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Abstract—We consider a unicast communication problem
where, a source transmits information to a destination through
a wireless network with the help of k relays positioned on a
line. We adopt the linear deterministic model to capture the
wireless signal interactions and study the optimal placement of
the relays so that the capacity from the source to the destination
in the deterministic network is maximized. Analytical results are
provided for a number of special cases, and the insights gained
are used to provide a heuristic framework for designing large
relay networks.1

I. INTRODUCTION

This paper starts to re-examine a basic communication sys-
tems design question: if we are given a source that would like
to communicate with a geographically separated destination,
how should we place a given number of relays between the
source and the destination, to optimize the information rate
that the source can reliably convey?

A traditional system would place the relays at equal dis-
tances in the line that separates the source from the destination
(uniform placement). In wireless networks, transmissions are
broadcasted and can be overheard not only by the intended
receiver, but also from all other receivers that are close
to it. Thus simultaneous transmissions interfere at the re-
ceivers, at different power levels. However, the traditional
wireless communication architectures artificially simulate a
wired network architecture by orthogonalizing the transmitted
signals in time, frequency or through coding. Assuming equal
transmit power at all nodes, orthogonalization implies that
the dominating factor in the achievable performance is the
maximum distance between any two consecutive nodes. Thus
for traditional systems the uniform placement would lead to
the best performance. If we assume that there is only one relay
than can help a source-receiver pair, algorithms exist (see [8]
and references therein) to find the optimal relay location under
a restricted set of coding strategies at the relay node.

It is now well understood that interference contains use-
ful information and provides a basis for cooperation among
transceivers that can significantly increase the achievable rates
[5]. Future wireless systems would need to leverage this
information in order to satisfy the ever increasing demand to
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support higher rates, and indeed, recently there has been a
significant research effort in wireless communications aimed
at developing such cooperation techniques [6]. In this paper,
we are interested in calculating the optimal relay placement
in the case where interference is constructively used at the
receivers.

To find the optimal placement that maximizes the capacity
from the source to the destination, we need to compute the
capacity for each potential relay placement.The problem of
characterizing the capacity for a general wireless Gaussian
network has long been an open problem. The linear determin-
istic network model captures the signal interactions in wireless
networks. The work in [3] established an information theoretic
min-cut max-flow theorem for deterministic networks, show-
ing that the unicast capacity equals the minimum rank of the
transfer matrices of cuts separating the source from the desti-
nation. Such deterministic models can provide guidelines and
inspire strategies for Gaussian networks. Efficient algorithms
to find coding strategies for linear deterministic networks are
known [4].

In this paper, we leverage the deterministic model to study
the optimal placement of relay nodes when we allow in-
terference. Our motivation for the use of the deterministic
modeling is similar to that in [3], namely, that the placement
indicated from our study will help us build an intuition for
the optimal placement in Gaussian networks. We present
preliminary results from our ongoing work in this direction.
Analytical results are provided for a number of special cases,
and the insights gained there, along with simulation results,
are used to provide a heuristic framework for relay placement
in large relay networks.

The paper is organized as follows. Section II introduces
our network and channel model and as well as our notation.
Section III provides exact calculations for the optimal place-
ment of a two-relay line network, and for a number of channel
models. Section IV introduces our heuristic and examines how
well it fits in a number of cases. Section V presents results in
the special case where there is no fading. Finally, Section VI
presents our conclusions and current work.

II. MODEL AND PROBLEM STATEMENT

We consider a communication network where a source
would like to transmit information to a destination with the
help of a given number of relays. We assume that the source
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and the destination are sepated by r units, and that relays can
be placed on the r − 1 positions of the line grid between
the source and the destination. Moreover, we assume that
all network nodes (the source and the relays) have the same
transmit power.

Definition II.1. A (k, r) relay network is a relay network with
k relays u1, u2, · · · , uk, a source node u0 and a receiver node
uk+1. The distance between u0 and uk+1 is r units.

For example, Fig. 1 shows a (2, r) relay network. Each point
to point link in a relay network is described by

y = hx + z

where x is the transmitted signal, y the received signal, h the
channel coefficient that captures path-loss and fading, and z is
Gaussian noise with distribution N (0, 1). The capacity of the
link between any pair of relay nodes at distance r is given by

C =
1
2

log(1 + PrSNR ) (1)

where Pr captures the effect of the channel between nodes at
distance r and SNR denotes the signal to noise ratio in the
absence of path loss and fading. We assume that transmissions
are broadcasted, and may be received by multiple receivers at
different signal strengths depending on the path loss parame-
ters. Moreover, there is interference between transmissions,
and each given receiver observes the superposition of the
signals from different nodes.

A. Deterministic modeling

The linear deterministic models proposed in [1]–[3] take
into account the signal interactions and represent the noise
by a deterministic threshold. Thus if the capacity is C, we
assume we can receive "C# bits. Each node in a deterministic
network transmits and receives a certain number of bits.
We will generally denote transmitted and received bits using
the variables x and y, respectively. Each transmitted bit is
broadcasted to all nodes that receive it. Interference is modeled
through addition over the binary field; thus a received bit
could be the binary xor of two or more transmitted bits. A
cut between a source u0 and destination uk+1 is a partition of
the nodes into sets C and C̄ with u0 ∈ C and uk+1 ∈ C̄. The
channel between two nodes ui and uj is modeled as a linear
transformation Ti,j which is an n × n matrix of the form

(
0 I!Ci,j"
0 0

)

where, Ci,j denotes the capacity of the channel between
nodes ui and uj and is given by (1), I!Ci,j" denotes the
identity matrix of size "Ci,j#, and 0 denotes a zero matrix
of appropriate dimension. If xui denotes the binary vector of
inputs at node ui and yuj denotes the binary vector of outputs
received at node uj , then we have the following relation:

yuj = xui Ti,j .

Let A and B be two sets of nodes. We denote by TA,B , the
transfer matrix between the set of nodes A and B (TA,B is
unique up to permutation of columns and rows).

Example II.2. If A = {ui} and B = {ui+1, ui+2, · · · , uk+1},
then

TA,B =
(
Ti,i+1 Ti,i+2 · · · Ti,k+1

)
.

Similarly, if A = {ui−1, ui} and B =
{ui+1, ui+2, · · · , uk+1}, then

TA,B =
(

Ti,i+1 Ti,i+2 · · · Ti,k+1

Ti−1,i+1 Ti−1,i+2 · · · Ti−1,k+1

)
.

Let Λ(N ) denote the set of cuts in network N and let Λl(N )
denote the following collection of layered cuts:

Λl(N ) = {{u0, u1, u2, . . . , ui} : i = 1, 2, . . . , k} .

Definition II.3. For a binary matrix T, let |T| denote its rank
over F2. For a cut C, we define λ(C) to be equal to

∣∣TC,C̄

∣∣.

Definition II.4. For any relay network N , define

λ(N ) = min
C∈Λ(N )

λ(C)

and
λl(N ) = min

C∈Λl(N )
λ(C)

The capacity of a deterministic network N has been shown
in [1]–[3] to be equal to λ(N ).

B. Channel Model

We briefly describe the fading and path loss models used in
this paper. We model fading using a discrete random variable
X which shifts the number of the received bits at a node.
Let X take m discrete values of the form {2i} for some
appropriate values of i according to a discrete probability
distribution PX . We assume that the communication is time-
slotted and that each node is equipped with unlimited memory
and can use arbitrarily long block codes. The number of bit-
pipes between nodes ui and uj at distance r in time slot t is
a random variable and is given by

≈ 1
2

log(Xui,uj Pr SNR ) (2)

where, Pr accounts for the path loss between ui and uj and
Xui,uj is a copy of the random variable X accounting for
random fading.

We further assume that the signal to noise ratio is of the
form SNR = 22n for some positive integer n. We consider
two different models for Pr:

1) Exponential path loss model: Pr = 2−2cr for some
positive integer c.

2) Power law model: Pr = 1
rc for some positive value c.

Furthermore, in the absence of fading, X is a degenerate
random variable assuming a value of 1 with probability 1.

Since the deterministic network varies over time with each
instance of the random variables Xui,uj , the value of a cut C
in a network N is also a random variable. It is now easy to
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Fig. 1. Placement for two relays, where r = r1 + z + r2.

show that the capacity of a grid network N under this model
is given by

min
C∈Λ(N )

E λ(C) . (3)

Almost throughout the paper, analytical results are derived
using the exponential path loss model which is more tractable
as well as rooted in the physics of wave propagation in wireless
media [7].

III. THE TWO RELAY LINE NETWORK

A two-relay network N2 is depicted in Fig. 1. This is
the simplest network where a non-uniform placement can
outperform the uniform placement2, and thus is interesting
to examine in detail. The placement in this network can be
described with parameters r1, z and r2, with r1 + z + r2 = r
as depicted in Fig. 1. Fig. 2 shows the channel connections
in this network. There are exactly four cuts in this network,
C1 = {u0}, C2 = {u0, u1, u2}, C3 = {u0, u2} and C4 =
{u0, u1}. Thus the capacity of this network equals

λ(N2) = min
i

E λ(Ci)

where, the averaging accounts for fading as discussed in
Section II.

We analytically calculate the optimal placement for this
network for some specific channel models, and for a larger set
of channels through simulation results. In all these cases we
observe the same trend: when the common transmit power is
low, uniform is the optimal placement. As the transmit power
increases, the optimal placement has the two relays approach
the source and the destination respectively. This is because
the dominating cut values come from the cuts C1 and C2, and
thus the optimal placement attempts to maximize the value for
these cuts.

A. Two-state fading with exponential path-loss

Let d be an integer and let X be a discrete random variable
that takes the values {1, 1/2d} with equal probability. That
is, we have a two-state channel model. We will distinguish
between two cases, when we have small scale fading (d ≤ c),
and when we do not (d > c).

1) Small scale fading (d ≤ c):

2 Indeed, it is easy to see that, if k ≤ 1, then assuming all nodes have
the same transmit power and undergo independent, a uniform placement is
always optimal.

u0 u1 u2 u3

Fig. 2. Channel connections for the two relay network.

Theorem III.1. Let N be a (2, r) line network under the
small scale fading model. If n ≥ 1.6cr, then

λ(N2) = n − d

2
− cmax{r1, r2}. (4)

Proof: We analytically calculate the cut values. For C1 =
{u0}, we have

E λ(C1) = E max {n − cr1 − log Xu0,u1 , n − c(z + r1)
− log Xu0,u2 , n − c(z + r1 + r2) − log Xu0,u3}

=
1
2
(n − cr1) +

1
2
(n − cr1 − d)

= n − cr1 − d/2. (5)

Similarly, for C2 = {u0, u1, u2} and C3 = {u0, u2}, we have

λ(C2) = n − cr2 − d/2 (6)

λ(C3) ≥ max{n − cr1 − d/2, n − cr2 − d/2}. (7)

Finally, we consider C4 = {u0, u1}. For convenience, let
bi,j = − log Xui,uj (i.e., bi,j is a 0/d-valued random variable).
Let r = z + r1 + r2. For all n > cr + d, we have

λ(C4) = E rk
(
TC4,C̄4

)

= E rk





[
0 In−cz−b1,2

0 0

] [
0 In−c(z+r2)−b1,3

0 0

]

[
0 In−c(z+r1)−b0,2

0 0

] [
0 In−cr−b0,3

0 0

]





=
3
16

(n − cz) +
3
16

(n − cz − d)

+
3
16

(n − cz + n − c(z + r1 + r2))

+
2
16

(n − cz + n − c(z + r1 + r2) − d)

+
2
16

(n − cz − d + n − c(z + r1 + r2))

+
3
16

(n − cz − d + n − c(z + r1 + r2) − d)

= (n − cz − d/2) +
10
16

(n − c(z + r1 + r2) − d/2). (8)

Comparing (5)-(7) with (8), for all

n ≥ c(z + r1 + r2) +
d

2
+

16
10

(cz − cmin{r1, r2}) (9)

we have λ(C4) ≥ λ(Ci) for i = 1, 2, 3 and it follows that

λ(N2) = n − d

2
− cmax{r1, r2}. (10)



The proof of the following lemma now is immediate from
(10):

Lemma III.2. Let N be any (2, r) line network. If d ≤ c,
then for all n ≥ 1.6cr, the capacity of N is maximized by
choosing r1 = r2 = 1 and the maximum capacity is

n − c − d/2.

Now we compare the optimal placement for a (2, r) line
network with uniform placement of relays. When the two re-
lays are uniformly placed between the source and the receiver,

max{ru0,u1 , ru2,u3} =
⌈r

3

⌉
.

It follows that, if d ≤ c, for all n > c
⌈

r
3

⌉
+ d/2, the capacity

of a network with uniform relay placement is

n − c
⌈r

3

⌉
− d/2. (11)

Comparing (11) with Lemma III.2, the difference between op-
timal placement and uniform placement is (for all n > 1.6cr)

c
(⌈r

3

⌉
− 1

)

which is linear in r.

Low SNR regime: We examine the case when n is is small.
From (5)-(8), we have

λ(N2) = min{λ(C4) , λ(C1) , λ(C2)} (12)

If

n < c(z + r1 + r2) + d/2 +
16
10

c(z − 1) (13)

then (9) is not satisfied for every choice of r1 and r2. In
this case, a close examination of (12) reveals that λ(N2) is
maximized when

λ(C4) = λ(C1) = λ(C2) . (14)

If the node positions are constrained to be among the grid
vertices, then there may not exist a choice of r1 and r2 that
achieves (14). For analytical purposes, we solve for r1 and r2

after relaxing this constraint. Let r = z + r1 + r2. Solving for
r1 and r2 that achieve (14), we have

r1 = r2 [from λ(C1) = λ(C2)]

r1 = r

(
1
3

+
10
48

)
+

5
48c

d − 10
48c

n. (15)

[from λ(C4) = λ(C1) and r2 = r1]

From (15), r1 is approximately equal to r/3 for small values
of n. Thus, (15) confirms our intuition that, in the low SNR
regime, placing the relays equally apart is optimal. However,
it is important to notice that the optimal location for relays
moves away from the center linearly with n. Furthermore,
since λ(N2) = λ(C1), we also have

λ(N2) ≈ n − d/2 − c r

(
1
3

+
10
48

)
− 5

48
d +

10
48

n

where, the ≈ sign indicates that the above result holds only
approximately since the optimal value for r1 obtained in (15)
may not be an integer.

High SNR regime: Notice that if the minimum distance
between nodes is 1 (which is true for grid networks), then
the capacity of a (k, r) network is at most n− c. If k = 0, the
capacity is n−cr− d

2 . If k = 1, the capacity is n−c r
2−

d
2 . When

k = 2, we get a capacity of n− c− d
2 from (10), and thus, we

have that for the two-state channel model, 2 relay nodes are
almost sufficient to achieve the maximum possible capacity
(which is n − c) for all n ≥ 1.6cr. That is, by having more
than 2 relays, we gain at most d/2 bits whereas by increasing
the number of relays from 1 to 2, we gain ≈ cr/2 bits.

The following theorem shows that this observation also
holds in the case of square grid networks: In this case as well,
adding an arbitrary number of relays, does not significantly
increase the capacity as compared to adding two relays on
a line networks. The proof of this theorem is provided in
Appendix A.

Theorem III.3. Let N be a (k, r) grid network. For all n ≥
1.6cr, if the relay nodes are placed optimally, then we have

n − c − d/2 ≤ λ(N ) ≤ n − c − d/16. if k ≥ 2

λ(N ) = n − c
⌈r

2

⌉
− d/2. if k = 1

2) Large scale fading (d = cr): We will now explicitly
calculate the capacity in the case of large scale fading. Since
fading is always “destructive” in our model, not surprisingly,
the capacity of the two-relay network is smaller for the case
of large scale fading as compared to the case when d ≤ c.
However, the optimal placement remains the same for both
the fading models as n increases.

The proof of this theorem is provided in Appendix B.

Theorem III.4. Let N be a (2, r) line network under the
large scale fading model, for all n ≥ 2cr, λ(N2) ≤ n −
1
2cr − 3

16c(r1 + r2).

Lemma III.5. Let N be any (2, r) line network. If d = cr,
then for all n ≥ 2cr, the capacity of N is maximized by
choosing r1 = r2 = 1 and the maximum capacity is

n − c

(
r

2
+

3
8

)
.

Proof: Note that the upper bound in (29) is achievable by
choosing r1 = r2 and it is maximized by minimizing r1 + r2.
Since r1, r2 ≥ 1, the lemma is proved.

B. Simulation results

In this section, we examine, through simulation, a more
extensive family of fading distributions for the exponential as
well as the power path loss model. We denote by:

• uniform 2-state the case where the fading variable X
takes the values {2−1, 2} with equal probability, that is,
fading may affect the number of received bits by ±1,

• uniform 3-state the case where the fading variable X
takes the values {2−1, 20, 2} with equal probability,



• uniform 6-state the case where the fading variable X
takes the values {2−3, 2−2, 2−1, 21, 22, 23} with equal
probability, and

• Std. Normal 5-state the case where the fading variable
X takes the values {2−2, 2−1, 20, 21, 22}. We create
this variable by quantizing a continuous variable Y that
follows the Gaussian distribution N (0, 1) to an element
of {−2,−1, 0, 1, 2}, and define X = 2[Y ] where, [Y ]
denotes the quantized value of Y .

In Fig. 3, we combine these fading distributions with the
exponential path-loss model, for the two relay network. We
examine the behavior of the min-cut capacity λ(N ) and the
optimal placement as the transmit power (captured by the value
n) increases.

We describe the optimal placement by providing the value
for the distance r1 between the source and the first relay
(see Fig. 1). We found that the optimal placement results in
r1 = r2, which is a direct result of the symmetry of the two-
relay configuration. The results we present are for r = 48;
thus, for low values of n, the optimal placement has the two
relays in equal distances (r1 = r2 ≈ 16), while as n increases
the optimal placement has the two relays approach the source
and the destination respectively (r1 = r2 ≈ 1). This behavior
is consistent across all fadings, and with the analytical results.
We also note that there might be several placements that result
in the same optimal value for the min-cut capacity; in Fig. 3(a)
we have reported the average r1 values across all optimal
placements.

Fig. 3(b) shows that the capacity increases linearly with
n. We note that the capacity is slightly higher for the more
volatile environments, i.e., when the variation of the fading
is higher. We believe that this might be an artifact of the
deterministic modeling: as we will see in Section V, when
there is no fading, the deterministic modeling results to an
alignment of the received signals at the different relays; the
more variable the fading, the higher the probability we avoid
this alignment. For the power law path-loss model, where the
path loss effect is much smaller than in the exponential case,
the optimal relay placement value (r1) and the capacity of the
network (λ(N )) are shown in Fig. 4. We observe in this case
as well a consistent behavior. The step-like behavior we see in
the relay placement is a result of the nonlinear floor operation.

IV. A FRAMEWORK FOR RELAY PLACEMENT IN LARGE

LINE NETWORKS

We now discuss possible (heuristic) approaches and ideas
for optimal placement of relays in large line networks. These
ideas rely on the following two observations:

1) If k ≤ 2, then our analysis in Section III show that
the capacity of a (k, r) line network N is equal to
λl(N ). Recall from Definition II.4 that λl(N ) depends
only on k + 1 layered cuts. Indeed, as we will show
in Section V, in the absence of fading, for an arbitrary
(k, r) line network (i.e., k need not be 2 or less) N ,
λ(N ) = λl(N ). Simulation results seem to indicate that
this property continues to hold for large line networks

u0 u1 u2 u3 u4 u5 u6

Fig. 5. For the cut C = {u0, u1, u2, u3} in a 5 relay network, the heuristic
calculation for the min-cut value sums the contribution of the channels
depicted in dashed lines and ignores the remaining channels.

even in the presence of fading.This observations leads us
to the following conjecture:

Conjecture IV.1. If N is any (k, r) line network, then
λ(N ) = λl(N ).

2) Let N be a (2, r) line network and let C4 = {u0, u1}.
Again from Section III, we have

TC4,C̄4
=





[
0 Is1

0 0

] [
0 Is2

0 0

]

[
0 Is3

0 0

] [
0 Is4

0 0

]





for some integer random variables s1, s2, s3, and s4. We
can explicitly calculate the binary rank of this matrix as
follows. Let δ denote the discrete unit impulse function
(i.e., δ(0) = 1 and δ(k) = 0, ∀ k *= 0).

rk
(
TC4,C̄4

)
= s1 + (s2 − s1)+

+
[
(s3 − (s1 − s2)+)+ + (s4 − (s3 − (s1 − s2)+)+

−(s2 − s1)+)+
]
(1 − δ((s1 − s3) − (s2 − s4)))

+
[
s3 + (s4 − s3)+ − (s1 + (s2 − s1)+)

]+

× δ((s1 − s3) − (s2 − s4))

where,

x+ =

{
x if x ≥ 0
0 if x < 0.

If s1 is the largest value (which is always the case for line
networks), the above expression reduces to the following:
rk

(
TC4,C̄4

)

= s1 +
[
(s3 − (s1 − s2))+ + (s4 − (s3 − (s1 − s2))+)+

]

× (1 − δ((s1 − s3) − (s2 − s4))).

It turns out that E rk
(
TC4,C̄4

)
≈ E (s1 + s4), i.e., the

overall expected rank is well approximated by the sum
of expected ranks of diagonal blocks. This observation
continues to hold true for other cuts in N as well.

In view of the above observations, for a layered cut Ci =
{u0, u1, · · · , ui} of a (k, r) line network N , we approximate
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Fig. 3. Simulation results for the exponential path-loss model (a) for the optimal relay 1 placement r1, and (b) for the min-cut capacity.
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Fig. 4. Simulation results for the power path-loss model for (a) for optimal relay 1 placement r1, and (b) for the min-cut capacity.

E λ(Ci) by

min{i,k−i}∑

j=0

E |Ti−j,i+j+1| =

min{i,k−i}∑

j=0

(n − cri−j,i+j+1 − E log Xi−j,i+j+1)
+ . (16)

Graphically, we approximate λ(Ci) by taking into account
only the contribution of a subset of the channels that cross
the cut; these are the channels that correspond to the diagonal
blocks of the block transfer matrix that describes the cut. as
depicted in Fig. 5 for an example network.

Let X̄ = E log Xi−j,i+j+1. If Conjecture IV.1 holds, we
have

λ(N ) = min
0≤i≤k

E λ(Ci)

= min
0≤i≤k

min{i,k−i}∑

j=0

(
n − cri−j,i+j+1 − X̄

)+
. (17)

In view of (17), the optimal relay placement problem reduces
to the following optimization problem:

max
ri,j

min
0≤i≤k

min{i,k−i}∑

j=0

(
n − cri−j,i+j+1 − X̄

)+
.

In Fig. IV we explore how well our proposed heuristic cal-
culation agrees with exact simulation results. We see that as the
variability of the fading increases, the heuristic approximates
better and better the min-cut capacity as well as the optimal
node placement. This can be explained from the fact that
the heuristic assumes we accummulate diversity from multiple
receiving relays; i.e., it ignores the alignment that can occur
for no fading (see Section V) and low variability fading.

V. THE NO-FADING CASE

We explore the case when there is no fading. For the expo-
nential path loss model, and placement on the line network, we
show analytically that the uniform placement is optimal. We
believe that this is an artifact of the deterministic model, that
allows for perfect alignment of observed signals at different
relays. We have sees a similar behavior through simulations
for the power path loss model. We then show that if the
two relays are not placed on a line, this degenerate behavior
disappears, and we can have significant benefits from a non-
uniform placement.

A. Exponential path-loss with no fading

Recall that in the absense of fading, the number of links
between nodes at distance r is given by "n − cr#. Let S denote
the following n × n matrix:

(
0 In−1

0 0

)
.
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Fig. 6. Comparison of the proposed heuristic and the exact simulation results (a) - (c) for optimal relay 1 placement and (d) - (f) for the min-cut capacity.

Theorem V.1. If N is a (k, r) line network, then

λ(N ) = λl(N ) .

Proof: Let Ci = {u0, u1, u2, · · · , ui} for i ∈
{1, 2, · · · , k}. Let TCi,C̄i

denote the transfer matrix corre-
sponding to the cut Ci. As before, we denote by

∣∣TCi,C̄i

∣∣ the
binary rank of TCi,C̄i

. Recall that λ(Ci) =
∣∣TCi,C̄i

∣∣. We will
first show that

λ(Ci) =
∣∣Tui,C̄i

∣∣ (18)

= n − c ri,i+1

where, ri,i+1 is the distance between ui and ui+1. We establish
(18) as follows: For each j ∈ {0, 1, · · · , i − 1}, we have

Tuj ,C̄i
= Scrj,i Tui,C̄i

.

Thus, it follows that

TCi,C̄i
=





Tui,C̄i

Scri−1,i Tui,C̄i

...
Scr0,i Tui,C̄i




. (19)

Now, (18) readily follows from (19). Thus, we have the
following alternative characterization of λl(N ):

λl(N ) = min
j≤k

n − c rj,j+1. (20)

Now let C be an arbitrary cut. C must contain a node ul such
that ul+1 /∈ C. Thus, Tul,ul+1 is a submatrix of TC,C̄ and

consequently, we have
∣∣TC,C̄

∣∣ ≥
∣∣Tul,ul+1

∣∣

= n − c rl,l+1

≥ min
j≤k

n − c rj,j+1

= λl(N ) . [from (20)]

Since the cut C is arbitrary, we have that λ(N ) ≥ λl(N ). The
reverse inequality is obvious and hence the proof is complete.

Theorem V.2. If N is a (k, r) line network, then

λ(N ) ≤ n − c

⌈
r

k + 1

⌉

and the upper bound is achievable by placing the relays
uniformly.

Proof: From Theorem V.1 and (20), we have

λ(N ) = min
j≤k

n − c rj,j+1

= n − c max
j≤k

rj,j+1

≤ n − c

⌈
r

k + 1

⌉
.

Furthermore, the relays can be placed uniformly such that the
distance between any two nodes is at most

⌈
r

k+1

⌉
. Thus, the

upper bound is achievable and the claims are established.
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Fig. 7. Network Nz used to illustrate that uniform placement may be
arbitrarily worse compared to optimal relay placement.

B. Non-uniform relay placement on the plane

Now we discuss an example of a two-relay network where,
by placing relays in 2-D grid, we avoid the signal alignment
and as a result obtain a large capacity advantage as compared
to the two-relay line network without fading. Consider the
(2, 18) network Nz shown in Figure 7 parameterized by the
distance between the relays u1 and u2. For this network, we
have

θ = tan−1

(
4

z + 3

)

r0,2 =
z + 3
cos(θ)

r1,3 =
z + 3
cos(θ)

r0,3 = z + 6.

Now for C4 = {u0, u1} and n ≥ z − 6, we have

TC4,C̄4
=





[
0 In−cz

0 0

] [
0 I!n−cr1,3"
0 0

]

[
0 I!n−cr0,2"
0 0

] [
0 In−c(z+6)

0 0

]





For all large z and n ≥ z − 6, we have

"n − cr0,2# = "n − cr1,3# = n − c(z + 3).

Consequently, for all large z, we also have

TC4,C̄4
=





[
0 In−cz

0 0

] [
0 In−c(z+3)

0 0

]

[
0 In−c(z+3)

0 0

] [
0 In−c(z+6)

0 0

]





It is easy to verify that
∣∣TC4,C̄4

∣∣ = n − cz + n − cz − c6
= 2n − 2cz − c6.

Similarly for C1 = {u0} or C2 = {u0, u1, u2}, we have
∣∣TC1,C̄1

∣∣ =
∣∣TC2,C̄2

∣∣ = n − c5.

It follows that

λ(Nz) = min{2n − 2cz − c6, n − c5}. (21)

Let N be any (2, z +6) line network. From Theorem V.2, we
have

λ(N ) ≤ "n − c(z + 6)/3# . (22)

Comparing (21) and (22), for all large z and for all n ≥
2cz + 1, we have

λ(Nz) ≥ n − 5c

λ(Nz) − λ(N ) ≥ n − 5c − ("n − c(z + 6)/3#)
≥ n − 5c − (n − cz/3 − 2c + 1)
≥ cz/3 − 3c − 1.

From the last inequality, it is clear that as z grows to ∞ (and if
n grows as 2cz +1), placing the relays uniformly between the
source and the receiver is arbitrarily worse compared to the
trapezoidal arrangement in Nz . This fact along with the result
that the deterministic network approximates the corresponding
Gaussian relay network can be used to show that there is
an unbounded gain to placing the relays in a trapezoidal
arrangement as in Nz compared to placing them on a line
in Gaussian networks.

VI. CONCLUSIONS

In this paper we were interested in the placement of relays
on a line grid that maximizes the min-cut capacity of the
corresponding deterministic network. We observed that for low
power, a uniform placement is optimal, while as the power the
nodes utilize increases, the relays tend to approach the sink
and the destination respectively. We also proposed a heuristic
for the min-cut value calculation, that we investigated through
simulation results.
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APPENDIX A

Proof of Theorem III.3. Let N∞ denote the grid network in
which the vertex (0, 0) is occupied by the source u0,0, vertex
(0, r) by the receiver u0,r, and every other vertex is occupied



by a relay node (i.e., there are infinitely many relay nodes). It
is clear that

λ(N ) ≤ λ(N∞) . (23)

Now let C denote the cut {u0,0}. We have

λ(C) =
(

1 − 1
24

)
(n − c) +

1
24

(n − c − d)

= n − c − d/16. (24)

Thus, we have the upper bound

λ(N ) ≤ n − c − d/16.

[from (23), (24), and λ(N∞) ≤ λ(C)]

Now let N2,r denote a (2, r) relay nodes in which the relays
are optimally placed. For k ≥ 2, we have

λ(N ) ≥ λ(N2,r)
≥ n − c − d/2. [from Lemma III.2]

Finally, if k = 1, it is obvious that the relay must be
placed at equal distance from the source and the receiver and
consequently, it is immediate that λ(N ) = n − c

⌈
r
2

⌉
− d/2.

APPENDIX B

Proof of Theorem III.4. For C1 = {u0}, we have

E λ(C1) = E max {n − cr1 − log Xu0,u1 , n − c(z + r1)
− log Xu0,u2 , n − c(z + r1 + r2) − log Xu0,u3}

=
1
2
(n − cr1) +

1
4
(n − c(z + r1))

+
1
8
(n − c(z + r1 + r2)) +

1
8
(n − cr1 − d)

= n − cr1 −
1
4
cz − 1

8
c(z + r2) −

1
8
d

= n − cr1 −
1
2
cz − 1

8
c(r1 + 2r2). (25)

Similarly, for C2 = {u0, u1, u2} we have

λ(C2) = n − cr2 −
1
2
cz − 1

8
c(r2 + 2r1) (26)

For ease of notation, let bi,j = − log Xui,uj (i.e., bi,j is a
0/d-valued random variable). For C3 = {u0, u2} it holds that

λ(C3) = E rk
(
TC3,C̄3

)

= E rk





[
0 In−cz−b2,1

0 0

] [
0 In−cr2−b2,3

0 0

]

[
0 In−cr1−b0,1

0 0

] [
0 In−cr−b0,3

0 0

]





≥ 1
2
(n − cr1) +

1
4
(n − c(z + r1))

+
1
8
(n − c(z + r1 + r2)) +

1
8
(n − cr1 − d)

= λ(C1) . (27)

Finally, consider C4 = {u0, u1}. For all n > 2cr, we have

λ(C4) = E rk
(
TC4,C̄4

)

= E rk





[
0 In−cz−b1,2

0 0

] [
0 In−c(z+r2)−b1,3

0 0

]

[
0 In−c(z+r1)−b0,2

0 0

] [
0 In−cr−b0,3

0 0

]





=
3
16

(n − cz) +
3
16

(n − cz − d)

+
3
16

(n − cz + n − c(z + r1 + r2))

+
2
16

(n − cz + n − c(z + r1 + r2) − d)+

+
2
16

(n − cz − d + n − c(z + r1 + r2))

+
3
16

(n − cz − d + n − c(z + r1 + r2) − d)

= (n − cz − d/2) +
10
16

(n − c(z + r1 + r2) − d/2).
(28)

Comparing (25)-(27) with (28), for large enough n, we have
λ(C4) ≥ λ(Ci) for i = 1, 2, 3 and it follows that

λ(N2) = min{λ(C1) , λ(C2)}

≤ 1
2
(λ(C1) + λ(C2))

= n − 1
2
cr − 3

16
c(r1 + r2). (29)

The upper bound is achievable by choosing r1 = r2.


