
On Benefits of Vector Network Coding
Javad Ebrahimi B.

School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland.

Email: javad.ebrahimi@epfl.ch

Christina Fragouli
School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland.

Email: christina.fragouli@epfl.ch

Abstract—In vector network coding, the source multi-
casts information by transmitting vectors of length L, while
intermediate nodes process and combine their incoming
packets by multiplying them with L × L coding matrices
that play a similar role as coding coefficients in scalar
coding. Vector network coding generalizes scalar coding,
and thus offers a wider range of solutions over which to
optimize. This paper starts exploring the new possibilities
vector network coding can offer along two directions.
First, we propose a new randomized algorithm for

vector network coding. We compare the performance of
our proposed algorithm with the existing randomized al-
gorithms in the literature over a specific class of networks.
Second, we explore the use of structured coding matrices
for vector network coding. We present deterministic de-
signs that allow to operate using rotation coding matrices
and thus result in reduced encoding complexity.

I. INTRODUCTION
In vector network coding, the source multicasts in-

formation by transmitting vectors of length L, while
intermediate nodes process and combine their incoming
packets by multiplying them with L × L coding ma-
trices that play a similar role as coding coefficients in
scalar coding. Vector network coding offers a natural
generalization of network coding, and thus offers a larger
space of choices for optimizing cost parameters, such as
the operational complexity, or the communication block
length. This paper starts exploring the new possibilities
vector network coding can offer along two directions: (i)
design of randomized algorithms and (ii) use of struc-
tured matrices. Both directions build on the deterministic
algorithms for vector code design we proposed in [11]–
[13].
Randomized network coding is perhaps the most

popular approach for network code design as it of-
fers a simple, decentralized operation [4]. The standard
approach has each node select uniformly at random
scalar coefficients over a finite field. In this paper we

propose an alternative two stage approach, where nodes
first randomly select coefficients that are polynomials
of a single variable and then assign a value to the
variable. We analytically evaluate the performance of
our proposed algorithm for a specific class of networks.
This approach is inspired from and developed for vector
network coding, however we show that it can also be
translated to a new design for randomized scalar coding.
Use of structured matrices for vector coding has been

explored in the literature to achieve reduced encoding
complexity. For example, the authors in [14] propose
probabilistic designs that employ permutation matrices
for the coding matrices, while the authors in [15] employ
rotation matrices. We here illustrate through several ex-
amples how we can employ our developed framework in
[11]–[13] for deterministic designs employing structured
matrices. We present sufficient conditions under which
we can select the coding matrices to be a generalized
form of rotational matrices. This technique can be ap-
plied to other families of structured matrices as well.
The paper is organized as follows. Section II provides

our notation and reviews previous work; Section III
develops our randomized code design algorithm and
compares the error probabilities in the vector and scalar
cases for a specific network; Section IV looks at the
use of structured matrices for the design of network
codes; and finally Section V summarizes our results and
discusses directions for further studies on this subject.

II. BACKGROUND

We here introduce the notation we will use in the
paper, and review first the algebraic framework in [1],
[11] and then the deterministic algorithms for vector
network coding in [12]. We review in some detail these
results to provide a more complete image as they form
the foundation on which we develop this work.

A. Algebraic Framework
We here review the algebraic framework with empha-

sis on the vector coding formulation. In vector coding,
the source simultaneously conveys h vectors of length
L to the destination, where L is a design parameter.
We will denote these vectors as {u1, . . . ,uh}. These
vectors take values over a predetermined field Fq. For
example, in most of this paper we will focus on binary
vector coding, where Fq = F2. The intermediate network
nodes collect vectors of length L, linearly process them
by multiplying them with coding matrices with values in
the field Fq, and then further propagate them. We will
denote the L×L coding matrices as {Xk}. Note that to
convey a binary vector of length L from an input x to an
output y over the binary deterministic network, we need
to use the input h times, each time conveying a single
bit, and accordingly, collect h bits from the output y.
Exactly as in the case of scalar coding [1], we can

associate a state variable with every edge of the network,
where now each state variable is a vector of length L,
and write the state-space equations for receiver j as

sk+1 = Ask + Buk

yk = Cjsk + DB
j uk.

(1)

If the network has m = |E| edges, in the above
equations, uk is the Lh × 1 input vector that contains
the h vectors {u1, . . . ,uh}, sk is the Lm × 1 vector
that contains the m state vectors, and yk is a Lh × 1
output vector. Matrices A, B, Cj , and Dj are block
matrices of appropriate dimension, that contain blocks
of size L×L. Without loss of generality, we can assume
that Dj is the all zero matrix. Matrices B and Cj are
fixed block matrices, that have as elements either the
L × L identity matrix I or the L × L all zero matrix 0.
Matrix A is common for all receivers and reflects the
network topology, that is, the way the edges (memory
elements) are connected. The entries of this matrix are
either constant, or the unknown coding matrices {Xk},
and we assume we have ν such unknowns.
The hL × hL transfer matrix for receiver j can be

calculated as

Mj = Cj(I −A)−1B. (2)

Also, let
M ! M1 · M2 · . . . · MN (3)

We observe that the dimensions of matrices Mj de-
pend upon the size parameter L. The multicasting code
design problem is to select the size parameter L and the
L×L coding matrices {Xk} so that all matrices Mj for

j = 1 . . . N are simultaneously full rank. We will denote
the set of L × L matrices with elements over a field Fq

as ML(Fq).
The algebraic formulation for vector network coding

is exactly the same as that for scalar network coding up
to this point; the only difference is that for scalar network
coding {Xk} take values in Fq, while for vector network
coding in ML(Fq). For scalar network coding, let

f(X1, . . . ,Xν) = det(M) (4)

be the determinant of matrix M. The following two
formulations are equivalent.

Scalar Algebraic Formulations [1]:
(1) Select a finite field Fq and values for the vari-
ables {Xk} from the field Fq so that all matrices
Mj become simultaneously full rank.
(2) Select a finite field Fq and values for the vari-
ables {Xk} from the field Fq so that the polynomial
f(X1, . . . ,Xν) evaluates to a nonzero value.

From the sparse zero lemma [4], [23], we can assign to
the variables Xk values randomly in from a large enough
field, and get a valid solution with probability that goes
to one as the field size increases [4].
For vector network coding, we can apply a result

which states that if the matrices {Xk} are commuting,
then detML(Fq) = detf(X1, . . . ,Xν) [11]. We thus have
the following formulations, which in the vector case are
not equivalent (as for the second formulation we restrict
our attention to commuting matrices).

Vector Algebraic Formulations:
(1) Select length L and L × L matrices {Xk} in
ML(Fq) so that all matrices Mj become simultane-
ously full rank.
(2) Select length L and L×L commutative matrices
{Xk} in ML(Fq) so that the the matrix polynomial
f(X1, . . . ,Xν) evaluates to an invertible matrix.

B. Deterministic Designs for Vector and Scalar Network
Coding in [12].

Consider the transfer matrices Mj , 1 ≤ j ≤ N , and
M. The code design in [12] consists of two basic steps:
- Step 1: we express each variable Xi as a poly-
nomials of a single variable X, and we carefully
select these polynomials in a manner that ensures

the polynomial f(X1, . . . ,Xν) does not become
identically zero;

- Step 2: for scalar network coding we select a scalar
value for the variable X from a finite field of
size q as small as possible, and for vector network
coding we select a L × L matrix in ML(F2) for
the variable X of size L as small as possible, so
that the polynomials evaluate to a nonzero value
for scalar coding, and to an invertible matrix for
vector coding.

Step 1: Reducing the multivariate to a single variable
polynomial.: Assume that the variables {Xi} take scalar
values. Using the matrix completion methods in [3], we
can find an assignment of values to the variables {Xi =
αi}, with {αi} in a finite field Fq of size q > 2"log N#,
so that all matrices Mj become invertible.That is,

f(X1 = α1, . . . ,Xν = αν) $= 0 (5)

Assume that the field Fq, where the values {αi}
belong, has size q = 2k with k = %log N& + 1. Using
a standard representation of extension fields [19], we
can express each value αi ∈ F2k , identified in the
previous step, as a binary polynomial pi(X) of degree
at most k−1 in an indeterminate X. We substitute these
polynomials in place of the variables {Xi} in the transfer
matrices Mj and the transfer matrix M.
We calculate the determinant of the transfer matrixM.

Note that the entries of M are polynomials in a single
variable X, and thus the determinant can be calculated
efficiently. We then get a single variable polynomial
f(X), that equals

f(X) ! f(X1 = p1(X), . . . ,Xν = pν(X)). (6)

Now consider the variables {Xi} as L × L matrices,
and assume we express each such matrix as the polyno-
mial pi(X) we have previously identified, of an L × L
matrix X. This assignment ensures that the resulting
matrix polynomial f(X) in (6) is not identically zero.
Our code design problem is now reduced to selecting the
size parameter L and a single matrix X = A so that the
matrix f(A) is invertible.

Step 2: Assignment of value to X

1) Find a polynomial g(X) that is co-prime with
f(X), of degree m as small as possible. We prove in
[12] that we can always find such a g(X) of degree
m ≤ log(N) in polynomial time.
2) If g(X) has degree m, create an m×m matrix A

so that g(A) = 0.

3) Select L = m and X = A. We prove in [12] that
for this selection, f(A) is an invertible m × m matrix.
Thus, each coding matrix Xi is assigned the L×Lmatrix
pi(A).
We close this section by noting that there exists a well-

known homomorphism that allows to translate scalar
coding designs from a field of size 2m to binary vector
code designs using length L = m, summarized for
completeness in the following theorem [19].

Theorem II.1. For every positive integer n and every
prime number p there exists a ring monomorphism (one-
to-one homomorphism) from the finite field Fpn into the
ring Mn(Fp), the ring of all n × n matrices over the
field Fp.

III. A RANDOMIZED ALGORITHM FOR VECTOR
CODING

We are here interested in randomized algorithms for
vector network coding. Clearly, a straightforward ap-
proach is to apply the randomized algorithm proposed
in [4], using a field of size q = pn, with p a prime
number, and translate the randomly selected scalar values
to coding matrices through the homomorphism described
in Theorem II.1. The techniques we developed in [12],
[13] allow to develop alternative randomized algorithms,
that can offer different trade offs, in terms of probability
of error, length of used vectors, and overhead to convey
the selected random combinations. We provide such an
algorithm in the following. We will denote by Fq[X]≤n

the ring of all polynomials of degree at most n and with
coefficients in the field Fq.

Proposed Algorithm
1) Let g(X) be an irreducible polynomial over the
finite field Fq of degree 1 + µh(k − 1), where h
is the min-cut to each receiver, µ is the length of
the longest source-destination path in the network,
and k a parameter we will discuss. Let A be a
matrix whose characteristic polynomial is g(X).
This matrix is communicated in advance to all
network nodes.

2) Suppose that the node i that has di incoming edges,
and receives from them the vectors v1, v2, . . .,
vdi
. For each outgoing edge, the node randomly

selects the di coding coefficients {Xj}, by selecting
di polynomials {pj(X)} of degree at most k − 1,
that is, pj(X) ∈ Fq[X]≤k−1. Each such polynomial
is chosen uniformly at random from the polyno-
mials in Fq[X]≤k−1. It will then send the vector
p1(A) · v1 + p2(A) · v2 + . . . + pdi

(A) · vdi
.

The intuition behind the proposed algorithm is as
follows. Consider the traditional randomized code design
that operates in a specific finite field of a given size
q = 2k , and think of the representation of the elements
as polynomials of degree at most k−1, where operations
are performed modulo a fixed irreducible polynomial
g(X). In the standard design, we select the polyno-
mials {pj(X)} so that, once we make the substitution
f(X) = f(X1 = p1(X), . . . ,Xν = pν(X)), the result-
ing polynomial f(X) does not have g(X) as a factor.
In contrast, in our approach, we make the substitution
in a manner that ensures f(X) is not identically zero.
This is a milder condition we are aiming for, and as
we will argue in the following, this is the only step that
introduces randomness in our algorithm. Thus we hope
to achieve a good performance in terms of probability
of error.
Achieving a non-zero f(X) implies that the transfer

matrix towards each receiver fi(X), i = 1 . . . N , where
N is the number of receivers, is also nonzero. The
degree of the transfer matrix towards each receiver has a
degree that is upper bounded as µh(k − 1). Thus, if we
select an irreducible polynomial g(X) that has degree
1 + µh(k − 1), g(X) is definitely not a factor of any
of the fi(X), for i = 1 . . . N , and as a result, it is also
not a factor of f(X). In other words, as we discussed
in Section II-B, the matrix f(A) is invertible. In other
words, if the polynomial f(X) is nonzero, then we have
ensured by the pre-selection of the matrix A that each
receiver has a full rank set of equations to solve.

Application to Combination Network
The analysis of the error probability of the standard

randomized algorithm [4], applies for any transfer matrix
where the degree in each variable is the same. This is
no longer the case for our algorithms, where the specific
form the transfer matrix has might significantly affect
the resulting probability of error. Part of our ongoing
work is in evaluating what classes of transfer matrix
polynomials are more relevant for arbitrary networks.
Here, we analytically calculate the error probability for
the class of combination networks, where the min-cut to
each receiver equals h = 2. Such a network is depicted in
Fig. 1. It comprises of a source, that is directly connected
to a number of M = 4 bottleneck edges, and receivers
each observing a subset of these edges. As a result,
the transfer matrix polynomial to each receiver has the
simple form X1X2 − X3X4. Note that the combination
network with h = 2 offers a very general class of
networks; for example, all graph coloring problems, over

S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R

Fig. 1. A mobile receiver connects to a subset of bottleneck edges.
The source has no information of the edges where the receiver is
connected.

an arbitrary graph, can be reduced to the problem of
network code design over a combination network with
h = 2 [17]. Note that this network also models wireless
one-hop networks, where a source transmits information
to a set of M relays, while a mobile receiver is at any
time connected to an arbitrary set of two such relays. The
source does not know in advance the set of two relays
that the receiver is connected to; randomized network
coding is thus employed by the relays1 to ensure that
the receiver has a full rank of equations to solve.

A practical consideration

The receiver, in order to be able to decode, needs to
know what are the exact linear combination it received. If
we employ randomized coding over a finite field of size
q = 2k, then each relay needs to send hk = 2k bits to the
receiver, i.e., k bits per coefficient. In our approach, we
will instead have each relay select a binary polynomial
of degree at most k − 1: to convey this information, we
still need to send 2k bits, i.e., k bits per polynomial.
This is because, in both cases we are choosing values
for variables from sets of the same sizes. In the scalar
case we are choosing the values from F2k and in vector
case we choose them from the set of all polynomials of
degree at most k − 1.

1If the number of relays M is known in advance, and there
is perfect time synchronization, deterministic network code design
methods can also be used for this type of networks. This is however
not always the case in practical networks.

Error Probability Analysis
As we discussed, we will compute the probability of

the event X1X2−X3X4 = 0 in the following scenarios:

Randomized Scalar Network Coding [4]
Here we assume that the Xi’s are i.i.d according to

the uniform distribution on the finite field F2k . In this
scenario if X1,X2 and X3 are taken randomly andX3 $=
0 then there exists at least one value for X4 so that
X1X2 − X3X4 = 0. So we have P (X1X2 − X3X4 =

0) = P (X3 = 0)P (X1X2 − X3X4 = 0
∣

∣

∣
X3 = 0) +

P (X3 $= 0)P (X1X2 − X3X4 = 0
∣

∣

∣
X3 $= 0) ≥ 1

2k (1 −

(2k−1
2k)2) + 2k−1

2k × 1
2k ≈

1
2k .

Proposed Algorithm
Here the Xi’s are selected i.i.d according to the

uniform distribution on the set F[X]≤k−1 of the binary
polynomials with degree at most k − 1. Let p !

Pr(X1X2 − X3X4 = 0
∣

∣

∣
Xi ∈ F[X]<k, i = 1, . . . , 4).

To be able to approximate p, we need the following
useful interpretation of error event. The error occurs
when we assign random polynomials to the variables
X1,X2,X3,X4 so that X1X2 = f and X3X4 = f for
some polynomial f of degree at most 2k − 2. Therefore
the error probability p is upper bounded by the following
quantity:

p
(a)

≤
X

f∈F≤2k−2

P (X1X2 = f)P (X3X4 = f)

(b)

≤
X

f∈F≤2k−2

P (X1|f)P (X2 =
f

X1
)P (X3|f)P (X4 =

f
X3

)

(c)

≤
1

22k

X

f∈F[X]≤2k−2

P (X1|f)P (X3|f)

(d)

≤
1

22k

X

f∈F[X]≤2k−2

(
M2k−2

2k
)2

(e)
=

1
2
(
M2k−2

2k
)2

where Mm is the maximum number of distinct divisors
a polynomial of degree at most m can have.
The first inequality comes from the earlier interpre-

tation of the error probability. (b) comes from the fact
that for independent random variables Xi,Xj we have
P (XiXj = f) = P (Xi|f)P (Xj = f

Xi
). Inequality (c)

is the consequence of the fact that for every fixed poly-
nomial g, P (Xi = g) < 1

2k . Inequality (d) is because
P (Xi|f) ≤ number of divisors of f of degree at most k−1

2k . Finally,
the last inequality comes from simple calculation.
So, in order to obtain an upper bound on P (X1X2 −

X3X4 = 0) in this scenario, we need to find an upper

bound on the number of factors of a polynomial of a
given degree n = 2k − 2. More precisely, the error
probability in this case is upper bounded by p ≤ 1

2(Mn

2k)2

where n = 2k − 2. Now we try to find an upper bound
for this quantity, by upper bounding Mn.
Let φ(n) be the number of irreducible binary polyno-

mials of degree n. From [27] we know that:

Mn ≤
s

∏

i=1

(n +
∑s

j=1 jφ(j)

i
∑s

j=1 φ(j)

)φ(i) (7)

in which s is upper bounded by log(n) + 1. Since the
right hand side of this inequality is an increasing function
of s for s ≤ 1+ log(n), we can replace s by 1+ log(n).
Notice that for every positive integer n we have

2n−2.2n/2

n ≤ φ(n) ≤ 2n

n . Combining these inequalities
we obtain:

Mn

(f)
≤

1+log(n)
∏

i=1

(n +
∑1+log(n)

j=1 jφ(j)

i
∑1+log(n)

j=1 φ(j)

)φ(i)

(g)
≤

1+log(n)
∏

i=1

(n +
∑1+log(n)

j=1 2j

i
∑1+log(n)

j=1 φ(j)

)φ(i)

(h)
≤

1+log(n)
∏

i=1

(5n

i
∑1+log(n)

j=1 φ(j)

)φ(i)

(i)
≤

1+log(n)
∏

i=1

(5n

i
∑1+log(n)

j=1 (2j
−2.2j/2

j
)

)φ(i)

(j)
≤

1+log(n)
∏

i=1

(5n

i 21+log(n)

2(log(n)+1)

)φ(i)

(k)
≤

1+log(n)
∏

i=1

(5n

i n
log(n)

)φ(i)

(l)
=

1+log(n)
∏

i=1

(5 log(n)

i

)φ(i) (m)
<

1+log(n)
∏

i=1

(5 log(n))φ(i)

(n)
≤ (5 log(n))

P1+log(n)
i=1 φ(i)

(o)
≤ (5 log(n))

n
log(n)−2

The inequality f is due to (7). g is because φ(j) ≤ 2j .
h is deduced from g by simple calculation. i is the
consequence of the lower bound we have for φ(i). j, k, l
are trivial inequalities. To obtain m, we dropped the
denominator of the fraction. Notice that this is a very
rough estimation but even by this approximation still we
can show that the error probability in this case is smaller
than the error probability in scalar case. Finally, n, o are
trivial inequalities.

Therefore p ≤ 1
8

(5 log(n))
2n

log(n)−2

2n = 2
2n log(5) log log(n)

log(n)
−3

2n .
Notice that for large n, the following upper bound of

p is significantly smaller than 1
2k which was the error

probability in the scalar case. In fact, this upper bound
of the error probability is not so informative for small
k. However computer simulation confirms that even for
small values of k, still our algorithm has smaller error
probability compared to the randomized scalar network
coding.
In figure 2, the error probability of our method is

compared to the random vector codes using general
matrices and also using the random matrices which are
either zero or invertible. The size of the used matrices is
k× k. Notice that the for k > 6 the error probability for
the case that we use zero or invertible binary matrices
is not exhibited in the graph. This is due to the fact that
in the simulation results, all the generated codes were
correct.
In figure 3, we compared the error probability of scalar

network codes with the error probability of our vector
code and also with the theoretical upper bound of the
error probability of our code, given in equation (e) and
inequality (7).
We must mention that both of these simulation results

are based on 100, 000, 000 randomly chosen values for
the variables X1,X2,X3 and X4.

IV. SPECIAL TYPES OF VECTOR NETWORK CODES
In this section we will introduce a familiy of matrices

for which we have fast matrix multiplication algorithms
(see [25])
Rotational matrices over the binary field are proposed

in [15] to achieve low complexity encoding at network
nodes. We here consider a more general form of rotation
matrices, over an arbitrary field, and show how our
developed framework can be used in order to design
network codes that employ such matrices.
An L × L matrix A over a field Fq is called

t-th order rotational matrix with respect to the
L-tuple (a1, a2, . . . , aL) in Fq and denoted by
rot(t; a1, a2, . . . , aL) if its entries are defined as
following:

A[i, j] =

{

ai if j = (i + t) mod L
0 else

Generally all the indices are taken modulo the size of
A.
Observe that the product of two rotational matrices is

again a rotational matrix. More precisely we have the

0 1 2 3 4 5 6 7 8 9
10−7

10−5

10−3

10−2

10−1

100

k

Er
ro

r P
ro

ba
bi

lit
y

Error probability of our method
Error probability of vector coding using general matrices
Error probability of vector coding using Invertible or Zero matrices

Fig. 2. Comparison between error probabilities of vector coding
using general matrices, vector coding using nonzero non-invertible
matrices and our method of vector coding.

0 1 2 3 4 5 6 7 8 9
10−8

10−6

10−4

10−3

10−2

10−1

100

k

Er
ro

r P
ro

ba
bi

lit
y

Error probability of our method
Error probability of scalar coding
Theoretical lower bound of error probability
for our method

Fig. 3. Comparison between error probabilities in scalar coding, our
method of vector coding and theoretical bound of the error probability
in our method.

following lemma (the proof is straightforward and we
omit it).

Lemma IV.1. For every choice of the field elements ai’s
and bi’s and any non-negative integers t1, t2 we have:
rot(t1; a1, a2, . . . , aL)× rot(t2; b1, b2, . . . , bL) = rot(t1 +
t2; a1bt1+1, a2bt1+2, . . . , aLbt1+L).

As a result, taking the powers of a rotational matrix
leads to a rotational matrix as well.
Recall that in our algorithms, we substitute the coding

coefficients {Xi} to be in general polynomials of an
indeterminate X. From the previous lemma, if we would
like the matrices {Xi} to be rotational matrices, we can
simply select the variable X to be a rotational matrix,

and then have the variables {Xi} be powers of X;
namely,

Xi = Xmi (8)

for some exponent mi. We then need to select the
exponents {mi} so that the polynomial f(X1, . . . ,Xν)
does not become identically zero. We can easily do this
by slightly modifying Step 1 in our algorithms.
Alternative substitution for Step 1: As before we

employ the algorithm in [3] to find an assignment
Xi = αi with f(α1, α1, . . . , αν) invertible. Next, let α
be a primitive element of the finite field Fq, we can
then express each αi in Fq as αi = αmi for some mi.
Therefore we have:

0 $= f(α1, α2, . . . , αν) = f(αm1 , αm2 , . . . , αmν) = f(α).

Selecting these values for the exponents in (8) concludes
the first step.
Another easy to show statement about the rotational

matrices is the following lemma.

Lemma IV.2. The characteristic polynomial of the ma-
trix rot(1; a1, a2, . . . , aL) is XL −

∏L
i=1 ai

Rotational coding may not always lead to a solution;
the following theorem helps explore when it is possible.

Theorem IV.3. Consider a non-identically zero polyno-
mial f(X), resulting from the transfer polynomial of a
network f(X1, . . . ,Xν) by substituting Xi = Xmi . If
f(X) is co-prime with any of the polynomials g(X) =
XL − c for some c ∈ Fq, then we can solve the network
coding problem in polynomial time using rotational
coding.

Proof: If such a co-prime factor exists, use X =
rot(t; 1, 1, . . . , 1, c).

Corollary 1. If there exists an assignment for the
variables of the polynomial f with powers of a single
variable X so that f(X) is co-prime with a polynomial
g(X) = Xk − c for some c ∈ Fq, then the multicast
network code design is solvable with rotational coding.

V. CONCLUSIONS AND DISCUSSION

In this paper, we started exploring benefits vector
network coding can offer. We proposed a randomized
algorithm and we analyzed it for a simple combination
network. For that particular case we showed that asymp-
totically our algorithm outperforms the scalar random
network coding algorithm. We discussed the use of
structured matrices and gave sufficient conditions for

employing such matrices with the goal of reducing the
encoding complexity.
Several research directions remain open. These in-

clude, analyzing the performance of our proposed ran-
domized algorithm for general networks, and potentially
refining such algorithms using some knowledge of the
network topology. Additionally exploring benefits in
terms for example of decoding complexity that use of
structured matrices can offer.

REFERENCES

[1] R. Koetter and M. Médard, “Beyond routing: an algebraic
approach to network coding”, IEEE/ACM Transactions on Net-
working, vol. 11, no. 5, pp. 782-796, October 2003.

[2] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain and
L. Tolhuizen, “Polynomial time algorithms for multicast net-
work code construction”, IEEE Trans. Inform. Theory, vol. 51,
no. 6, pp. 1973–1982, 2005.

[3] N. Harvey, “Deterministic network coding by matrix comple-
tion”, MS Thesis 2005.

[4] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger,
“A random linear network coding approach to multicast,” IEEE
Trans. Inform. Theory,, vol. 52, iss. 10, pp. 4413-4430, October
2006.

[5] C. Fragouli and E. Soljanin, “A connection between network
coding and convolutional codes,” IEEE International Confer-
ence on Communications (ICC), pp. 661–666, vol.2, June 2004.

[6] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network
information flow”, IEEE Trans. Inform. Theory, vol. 46, 2000.

[7] S-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,”
IEEE Trans. Inform. Theory, vol. 49, pp. 371–381, Feb. 2003.

[8] S. Avestimehr, S N. Diggavi and D N C. Tse, “Wireless net-
work information flow”, Proceedings of Allerton Conference on
Communication, Control, and Computing, Illinois, September
2007.

[9] S. Avestimehr, S N. Diggavi and D N C. Tse, “A deterministic
approach to wireless relay networks”, IEEE Allerton, September
2007.

[10] S. Avestimehr, S N. Diggavi and D N C. Tse, “Wireless
netwokr information flow: a deterministic approach”, arXiv :
0906.5394, 2009.

[11] J. Ebrahimi B. and C. Fragouli, “Multicasting algorithms for
deterministic networks”, IEEE ITW, Cairo, January 2010.

[12] J. Ebrahimi B. and C. Fragouli, “Vector network coding algo-
rithms”,ISIT, 2010.

[13] J. Ebrahimi and C. Fragouli, “Vector net-
work coding”, EPFL Technical Report, http :
//infoscience.epfl.ch/record/144144, 2010.

[14] S. Jaggi, Y. Cassuto, M. Effros, “Low complexity encoding for
network codes,” ISIT, 2006.

[15] M. Khojastepour, A. Keshavarz-Haddad, “Rotational coding
achieves multicast capacity of deterministic wireless
networks”, IEEE Allerton, September 2009. URL :
http://www.ece.rice.edu/ alireza/Mypublications/Alireza-
DeterministicChannelRotationalCoding.pdf

[16] M. Kim, M. Medard, “Algebraic network coding ap-
proach to deterministic wireless relay networks”, http :
//arxiv.org/pdf/1001.4431.

[17] C. Fragouli and E. Soljanin, “Subtree Decomposition for Net-
work Coding”, ISIT, 2004.

[18] C. Fragouli and E. Soljanin, “Information flow decomposition
for network coding,” IEEE Trans. Inform. Theory, vol. 52, iss. 3,
pp. 829–848, March 2006.

[19] P. Morandi, “Field and Galois Theory”, Springer, 1996.
[20] R. M. Gray, “Toeplitz and Circulant Matrices: A Review ”, Now

Publishers, 2006.
[21] I. Kovacs, D.S. Silver and S.G. Williams, ”Determinants

of commuting-block matrices”, The American Mathematical
Monthly, vol. 106, no. 10, pp. 950-952, December 1999.

[22] R.A. Horn and C.R. Johnson, “Matrix Analysis”, Cambdrige
University Press.

[23] J.T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities”, Journal of the ACM, vol. 27, no. 4, 1980.

[24] P.J. Davis, “Circulant Matrices”, Chelsea Publishing, New York
1994.

[25] G.H. Golub, C.F. Van Loan, “Matrix Computations ”, Johns
Hopkins Studies in Mathematical Sciences, 1996.

[26] K. Menger, “Zur allgemeinen Kurventheorie,” Fund. Math.
vol. 10, pp. 95-115, 1927.

[27] Ph. Piret, “On the number of divisors of a polynomial over
GF(2)”, Lecture Notes in Computer Science,vol 228, October
1984.

