
Function computation via subspace coding

Nikhil Karamchandani∗ Lorenzo Keller† Christina Fragouli† Massimo Franceschetti∗

∗Dept. of Electrical and Computer Engineering †School of Computer and Communication Sciences

UCSD, USA EPFL, Switzerland

{Email : nikhil@ucsd.edu, lorenzo.keller@epfl.ch, christina.fragouli@epfl.ch, massimo@ece.ucsd.edu}

Abstract—This paper considers function computation in a
network where intermediate nodes perform randomized network
coding, through appropriate choice of the subspace codebooks
at the source nodes. Unlike traditional network coding for
computing functions, that requires intermediate nodes to be
aware of the function to be computed, our designs are transparent
to the intermediate node operations.

I. INTRODUCTION

In sensor networks, the need for energy efficiency has
stimulated research efforts towards in-network aggregation and
function computation, see for example [1], [2]. Recent work
[3], [4] has also pointed out the need to have simple coding
schemes, since “systems are hard to develop and debug”. They
advocate a solution where most nodes in the network perform
the same operations regardless of the function to be computed,
and the onus of guaranteeing successful computation is on a
few special nodes that are allowed to vary their operation.

Motivated by the above considerations, we consider the
problem of computing functions in a network where multi-
ple sources are connected to a single sink via relays. The
sources may have several different possible codebooks, and
can select which one to employ depending on the function
to be computed. Given a certain target function, each source
transmits a codeword corresponding to its observed message.
The relay nodes, however, perform the same linear operations,
for example randomized network coding (which is a practical
and efficient way of transmitting data in a network [5])
irrespective of the target function, i.e., the vectors inserted by
the sources are randomly combined and forwarded towards
the sink, using linear coefficients that are unknown to both
the sources and the sink. The sink then proceeds to evaluate
the target function of the source messages.

Following [6]–[8], we use subspace coding for computing
functions in our network model. Given a target function,
we assume that each source uses a codebook consisting of
subspaces. Each source message is mapped to a subspace
in the codebook. When a source generates a message, it
injects the basis vectors of the corresponding subspace into
the network. The network operation is abstracted by assuming
that the sink collects enough linear combinations of these
vectors to learn the joint span of the injected subspaces.
Given this information, the sink then attempts to compute
the target function of the source messages. Our objective is
to design codebooks which minimize the number of symbols
each source needs to transmit, while guaranteeing successful
function computation by the sink.

Thus, we envision a network architecture where intermedi-
ate network nodes always perform the same operations for in-
formation transfer, which leads to a simple implementation. At
the same time, the sink has the flexibility to utilize the network
to learn different functions of the source data by informing the
source nodes to employ the corresponding codebooks. Here
we focus on non-coherent communication where we have no
knowledge about the network transformation; in [9] we look
at the case where this transformation is fixed and known.

We note that a scheme which optimizes the intermediate
node operations according to the function to be computed
might need fewer transmissions. However, it would be more
complex to implement, would require topology knowledge,
and might be sensitive to the employed communication pro-
tocol. In contrast, our approach is transparent both to the
topology and the employed communication protocol: the only
requirement we impose is that we gather sufficient linear
independent combinations. As a result, our protocol would
be very well suited to dynamically changing topologies, and
could be applied without change on top of very different
communication protocols.

The paper is organized as follows. Section II presents the
problem formulation. In Section III, we present a simple
scheme to compute the identity function, i.e., to reconstruct
all the source messages, and then describe a class of “hard”
functions for which it is optimal (in an order sense) to first
compute the identity and then compute the function value. We
continue by designing near-optimal coding schemes for some
“easy” functions, i.e., functions which can be computed by
transmitting less symbols by the sources than what is required
to compute the identity: these are the T -threshold, maximum

and K-largest values functions considered Section IV. In
Section V, we present a lower bound on the number of symbols
each source needs to transmit to evaluate an arbitrary function,
and a constructive scheme to evaluate arbitrary functions.

II. PROBLEM FORMULATION AND NOTATION

We consider a set of N sources σ1,σ2, . . . ,σN connected
to a sink ρ via a network N . Each source σi is either inactive
or observes a message xi ∈ A, where A is a finite alphabet.
For ease of notation, when a source σi is inactive we will set
xi = φ. The sink needs to compute a target function f of the
source messages, where f is of the form

f : (A ∪ {φ})N −→ B.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

x1∈A∪{φ}

x2

πx1
1
⊆ Fl

q

xN

Network

N
Sink
ρ

f (x1, . . . , xN)

N
∑

i=1

πxi
i

We consider operation using subspace coding. We denote a
subspace by π and the union of two subspaces π1,π2 is defined
as π1 +π2 = {x+y : x ∈ π1,y ∈ π2}. The network operates
as follows.

• At each source, every alphabet symbol is mapped to a
subspace, which serves as the corresponding codeword.
Thus, each source σi has an associated codebook Ci =
{

πj
i

}

j∈A
where πj

i is a d-dimensional subspace1 of an

l-dimensional vector space Fl
q where d, l ≥ 1 are design

parameters. When the source σi is active and observes a
message xi ∈ A, it injects into the network N a set of d
vectors from Fl

q which span the subspace πxi

i . When the
source is σi inactive, it does not make any transmissions
and hence we set πφ

i = ∅.
• The sink ρ receives from the network N a set of vectors

from Fl
q which span the union of the input subspaces2

i.e., ρ observes
∑N

i=1 π
xi

i .
• The sink uses the received information to compute the

value of f (x1, x2, . . . , xN).

A (d, l) feasible code for computing f is a collection of
codebooks {C1, C2, . . . , CN} such that each πj

i in the code-
books is a d-dimensional subspace of Fl

q and the sink can
compute the value of f (x1, x2, . . . , xN) for any choice of
input messages x1, x2, . . . , xN where each xi ∈ A ∪ {φ}.

For a (d, l) feasible code for computing f , each source
transmits at most d · l symbols from Fq, and we thus consider
the associated cost3 to be d·l. Our code design seeks to achieve

Emin(f)=inf {d · l : ∃ a (d, l) feasible code for computing f} .

We begin by showing that for the purpose of minimizing
the cost d · l, it suffices to consider codes which use one-
dimensional subspaces.

Theorem II.1. Given any (d, l) feasible code for computing

a target function f , there also exists a (1, d · l) feasible code

for computing f .

1Although restricting our code design to subspaces of equal dimension may
not always be optimal, it significantly simplies the design, and is a standard
approach in the literature [6], [10].

2In practice, networks operate in rounds. The duration of a round can be
chosen large enough to ensure that the sink receives enough linear independent
combinations to span the union of the input subspaces.

3In this work, the field size q is considered to be fixed and hence not
included in the cost.

Proof: From the collection of d-dimensional subspaces
associated with the given (d, l) code, construct a collection
of one-dimensional subspaces by concatenating the d basis
vectors of each subspace. The proof follows by showing
that the resulting collection also forms a feasible code for
computing f . Details of the proof can be found in [11].

In the sequel, we will only consider codes which use
one-dimensional subspaces. We will denote the dimension
of any subspace π by dim(π). Also, for any vector x, the
j-th component will be denoted by (x)j . Consider a set
of indices I =

(

i1, i2, . . . , i|I|
)

⊆ {1, . . . , N}. For any

a =
(

a1, a2, . . . , a|I|

)

∈ (A ∪ {φ})|I| and any vector x ∈
(A ∪ {φ})N , let x(I,a) = (x1, x2, . . . , xN) denote a vector
which is obtained from x by substituting the components
corresponding to the index set I with values from the vector
a and retaining all the other components. That is, for each
j ∈ {1, . . . , |I|}, (x(I,a))ij

= (a)j and for each k)∈ I ,

(x(I,a))k = (x)k . We conclude this section with a lemma
that is often used in the subsequent sections.

Lemma II.2. If there exist one-dimensional subspaces

π1,π2, . . . ,πK ⊆ Fl
q such that

πi)⊆
∑

j<i

πj ∀ i ∈ {1, . . . , K}

then l ≥ K.

III. FUNCTIONS WHICH ARE MAXIMALLY HARD TO

COMPUTE

Any target function can be computed by first reconstructing
all the source messages at the sink (i.e., computing the identity
function f(x1, x2, . . . , xN) = (x1, x2, . . . , xN) with each
xi ∈ A ∪ {φ}) and then deriving the function value. Hence,
the following lemma provides an upper bound on the cost for
computing any function f .

Lemma III.1. There exists a (1, l) feasible code for computing

the identity function such that

l = N + +logq |A|,.

Proof: It is easy to see that this can be achieved simply
by using coding vectors of length N , where each source i
when active uses the basis vector ei as its coding vector
and appends this to the information packet that consists of
+logq |A|, symbols.

Consider the case N ≥ logq |A|. Next, we present a class
of functions for which the cost is required to grow linearly
with respect to the number of sources N . Thus, the number
of transmissions that each source makes for the computation of
such functions is almost the same (in the order sense) as that
required to reconstruct all the source messages. For any vector
x ∈ (A ∪ {φ})N , let Ix denote the index set corresponding
to the components which are not φ. Then, consider a target
function f which satisfies the following property with some
constant α ∈ (0, 1].

Function property P(α) : There exists a vector x∗ =

(x∗
1, x

∗
2, . . . , x

∗
N) with |Ix∗ | ≥ αN such that for each k ∈ Ix∗ ,

f (x∗({k},φ)))= f (x∗) . (1)

Recall that x∗({k},φ) denotes the vector obtained from x∗ by
setting x∗

k equal to φ and retaining all the other components.
This implies that the function value is sensitive to whether any
specific source σk is active or not.

Example III.2.

• The identity function satisfies property P(1) by choosing

each x∗
i equal to any element of the alphabet A.

• The arithmetic sum function satisfies property P(1) by

choosing each x∗
i equal to some non-zero element of the

alphabet A.

• The parity function (A = {0, 1}) satisfies property P(1)
by choosing each x∗

i equal to 1.

Lemma III.3. Let f be a function which satisfies the property

P(α). Then, Emin(f) ≥ αN.

Proof: From (1), any feasible code for computing f must
satisfy the following condition. For each k ∈ Ix∗ ,

π
x∗

k

k +
∑

j #=k

π
x∗

j

j)=
∑

j #=k

π
x∗

j

j =⇒ π
x∗

k

k)⊆
∑

j #=k

π
x∗

j

j .

Since |Ix∗ | ≥ αN , the result follows from4 Lemma II.2.

Comment : Lemma V.1 provides a general lower bound
on Emin(f) for arbitrary functions. Functions for which the
lower bound is of the same order as N + +logq |A|, are also
maximally hard to compute.

IV. BOUNDS FOR SPECIFIC FUNCTIONS

A. T -threshold Function

Let A = {1}. The T -threshold function is defined as5

f (x1, x2, . . . , xN) =

{

1 if x1 + x2 + . . . + xN ≥ T

0 otherwise.

Lemma IV.1. There exists a (1, l) feasible code for computing

the T -threshold function with T < N/2, such that

l ≤ NHq

(

T

2N

)

where Hq is the q-ary entropy function defined as

Hq(x) = x logq

(

q − 1

x

)

+(1−x) logq

(

1

1 − x

)

∀ x ∈ (0, 1).

Proof: Consider the scheme in Figure 1. The scheme uses
a l × N parity check matrix of a binary code with minimum
distance dmin = T + 1. From [12], [13], there exists such a
matrix with

l ≤ NHq

(

T

2N

)

.

4From Lemma II.2, the result can be proven for a relaxed albeit more
complicated version of the property P(α).

5For any integer a, we set a+φ = a. Thus, the function computes whether
the number of active sources is at least T or not.

• Let H be the l × N parity check matrix of a binary

code with minimum distance dmin = T + 1.

• Source σi uses Ci = {hi}, where hi is a column of H.

• If the dimension of the subspace that the sink receives

is less than T , it outputs 0. Otherwise, it outputs 1.

Fig. 1. A (1, l) code for the T -threshold function

Comment : For a constant T , O
(

NHq

(

T
2N

))

=
O

(

T logq N
)

. Thus, while computing the identity function
requires the cost to grow linearly with the number of sources
N , the T -threshold function requires only logarithmic growth.

Lemma IV.2. For the T -threshold function f with T < N/2,

Emin(f) ≥
N

2
Hq

(

T

2N

)

.

Proof: Consider two possible input vectors
(x1, x2, . . . , xN) and (y1, y2, . . . , yN) such that

xi = 1 ∀ i ∈ {1, 2, . . . , T} and xi = φ otherwise

yi = 1 ∀ i ∈ {2, 3, . . . , T} and yi = φ otherwise .

Note that

1 = f(x1, x2, . . . , xN))= f(y1, y2, . . . , yN) = 0

and hence it is necessary for any feasible code for computing
f that

π1
1 +

T
∑

i=2

π1
i)=

T
∑

i=2

π1
i =⇒ π1

1)⊆
T

∑

i=2

π1
i .

The same argument can be extended to get the following nec-
essary condition. For any subset (i1, i2, . . . , iT) of {1, . . . , N},

π1
ij
)⊆

∑

k #=j

π1
ik

for every j ∈ {1, . . . , T}.

Denote a basis vector for π1
i by vi. From the necessary

condition on the subspaces π1
1 ,π1

2 , . . . ,π1
N , any collection of

T vectors from v1,v2, . . . ,vN are linearly independent. The
l × N matrix with the vectors v1,v2, . . . ,vN as columns
corresponds to the parity check matrix for a linear code of
length N and minimum distance at least T + 1. The result
then follows by the using the bounds in [12], [13]. Details
can be found in [11].

B. Maximum Function

Lemma IV.3. There exists a (1, l) feasible code for computing

the maximum function such that

l ≤ min
{

|A| , N + +logq |A|,)
}

.

Proof: Consider the following two schemes for computing
the maximum function6.
• A (1, |A|) scheme : Let v1,v2, . . . ,v|A| be linearly inde-
pendent vectors of length |A| each. For every source σi, let

6For any a ∈ A, we set max{a, φ} = a.

Ci =
(

v1,v2, . . . ,v|A|

)

. This scheme has l = |A|.
• A (1, N ++logq |A|,) scheme : We can compute the identity
function with l = N + +logq |A|, and hence can compute the
maximum function also. This scheme is useful if A ≥ N .

Comment : Thus when |A| 0 N , the first scheme is much
more efficient than reconstructing all the source messages.

Lemma IV.4. For the maximum target function f ,

Emin(f) ≥ min{|A| , N}.

Proof: Let A =
(

a1, a2, . . . , a|A|

)

be an ordered set (in
increasing order) and let M = min{N, |A|}. Consider two
possible input vectors (x1, x2, . . . , xN) and (y1, y2, . . . , yN)
such that

xi = ai ∀ i ∈ {1, . . . , M} and xi = φ otherwise

yi = ai ∀ i ∈ {1, . . . , M − 1} and yi = φ otherwise .

Note that

M = f(x1, x2, . . . , xN))= f(y1, y2, . . . , yN) = M − 1

and hence any feasible code for computing f must satisfy

M−1
∑

i=1

πai

i + πaM

M)=
M−1
∑

i=1

πai

i =⇒ πaM

M)⊆
M−1
∑

i=1

πai

i .

The same argument can be extended to get the follow-
ing necessary condition. For any subset (i1, i2, . . . , iM) of
{1, . . . , N} and any ordered subset (in increasing order)
(aj1 , aj2 , . . . , ajM

) of A,

π
ajk

ik
)⊆

∑

m<k

π
ajm

im
.

Then the result follows from Lemma II.2.

C. K-largest Values Function

Let A = (a1, a2, . . . , a|A|) be an ordered set (in increas-
ing order). For any given input vector (x1, x2, . . . , xN), let
(x̂1, x̂2, . . . , x̂N) denote the vector which is a permutation of
the input vector and satisfies x̂i ≥ x̂i+1 for each i. Then the
K-largest values function is given by

f (x1, x2, . . . , xN) = (x̂1, x̂2, . . . , x̂K) .

Lemma IV.5. There exists a (1, l) feasible code for computing

the K-largest values function with K < N/2, such that

l ≤ |A| · NHq

(

K

2N

)

.

Proof: Consider the scheme in Figure 2.

Again from [12], [13], there exists a parity check matrix
such that

l

|A|
≤ NHq

(

K

2N

)

.

Comment : Again, for constant |A| and K, the cost only
grows logarithmically with the number of sources N .

Lemma IV.6. For the K-largest values target function f with

• Let H be the (l/ |A|) × N parity check matrix of a

binary code with minimum distance K + 1.

• If source σi takes value aj from the alphabet A, then it

transmits a vector which is all zero except the

(j − 1) × (l/ |A|) + 1 to j × (l/ |A|) elements,

which take values from the i-th column of H.

• Each vector in the union subspace Π that the sink

receives is parsed into |A| sub-vectors of length l/ |A|.

• Let Πj ⊆ F
l/|A|
q denote the subspace spanned by

collecting the j-th sub-vector of each vector in Π.

• Thus by calculating dim(Π|A|), dim(Π|A|−1) . . . ,

the sink can compute the K largest values.

Fig. 2. A (1, l) code for K-largest values function

K < N/2,

Emin(f) ≥
N

2
Hq

(

K

2N

)

.

Proof: If the receiver can correctly compute the K-largest
values, then it can also deduce if the number of active sources
is greater than K or not. Thus, it can also compute the T -
threshold function with the threshold T = K. The result then
follows from Lemma IV.2.

V. ARBITRARY FUNCTIONS

A. A general lower bound

For any x ∈ (A ∪ {φ})N and I ⊆ {1, . . . , N}, let

Rx
I (f) =

∣

∣

∣
{f (x(I,a)) : a ∈ (A ∪ {φ})|I|}

∣

∣

∣
(2)

denote the number of distinct values that the function takes
when only the arguments corresponding to I are varied and
all the others are held fixed according to x.

Lemma V.1. For any target function f ,

Emin(f) ≥

max
I,x :

Rx

I (f)>1

max

{

√

logq (Rx
I (f) − 1)

3
,
logq (Rx

I (f) − 1)

3 |I|

}

.

Proof: We skip the proof of this lemma here due to lack
of space. Details can be found in [11].

Example V.2.

• For the identity target function f , the above bound gives

Emin(f) ≥
logq |A|

3
.

• For the arithmetic sum target function f , we get

Emin(f) ≥

√

logq N |A|

3
.

Comment : Note that when |A| 1 N , the bounds in the
above examples are better than the ones presented in previous
sections.

B. A general scheme for computation

We now present a general method to compute functions
under our network model. We will illustrate the method for
boolean functions of the form f : (A∪{φ})N → {0, 1}. For
a general function, the output can be considered as a string of
bits and the above scheme can be used separately to compute
each bit of the output.

Since f has boolean output, it can be written as

f (x1, x2, . . . , xN) =
s

∑

i=1

N
∏

j=1

Bij

where s is some integer such that 1 ≤ s ≤ |A|N ; {Bij} are
boolean variables such that the value of Bij depends only on
xj ; and the sum and product represent boolean OR and AND.
By taking the complement, we have

f (x1, x2, . . . , xN) =
s

∏

i=1

N
∑

j=1

Bij .

Given any input xj , source j creates a vector vj of length s
such that i-th component is Bij . Each source j then sends the
corresponding vector vj into the network and the sink collects
linear combinations of these vectors. If the i-th component of
any of the vectors in the union subspace at the sink is 1, then
a boolean variable Ai is assigned the value 1. This implies
that

Ai =
N

∑

j=1

Bij

and hence,

f (x1, x2, . . . , xN) =
s

∏

i=1

Ai.

Thus, we have a (1, s) scheme to compute any function f with
binary output.

Comment : Since the cost associated with the above code
is s, the above scheme is efficient when the number of input
vectors for which the function value is 1 (or 0) is much smaller
than the total number of possible input vectors.

We now present an example to illustrate the above method.

Example V.3. Let B = {1, . . . , K} and let the source alphabet

A be the power set of B, i.e, A = 2B. Then the set cover

function is defined as

f (x1, x2, . . . , xN) =

1 if B)⊆
N
⋃

i=1

xi

0 otherwise.

In words, each source observes a subset of B and the sink

needs to compute if the union of the source messages covers

B. Define the boolean variable 1A as follows.

1A =

{

1 if A is true

0 otherwise.

Then the function f can be rewritten as

f (x1, x2, . . . , xN) =
K

∑

i=1

N
∏

j=1

1{i#∈xj}.

Then using the scheme described in this section, the set cover

function can be computed using a (1,K) code. This scheme is

in-fact optimal in terms of the smallest possible cost for any

feasible code.

VI. CONCLUSIONS

In this paper we investigated function computation in a
network where the intermediate node operation result in an
unknown linear trasnformation of the source data, through
appropriate choice of the subspace codebooks at the source
nodes. Unlike traditional function computation, that requires
intermediate nodes to be aware of the function to be computed,
our designs are transparent to the intermediate node operations
and oblivious to the network topology.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,” IEEE Journal on Selected Areas in Communica-
tion, vol. 23, no. 4, pp. 755–764, Apr. 2005.

[2] ——, “Toward a theory of in-network computation in wireless sensor
networks,” IEEE Communications Magazine, vol. 44, no. 4, pp. 98–107,
Apr. 2006.

[3] J. Paek, B. Greenstein, O. Gnawali, K. Jang, A. Joki, M. Vieira, J. Hicks,
D. Estrin, R. Govindan, and E. Kohler, “The tenet architecture for tiered
sensor networks,” ACM Transactions on Sensor Networks (TOSN), 2009.

[4] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler, “The tenet architecture for tiered
sensor networks,” in Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys), Oct 2006, pp. 153–166.

[5] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct. 2006.

[6] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591, Aug 2008.

[7] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Noncoherent mul-
tisource network coding,” in Proceedings of the IEEE International
Symposium on Information Theory (ISIT), Jul 2008, pp. 817–821.

[8] C. Fragouli, M. Jafari Siavoshani, S. Mohajer, and S. Diggavi, “On the
capacity of non-coherent network coding,” in Proceedings of the IEEE
International Symposium on Information Theory (ISIT), Jun 2009, pp.
273–277.

[9] L. Keller, N. Karamchandani, and C. Fragouli, “Function computation
over linear channels,” in Proceedings of the IEEE International Sympo-
sium on Network Coding (NetCod), 2010.

[10] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,” IEEE Transactions on
Information Theory, vol. 54, no. 9, pp. 3951–3967, Sep 2008.

[11] N.Karamchandani, L.Keller, C.Fragouli, and M.Franceschetti, “Func-
tion computation via subspace coding,” EPFL Technical Report ARNI-
REPORT-2010-001, http://infoscience.epfl.ch/record/143339, 2010.

[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. North-Holland Mathematical Library, 1977.

[13] L. Keller, M. Siavoshani, C. Fragouli, K. Argyraki, and S. Diggavi,
“Identity aware sensor networks,” in Proceedings of the IEEE Confer-
ence on Computer Communications (INFOCOM), Apr 2009, pp. 2177–
2185.

