptic weight for all connections between these two layers (Table 2.1). Thus,

single neurons in one layer evoked the same postsynaptic response in all connected cells in

another layer.

This distribution by definition showed an accurate mean connection strength when compared

to the experimental observations. However, since only a single value was used per pair of

layers, the variance and the shape of the experimentally observed distributions were not

captured.

Lognormal Weight Distribution

Another approach was to consider a lognormal distribution as an approximation of the experi-

mental findings. A distribution of a variable x is lognormal if the logarithm of x is distributed

normally. The parameters of a lognormal distribution are µ and σ, the mean and the standard
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deviation of the normal distribution underlying the lognormal distribution. A particular fea-

ture of lognormal distributions is that these show an increased skewness in comparison to

normal distributions. This skewness is determined by the parameter σ. For σ close to zero,

the distribution is not skewed, while for increased σ the skewness increases.

The lognormal distribution of synaptic weights w can be written as:

f (w) = 1

wσ
p

2π
e

(ln w−µ)2

2σ2 (2.1)

To fit the lognormal distribution to the experimental data, I used the maximum likelihood

estimators for the parameters µ and σ. These were then calculated for each connection

between two layers as follows:

µ = 1

N

N∑
i=1

ln(xi ) (2.2)

σ2 = 1

N

N∑
i=1

[
ln(xi )−µ]2 (2.3)

with xi being the measured amplitudes for connections between two layers and N the number

of experimental measurements.

The lognormal weight distribution captured the experimental data well. One particular feature

of the lognormal fit was that it matched the high skewness of the biological distribution of

synaptic strengths. The mean amplitude also was the same as measured in the experiments.

Lognormal Weight Distribution with Cutoff - ‘Big connections’

The third weight distribution used was the so-called ‘big connections’ network. This network

used the same weight distribution as the lognormal network, but after network construction,

all connections that were smaller than 0.5 mV were cut.
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This procedure destroyed approximately 50% of the network connections. Thus, this network

does not fit the connectivity observations. Neither the mean nor the variance of the weight

distributions found in experiments were reproduced.

Although not biologically plausible, using such a network allowed to investigate the role of

the rare strong connections. If the network stimulation explained in the next part evoked

similar responses than those found in the lognormal network, it would indicate that the strong

connections are the relevant ones despite the fact that they are sparse.

2.2.2 Network Stimulation

In order to compare the network excitability, a synchronous spike in a single layer was used as

a stimulus. The spike was evoked synchronously in a random subgroup of the specific layer.

Figure 2.2 shows the network behaviour in response to this stimulus when using a lognormal

weight distribution.

The peak EPSP amplitudes for each cell in the simulation after stimulating either one neuron

(top row) or ten neurons (bottom row) evoke qualtitatively similar network responses (Fig-

ure 2.2). In either cases, the network response reflects the underlying connectivity matrix of

Table 2.1. For each stimulated layer (columns), the peak membrane potential following the

stimulation is plotted. The figure illustrates the connections between different layers. For

layers 2 and 3 the activity pattern was similar in that both activate layers 2, 3, 5a and 5b and to

a lesser degree also layer 4, but the specific amount of activation was different. Layer 5b was

strongly activated by layer 3 but only weakly activated by layer 2, although the overall number

of activated cells was similar. Layer 6 was rather special because it had very few connections

to other layers, only layers 5b and 6 were activated by it. The input to layer 6 came mostly from

layers 4 and 5b. The connection from layer 4 to layer 6 was very sparse (3%) but each single

weight was very strong (mean amplitude 2.27 mV) which is visible in Figure 2.2 bottom row,

L4 column.
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Figure 2.2: Network responses for a layered network
Shown are response amplitudes following a stimulus of one (top) or ten (bottom) neurons in
a specific layer (noted above each column). Colour coded is the amplitude of the evoked re-
sponse in the postsynaptic cells in mV. The network used had a lognormal weight distributions
(Modified from Lefort et al., 2009)

2.2.3 Threshold for Further Excitation

To quantify the excitability of the networks in a reliable way, the threshold of further spiking

was introduced. This threshold was the number of neurons that needed to be stimulated in

one layer in order to evoke at least one spike in at least one non stimulated neuron. As can be

seen from Figure 2.2, the activity pattern following stimulation in a single layer is different for

each layer. Thus, the threshold is computed for each layer separately.

The threshold for further excitation constituted the minimal requirements to propagate infor-
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mation in the network. If less neurons were activated than found by the threshold, no further

spikes were evoked and no information could be propagated.

To investigate the differences in threshold between the lognormal weight distribution and

the other weight distributions, the threshold ratio was employed. This was the threshold

computed in the tested network divided by the threshold for the lognormal network.

2.3 Results

In this section, I investigate how different weight distributions affect the network excitability.

The network excitability is quantified for every layer by the threshold of further excitation for

different weight distributions. I then focus on the question how and why the resulting thresh-

old differences measured are layer specific. Finally, the role of the connectivity parameters in

explaining the threshold differences is described.

2.3.1 Impact of Different Weight Distributions Network Excitability

This part describes the excitability of the lognormal network first. Then the excitability of fixed

single weight and ‘big connection’ networks are compared to the excitability of the lognormal

distribution. This is done by computing the threshold ratios for each layer.

Lognormal Weight Distribution

Figure 2.3 shows the thresholds of further excitation for the lognormal network. Here, layer 4

showed further spikes with only 30±6 neurons stimulated. This was the smallest number of

stimulated cells needed in the whole network. Layers 3 and 5a showed also relatively low

numbers for the threshold (L3 61±9, L5a 60±15). The other layers needed considerable more

stimulation to evoke further spiking (L2 238±60, L5b 276±118) with layer 6 being very hard to

excite. Almost 50% of the whole layer needed to be stimulated in order to evoke further spikes

(L6 568±310 with a size of 1154 for the layer 6 population).
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Figure 2.3: Threshold for further excitation
Plotted is the minimal number of neurons needed to stimulate in a specific layer in order to
evoke one further spike in the whole network. Values are mean ± std (Modified from Lefort et
al., 2009)

To compare the impacts of different weight distributions, I determined the thresholds of

further excitation for the other distributions and computed the ratios of the results of these

networks and the results of the lognormal network. This ratio was one if the threshold was the

same in both networks, while larger values indicated a higher threshold in the tested network

than in the lognormal network. Figure 2.4 shows the resulting threshold ratios for all networks

and layers. The specific results for each weight distributions are described individually in the

next parts.

Fixed Single Weight

In Figure 2.4, the green bars indicate the threshold ratio for the fixed weight network to the

lognormal network. It can be seen that this change in weight distribution induced a strong

change in network excitability.

In this architecture, layer 4 had to be stimulated in 60±4 neurons to evoke further spikes.

This was double the amount of stimulation needed than in the lognormal network. Simi-
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Figure 2.4: Comparison of different global weight distributions
Plotted is the ratio of stimulated neurons needed to evoke one further spike in the network
using only the mean per connection as synaptic weights (labelled ‘mean’, ratio shown in green)
or the network with full weight distributions but with all connections smaller than 0.5 mV
cut after network setup (labelled ‘Big uEPSP’, ratio shown in yellow) and the network with full
weight distributions (labelled ‘experiment’). (Modified from Lefort et al., 2009)

larly, layer 5b also needed double the stimulation size to evoke further spikes (L5a 139±36).

The other layers also were all less excitable in the mean network than in the lognormal net-

work although with lower ratios ranging from 1.1 to 1.5 (Thresholds: L2 276±108, L3 91±5,

L5b 350±108, L6 623±310).

The results indicated that although the mean input per neuron was equivalent in the lognormal

and mean architecture the lognormal network was easier to excite. This might have been due

to the lack of sparse strong connections in the fixed weight network.

Lognormal Weight Distribution with Cutoff - ‘Big connections’

The big connection network showed only small differences from the lognormal fits. This can

be seen from the results depicted as yellow bars in Figure 2.4.

Layer 4 had to be stimulated in 31±6 neurons to evoke further spiking which was the same

amount of excitation than in the lognormal network. This indicated that indeed the con-
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vergence of the sparse very strong connections drove the threshold for further excitation

in random networks. Even in a network that had only half of the original connections, the

threshold was not significantly different. The other layers also showed very little increase in ex-

citability with ratios close to one (thresholds: L3 62±9, L5a 69±19, L5b 300±181, L6 590±225).

The only difference visible was in layer 2, where indeed the small connections may have had a

higher impact than in other layers. Here the ratio was 1.54 with the threshold being 368±104.

2.3.2 Layer Specific Differences

It is important to note that the connections that directly drove the threshold for further

excitation were predominantly the recurrent connections inside each layer. The reason for

this was, that the recurrent connection provided the strongest output for a stimulation in any

given layer (compare Table 2.1). Thus, the non-stimulated neurons in the stimulated layer

were most likely to spike in response to the stimulation and thus defined the threshold of

further excitation.

To understand why some layers were more affected by changes in the weight distribution than

others, it was crucial to see what the threshold of further spikes was measuring. It measured

only the fact that enough activation was present in the network to evoke further spikes. There

were multiple scenarios which could explain the sufficient amount of activation that evoked

the spike.

One possibility was that a few very strong connections were converging. Layer 4 was an

example of this. Here the experimentally measured weight distribution for the recurrent

connections showed a heavy tail. This was indicated by the high difference in mean and

median for the recurrent layer 4 to layer 4 connection and the wide range of synaptic weights

shown in Table 2.1. Since the ‘big connection’ network showed no difference to the lognormal

network, these strong connections were sufficient to drive the activation. The mean network,

in which the few strong connections were missing, needed to be stimulated a lot stronger

which also indicated that the sparse strong connections were most important in evoking
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spikes in layer 4.

One other possibility was, that enough small connections converged. This was most likely

the case in layer 2. Here the ratio for the ‘big connection’ network was higher than for the

mean network. This indicated that the small connections (< 0.5 mV) that were cut in the ‘big

connection’ network played a substantial role in the excitability of layer 2.

For the other layers, the determining factors for the differences in threshold were more com-

plex. Layer 5a recurrent connections showed a more skewed distribution and higher con-

nection probability than layer 2 recurrent connections, although the mean strength was

comparable. In comparison to the behaviour of layer 2, here there were still enough large

connections to dominate the threshold of further spikes.

For layer 5b the principle was the same as for layer 5a but the connection probability was

lower and thus large connections were not as dominant. Since the connection probability was

low, the overall number of strong connections was low. Consequently, convergent input of

strong connections had a low probability and their impact was reduced.

Layer 3 was very similar to layer 2, but had a higher mean connection strength and connec-

tion probability. Due to the high connection strength, less connections were cut in the ‘Big

connection’ network. Thus, layer 3 was less affected by the cutoff. In comparison to layer 2,

the recurrent connection here showed a slightly stronger tail and thus the effect of using only

the mean synaptic strength was higher.

Layer 6 connections were very sparse so that in any case about 50% of layer 6 neurons needed

to be stimulated to evoke further spikes. This number was sufficient almost regardless of

network setup.

2.4 Summary

In conclusion it was shown here that the global distribution of synaptic weights does play a

significant role in the network dynamics. The big connection network and the full network
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Figure 2.5: Schematic of possible network interactions
The convergence of few large-amplitude synaptic connections might dominate network activ-
ity. (Modified from Lefort et al., 2009)

differed only very little in their stimulation threshold which indicated that the propagation of

excitation in the network was mediated by very sparse strong connections. This can be seen

prominently in the excitability of layer 4. The assumption of a single connection strength for a

network model was shown to have a strong impact on network excitability. Networks with only

the mean connection strength were less excitable and thus might not represent the biological

networks accurately.

A hypothesis arising from these finding would be that the convergence of very few of these

large connection could dominate network activity. Figure 2.5 illustrates the most probable

network architecture responsible for propagation of activity in the network simulations. Few

stimulated neurons (red) activate a post-synaptic neuron (orange) via sparse converging

strong connections.

These findings indicated that there might be features, in this case convergences of large

multiple connections, that influenced network behaviour but were not specifically modeled in

the uniform random framework. In the further chapters I show how networks can be adjusted

to incorporate non-random structures in network architectures.
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3 Modifying Local Connectivity

Experimental data indicate that biological neuronal networks exhibit complex connectivity

features. Uniform random networks as widely used in theoretical studies cannot reproduce

these complex features. This chapter focusses on the introduction of structure into random

network models.

To this end I introduced a measure that quantified the network similarity to experimental

findings. This measure was then used to determine important network parameters and to

optimise network structure. Structural changes in the network were induced by changing the

degree distributions.

In the first part of the chapter the experimental results to which the constructed networks

are compared are described. The specific network model is introduced and a method for

structural changes is explained. To quantify network similarity, a measure is introduced

and parameter significance is discussed. These are used to investigate the space of possible

networks and to optimise network structure. The results show that the needed structure is

highly connection specific and especially the recurrent excitatory connections must be highly

structured to reproduce the biological findings.
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3.1 Experimental Basis

The data used to construct random networks relies mostly on recordings of relatively small

groups of neurons (2-6 neurons at the same time). Thus, only pairwise statistics can be robustly

extracted (Markram et al., 1997; Holmgren et al., 2003; Feldmeyer et al., 2006; Helmstaedter et

al., 2008; Lefort et al., 2009).

Some publications however, make an effort to characterise connectivity on a more complex

level (Yoshimura et al., 2005; Yoshimura and Callaway, 2005; Song et al., 2005; Fino and Yuste,

2011; Bock et al., 2011; Perin et al., 2011; Packer and Yuste, 2011). The overall conclusion is

that connectivity was not purely random, but that there are cell-type specific differences in

connectivity and that connectivity is not uniform throughout a single population.

3.1.1 Probabilities of Shared Input

I made use of one particular type of experiment to evaluate different model networks (Yoshimura

and Callaway, 2005; Yoshimura et al., 2005, see also Chapter 1.2.3). These experiments use

glutamate uncaging to scan for synaptic inputs of simultaneously recorded cells.

To this end a brain slice is bathed in a caged (inactivated) glutamate compound. Using a

laser beam the compound can very locally be uncaged (activated) and thus it is possible to

stimulate single neurons. The whole slice is stimulated systematically at various positions

aligned on a grid and for each position the evoked responses of the two patched cells are

recorded.

This information is then used to infer the probabilities of receiving input from the same

stimulus location conditioned on the connectivity between the two patched cells. These

experiments are done for pairs of excitatory neurons (Yoshimura and Callaway, 2005) and for

excitatory and fast-spiking neurons as well as for excitatory neurons and adapting interneurons

(Yoshimura et al., 2005).

The results show that connected pairs of excitatory neurons share more input than uncon-
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nected pairs (20.1±2.7% for connected versus 3.8±1.1% for unconnected pairs). Pairs of

fast-spiking and excitatory neurons only show an increase in shared input for bidirectionally

connected pairs (17±2% for bidirectionally connected pairs, 5±1% for unconnected pairs and

1±3% for pais with one-way connections), while pairs of adapting interneurons and excitatory

neurons show no dependency on connectivity.

These measurements can not be reproduced by a uniform random network since the connec-

tions are independent of each other. To be able to reproduce the experiments it is necessary

to introduce local changes into the connectivity of the model network.

3.2 Network Model

Due to the need for detailed experimental data on the connectivity of excitatory and inhibitory

populations, I chose to focus the modeling on only a small part of the whole 6 layered net-

work explained in the previous chapter. Because the layer 2/3 was best constrained by the

experimental data, the network was constructed to mirror only the layer 2/3 network of mouse

barrel cortex.

3.2.1 Network Populations

Instead of using only excitatory populations like in the previous chapter, three distinct pop-

ulations of excitatory and inhibitory neurons were used. One population consisted of only

excitatory neurons and the two other populations consisted of inhibitory fast-spiking and

inhibitory non-fast-spiking neurons. The excitatory population comprised 1691 neurons, the

fast-spiking 97 neurons and the non-fast-spiking population 133 neurons. All population sizes

were taken from experimental data (Lefort et al., 2009; Gentet et al., 2010).

The two inhibitory types were chosen because the distinction between them is relatively clear

(Avermann et al., 2011; Helmstaedter et al., 2009; Thomson and Lamy, 2007). Fast-spiking

interneurons in this definition were parvalbumin positive and were electrophysiologically

identifiable by a shorter action potential half-width (Avermann et al., 2011). The adapting
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interneurons measured in Yoshimura et al., 2005 are a subclass of the non-fast-spiking in-

terneurons.

Both types, the fast-spiking and the non-fast-spiking interneurons, can in principle be further

subdivided into multiple subclasses (Thomson and Lamy, 2007; Helmstaedter et al., 2008).

However, since connectivity data on all subclasses is very sparse, I concentrated on only two

interneuron classes.

3.2.2 Connectivity

The connection probability between all populations was directly taken from experimental

data (Table 3.1, Lefort et al., 2009; Avermann et al., 2011). Since the analysis took into account

only the presence or absence of connections, no statement could be made about weight

distributions.

The general setup of the connections differed from the standard random sparse paradigm

described in Chapter 1.1.1. Instead of constructing the connections in a uniform random

way, I introduced structure in the connectivity. The method used to introduce structure is

explained in the next section.

3.3 Changing Network Structure

To modify the structure of the network, the in- and out-degree distributions were varied

indepently. The in-degree was the number of connections a neuron receives and the out-

degree was the number of connections a neuron sends.

In a uniform random network, all neurons are equally probable to be a pre- or postsynaptic

neuron thus the distribution of in- and out-degrees had a low variance. In the following part, a

method used for changing degree distributions is described.
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Table 3.1: Synaptic connectivity and uEPSP amplitudes in layer 2/3 of the mouse C2 barrel
cortex
P denotes the probability of a connection from the pre- to the postsynaptic layer (L) for
all three populations (excitatory (EXC), inhibitory fast-spiking (FS) and inhibitory non-fast-
spiking (NFS)). Mean, median and range are describing the characteristics of the evoked
postsynaptic response for this connection. Inhibitory amplitudes were always measured with
the postsynaptic neuron depolarised to -55 mV. (from Avermann et al., 2011)

Presynaptic

Postsynaptic
EXC FS NFS 

P (found/tested) 16.8% (16/95) 60.0% (21/35) 46.5% (20/43) 

mean ± SEM 0.37 ± 0.10 mV -0.52 ± 0.11 mV -0.49 ± 0.11 mV 

median 0.20 mV -0.29 mV -0.30 mV 
EXC

range 0.06 to 1.42 mV -0.10 to -2.00 mV -0.10 to -2.00 mV 

P (found/tested) 57.5% (23/40) 55.0% (11/20) 37.9% (11/29) 

mean ± SEM 0.82 ± 0.10 mV -0.56 ± 0.14 mV -0.37 ± 0.10 mV 

median 0.68 mV -0.44 mV -0.23 mV 
FS

range 0.16 to 1.94 mV -0.07 to 1.46 mV -0.12 to -0.99 mV 

P (found/tested) 24.4% (11/45) 24.1% (7/29) 38.1% (8/21) 

mean ± SEM 0.39 ± 0.11 mV -0.83 ± 0.25 mV -0.49 ± 0.20 mV 

median 0.19 mV -0.60 mV -0.15 mV NFS

range 0.12 to 1.21 mV -0.09 to 1.85 mV -0.07 to -1.47 mV 

3.3.1 Modifying Degree Distributions

A change in the degree distribution was achieved by manipulating the connection drawing

paradigm. For each connection, a pre- and a postsynaptic neuron was drawn. In the standard

case, the probability for each neuron to be a pre- or postsynaptic neuron was equal, the

distribution of neurons was uniform.

Here, instead of drawing neurons from a uniform distribution, I used an exponential distribu-

tion to determine the pre- and postsynaptic partners. The resulting degree distributions were

then different because some neurons were more probable to be a pre- or postysnaptic neuron

and thus form more connections.
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Exponential distributions offered a high variance and a single parameter, the rate λ, to tune.

This made it easier to investigate the effects of this change on the network structure since the

number of free parameters was limited.

The index of a pre- or postsynaptic neuron i was drawn according to this distribution:

fpr e/post (i ) = λpr e/post e−λpr e/post i (3.1)

λpr e = dout

npr e
(3.2)

λpost = di n

npost
(3.3)

with npr e and npost being the sizes of the pre- and postsynaptic neuronal populations and

dout and di n being the parameter used to characterise the skewness of the distribution for the

out-degree or in-degree.

The characterising parameters di n and dout were either 0 or 5. For a value of 0, a uniform

distribution was used since the exponential distribution would have an undefined λ. For a

value of 5 the distribution was highly skewed with some neurons connecting to all possible

partners.

Due to the general construction of the network explained in Chapter 1.1.1 higher values for

dout (or di n) were impractical because highly probable neurons would occur more often

and thus increase probability of finding the same connection twice. This would increase the

amount of redrawing and thus make the algorithm very slow to converge.

The effect on the degree distribution is shown in Figure 3.1. The basis was the uniform random

network (top) with a low variance (histogram left, black bars) in the degree distribution. From

there I varied the in- or out-degree distributions (in-degree bottom left, out-degree bottom

right) to be highly skewed (histogram left, grey bars).
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Figure 3.1: Diagram of the idea of changing degree distributions
Using a uniform random network as the starting point (top) effects of changing the degree
distribution in the output and input are shown (bottom). Left: Histogram showing the degree
distribution for the uniform network in black and for imposed weight correlations in grey
(d = 5).

3.3.2 Quantification of Network Similarity

The similarity of the constructed networks to biological networks was quantified by calculating

the same probabilities as reported in Yoshimura and Callaway, 2005 and Yoshimura et al., 2005

and computing the summed square error between model and experiment. This gave a single

value which described the similarity between the model and the biological measurements. A

low summed square error indicated a similar network, while networks that are far from the

biological observations would have a high summed square error.

The error was calculated for all pairings of neuron types (excitatory/excitatory, excitatory/fast-

spiking interneuron, excitatory/adapting interneuron) and for all reported probabilities of
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sharing inputs given the connectivity of the neuron pair recorded from (unidirectional P1 and

P2, bidirectional P3 and not connected P4). These probabilities are extracted from the whole

network and thus show only small variations for multiple realisations of the same network.

summed square error = ∑
A,B∈pai r i ng s

∑
i

(Pi ,exper i ment −Pi ,model )2 (3.4)

with Pi :

P1 = P (shared input|A → B)

P2 = P (shared input|A ← B)

P3 = P (shared input|A ↔ B)

P4 = P (shared input|A B)

3.3.3 Parameter Significance

I calculated the significance of changing a single parameter in the parameter space with the

Student’s t-test. Using an iterative approach, I computed the significance level on the whole

parameter space first, then fixing the significant parameters and repeating the procedure until

no further parameters were significant.

This was necessary because the significance of changing a single parameter may have been

different depending on the area which was taken into account. Significance levels were

denoted as p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗∗∗)

3.4 Results

Since no pairs of inhibitory neurons are tested in Yoshimura and Callaway, 2005 and Yoshimura

et al., 2005, the connectivity between inhibitory populations could not be taken into account

in the fitting. Only connections involving the excitatory population were used, leading to
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Figure 3.2: Dimensional stacking for the parameter space spanned by varying the struc-
tural parameters
A Dimensional reordering of the parameter space created by varying the structural parame-
ters affecting the similarity to observed connectivity patterns. Colour indicates the summed
square error of the observed probabilities in biology and in the model. The red outline shows
the region of best results. B Closer zoom into the four dimensional region indicated in A.
Each pixel represents one parameterset. The quadrants delineated by the thin black lines are
the parameter space spanned by di n e-nfs and dout nfs-e, while the four pixels inside each
quadrant are the parameter space spanned by di n fs-e and dout fs-e. C Diagram of the network
connections affected by the fitting for all populations (excitatory (E), fast-spiking (FS) and
non-fast-spiking (NFS)). D Diagram of the changes of network connections that were used
in the fitting. Significant parameters: dout e-e(∗∗∗), dout e-fs(∗∗∗), dout e-nfs(∗∗∗), di n

e-e(∗∗∗), di n e-fs(∗∗∗), di n e-nfs(∗∗), di n nfs-e(∗∗∗). Significance levels using Student’s
t-test: p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗∗∗).

ten parameters tested. Two parameters (di n and dout ) for each connection: excitatory to

excitatory (e-e), excitatory to fast-spiking (e-fs), fast-spiking to excitatory (fs-e), excitatory to

non-fast-spiking (e-nfs), non-fast-spiking to excitatory (nfs-e).

3.4.1 Significant Parameters

Figure 3.2 shows the setup and results for the structural fitting. In Figure 3.2 C, the connections

that were used in the fitting are depicted. Since five connections were tested and the in- and
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the out-degree were varied, ten parameters were used as described above.

Figure 3.2 D shows what alterations were made to these connections. Each connection

was tested in four configurations. The out-degree of the presynaptic population could be

unchanged or altered with the method described above, and the same was true for the in-

degree of the postsynaptic population. This lead to 45 or 1024 networks tested.

To visualise the similarity of all networks in an intuitive way, the Clutter Based Dimensional

Reordering described in Chapter 1.4 was used. This technique nested all dimensions of the

parameter space into a single two dimensional image. The ten parameters used here are

depicted in the dimensional stacking in Figure 3.2 A. Here all parameters were scanned and

for each network the colour indicates the summed square error as a measure of dissimilarity.

Blue indicates a low error and thus a high similarity and red indicates a high error and low

similarity.

The standard uniform random network was in the top left corner and showed a summed

square error of 0.21.

It can be seen that the outgoing connections of the excitatory population had a strong influence

on the similarity to experimental results. The specific configuration of parameters, however,

was different for each target population.

For the connections from excitatory to excitatory neurons (e-e), both a high variance in the in-

and in the out-degree was needed for a high similarity. This was affecting the parameters di n

e-e and dout e-e. A strong difference can be seen from the top half of the image to the bottom

half (change in dout e-e). Inside one half, the difference between the top part and the bottom

part was due to the difference in di n e-e. Thus, the two parameters had a strong influence on

the network similarity measure.

This was different for the excitatory to fast-spiking connection (e-fs). Here only the in-degree

(di n e-fs) was required to have a high variance. The out-degree (dout e-fs) had to be unchanged.

In the connection to the non-fast-spiking neurons (e-nfs) the purely random network was
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3.4. Results

Table 3.2: Constraining parameters on the structural fitting technique
Parameters that had a significant effect on the measures are marked by the value that pro-
vided the better result. Tested but not significant parameters are marked with ‘-’. Untested
parameters are left empty.

d
in out

e-e 5 5
e-fs 5 0
e-nfs 0 0
fs-e - -
fs-fs
fs-nfs
nfs-e 0 -
nfs-fs
nfs-nfs

Table 3.3: Shared input probabilities
Probabilities of sharing input for the structurally adjusted network with all significant para-
meters (model) and the corresponding experimental findings. Shown are the probabilities for
all tested pairings. Neurons were either unconnected ( ), unidirectionally connected (→,←) or
bidirectionally connected (↔). Experimental data from Yoshimura and Callaway, 2005 and
Yoshimura et al., 2005.

→ ← ↔
e-e model 0.078 0.173

experiment 0.038 0.201
e-fs model 0.027 - 0.076 0.151

experiment 0.051 - 0.013 0.172
e-nfs model 0.066 0.070 0.069 0.067

experiment 0.04 0.03 0.05 0.05

fitting the data best. All changes to the structure in these connections would lead to an

increased error.

The region constrained by the significant parameters found with this approach is marked in

red in Figure 3.2 A. The significant parameters are summarised in Table 3.2. The network with

all significant parameters fixed showed very similar probabilities of sharing input to those

found in experiments (Table 3.3).

53



Chapter 3. Modifying Local Connectivity

5

1

2

34

1

5 2

34

5

4

1

2

3

0 21

# 
ne

ur
on

s

in-degree
0 21

# 
ne

ur
on

s

out-degree
0 21

# 
ne

ur
on

s

in-degree
0 21

# 
ne

ur
on

s
out-degree in-degree

20 21

# 
ne

ur
on

s

0 1

# 
ne

ur
on

s

out-degree

5

4

1

2

3

in-degree
20 21

# 
ne

ur
on

s

0 1

# 
ne

ur
on

s

out-degree

1

5 2

34

2

4

1

5

3

25

4

1

3

0 21

# 
ne

ur
on

s

in-degree
0 21

# 
ne

ur
on

s

out-degree
0 21

# 
ne

ur
on

s

in-degree
0 21

# 
ne

ur
on

s

out-degree in-degree
0 21

# 
ne

ur
on

s

20 1

# 
ne

ur
on

s

out-degree
3

Figure 3.3: Shared input networks consisting of five neurons
All network configurations (except isomorphisms) are shown for a network of 5 neurons with
15% connection probability. For each configurations, the in- and out-degree distributions are
depicted underneath the network diagrams.

3.4.2 Effects of Degree Distributions on Shared Input

The changes in the degree distributions were a complex manipulation of the network structure

and it was not apparent why this change affected the probabilities of shared input. To elucidate

this impact a simplified example network of five neurons with 15% connection probability

was investigated.

Figure 3.3 shows all possible networks of five neurons with three connections (15% connection

probability) in which shared input was present. Since labels of neurons could be reassigned

without changing the network architecture, permutations were considered as equivalent. It

was therefore arbitrarily decided that shared input was originating from cell 2, while cells 1

and 3 shared this input. The corresponding degree distributions for the networks are shown
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underneath each network. From these distributions it is clear that for this simplified example,

all networks that showed shared input also showed sparse high out-degree nodes. This is

especially apparent in Figure 3.3, bottom right. Here three pairs of neurons show shared input

and the degree distribution shows a higher variance as in the other networks and a sparse high

out-degree node.

A second observation was that the only network that showed shared input to connected cells

(top left in Figure 3.3) showed sparse high in- and outdegree nodes. This was only visible in

one other network (bottom left in Figure 3.3). Thus, the occurrence of shared input given a

connection between two neurons was only possible if high degree nodes are present both the

in- and the outdegree case.

Thus, in this simple example the occurrence of shared input only occurred with skewed out-

degree distributions. Skewed in- and out-degree distributions were necessary for shared input

to connected cells to occur. This is the case for the recurrent excitatory connections.

When taking into account the connection from excitatory to fast-spiking neurons, this picture

changes slightly. In the experimental findings, the probability of sharing input for pairs of exci-

tatory and fast-spiking neurons was only increased for bidirectionally connected pairs. When

staying with the previous example network, the probability for two (connected) excitatory cells

to connect to a given fast-spiking cell is 0.3 (for a connection probability from excitatory to

fast-spiking of 0.6 as observed in experiments). Since the probability for the fast-spiking neu-

ron to connect to a specific excitatory neuron is also 0.6, the overall probability in this example

of observing a shared input between bidirectionally connected cells is 0.3∗0.6 = 0.18. A highly

skewed out-degree distribution for the excitatory to fast-spiking connection would lead to the

same results, since the average probabilty of receiving a connection for a fast-spiking neuron

would remain the same. When assuming an increased variance in the in-degree distribution

of the excitatory to fast-spiking connection, there will be fast-spiking input hubs which have a

high probability of getting input from two given excitatory neurons. In the extreme case of

a fully connected fast-spiking neuron, the probability of a reciprocal shared input pattern is
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then 1∗0.6 = 0.6, this results in an increase in the average probability of sharing input given a

bidirectionally connected pair.

Thus, a high variance in the in-degree of the fast-spiking population would increase the

occurence of bidirectional shared input patterns, while a changed out-degree distribution

would not increase the occurence of such patterns.

3.4.3 Covariation Effects of Multiple Parameters

While the identification of the significant parameters was the most important result, it was

no less interesting to investigate the impact of single parameters on the effect of all other

parameters. dout e-e for example was a parameter that affected the behaviour of almost all

other parameters in the network.

When dout e-e was zero, there was only little influence on the summed square error from all

other parameters. Only when this parameter was changed, the other parameters gained more

influence.

For example, the influence of dout e-nfs was negligible in the case where dout e-e was zero.

But when dout e-e was increased, a change in dout e-nfs would drastically reduce the network

similarity. This came from the fact that pairs of excitatory and non-fast-spiking neurons

showed the same amount of shared input for all possible connections.

In the framework of an increased dout e-e, some neurons had a very high probability of being

the source of shared input, while in a random network there was no such preference. If there

was a change in the connection from excitatory to non-fast-spiking neurons in the case of a

random excitatory network, it did not affect the similarity to biological results because the

excitatory network could not show a preference in the input. Only for a structured excitatory

network the change in the excitatory to non-fast-spiking connection could have an effect since

the chance of sharing input was substantially increased.

A similar effect could be observed for almost all other parameters. Thus, structure in the
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Figure 3.4: Network structure and Small-World-ness
A Scatterplot showing the small-world-ness of the constructed networks and the correspond-
ing summed square error depicted in Figure 3.2. The red ellipse indicates the region of best
results, while the blue ellipse shows the uniform random network. B Dimensional reordering
of the parameter space created by varying the structural parameters (di n and dout ) affecting
the similarity to observed connectivity patterns. Colour indicates the small-world-ness of the
network. The ordering is the same as in Figure 3.2, the red outline shows the region of best
results of Figure 3.2.

excitatory network was key to a network model that reflected the experimental findings.

3.4.4 Small-World Networks

I also investigated whether the changes in single parameters would make the studied networks

more similar to small-world networks (see Chapter 1.3). To this end, the small-world-ness for

each constructed network was computed.

It was found that changes in the significant parameters increased the small-world-ness of

the network (1.29±0.02 for the region of best results). However, the reverse was not true, a

high small-world-ness did not imply a good network fit. Figure 3.4 shows the distribution of

small-world-ness in the tested networks, while in Figure 3.4 A the overall histogram for all

networks is shown.

From this it can be seen that the small-world-ness in the region of best results was ranging

between 1.25 and 1.32. The dimensional stack in Figure 3.4 B shows the small-world-ness

in the same way as Figure 3.2 A was shown. Here it can be seen that the network with high
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small-world-ness were in the lower right corner where the summed square error was very high

(compare to Figure 3.2).

Thus, high small-world-ness did not imply a plausible network. This was mostly due to the

fact that I was using a specific type of network with three distinct populations and changes

in the significant parameter were highly cell type specific. The small-world-ness as a general

measure did not take into account the identity of the populations but only the overall network

structure.

3.4.5 Scale-Free Networks

Since the construction of the network was imposing an approximately exponential degree

distribution, there would be so called ’hub’ neurons in the network and thus part of the

definition of scale-free networks would be met. However, since the degree distributions

were approximately exponential, the networks I constructed were by definition not scale-free

networks. This would imply a powerlaw degree distribution (see Chapter 1.3).

3.4.6 Network Motifs

Some experimental studies showed that specific connectivity patterns of three or more neu-

rons were more frequent in biological recordings than to expect from a uniform random

network (Song et al., 2005; Perin et al., 2011,Chapter 1.2.2). The occurrence of these connectiv-

ity patterns, also called motifs (Milo et al., 2002), indicated that network connectivity was not

uniform random.

The networks studied here were constructed to show an approximately exponential degree

distribution. It has been shown previously, that such degree distributions do lead to an

overrepresentation of triplet and higher order motifs (Roxin et al., 2008). Thus, the changes

proposed here are in agreement with the experimental results of Song et al., 2005 and Perin et

al., 2011.
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3.5 Summary

In conclusion I was able to show that adjustments in the network structure through degree

distributions was sufficient to model networks that capture biological measurements on

complex connectivity patterns. This was true for studies of shared input (Yoshimura and

Callaway, 2005; Yoshimura et al., 2005) and for electrophysiological studies of network motifs

(Song et al., 2005; Perin et al., 2011).

Having a structured excitatory network turned out to be of paramount importance to construct

network models that capture the complex connectivity patterns found in biological networks.

The structure in the excitatory network was enabling the other parameters to be effective and

also increased the occurrence of network motifs.

A strong impact of inhibitory connections was not evident from this approach. This was mostly

due to the fact that the experimental paradigms used to fit the parameters were focussing on

excitatory networks or excitatory inputs. Thus, a more thorough fitting of the networks was

not possible at this stage.

One possible extension to alleviate this problem is to introduce experimental data of network

activity and not solely rely on structural information. This is what is discussed in the next

chapters.
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Experimental results from pairwise recordings are used widely to construct network models.

A remaining question is how well the dynamic properties of these networks generalise to

different stimulations. In this chapter, experiments using channelrhodopsin to stimulate

multiple neurons at the same time were used to investigate the network response properties.

To this end, I used a network stimulation that corresponded to the channelrhodopsin stimulus

in the experiments and a measure was found that quantifies the similarity of the two distri-

butions of responses. It was shown that the classical network models failed to reproduce the

results observed in the experiments. To improve network performance, a method to change

synaptic weight distributions at a single neuron of the network was introduced. This method

was then used to adapt the local weight distributions so that the biological findings were

reproduced more correctly. The results show that the necessary changes were highly specific

to the type of the pre- and postsynaptic neuron.

In this chapter, the biological experiments used are explained first. Then the network model

and the stimulus used to reproduce the biological findings are detailed. Following this it

is explained how the weight distributions are altered to show local changes and how the

calculation of the similarity of the model network and the experimental results is performed.

These techniques are then used to investigate the role of local weight distributions in the

network response distributions.
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4.1 Experimental Basis

In order to investigate the effects of local changes in random networks it is necessary to

use experimental data that goes beyond pairwise measurements. One conceptually simple

experiment that allows for this is described in Avermann et al., 2011.

4.1.1 Channelrhodopsin Evoked Responses

Here a local volume of layer 2/3 mouse barrel cortex is infected by a lentiviral vector which

expresses channelrhodopsin (ChR2) in excitatory cells. Channelrhodopsin is a light activated

sodium channel and thus neurons that are expressing channelrhodopsin can be stimulated to

spike with a flash of blue light.

In this experiment the postsynaptic responses of non-expressing excitatory neurons, fast-

spiking interneurons and non-fast-spiking interneurons following such a channelrhodopsin

stimulation are recorded. These responses are compound responses from multiple excitatory

sources and thus are not only probing pairwise connections.

With this kind of data it is possible to test networks based on data of pairwise recordings

whether or not they are adequately close to biological neuronal networks.

4.1.2 Connectivity

Avermann et al., 2011 also measure the pairwise connectivity between cells in all populations.

This data is the same that was used for modeling networks in the previous chapter. In addition

to the connection probabilities the measured weight distributions are also taken into account.

4.2 Network Model

The network model that I used in this part showed the same basic setup as that presented in

the previous chapter. Thus the network consisted of three populations: excitatory, inhibitory
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fast-spiking and inhibitory non-fast-spiking neurons. Population sizes were chosen according

to biological measurements for layer 2/3 of a single mouse barrel cortex column (Lefort et

al., 2009; Gentet et al., 2010). 1691 excitatory neurons were used, 97 fast-spiking and 133

non-fast-spiking neurons.

The main difference was that this network was analysed with respect to its response properties.

It was thus necessary to complete the network model with a specific neuron model and

realistic weight distributions.

4.2.1 Neuron Model

The single neurons in each population were simulated using the AdEx neuron model (Brette

and Gerstner, 2005; Gerstner and Brette, 2009, Chapter 1.1.5). The parameters of these neurons

were taken from Mensi et al., 2011, where recordings of layer 2/3 of mouse barrel cortex were

used to extract all neuronal parameters.

4.2.2 Connectivity

The connection probabilities used were the same as in the previous Chapter (see Table 3.1).

These connections were formed according to the standard uniform random paradigm (Chapter

1.1.1).

The global weight distribution used were lognormal fits to the distributions measured by

Avermann et al., 2011. The lognormal fitting was the same as shown in Chapter 2.2.1. With

keeping the global weight distributions fixed, I modified the local weight distributions as

described below to investigate the effects on the network response behaviour.

4.2.3 Stimulation in the Model Networks

To reproduce the Channelrhodopsin experiments, 25 randomly chosen excitatory neurons

were stimulated to emit a single, synchronous spike. This stimulus was close to the biological
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stimulus as neurons there emitted a single spike upon light stimulation. These spikes were

temporally reliable across neurons (Avermann et al., 2011).

The stimulation size of 25 neurons was chosen because at this stimulation size, the mean

response of the excitatory population fits in the mean response measured in the experiments.

Thus, it provided a useful starting point at which the excitatory response was modeled as

accurate as possible (see Figure 4.2).

The model was in a silent state and showed no spontaneous activity similar to the in vitro

situation in Avermann et al., 2011. To acquire the network responses, the model was stimulated

ten times with interstimulus intervals of 300 ms. After each stimulation, the peak membrane

potential of all cells was recorded in a 50 ms window.

4.2.4 Quantification of Model Networks

To evaluate the performance of the constructed networks in comparison to biological results,

I compared the network response distributions. These were obtained by the stimulation

protocol described above.

The distribution of these responses was then compared to the ones measured in the experi-

ments. To quantify the similarity of the distributions I used the log-likelihood ` as a measure.

This was computed for a single neuronal population as follows:

`=∑
i

logP (xi |Y ) (4.1)

with xi being values from the experimental network response distribution and Y being the

model generated dataset. For the whole network consisting of three populations, the average

log-likelihood across all populations was used.
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4.2.5 Parameter Significance

The significance of single parameters was determined in the same way as in the previous

chapter. This means that significant parameters were identified in the whole parameter space

by using Student’s t-test. After all significant parameters were fixed, the significant parameters

for the resulting subspace were computed. This process was repeated until no more significant

parameters were found.

4.3 Changing Local Weight Distributions

Single neurons in a uniform random network receive on average the same input. This is due

to the fact that although global weight distributions can show a high variance, the number of

incoming connections is high and thus, due to the central limit theorem, the averaging effect

of a random network is strong. To allow for more variance, I altered the local weight structure

in a way that preserved the global weight distribution, but changed the average input per

neuron.

To alter the weight structure, the approach of weight correlations (Koulakov et al., 2009)

was used. Here the idea was that some neurons received mostly very strong connections,

while others received mostly weak connections. In Figure 4.1 the general outline of weight

correlations is shown.

With the uniform random network as the basis (Figure 4.1 top) I aimed to change the weight

correlations in the output of single neurons (Figure 4.1 bottom left) and in the input to single

neurons (Figure 4.1 bottom right).

The distribution of average synaptic weights per neuron was strongly affected by this approach.

While the random network showed a very sharply peaked distribution with low variance (Figure

4.1 histogram left, black bars), introducing weight correlations changed this distributions to a

skewed distribution with high variance (Figure 4.1 histogram left, gray bars). This approach

thus correlated the synaptic weights on a single neuron level.
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Figure 4.1: Diagram of the idea of weight correlations
Using a uniform random network as the starting point (top), effects of changing the weight
correlations in the output and input are shown (bottom). Left: Histogram showing the distri-
bution of average weights for the uniform network in black and for the network with imposed
weight correlations in grey (corr= 1).

To introduce these correlations of weights correctly two scaling values, ωi
pr e and ω j

post were

drawn from two lognormal distributions for each neuron. The distributions needed to be

lognormal in order to preserve the global weight distribution since the lognormal distribution

was preserved under multiplication. Furthermore the lognormal distributions from which

ωi
pr e and ω

j
post were drawn had to have unit mean not to alter the mean of global weight

distribution. The parameters µ and σ of these distributions were thus calculated as follows:
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fi n/out (ω) = 1

ωσi n/out
p

2π
e

(lnω−µi n/out )2

2σ2
i n/out (4.2)

µi n/out = −(σ2
i n/out )/2 (4.3)

σi n/out = cor r i n/out (4.4)

I then multiplied the original weight matrix with ωi
pr e of the presynaptic partner and ω j

post

of the postsynaptic partner (Figure 4.1 left and Koulakov et al., 2009). The variance of the

lognormal distribution, corr in for the input weights (corr out for the output weights) was used

to parameterise the strength of the induced correlations.

Each parameter was taken to be either 0 or 1. For a value of 0, the distribution collapses to a

single value thus no correlations are induced, for a value of 1 a high skewness and variance are

induced. Choosing a value of 1 as the value for scanning parameter spaces is arbitrary since

higher values are also possible. However, this value induced highly skewed distributions and

thus would sufficiently show the effect of local weight correlations if there was any.

4.4 Results

I compared the evoked response distributions in the model and in the experiments, first in the

uniform random case and then for all parameter combinations. The weight correlations in

input and output were varied indepently for each excitatory connection, leading to a total of

six parameters. Finally, I looked at the results for a network in which the significant parameters

were fixed.

67



Chapter 4. Modifying Local Weight Distributions

4.4.1 Results for a Uniform Random Network

Applying the channelrhodopsin-like stimulus in the uniform random network did evoke a

distribution of responses in the excitatory population that was close the experimental results

(Figure 4.2 B, model: solid bars, experiment: outlined bars), but failed to reproduce the

responses of the inhibitory populations (Figure 4.2 C,D).

The main difference between model and experimental results could be seen in the response

distribution of the fast-spiking population. Here the model showed a Gaussian shape of the

response distribution, while the experimental results showed a highly skewed distribution.

Figure 4.2 E depicts the amplitude distribution of the whole network. Here each pixel cor-
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Figure 4.2: A ChR2 like stimulus in a uniform random three population network model
A General network setup and interactions. Each circle denotes a single population with
the type of the contained neurons. Blue lines indicate an inhibitory connection, red lines
are excitatory connections. B,C,D Distributions of response amplitudes in excitatory (B),
fast-spiking (C) and non-fast-spiking neurons (D). Outlines are experimental results from
Avermann et al., 2011, while solid bars show the model predictions for a channelrhodopsin like
stimulus in 25 neurons for a uniform random network architecture. E,F Example experiment
for a channelrhodopsin like stimulus in 25 excitatory neurons. E Plot of peak amplitudes for
each neuron 50 ms after stimulus. Stimulated neurons are not shown. F Average traces for
excitatory (black), fast-spiking (red) and non-fast-spiking populations (blue).
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responded to one neuron and the colour codes the peak membrane potential change with

respect to the resting potential. Again the shape of the response distributions is easily visible.

While the excitatory and non-fast-spiking (nfs) response showed many weakly activated neu-

rons and only few strongly active neurons, the fast-spiking population showed only strong

activation throughout the whole population.

Figure 4.2 F shows the average membrane potential for each population following the stimulus

at 50 ms. While the strong fast-spiking response was expected (Avermann et al., 2011), the

overall magnitude was overestimated in the model. The experimental results showed an

average response in the fast-spiking population of 5.3 mV, while the model response was 11.4

mV.

Since the stimulus size in the biological observations may have varied from experiment to

experiment, this could explain some of the differences in the variance and shape of the

distributions. However, since the stimulus size was a common parameter that affects all

distributions equally, a change in the distribution of stimulus sizes so that the fast-spiking

population showed more similarity to the experimental observations would in turn weaken

the similarity of the excitatory and non-fast-spiking responses.

Furthermore, the Gaussian shape of the model response distribution in the fast-spiking

neurons could almost completely be explained by the strong averaging effect of a uniform

random network. Since the connection of excitatory to fast-spiking cells had a high probability

(PE→F S = 0.6129) and there are vastly more excitatory than fast-spiking neurons in layer 2/3 of

mouse barrel cortex (E: 1691, FS: 97 (Lefort et al., 2009; Gentet et al., 2010)), the majority of the

excitatory input onto fast-spiking interneurons was shared.

It was possible to calculate the expected response distribution of the fast-spiking population

by using a binomial distribution of the number of connections. The expected number of

connections c from 25 stimulated excitatory cells to a given fast-spiking cell was

c = 0.575×25 = 14.3750 (4.5)
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with 0.575 the connection probability and 25 being the number of stimulated presynaptic

neurons. The expected mean depolarisation r of the fast-spiking population was

r = c ×0.82 = 11.7875 (4.6)

with the calculated expected number of connections c and 0.82 being the average synaptic

strength from the excitatory to the fast-spiking population. The expected variance v of the

responses was

v = 0.6129×0.3871×25×0.82 = 5.0097 (4.7)

The measured values in the simulations shown in Figure 4.2 were 11.3944 for the mean and

7.4403 for the variance. Thus, the response distribution could roughly be approximated

without taking into account the specific shape of the weight distribution from excitatory to

fast-spiking neurons indicating a strong averaging effect of the random network. This strong

averaging was only visible in cases where the connection probability was high. The excitatory

and the non-fast-spiking populations were sparse and thus the averaging effect was not as

prominent as in the fast-spiking population.

The fact that the shape of the response distribution from excitatory to fast-spiking neurons was

already defined by the average weight indicated that the averaging effect of random networks

was too strong. The weight distribution for the excitatory to fast-spiking connection was

rendered meaningless. Thus, changes to the random network architecture seemed necessary

to increase the similarity of network response distributions.

4.4.2 Significant Parameters

To investigate whether the similarity of response distributions could be increased, all parame-

ter combinations of weight correlations in the in- and output for the excitatory connections

(excitatory to excitatory (e-e), excitatory to fast-spiking (e-fs) and excitatory to non-fast-spiking

(e-nfs)) were tested.
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Figure 4.3: Dimensional stacking for the parameter space spanned by varying the excita-
tory weight correlations
Significant parameters: corr in e-fs(∗∗∗), corr in e-nfs(∗∗∗), corr out e-nfs(∗∗∗). Significance
levels using Student’s t-test: p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗∗∗).

Figure 4.3 shows the resulting parameter space. Here a dimensional stacking illustrates the

similarity of the responses in the model and in the experimental data for all tested parameter

combinations.

From this image, it is clear that introducing correlations in the input to the fast-spiking

population (corr in e-fs) had the strongest influence on the similarity of the network response

distributions. This was to be expected since this response was the one that fitted the data the

least in the uniform random network.

Similarly, introducing the correlations in the input to the non-fast-spiking neurons (corr in e-

nfs) also showed an influence albeit weaker than the one of the fast-spiking population. Finally,

the correlations in the output of the excitatory to non-fast-spiking connection also had a small

influence on the response distributions.
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Figure 4.4: Dimensional stackings for each population for the parameter space spanned by
varying the excitatory weight correlations
The stackings are based on the responses of the excitatory (e, A), the fast-spiking (fs, B) and
the non-fast-spiking population (nfs, C).

4.4.3 Particle Swarm Optimisation

Particle swarm optimisation (see Chapter 1.5.1) confirmed the results from this approach. The

best-fitting parameters were corr out e-e: 0.70, corr in e-e: 0.02, corr out e-fs: 0.93, corr in e-fs:

2.27, corr out e-nfs: 0.00, corr in e-nfs: 0.47.

Here the importance of the change in input correlations to the fast-spiking population was

even more prominent. Interestingly the weight correlations in the output of the recurrent

excitatory connection (corr out e-e) should also be increased. This modification was not

visible from the results shown in Figure 4.3. Thus, I investigated the response similarities for

each population separately.

4.4.4 Effects of Parameters on Individual Populations

When looking at the individual results for each response distribution, the same parameter

turned out to be affecting the response distributions in different ways. Figure 4.4 shows the

dimensional stacks for the responses of the excitatory, the fast-spiking and the non-fast-spiking

populations separately.

The correlations in the recurrent excitatory connections only affected the excitatory response
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(Figure 4.4 A), while the responses in the fast-spiking and non-fast-spiking populations re-

mained unaffected (Figure 4.4 B-C).

Similarly, while in the average picture corr in e-fs was the most important parameter, in

the response of the excitatory population (Figure 4.4 A) the optimal region would request

corr in e-fs to be 0. However, the scale of this improvement was small in comparison to

the large benefit of a high corr in e-fs on the fast-spiking response (Figure 4.4 B). Since the

non-fast-spiking response showed no dependence on corr in e-fs (Figure 4.4 C), the parameter

should be increased for an optimal network. The final values for all tested parameters are

shown Table 4.1.

4.4.5 Results for an Adjusted Random Network

Figure 4.5 summarises the resulting network responses using the adjusted network derived

in Chapter 4.4.2. The affected connections in the network model are outlined in Figure 4.5 A,

while B-D depict the network response distributions for the different populations.

Looking at the response of the adjusted network shows that the response distributions of the

model fitted those of the biological measurements more faithfully (Figure 4.5 B-D). This is

true especially in comparison to the response distributions of the uniform random network

(Figure 4.2 B-D).

Table 4.1: Constraining parameters on the weight domain fitting technique
Parameters that had a significant effect on the measures are marked by the value that provided
the better result. Tested but not significant parameters are marked with ‘-’. Values found using
particle swarm optimisation are listed in brackets.

corr
in out

e-e - (0.02) - (0.70)
e-fs 1 (2.27) - (0.93)
e-nfs 1 (0.47) 0 (0.00)
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Figure 4.5: A ChR2 like stimulus in a three population network model with adapted excita-
tory local weight distributions
A General network setup and interactions. Each circle denotes a single population with the
type of the contained neurons. Blue lines indicate an inhibitory connection, red lines are exci-
tatory connections. The network was setup with all connections with the thick connections
having at least one significant parameter that was determined by the fitting procedure. B,C,D
Distributions of response amplitudes in excitatory (B), fast-spiking (C) and non-fast-spiking
neurons (D). Outlines are experimental results, while solid bars show the model predictions
for a channelrhodopsin like stimulus in 25 neurons.

4.5 Summary

The technique of weight correlations could thus be used to adjust the local weight distributions

of a uniform random network to better match the response distributions observed in biological

experiments.

The results showed that the shape of the network response distributions could be changed by

introducing local weight correlations. Especially the changes in the input weight correlations

to inhibitory neurons improved the similarity of response distributions in the model and in the

experiment. For the fast-spiking and excitatory populations, an increase in the output weight

correlations slightly improved the similarity of the response distributions further, although

this effect was not significant.

The existence of such local weight correlations was until now not studied in experiments. This

is due to the fact that large scale studies of synaptic weights that investigate large number of in-

and outgoing synapses are technically limited (see also Chapter 1.2.3). However, it has been

shown in Koulakov et al., 2009, that local weight correlations could be generated by a hebbian

learning rule (see also Chapter 7.2). Thus, the concept of weight correlations is plausible but

not proven and the results presented here and also in the next chapter are predictions of the
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4.5. Summary

weight distributions that should be observed in experimental data.

The approach used here did only try to fit the excitatory connections and thus the most direct

connections when applying a channelrhodopsin-like stimulus. Since in the adjusted network,

the fast-spiking population showed spiking in response to the stimulus, it may be necessary

to further increase the quality of the network models by taking into account all connections

instead of only the excitatory ones. This approach thus uses more parameters and is more

difficult to address.

In the next chapter, I show how to combine the fitting in the structural and weight domain,

while taking into account all possible parameters.
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5 Combining Architectural Changes

In the previous chapters, it was shown how the structure of neuronal networks can be adapted

to yield a higher similarity to biological observations and how the local weight structure of net-

works can be changed in order to display response properties that resemble the experimental

findings better than those of classical random networks. In this chapter, these techniques

are combined to form adjusted networks that show both, a high structural similarity and a

biologically plausible response behaviour.

The chapter begins with the effects of the two fitting steps presented in the previous chapters

on each other. I show how the structurally adapted network described in Chapter 3 can

reproduce the response behaviour analysed in Chapter 4 and whether the networks extracted

in Chapter 4 match the experimental observations described in Chapter 3. Since analysing

all network parameters at the same time is computationally expensive, I go on to explain

how to split the fitting procedure into multiple steps and show the results of this fitting. An

evolutionary algorithm is employed to verify the results obtained in this chapter. Finally, the

role of inhibition in the network architecture is investigated.

77



Chapter 5. Combining Architectural Changes

A
E

NFSFS
0 5 10 15 20 25 30

Amplitude (mV)
# 

ne
ur

on
s

excitatory

0 5 10 15 20 25 30
Amplitude (mV)

# 
ne

ur
on

s

fast spiking

0 5 10 15 20 25 30
Amplitude (mV)

# 
ne

ur
on

s

non fast spiking
model
experiment

model
experiment

model
experiment

B DC

Figure 5.1: Response distributions for optimal structure
A Diagram of non-random connections. The network was setup with all connections with the
thick connections having at least one parameter that was determined by our fitting procedure.
B,C,D Distribution of response amplitudes in excitatory (B), fast-spiking (C) and non-fast-
spiking neurons (D). Outlines were experimental results, while solid bars show the model
predictions.

5.1 Response Properties and Structured Networks

As shown in Chapter 3, changes in the degree distributions helped to shape the network

structure to express the complex connectivity patterns found in experiments. The question

remained how these structural changes affect the response distributions that were introduced

in Chapter 4.

Figure 5.1 shows these response distributions for the structurally adapted network. The

connections with significant parameters found in Chapter 3 are depicted in the network

diagram in Figure 5.1 A. The response distributions are shown in Figure 5.1 B-D.

Looking at the fast-spiking population (Figure 5.1 B) makes it immediately clear that the

structure was not sufficient to shape the response distributions correctly. While the variance

of the distribution was increased and matched the variance in the biological distribution

better, the overall shape was not reproduced. The non-fast-spiking response (Figure 5.1 D) did

not change from the uniform random picture (compare to Figure 4.2 D) due to the fact that

the connections from excitatory to non-fast-spiking neurons remained unchanged from the

uniform random paradigm (Table 3.2). The excitatory response distribution was fitted very

well (Figure 5.1 C). Thus, a change only in the degree distributions was not sufficient to evoke

biologically plausible network response distributions.

78



5.2. Combined Approach

The changes in the network architecture introduced in Chapter 4 to fit the biologically observed

response distributions were affecting the local weight distributions of the networks. The

structure of the connections remained uniform random and thus there were no changes in

the complex connectivity patterns analysed in Chapter 3.

Each of the two paradigms analysed in Chapters 3 and 4 alone was not sufficient to provide

a network that is both, showing a high similarity to biological results in network structure

and response distributions matching those found in experiments. It remained to show that a

combination of weight correlations and changed degree distributions could provide a network

with plausible structure and response distributions.

5.2 Combined Approach

A major problem when trying to fit all possible network parameters was that this spans a very

high dimensional parameter space. Weight correlations in the in- and output and change in in-

and out-degree distributions for all connections in the three population network amounted to

36 parameters that would have to be investigated.

This high dimensional space was very difficult to analyse. To simplify the analysis and to

reduce the computational load, I decided to split the fitting procedure into multiple steps.

First, the structure of the biological experiments discussed in Chapter 3 was reproduced.

With the respective parameters fixed, the network was then altered to reproduce the network

response distributions discussed in Chapter 4.

As a starting point for the combined fitting, the structurally adapted network derived in

Chapter 3 was chosen. Thus, the structure of the model was already fitted to reproduce the

experimental data and it only remained to fit the other parameters in order to improve the

similarity of the network responses.

I chose the order of the single fitting steps in this way because of the dependencies of each

step. The similarity in structure did not depend on the weight correlations, consequently, the
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Chapter 5. Combining Architectural Changes

first step should be the structural fitting.

With such a restricted network, there were still many parameters free to be fitted. In order to

further reduce the possible parameters, the spiking behaviour of the inhibitory populations

was investigated. The idea was that only populations that did spike in response to the stimulus

could have an impact on other populations and have parameters that could improve the

network response distributions. Populations that did not spike could not have influence on

any network response distributions and thus could be neglected.

Since the excitatory population was stimulated, it would always provide spikes. Therefore, the

two inhibitory populations remained to be tested. To analyse the spiking behaviour of these

populations, I varied the weight correlations of the excitatory connections. This was done in

the same way as described in Chapter 4. The only difference was that here the structurally

adapted network was used as a starting point instead of the uniform random network.

Figure 5.2 shows the average number of spikes in each population following a channel-

rhodopsin like stimulus in the excitatory population. While the fast-spiking population

showed a substantial amount of spiking for a large range of parameters (Figure 5.2 A), the

non-fast-spiking population remained mostly silent, rarely emitting a single spike or more

for all parameters (Figure 5.2 B). This is consistent with experimental results (Avermann et

al., 2011). In these experiments, the fast-spiking neurons fired with a probability of 18% in

response to channelrhodopsin stimulation, while the non-fast-spiking neurons responded

with a spike with a probability of only 0.2%.

These results showed that the non-fast-spiking population did not contribute to the network

response distributions of the other populations and thus can be excluded from the fitting

protocol for the next step. The response distribution of the non-fast-spiking population itself

will be fitted in a final step.
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Figure 5.2: Spiking in inhibitory network populations
Dimensional stacking showing the number of spikes following a channelrhodopsin-like stimu-
lation in the excitatory population (A: fast-spiking population (fs), B: non-fast-spiking popula-
tion (nfs)).

5.3 Fitting Response Distributions in a Structurally Adjusted Net-

work

After the exclusion of the non-fast-spiking population, all parameters that have not been used

before were taken into account. This resulted in a mixture of weight correlation parameters

and degree distribution parameters.

The results in this parameter space are shown in Figure 5.3. Since only the excitatory and

fast-spiking populations were taken into account, the network diagram in Figure 5.3 A shows

no connections to the non-fast-spiking population.

In Figure 5.3 B the dimensional stacking of the results for the average negative log-likelihood

is shown. It is immediately clear that corr in e-fs had the strongest impact on the network

responses which was very similar to the results in Chapter 4. The second observation was that

corr out e-fs was also strongly affecting the response distributions. The analysis of significance

showed that corr out e-e, corr in e-e, corr out fs-fs and d out fs-fs were also impacting the

responses.

These results were not directly visible from the average picture. When focusing on the single
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response distributions of the excitatory population in Figure 5.3 C, a different layout became

apparent. Here corr in e-e had a strong effect on the negative log-likelihood. And similar

to the results in Chapter 4, the optimal result for the excitatory population was in a region

where corr in e-fs was zero. Since again the scale was rather small for the excitatory responses,

the effect of corr in e-fs was governed by the strong impact on the fast-spiking population

(Figure 5.3 D). Here the only affecting parameters were corr in e-fs and corr out e-fs. These

parameters changed the response distributions on such a large scale that the adverse effect on

the excitatory population was overwhelmed by the improvement in the fast-spiking response

distribution.

Once all significant parameters were fixed, the remaining parameters for the connections to

the non-fast-spiking population could be taken into account. Figure 5.4 summarises these

results.

The network diagram in Figure 5.4 B shows the incoming connections to the non-fast-spiking

population that were investigated. The dimensional stack in Figure 5.4 A is organized mainly

in stripes which indicated a strong effect of the parameters on the x-axis, but no effect of the

parameters on the y-axis. The two significant parameters were corr in e-nfs and corr out e-nfs.

This was not entirely surprising given that the same parameter were shown to be important in

Chapter 4.

More interesting was the fact that none of the connections from the fast-spiking population

affected the behaviour of the non-fast-spiking population. Neither the degree distribution

parameters nor the weight correlation parameters showed any effect. This might be due to the

fact that although the fast-spiking population did emit spikes, the overall number of spikes

and their timing were not sufficient to impact the response distribution of the non-fast-spiking

population. Also, the inhibitory reversal potential of the excitatory cells was relatively close to

their resting membrane potential (see Chapter 6.1).

In the end, some connections remained untested because the firing of the non-fast-spiking

population was too sparse to influence other response distributions. Thus, the parameters
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Figure 5.3: Parameter space for the connections of excitatory (e) and fast-spiking (fs) neu-
rons
A Diagram of the network connections affected by the fitting. B Dimensional reordering of
the average negative log-likelihood of the experimental data given the model data for the
excitatory and fast-spiking populations. The red outline shows the region of best results. C,D
Dimensional reorderings of the negative log-likelihood only for the excitatory (C) or for the
fast-spiking population (D). Significant parameters: d out fs-fs(∗∗∗), corr out e-e(∗∗∗),
corr out e-fs(∗), corr out fs-fs(∗∗), corr in e-e(∗∗∗), corr in e-fs(∗∗∗). Significance levels
using Student’s t-test: p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗∗∗).

affecting connections from the non-fast-spiking population could not be tested. The only

exception here was the connection from non-fast-spiking to excitatory in which the degree

distribution parameters could be tested in the first step of the fitting. All parameters that were

tested are summarised in Table 5.1.

Using these summarised values I could investigate the network response distributions in the
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Chapter 5. Combining Architectural Changes

Figure 5.4: Parameter space for the non-fast-spiking
population
A Dimensional reordering of the average negative log-
likelihood of the experimental data given the model
data for the non-fast-spiking (nfs) population. The
red outline shows the region of best results. B Dia-
gram of the network connections affected by the fitting.
Significant parameters: corr out e-nfs(∗), corr in e-
nfs(∗∗∗). Significance levels using Student’s t-test:
p < 0.05(∗), p < 0.01(∗∗) and p < 0.001(∗∗∗).
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same way as for the uniform random network that was the starting point of the fitting. This is

illustrated in Figure 5.5.

In the network diagram in Figure 5.5 connections with significant parameters are highlighted in

comparison to those without significant parameters. All excitatory connections had significant

parameters, while only few inhibitory connections (recurrent fast-spiking and non-fast-spiking

to excitatory) had significant parameters. Interestingly these parameters had to be fixed to

zero for the optimal result. This indicated a non-specific inhibitory connectivity which has

also been reported in new experimental findings (Packer and Yuste, 2011).

The response distributions in Figure 5.5 B-D show a high degree of similarity to those measured

in biological experiments. When looking at Figure 5.5 E it becomes apparent that the overall

behaviour of the network was more similar in all populations. Most neurons were weakly

activated with sparse strong responses. Figure 5.5 F shows the average membrane potential

traces of the three populations. Here it can be seen that in comparison with Figure 4.2 the

response in the fast-spiking population was less high in amplitude.
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5.3. Fitting Response Distributions in a Structurally Adjusted Network

Table 5.1: Constraining parameters on the combined fitting technique
Parameters that had a significant effect on the measures were marked by the value that
provided the better result. Tested but not significant parameters were marked with ‘-’. Untested
parameters were left empty.

corr d
in out in out

e-e 1 0 5 5
e-fs 1 1 5 0
e-nfs 1 0 0 0
fs-e - - - -
fs-fs - 0 - 0
fs-nfs - - - -
nfs-e 0 -
nfs-fs
nfs-nfs

This came from the fact that the average membrane potential was computed without taking

into account spiking neurons. Since spiking neurons must have received strong inputs, these

strong inputs were taken out of the averaging by excluding spiking neurons. The same ap-

proach was also used in the experimental results (Avermann et al., 2011) where the amplitude

of the fast-spiking response was less than expected from the uniform random network model.

Overall the results shown here were in agreement with experimental results on structure

(Yoshimura and Callaway, 2005; Yoshimura et al., 2005; Packer and Yuste, 2011) and with

network response behaviour (Avermann et al., 2011).

Another approach would have been to use other optimisation techniques to circumvent the

problem of having to use a hierarchical approach. One problem was that this would require a

multi objective approach, since both structure and response properties have to be matched.

Genetic algorithms were an appropriate way of approaching such problems. I used Strength

Pareto Evolutionary Algorithm (SPEA2, Zitzler and Thiele, 1999; Zitzler et al., 2001) to confirm

the observations made from the analysis. Table 5.2 shows the parameters as found by the

SPEA-2 algorithm.

The results showed small differences in few parameters. Notable parameters showing different
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Figure 5.5: Response distributions for an all adjusted network
A Diagram of non-random connections. The network was setup with all connections with the
thick connections having at least one parameter that was determined by our fitting procedure.
B,C,D Distribution of response amplitudes in excitatory (B), fast-spiking (C) and non-fast-
spiking neurons (D). Outlines were experimental results, while solid bars show the model
predictions. E Plot of peak amplitudes for each neuron in 50 ms after stimulus for one example
run of the network. Stimulated neurons were not shown. F Average traces for excitatory (black),
fast-spiking (red) and non-fast-spiking populations (blue) after stimulation of 25 excitatory at
50 ms.

results were corr in e-e and corr out e-e. While the previous analysis showed that corr in e-e

should be increased, the evolutionary algorithm showed no increase. The reverse was true

for corr out e-e, while the previous analysis required no change in this parameter, here it

was 0.88 and thus close to one. However, both changes only affect the results in a minor way

(see Figure 5.3). Also it was notable that the evolutionary algorithm did not find a solution

that was significantly better than the solution found through the splitted approach. This

indicates that there may be multiple optima for different parameters and furthermore that the

parameterspace is not approachable as a whole due to the expensive evaluation of single data

points.

However, both algorithms agreed in the connections with the strongest impact as pointed

out above and thus show that the extracted parameters were indeed important for network
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5.4. Effects of Inhibitory Activity in Network Simulations

Table 5.2: Optimal parameter found by SPEA-2 optimisation
All parameters were taken into account for the optimisation. The fitness was computed by
using the negative log-likelihood and the summed square error normalised to the network
constrained by the found parameters in Table 5.1.

corr d
in out in out

e-e 0.04 0.88 2.53 3.33
e-fs 1.60 0.54 1.90 1.04
e-nfs 0.87 0.00 2.04 0.13
fs-e 0.00 0.90 0.46 1.53
fs-fs 0.48 0.00 0.00 0.09
fs-nfs 1.00 0.00 2.17 0.67
nfs-e 0.41 0.50 0.20 0.27
nfs-fs 0.00 0.15 0.00 1.01
nfs-nfs 0.15 0.03 0.00 0.41

construction.

5.4 Effects of Inhibitory Activity in Network Simulations

One interesting property from the network architecture extracted in the last section is the

lack of impact from the connection from fast-spiking to excitatory neurons. None of the

parameters that altered the connection from the fast-spiking to the excitatory population

showed a significant effect on the fitness measures. Intuitively, this connection should have a

strong impact on the network response, since the connections from fast-spiking to excitatory

neurons are strong and frequent.

Here two explanations for this lack of impact are given. First, the role of the inhibitory reversal

potential is described and then the effects of stimulus size are elucidated.

5.4.1 Inhibitory Reversal Potential

One important reason for the lack of impact from the fast-spiking neurons was that the

inhibitory reversal potential of the excitatory cells was rather close to the resting potential

(Vrest = 68.1 mV, VrevI = −75 mV). The distance of reversal potential and resting potential
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Figure 5.6: Single neuron re-
sponses on different membrane
potentials show disynaptic inhi-
bition
Shown are typical single neuron re-
sponses to a synchronous spike in
one neuron (Top) or in 50 neurons
(Bottom). Each trace is shown for
the neuron at its resting membrane
potential (black) or depolarised
to -55 mV (grey). (Modified from
Avermann et al., 2011)

scales the amplitude of a synaptic input to the postsynaptic cell. When the resting membrane

potential and the inhibitory reversal potential are similar, inhibitory activity shows almost no

impact in the excitatory cells.

This is illustrated in simulations of the basic uniform random model described in Chapter 4.2.

Figure 5.6 shows example membrane potential traces for excitatory neurons. The black traces

show a typical single neuron response to single presynaptic spike in an excitatory neuron at

the top and the response to a synchronous spike in 50 excitatory neurons at the bottom.

Even in the case of 50 stimulated neurons, the impact of inhibition is barely visible, since the

black trace shows the stereotypical shape of an EPSP (Figure 5.6, bottom, black trace). Only

when depolarising the neuron to -55 mV the inhibition becomes apparent (grey traces). For

a single presynaptic spike, there was no recruitment of inhibitory cells thus the difference

between the grey and the black trace is solely due to the membrane potential being closer

to the excitatory reversal potential (Figure 5.6, top). In the bottom panel, the inhibitory

effect becomes apparent and decreases the excitatory response substantially with even a

hyperpolarising effect after the excitatory peak (Figure 5.6, bottom).
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Figure 5.7: Random network responses for different stimulation sizes
Left: Fraction of firing cells as a function of stimulus size. Plotted are excitatory neurons (EXC,
black), fast-spiking neurons (FS, red) and non-fast-spiking neurons (NFS, blue). Middle: Peak
membrane potential of cells that did not spike as a function of stimulus size. Colours are the
same as on the left panel. Right: Number of non-stimulated excitatory cells that did spike
in response to the stimulus as a function of stimulus size. Networks used are the full setup
with all three populations (black crosses), a network with only excitatory and fast-spiking
cells (blue) or a network with only excitatory and non-fast-spiking cells (red). (Modified from
Avermann et al., 2011)

These results indicated that for small stimulus sizes, there was no strong inhibition visible in

the excitatory neurons, which is also seen in experimental recordings (Avermann et al., 2011).

5.4.2 Stimulus Size

Another reason for the lack of impact from the fast-spiking neurons was the stimulus size.

Although the stimulation of 25 neurons evoked spikes in the fast-spiking population (see

also Figure 5.2), these might have been insufficient to alter the responses of the excitatory

population.

In order to see at which stimulus sizes the inhibitory input becomes apparent, a range of

stimulus sizes from 10 to 300 neurons was tested. The results of the simulations are shown in

Figure 5.7.

In the leftmost part of Figure 5.7, the fraction of spiking neurons is plotted for each population

as a function of the stimulus size. The fast-spiking population shows an early and steep rise

of the fraction of spiking neurons indicating strong recruitment of inhibition. The non-fast-

spiking cells show a moderate increase to about 50% of the population firing in response to

a stimulus of 300 excitatory neurons. The excitatory neurons show a very weak increase in
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the fraction of spiking neurons. This is also due to the large number of excitatory cells in

comparison to the inhibitory cells (1691 excitatory cells, 97 fast-spiking and 133 non-fast-

spiking cells).

The middle panel of Figure 5.7 shows for each population and stimulus size the average peak

membrane potential change of all cells that did not spike. Here the fast-spiking neurons show

also a steep increase which saturates quickly close to the threshold of spiking. Non-fast-spiking

and excitatory cells show a similar increase in amplitude. The non-fast-spiking population

is slightly higher in amplitude than the excitatory population which is also reflected in the

fraction of spiking cells.

The right side of Figure 5.7 shows the number of non-stimulated excitatory cells firing as

a function of the number of stimulated neurons for different network configurations. To

investigate the effect of inhibition with larger stimulus sizes, the network was constructed

either normally, with all populations (black crosses), with only the excitatory and the fast-

spiking population (blue) or with only the excitatory and the non-fast-spiking population (red).

For stimulus sizes up to 150 neurons, the number of non-stimulated spiking excitatory cells is

very similar in all network types. Only for stimulus sizes larger than 200 neurons, the network

without fast-spiking neurons shows a higher number of firing excitatory cells. This indicates

that the fast-spiking activity is only affecting the excitatory firing for large stimulus sizes. The

non-fast-spiking neurons did not affect the number of spiking excitatory cells because their

inhibition was overruled by the fast-spiking inhibition.

These results indicated that in vitro networks only showed effects of inhibition for large

stimulus sizes. In these cases, the full fast-spiking population is recruited and it affects the

number of excitatory cells that spike in response to the stimulation.

5.5 Summary

In this chapter, the approaches to improve network structure in Chapter 3 and to improve

network response behaviour in Chapter 4 were combined. This led to networks that were able
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to reproduce both the structure and the response behaviour found in biological experiments.

Since this approach involved a high dimensional parameter space, the fitting procedure was

divided into multiple steps. First the structure was fitted, then the response properties were

fitted. The results show that the choice of parameters is highly specific for the combination of

pre- and the postsynaptic neurontype.

The final results were compared to parameters extracted with a genetic algorithm. The param-

eters of both approaches agreed in the main parameters, indicating that the approach used

here captured the parameters having the highest impact.

Strikingly, the significant parameters extracted in this chapter did not involve parameters

affecting the inhibitory connections from fast-spiking to excitatory neurons. This lack of effect

was due to two reasons: the stimulus size and the relative closeness of the inhibitory reversal

potential and the resting membrane potential in the excitatory cells.

This suggests that the inhibitory neurons will play a more prominent role in in vivo upstates,

where the membrane potential of all cells is depolarised. Here the difference from the mem-

brane potential to the inhibitory reversal potential in excitatory cells is larger than in the

in vitro situation. In addition, the depolarisation is likely to increase the number of inhibitory

cells firing and will thus make the inhibitory neurons more important. The implications of a

simplified upstate model and the responses to sensory input for different network architec-

tures are focussed in the next chapter.
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6 Effects of Architecture on the Func-

tional Behaviour of Networks

The focus in this chapter is to investigate the properties of the adjusted layer 2/3 network

derived in Chapter 5 in more complex scenarios that resemble the in vivo situation instead of

the silent in vitro state which was the basis of the previous chapters.

Two scenarios are taken into account: first, the behaviour of the network in simplified up- and

downstates is described. Specifically, the network responses to a synchronous stimulation as

in Chapter 4 are investigated for the uniform random network and the adjusted network both

in the up- and in the downstate. The results indicate that adjusted networks show a closer fit

to experimental data than uniform random networks.

In the second part of this chapter, the properties of the adjusted network with respect to sen-

sory input are approached. To this end, sensory input from a single whisker is simulated and

the temporal summation of these sensory inputs is studied in different network architectures.

The results show again that adjusted networks show an increased performance in comparison

with uniform random networks.

6.1 Simplified in-vivo Simulations

In this section, the behaviour of networks with different architectures is studied in a simplified

in vivo setting. By depolarising the whole network to membrane potentials observed in
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experiments, a simplified upstate is simulated. Using the same stimulation as in Chapter 4, I

compare the evoked activity for different network architectures.

First, the effects of the simplified upstate in the model are studied by testing the response

properties of single neurons with a synchronous stimulation as used in Chapter 4. Then the

differences in response behaviour of the uniform random network and the adjusted network

introduced in Chapter 5 are investigated.

6.1.1 Results

A simplified model of the in vivo up- and downstates (see Chapter 1.2.3 and Figure 1.6) was

used to investigate the difference of the effects of inhibition on the network responses. The

downstate was the silent network used in the previous chapters with membrane potentials

and thresholds adapted to recordings in vivo (Mateo et al., 2011). The upstate was modeled by

injecting a current step into each neuron that depolarised the single neurons to their average

membrane potential in the upstate that was recorded in vivo. To investigate the response

properties of the tested networks, a random subset of excitatory neurons was stimulated to

emit a spike in each simulation. All non-stimulated cells were taken into account for the

analysis of responses.

Effects on Simulations of Uniform Random Networks

First, the responses of a uniform random network without any changes in network architecture

were simulated. For each condition (up- and downstate), a range of stimulus sizes between

ten and 300 neurons was tested and the fraction of spiking, non-stimulated cells and their

average response amplitude recorded. The results are shown in Figure 6.1.

The left panel shows the general stimulation paradigm and difference between up- and

downstates. For each population an example trace is given that shows first a downstate

with a stimulation followed by the transition to the upstate again with a stimulation eliciting a

spike in the fast-spiking trace.
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Figure 6.1: Evoked spikes in simulations of up- and downstates in a uniform random net-
work
Left Traces of example neurons of all populations showing the transition from DOWN to UP
state with a stimulus in each episode. Plotted are excitatory neurons (EXC, black), fast-spiking
neurons (FS, red) and non-fast-spiking neurons (NFS, blue). Middle Fraction of firing cells
as a function of stimulus size. Thick lines indicate values for the upstate (UP), thin lines
indicate values for the downstate (DOWN). Right Difference in fraction of firing neurons for
up- and downstate for 50 (left) and 100 (right) excitatory neurons stimulated. (Modified from
Avermann et al., 2011)

The middle panel of Figure 6.1 shows the fraction of firing cells for excitatory, fast-spiking

and non-fast-spiking cells for the upstate and the downstate condition. It can be seen that

all populations show an increase in spiking mostly due to the higher prestimulus membrane

potential in the upstate. The difference for fast-spiking cells is only visible in small stimulus

sizes, since larger stimulus sizes evoke spikes in all fast-spiking neurons even in the downstate.

Non-fast-spiking neurons show an increase in spiking for all stimulus sizes. Even a very

small stimulus size of ten excitatory neurons in the upstate evokes spikes in the non-fast-

spiking population. The change in the fraction of spiking excitatory neurons is very small but

consistent across all stimulus sizes.

The right hand side of Figure 6.1 compares the fraction of spiking cells for the up- and down-

states for 50 and 100 stimulated neurons. Here the difference between the increase in the

fast-spiking and non-fast-spiking cells is apparent. The fast-spiking population shows a

strong increase from the down- to the upstate when 50 neurons are stimulated, while for a

stimulus size of 100 neurons, the population is already completely recruited and shows no

large difference. For the non-fast-spiking population this effect is almost reversed. While the

stimulus size of 50 neurons does not lead to a large difference in fraction of spiking neurons,

the stimulation of 100 neurons shows a strong increase from the down- to the upstate. The
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excitatory population shows a consistent but small increase in the fraction of spiking cells. The

experimental recordings in vivo display a similar result (Mateo et al., 2011). In the experiments,

fast-spiking cells increase slightly in probability of spiking, non-fast-spiking neurons increase

strongly and excitatory neurons show a very small but significant decrease in firing probability

(see Figure 1.6).

The model predicted a stimulus size of around 100 neurons for a scenario that would be

equivalent to the experimental findings. This is the approximate number of stimulated cells

estimated in the experiments (Mateo et al., 2011). Although the model fitted the data qualita-

tively, the actual fraction of spiking cells was not comparable to the experimental values. The

experiment found spiking probabilities for the fast-spiking neurons of 0.42±0.53 for the down-

and 0.74±0.24 for the upstate and for the non-fast-spiking neurons probabilities of 0.11±0.26

for the down- and 0.34±0.4 for the upstate (see Figure 1.6). For a stimulus size of 100 neurons,

the fraction of fast-spiking neurons in the model increased from 0.96±0.01 in the down- to

1.00±0.00 in the upstate. The non-fast-spiking neurons increased from 0.04±0.02 (down) to

0.40±0.02 (up). Thus the uniform random networks did not provide a detailed agreement with

the experimental results.

Effects on Simulations of Adjusted Random Networks

The same stimulation paradigm as used on the uniform random network was then used on the

adjusted network described in Chapter 5. Figure 6.2 shows the results for an adjusted network.

In the left panel it can be seen that the general trends found in the random network still hold

true. The upstate increases the fraction of spiking neurons in all populations. In the adjusted

network, fast-spiking neurons fire less than in the random network and do not reach full

recruitment. This is the reason why the increase in the fraction of firing cells can be seen in

the fast-spiking population even for large stimulus sizes. The response in the non-fast-spiking

cells is stronger than in the random network as is the excitatory response.

When comparing the fraction of spiking cells in the down- and in the upstate for a stimulus
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Figure 6.2: Evoked spikes in simulations of up- and downstates in an adjusted network
Left Fraction of firing cells as a function of stimulus size. Thick lines indicate values for the
upstate (UP), thin lines indicate values for the downstate (DOWN). Fast-spiking neurons (FS)
are shown in red, non-fast-spiking (NFS) in blue and excitatory (E) in black. Right Fraction of
spiking cells for a stimulus size of 100 excitatory neurons in the DOWN (left) and UP (right)
case.

size of 100 neurons, it can be seen that the qualitative result is the same as in the random

network (Figure 6.2, right). The fast-spiking neurons increased from 0.43±0.04 in the down- to

0.59±0.2 in the upstate and the non-fast-spiking increased from 0.08±0.01 to 0.26±0.01. This

is much more in agreement with the numbers found in the in vivo experiments (see Figures 6.3

and 1.6).

6.1.2 Summary

To conclude, a random network model using simplified in vivo like up- and downstates

could qualitatively account for the changes in postsynaptic firing probability in response

to channelrhodopsin stimulation. This indicated that the underlying pairwise connectivity

measurements used to construct these network were sufficient to evoke responses that were

in general agreement with experimental data. However, the results showed only a qualitative

agreement and differed greatly in the exact quantification.

An adjusted network showed responses that agreed qualitatively like the responses from

uniform random networks, but the responses also fitted the experimental data quantitatively.

Thus, the adjusted network was not only fitting the network responses in vitro, but it could also
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Figure 6.3: Summary of in vivo fraction of firing neurons after stimulation
Shown is the fraction of neurons that fired in response to the channelrhodopsin stimulation
in a uniform random network (red), in the adjusted network (green) and those found in the
experiments (blue) for all three cell types (excitatory (E), fast-spiking (FS) and non-fast-spiking
(NFS)).

reproduce in vivo experiments to a certain degree. This indicated that the adjusted network

structure did capture the underlying network better and thus was able to generalise from

in vitro to in vivo data.

6.2 Temporal Inputs to Multiple Barrels

In this part I use a sensory input paradigm to investigate how different network architectures

are able to shape neuronal responses to an external stimulation. To this end, the experimental

findings which should be reproduced are introduced. Then, using insights from a previous

model by Wilson et al., 2011, the network models used earlier are extended to a show spatial

profile. Finally, it is shown how different network architectures reproduce the results found in

the experiments.
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6.2.1 Experimental Basis

In order to further investigate possible functional consequences especially in the domain

of sensory input, I focused on one particular experiment. Here, two adjacent whiskers are

stimulated in a temporal sequence with varying interstimulus intervals (Shimegi et al., 2000,

Chapter 1.2.1). The main results are shown in Figure 1.2.

The neuron response depends strongly on the position of the neuron and is stronger than

expected from independent stimulation alone. Thus, they are able to show that the response

magnitude of a neuron depends on the underlying geometry of the barrel field.

6.2.2 Modeling Basis

In Wilson et al., 2011 a model of this dependence is presented. This model makes use of the

coincidence detection mechanism of Jeffress, 1948. Coincident temporal auditory inputs can

be detected when using a bank of different neurons with different delays for each stimulus

location. The active neuron therefore codes for a specific temporal distance of stimuli.

In Wilson et al., 2011, this idea is transferred to the barrel cortex. The single whisker deflections

are modeled as an increase in activity in excitatory and inhibitory neurons in layer 4 of the

corresponding barrel. This activity then propagates to the higher layer 2/3.

The excitatory and inhibitory connections from layer 4 to layer 2/3 show distance dependent

delays, modeled to reflect biological observations (Feldmeyer et al., 2002; Helmstaedter et al.,

2008). The excitatory delay is 10 ms/mm and the inhibitory delay is 3.3 ms/mm with an offset

of 3.7 ms so that the inhibitory activity is propagated later to the layer 2/3 neurons than the

excitatory activity. These values were chosen to match the parameters used in Wilson et al.,

2011.

The model network consisted of a population of unconnected layer 2/3 neurons spatially

distributed in one dimension with positions ranging from -0.6 mm to 0.6 mm and layer 4

inputs located at -0.2 mm and 0.2 mm. Neurons were grouped for the analysis into ‘Above A’
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Figure 6.4: Results for temporal stimulation of two whiskers in a simplified model
Left: The facilitation index of three groups of neurons is plotted for different temporal spacings
of the stimulus. Neurons in ‘Above A’ are located from -0.6 mm to -0.2 mm, Septal neurons are
located between -0.2 mm and 0.2 mm and ‘Above B’ comprises neurons from 0.2 mm to 0.6
mm. Right: Activation map of the layer 2/3 population. Shown is the mean spike count per
neuron for different neuron positions and temporal spacings of the stimulus. (Modified from
Wilson et al., 2011)

for neurons in the positions from -0.6 mm to -0.2 mm, into ‘Septal’ from -0.2 mm to 0.2 mm

and ‘Above B’ from 0.2 mm to 0.6 mm.

The results of this simple model are shown in Figure 6.4. The left panel of the figure shows the

facilitation index for different temporal spacings of the stimulus. The facilitation index was

the ratio of the recorded response to the estimated response from the linear sum of responses

to independent stimuli.

This figure can be compared directly to Figure 1.2. Both figures show a strong facilitation for

the septal area for small inter-whisker intervals and suppression of the neurons inside a barrel

if the principal whisker was stimulated second with large interstimulus intervals. For small

intervals the model showed a small peak in facilitation for neurons in both barrels which was

shown in the experiment for the caudal population.

The right panel in Figure 6.4 shows the direct activation of each neuron as a function of neuron

position and inter-whisker-interval. The highly activated, diagonal region was representing the

cases in which both whisker stimulations evoke an excitatory response in the corresponding

neurons. The faint bars downward from the left part of the diagonal activation (-0.4 mm to
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Figure 6.5: Spatially extended layer 2/3 network with layer 4 inputs
All layer 2/3 neurons are assigned positions between -0.6 mm and 0.6 mm uniformly. Layer 4
inputs, located at -0.2 mm and 0.2 mm, are providing excitatory and inhibitory input to layer
2/3 neurons (black lines).

-0.2 mm) and upward from the right part of the diagonal region (0.2 mm to 0.4 mm) showed

approximately the normal level of activation expected from single whisker stimulations. These

effects were all visible in the results presented in the left panel.

The small peaks of the left panel were an effect from the edges of the diagonal region in the

right panel. Since the two Figures 6.4 and 1.2 were mostly in agreement, the model of Wilson

et al., 2011 could model the temporal integration of multiple whisker stimuli.

6.2.3 Extension of the Previous Layer 2/3 Model to a Spatial Scale

Similar to the approach in Wilson et al., 2011, I constructed network model in which the

neurons in the layer 2/3 model described in the previous chapters were spatially distributed.

Figure 6.5 shows the general layout of the model. Each layer 2/3 neuron was assigned a

position between -0.6 mm and 0.6 mm drawn from a uniform distribution (Figure 6.5, top).

I then assumed a population of layer 4 neurons that provided excitatory and inhibitory input

with distant dependent delays corresponding to the existing model from Wilson et al., 2011 and

experimental measurements (Helmstaedter et al., 2008). The layer 4 neurons were modeled

as four pools of 450 unconnected spike sources, one excitatory and one inhibitory pool for
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the barrel A located at -0.2 mm and one excitatory and one inhibitory for barrel B at 0.2 mm

(Figure 6.5, bottom). The connection probabilities and strengths from layer 4 to layer 2/3 were

taken from existing literature (Helmstaedter et al., 2008; Lefort et al., 2009).

The connection structure from layer 4 to layer 2/3 was always uniform random to all three

populations of layer 2/3 neurons, while for the structure inside layer 2/3 three different

networks were tested: unconnected, uniform random and adjusted.

6.2.4 Results

Although the networks were setup with all three populations (excitatory, fast-spiking and

non-fast-spiking), I only report on the behaviour of the excitatory cells to be able to compare

the results to the findings of Shimegi et al., 2000 and Wilson et al., 2011. To measure the effect

of the stimulation, spikes from layer 2/3 neurons were recorded for the interval from -37 ms to

37 ms as used in Wilson et al., 2011. The results for 7 trials with different, randomly connected

layer 4 pools were averaged and yield the mean spike count.

Impact of Network Architecture on the Facilitation Index

To measure the facilitation index, I performed the experiment with only one stimulation and

recorded the mean spike count. The facilitation index was then the ratio of the tested response

to the linear sum of the single stimulation experiments.

Figure 6.6 shows the facilitation index measurements for all three tested networks. As in Fig-

ures 6.4 and 1.2 before, the panels of Figure 6.6 show the average facilitation index for different

spatial grouping of neurons for different stimulus intervals. While the overall facilitation index

was higher than the results shown in Figure 6.4, the widths of the facilitated regions for the

three groups were larger and thus more similar to those found in experimental results (Fig-

ure 1.2). There were only slight differences between the three network setups (unconnected,

uniform random and adjusted). The adjusted network showed stronger facilitation than the

other networks in the ‘Above A’ and ‘Above B’ group for small inter-whisker-intervals. The
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Figure 6.6: Facilitation of responses to temporal stimulations of two adjacent whiskers
Plotted is the facilitation index averaged over different neuron positions. Neurons are grouped
‘Above A’ for positions -0.6 mm to -0.2 mm, ‘Septal’ for -0.2 mm to 0.2 mm and ‘Above B’ for 0.2
mm to 0.6 mm. The facilitation indices are shown for different interstimulus intervals from
-10 ms (Whisker B first) to 10 ms (Whisker A first).

unconnected network showed the strongest facilitation of all networks in the septal group for

small intervals. The effects of long inter-whisker-intervals remained the same for all networks.

Impact of Network Architecture on the Activity of Single Cells

Since this analysis was using a strong spatial averaging into only three groups, I investigated

the network responses in a more detailed way by looking at the activation maps of the different

network architectures depicted in Figure 6.7.

The activation maps show the same general structure as Figure 6.4, right panel. A diagonal

region of highly active cells with two vertically extended regions of weak activity at the end of

the diagonal. The scale with respect to the inter-whisker-interval is larger as in Wilson et al.,

2011 similar to Figure 6.6.

Between the unconnected and the uniform random network there was only a slight difference

in the amplitude of the highly active region. The adjusted network on the other hand showed

an increased activation for neurons located at the far lateral end of the network (approximately

at -0.6 mm to 0.4 mm and 0.4 mm to 0.6 mm). These neuron were silent in the unconnected and

in the uniform random network as well as in the model of Wilson et al., 2011 (see Figure 6.4).

The differences of the activation map of the unconnected network and the adjusted network
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Figure 6.7: Activity distributions for multiple network setups
Shown is the firing probability for neurons at different locations for different inter-whisker-
intervals (IWI). The activity maps are plotted for the unconnected network (Left), the uniform
random network (Middle) and the adjusted network (Right).

are shown in Figure 6.8. Here, an increased activity in the adjusted network is depicted in red,

while a decrease with respect to the activation in a unconnected network is shown in blue.

The most prominent changes in spiking probability were the increase in activity of the lateral

cells as mentioned before. There was also a slight decrease in the vertically extended regions

of weak activity around ±0.2 mm. The slight decrease came from the fact that inhibitory

neurons were affecting the behaviour of the excitatory cells in the adjusted network but not

in the unconnected network. Since the stimulus was very strong, the inhibitory activity was

fast enough to depress the activity in the excitatory neurons to a certain degree (compare

Figure 5.6).

The increase in the lateral regions came from the fact that excitatory neurons that had a large

out-degree were activated by the layer 4 stimulation. These out-degree hubs provided in

turn activation to many other excitatory neurons, thus stimulating them more than in an

unconnected network and also more than in the uniform random network (see also Figure 6.7).
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Figure 6.8: Differences in activity distributions for adjusted and unconnected networks
Plotted are the differences between the activation maps of the unconnected network and the
adjusted network from Figure 6.7. Red indicates a higher activation in the adjusted network,
while blue indicates a higher activation in the unconnected network.

6.2.5 Summary

I showed how the modeling results from Wilson et al., 2011 can be applied to complete network

models. I further showed how these network models were able to reproduce the experimental

data from Shimegi et al., 2000.

Using different network architectures, I was able to show that neurons in the adjusted network

show a temporal specificity at positions at which neurons in the unconnected or uniform

random network would be silent. This indicates that adjusted networks can use more neurons

to determine the temporal sequence of stimuli than the other network architectures.

This enhanced specificity could not be seen in the experimental data (Figure 1.2), since the

averaging into spatial groups would mask this rather weak effect. Only a more detailed analysis

of the experimental data could shed light on how far the specificity reached.

6.3 The Adjusted Network Architecture in in vivo Scenarios

The adjusted network extracted in Chapter 5 is based solely on in vitro measures and thus it

is necessary to test the constructed networks in more complex in vivo scenarios. The results

presented in this chapter show that the adjusted network not only performed equally to a
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uniform random network in the tested in vivo scenarios, but also showed a more accurate and

plausible behaviour. This indicates that the adjusted network architecture captures elements

of the biological network architecture.
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7 Limitations and Perspectives

Here, I discuss the specific choice of architectural changes and the alternatives that were not

explored in this thesis. It is described how synaptic plasticity may be a factor to generate

and alter the network architectures shown throughout my work. I move on to explain how

the network models studied could be changed to display ongoing activity and thus open the

possibility to employ more in vivo data into the fitting procedure and analysis.

7.1 Other Architectural Changes

The improvements discussed in this work are only one possibility to manipulate network

architecture. There are multiple other possibilities including the use of scale-free and small-

world networks as discussed in Chapter 1.3 and distance dependent probabilities.

7.1.1 Scale-Free Networks

The scale-free approach is quite similar to the manipulations of the degree distributions as

presented in Chapter 3. The presented approach constructs networks with an approximately

exponential degree distribution. By using a different algorithm for the network formation like

preferential attachment (Barabási and Albert, 1999), it would be possible to model scale-free

networks directly.
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However, the construction of the exponential networks is much faster and less memory

intensive. This was the reason to stay with the exponential networks. The expected difference

between scale-free and exponential networks is for the networks presented here rather small.

This is due to the limited network size that truncates the degree distributions in both cases.

7.1.2 Small-World Networks

Small-world networks on the other hand are another option to model the network topologies.

One of the main difficulties here is the sensible extension of small-world structure to multiple

populations. I also showed that small-world-ness does not imply a high similarity to the

experimental observations (see Chapter 3).

An extended approach to small-world networks that takes into account multiple neuronal

populations might circumvent the problem of unspecificity of the standard small-world

networks. Thus, small-world networks might be another possibility to investigate biologically

plausible network structures.

7.1.3 Distance Dependent Probability

One other very interesting possibility is the use of distance dependent connection probabilities.

For this, it would be necessary to extend the network models to a spatial representation, similar

as in Chapter 6.2.

This approach is discussed as one possibility to model the occurrence of network motifs

(Perin et al., 2011). Also, in Vogels and Abbott, 2009, a hybrid network model is used. Here a

random network of excitatory and inhibitory neuron uses a second, embedded population

of inhibitory neurons that only connect to neurons in their local neighbourhood. They then

embed an excitatory ‘sender’ population that projects to excitatory and locally targeting

inhibitory neurons into this network. Due to the local interneurons that are targeted an input

into the sender population does not increase activity in the receiver population, since the

inhibitory neurons effectively cancels the excitatory activation. However, by disrupting this
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balance of excitation and inhibition, it is possible to ‘gate’ this signal. This means that by

selectively modifying the responsiveness of the inhibitory receiver neurons, an input in the

sender population can be propagated to the receiver population.

Thus, distance dependent networks can be used to model biological observations and impor-

tant network properties.

One problem with the use of distance dependent probabilities is that their existence on the

subcolumnar scale is still debated. While some studies report strong distance dependency

even for distances smaller than 100µm (Holmgren et al., 2003; Perin et al., 2011), others

report a noticeable distance dependency only for larger distances (Packer and Yuste, 2011)

or do not find a distance dependency at all on the studied spatial scale (Lefort et al., 2009;

Avermann et al., 2011).

This might also be dependent on species, since most reports of strong distance dependency

studied rats, while most studies that did not find a distance dependency used mice for their

recordings. In general, it seems undisputed that distance dependent connectivity properties

exist on a larger scale. For example in long-range connections, neurons tend to connect to

target clusters or patches that are rather localised at large distances to the presynaptic neurons.

Models for this long-range patchy connections have already been proposed (Voges et al., 2010).

The question remains whether distance dependency exist at the subcolumnar scale.

Thus, distance dependent probabilities are an interesting option and their implications on

network properties will be extremely important in the future. However, it is unclear whether

they are the underlying structure of the fine-scale connectivity or not.

7.2 Plasticity

One highly important and interesting field that is not covered in my work is the role of plasticity.

Neural networks are plastic, their connections change over time, while the networks I studied

were in a frozen state. No connections were changed after the network was setup. In this part,
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I describe what roles plasticity may have in constructing complex network architectures.

7.2.1 Global Weight Distributions

In Chapter 2 it is shown how global weight distributions affect network excitability. The

observed distribution of synaptic weights in biological experiments is highly skewed and the

few strong connections are key to network excitability. These sparse strong connections could

arise through spike time dependent plasticity (STDP, Gerstner and Sjöström, 2010). Using

a STDP learning rule in a network showing asynchronous irregular activity (Brunel, 2000;

Vogels et al., 2005) can lead to weight distributions with many small connections and few

strong connections (Morrison et al., 2007).

7.2.2 Degree Distributions

The changes in the degree distributions that I used in Chapter 3 could arise from structural

plasticity (Butz et al., 2009). It is shown in experiments that spine formation and pruning

during development is highly activity and cell type dependent (Knott et al., 2002). This would

offer a mechanism that could lead to connection specific changes in degree distributions.

7.2.3 Local Weight Distributions

Synaptic plasticity is also a way of introducing local weight changes like they were used in

Chapter 4. Although the idea of weight correlations can be explained by a hebbian learning

rule (Koulakov et al., 2009), this approach is difficult to tune and does not allow for a sys-

tematic analysis of the parameter space. It is still unclear whether STDP rules that depend

assymetrically on the pre- and the postsynaptic spike can account for such local changes.

7.2.4 Plasticity as a Mechanism for Shaping Network Architectures

Overall, plasticity can work on all different levels of network architecture and may be a unifying

mechanism that can construct complex networks as presented in my work. The investigation
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of rules that may construct such networks is an important step to understand the fine-scale

architecture of neural networks.

7.3 Active Networks

The networks I studied in this work showed no spontaneous activity. This is to be expected,

since the experimental results in vitro also showed no spontaneous activity. However, the

living brain of course does show spontaneous activity.

One important step would thus be, to study the networks presented here in an active state. The

active state refers to the fact that neurons in the network show spontaneous ongoing activity

(Brunel, 2000; Vogels et al., 2005). This would be very similar to experimental observations in

vivo and would thus enable the use of more experimental data measured as spiking activity

over time to investigate network architectures.

A small step in this direction is the simplified up state model presented in Chapter 6.1 although

here the spontaneous activity is still missing. How the network should be changed to display

spontaneous activity, while preserving the biological parameters is unclear.

Using synaptic inputs from a background network would be an obvious solution, but this

opens up a completely new set of architectural parameters to connect the background network

to the studied network. Another possibility would be to add noise to each single neuron but

again that would require the knowledge of the specific type and structure of the noise per

neuron in order to not bias the analysis of network structure by the input.

With an extension of the findings presented here to a more faithful in vivo representation, it

would also be possible to use different tools of network analysis like presented for example

in Pernice et al., 2011 and Roxin, 2011. Thus, this direction will be very important to link the

results discovered in this work to classical studies of neuronal network analysis.
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8 Conclusions

In the course of this work, I have shown that the assumptions of classical uniform random

networks have a strong impact on the behaviour and plausibility of neuronal networks.

First of all, it was shown that the choice of global weight distribution greatly changes the

excitability of the network. Many network studies assume a fixed single weight for all connec-

tions in the network. This greatly reduces the network excitability in comparison to networks

constructed with a more accurate, lognormal weight distributions.

Furthermore, uniform random networks do not show the complex connectivity patterns of

higher orders as are found in experimental studies. Manipulations of degree distributions can

be used to introduce changes in the fine-scale connectivity so that the similarity of network

structure to experimental results is improved.

The response behaviour of uniform random networks showed a problematic behaviour for

stimulations of groups of neurons that were connected with a high probability. Here the

averaging effect of the network was too strong and would not reproduce the responses found

in experimental results. I introduced a way of changing the local weight distribution of the

network in order to circumvent the averaging effect. A network with adapted local weight

correlations showed the expected response behaviour.

These adjustments can be combined to construct networks that are capturing a wide range of
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experimental findings on complex connectivity patterns, as well as an appropriate response

behaviour. Furthermore, these adjusted networks even perform better in more complex, in

vivo like, scenarios to which the network was not adapted.

The changes in network architecture that were extracted in this work are highly connection

specific. This means that connections between excitatory neurons show a different architec-

ture than connections between excitatory and fast-spiking or non-fast-spiking interneurons.

This indicates a specific functional role for the different inhibitory populations.

To conclude, the adjustments to network architecture presented here are one possible im-

provement to the uniform random network architecture and provide a solid basis for further

investigation of network properties.
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A Source Code for the Generation of

Structured Weight Lists

1 def cm(n,m,p,dOut ,postInc ,weights ,delays ,corrOut ,corrIn):

2

3 mIn =-1.*( corrIn **2) /2.

4 if corrIn ==0:

5 corrIn =0.00000001

6 wPost=utils.ScaledRandomDistribution(distribution='lognormal ',parameters =[mIn

,corrIn ])

7 vPost=wPost.next(m)

8

9 mOut = -1.*( corrOut **2) /2.

10 if corrOut ==0:

11 corrOut =0.00000001

12 wPre=utils.ScaledRandomDistribution(distribution='lognormal ',parameters =[mOut

,corrOut ])

13 vPre=wPre.next(n)

14

15 if dIn >0:

16 drawPost=drawExp

17 else:

18 dPost=drawUni

19 if dOut >0:

20 drawPre=drawExp

21 else:

22 drawPre=drawUni

23

24 maxC=numpy.floor(n*m*p)
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Appendix A. Source Code for the Generation of Structured Weight Lists

25 w=weights.next(maxC)

26 d=delays.next(maxC)

27

28 tmpList=numpy.array ([],[('pre ',int) ,('post ',int),('w',float),('d',numpy.

ndarray)])

29 tmpList.resize(maxC)

30

31 connE=numpy.zeros((n,m))

32

33 for c in numpy.arange(0,maxC):

34 source=drawPre(dOut ,n)

35 target=drawPost(dIn ,m)

36 timeout =100

37 decCount =0

38 decisor=numpy.random.randint (2)

39 while connE[source ,target ]>0:

40 decCount +=1

41 if decisor:

42 if decCount >timeout:

43 target=drawPost(dIn ,m)

44 decCount =0

45 else:

46 source=drawPre(dOut ,n)

47 else:

48 if decCount >timeout:

49 source=drawPre(dOut ,n)

50 decCount =0

51 else:

52 target=drawPost(dIn ,m)

53 wT=w[c]

54

55 if corrOut >0:

56 wT*=vPre[source]

57 if corrIn >0:

58 wT*=vPost[target]

59

60 tmpList[c]=(( source),(target),wT,d[c])

61 connE[source ,target ]=1

62

63 return tmpList
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