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Abstract—Replication is a widely used method to protect large-
scale data storage systems from data loss when storage nodes
fail. It is well known that the placement of replicas of the
different data blocks across the nodes affects the time to rebuild.
Several systems described in the literature are designed based
on the premise that minimizing the rebuild times maximizes the
system reliability. Our results however indicate that the reliability
is essentially unaffected by the replica placement scheme. We
show that, for a replication factor of two, all possible placement
schemes have mean times to data loss (MTTDLs) within a factor
of two for practical values of the failure rate, storage capacity,
and rebuild bandwidth of a storage node. The theoretical results
are confirmed by means of event-driven simulation. For higher
replication factors, an analytical derivation of MTTDL becomes
intractable for a general placement scheme. We therefore use
one of the alternate measures of reliability that have been
proposed in the literature, namely, the probability of data loss
during rebuild in the critical mode of the system. Whereas for a
replication factor of two this measure can be directly translated
into MTTDL, it is only speculative of the MTTDL behavior for
higher replication factors. This measure of reliability is shown
to lie within a factor of two for all possible placement schemes
and any replication factor. We also show that for any replication
factor, the clustered placement scheme has the lowest probability
of data loss during rebuild in critical mode among all possible
placement schemes, whereas the declustered placement scheme
has the highest probability. Simulation results reveal however
that these properties do not hold for the corresponding MTTDLs
for a replication factor greater than two. This indicates that
some alternate measures of reliability may not be appropriate
for comparing the MTTDL of different placement schemes.

I. INTRODUCTION

In today’s large-scale distributed storage systems, vast
amounts of user data are stored among a large number of
nodes and disks. Distributed peer-to-peer storage systems,
such as Farsite, OceanStore, CFS, PAST, Glacier, and Shark,
aim at providing inexpensive, highly-available storage without
centralized servers (see [1] and the references therein). In
the presence of component failures, such as node and disk
failures, reliability, long-term durability, and high availability
are ensured by storing user data in a redundant manner.
Redundancy is achieved by employing the established, widely
used replication and erasure coding schemes.

Large-scale data storage systems use various redundancy
schemes to prevent data loss that can occur because of multiple
node failures. Replication is one of the widely used schemes
where each data block is replicated and the replicas are stored
in different nodes to improve the chances that at least one

replica survives when multiple storage nodes fail. To maintain
redundancy in the system, whenever a node fails, a rebuild
process is initiated to create copies of the blocks that were lost.
Wide-scale replication increases the reliability, availability, and
durability, but it also increases the bandwidth and storage
requirements of the system.

How the replicas are placed plays an important role in how
much time the rebuild process takes, and this in turn affects
the reliability of the system. In this paper, upper and lower
bounds are derived on one particular measure of reliability of
the storage system for all possible replica placement schemes.
To keep the problem analytically tractable, the measure of
reliability that is used is different from the usual measure
of reliability, the mean time to data loss (MTTDL). For a
replication factor of two, this measure of reliability allows an
explicit calculation of MTTDL, whereas for higher replication
factors, it is only speculative of the nature of the MTTDL.

The theoretical results obtained strongly indicate that this
measure of reliability is affected only negligibly by the choice
of the replica placement scheme for a wide range of node
failure rates and node rebuild rates. This is further supported
by event-driven simulations which agree with the theoretical
MTTDL predictions for a replication factor of two. However,
for a replication factor of three, simulation results show that
this is no longer true, and that the reliability will be strongly
affected by the choice of replica placement scheme. This
implies that the measure of reliability used, while suitable
for predicting the MTTDL for a replication factor of two,
is no longer suitable for predicting the MTTDL for higher
replication factors. From our simulation results, we conjecture
that another measure of reliability may be more appropriate
for predicting the MTTDL behavior. As a result, we have also
considered an alternate measure of reliability and verified its
appropriateness.

For a replication factor of two, we demonstrate that reducing
rebuild times, and consequently the window of vulnerability,
does not necessarily lead to improved reliability. This is
because the reliability depends not only on the window of
vulnerability, but also on the number of nodes that have the
replicas of the data in the node lost. Distributing replicas across
many nodes increases the probability that a second failure
affects some of these replicas, thereby causing data loss.

The remainder of the paper is organized as follows: Sec-
tion II discusses some related work; Section III describes

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the storage system model and the parameters considered;
Section IV describes two measures of reliability of a storage
system; Section V contains the main contribution of this paper;
Section VI gives the derivation of the main result; Section VII
shows event-driven simulation results on MTTDL to compare
with the theoretical predictions; and Section VIII concludes
the paper.

II. RELATED WORK

Data placement issue has been considered in [2]. The em-
phasis of that work was on redundancy placement, namely, the
placement of erasure coded data, rather than replica placement.
The reliability of a system with the number of nodes equal to
the replication factor is addressed in [3]. The paper provides
an explicit expression of MTTDL for such a system.

Decentralized storage systems, such as CFS, OceanStore,
Ivy, and Glacier, use replication to provide reliability, but
employ a variety of different strategies for placement and
maintenance. In architectures that employ distributed hash
tables (DHTs), the choice of algorithm for data replication
and maintenance can have a significant impact on both per-
formance and reliability [4]. The paper proposes five different
placement schemes. The scheme that minimizes the probability
of data loss is the block placement scheme, in which replicated
data is stored in the same set of nodes. Similar results are also
presented in [5], [6]. The findings of these works match with
our theoretical results, which also show that less distributed
schemes have higher reliability.

System reliability depends both on the recovery mechanism
and on the replica placement scheme. Fast recovery schemes
reduce the window of vulnerability and therefore improve
the system reliability [7], [8], [9]. Rebuild times are reduced
by appropriate replica placement strategies. In particular, dis-
tributing replicas over many storage nodes in the system aids
in quick rebuild upon failure. However, their analysis is based
on an idealistic assumption that replica-sets (referred to as
redundancy sets and groups in [7], [8], and as objects in [9])
fail independently. In contrast, in our analysis we assume that
nodes fail independently and take into account the correlations
among different replica-sets that this induces. As we show in
this paper, this leads to different results.

Largely two approaches have been taken in comparing
reliabilities of systems with different placement schemes: (i)
approximate methods to compute MTTDL [9], and (ii) use
of measures of reliability other than MTTDL, such as the
probability that a storage system survives without data loss
until time t as a function of t [5], [6], and probability of data
loss within a fixed period of time [8], [4]. In this paper, we
take the latter approach and use simulations to compare the
MTTDL behavior to the behavior of the measure used.

III. SYSTEM MODEL

The model and assumptions of the storage system consid-
ered and the failure and rebuild model used are described in
this section. Table I lists the different parameters used.

TABLE I
PARAMETERS OF A STORAGE SYSTEM

c storage capacity of each node (bytes)
n number of storage nodes
r replication factor
s size of each data block (bytes)
b rebuild bandwidth available at each node (bytes/s)
λ Failure rate of a storage node (s−1)

A. Storage System

The storage system considered is a block-based storage
system comprising n storage nodes with total data storage
capacity of nc bytes, where c is the capacity of each storage
node. Every user data block is of size s bytes, and is replicated
r times. These r replicas are stored in the system such that no
two replicas of a data block are in the same node. The exact
way in which the r replicas of each data block are stored
depends on the placement scheme used. For our theoretical
calculations, we impose no restriction on the set of placement
schemes that can be used. However, for simulations, we use
the following three schemes: (a) declustered, (b) clustered, and
(c) k-clustered placement.

(a) Declustered Placement: The r replicas of each data block
are stored in some r nodes out of the n nodes in the system.
There are

(
n
r

)

ways of choosing r nodes from the n nodes. In
this placement scheme, all

(
n
r

)

choices are equally used for
storing replicas. Therefore, when a node fails, the replicas of
the blocks in the failed node will be spread over all remaining
nodes. As the total capacity of the system is nc and the total
size of a block and its replicas is rs, this placement is possible
only if s ≤ nc/

(

r
(
n
r

))

. We typically consider a node with
capacity c = 12 TB (consisting of 12 disks, each having 1 TB
capacity [10]) and number of nodes from n = 4 to n = 96
in our simulations. For declustered placement to be possible
for 100 nodes, the size of a data block s must be less than
about 121.2 GB and 2.5 GB for a replication factor of two
and three, respectively. Furthermore, for all

(
n
r

)

choices to be
equally used, the number of data blocks must be a multiple
of

(
n
r

)

. If it is not, there will be differences in the number of
blocks that are shared among different sets of nodes. However,
for realistic values of node numbers, e.g. n ≤ 1000, and small
blocks sizes, e.g. s ≤ 10 MB, this difference is negligible.

(b) Clustered Placement: In this placement scheme, the n
nodes are divided into disjoint sets of r nodes. All r nodes in
a given set are mirrors of each other, that is, they store replicas
of the same set of data blocks.

(c) k-Clustered Placement: This is a generalization of above
two schemes. In this placement scheme, the n nodes are
divided into disjoint sets of k nodes called clusters. Each of
these clusters is an independent storage system with k nodes
with a declustered placement scheme. No data block in one
cluster is replicated in another cluster. It is easy to see that
n-clustered placement is the same as declustered placement
and r-clustered placement is the same as clustered placement.
So for different values of k between r and n, we have a broad
range of different placements schemes.



B. Failure Model

Storage nodes are comprised of one or more disks, a mem-
ory, processor, network interface, and power supply. Typically,
these components are less reliable than the disks, and the
failure of any of these components leads to a node failure [11].
The disks inside a node are assumed to be protected by a RAID
scheme which also corrects unrecoverable or latent sector
errors by using either scrubbing or intra-disk redundancy [12].
Disk failures are assumed to cause a node failure only if
the RAID system is unable to recover from these failures.
Furthermore, in systems that use SMART (Self-Monitoring
Analysis and Reporting Technology) for disks, the disks can
be aggressively replaced to ensure that disk failures are not
the main cause of node failures. Therefore, in our model,
node failures are assumed to be caused primarily by the failure
of components other than disks, such as the RAID-controller,
memory, processor, network interface, and power supply. The
failure of these components, and therefore the failure of nodes,
is assumed to be independent with exponentially distributed
times to failure. In particular, the time to failure of a node,
TF , is assumed to be exponentially distribute with rate λ, that
is, TF ∼ exp(λ). Note that this assumption is in contrast to
disk failures, which are neither independent nor exponentially
distributed [13], [14]. However, the above model may not
apply to node failures that are caused by software bugs,
DDoS attacks, virus/worm infections, node overloads and
human error, as these factors may result in correlated node
failures [15].

C. Rebuild Model

When a node fails, a rebuild process is initiated to restore
the lost replicas and bring the system back to its original state,
in which each block has r replicas. Spare space is assumed to
be reserved on each node for rebuild, and the new replicas of
the lost blocks are created in the spare space of the surviving
nodes. Once the new replicas have been created in the spare
space, a new node is brought in and these newly created
replicas are transferred to the new node. The main advantage
of creating replicas in the spare space first as opposed to
creating replicas directly in a new node is that rebuild can
be done in parallel (distributed rebuild, see Fig. 1) using the
rebuild bandwidth available at many surviving nodes, thereby
reducing the rebuild time. Also, once the replicas have been
created, the system can survive another node failure without
data loss. If a new node was brought in first and the new
replicas were created directly in the new node, the rebuild
speed would be restricted to the write bandwidth available at
the new node. This leads to a higher probability that any of the
surviving nodes fail before rebuild completes, thereby causing
data loss.

During the rebuild process, an average read-write bandwidth
of b bytes/s is assumed to be available at each node for rebuild.
This is usually only a fraction of the total bandwidth available
at each node, the remainder being used to serve system-user
requests. During the rebuild process, let there be wi data
blocks that are to be read from node i and w′

i blocks that are

distributed rebuild

w w1 w2 w3

distribution of critical blocks w = (w1, w2, w3)
w1 + w2 + w3 = w

move new replicas to new node after successful rebuild

w′

1
w′

2
w′

3

distribution of new replicas w
′(w) = (w′

1
, w′

2
, w′

3
)

w′

1
+ w′

2
+ w′

3
= w

– critical data blocks

– non-critical data blocks

– spare space

– newly created replicas of critical data blocks

Fig. 1. Example of rebuild model for a replication factor r = 2 system. When
one node fails, the critical data blocks are present in the surviving nodes. The
rebuild process creates replicas of these critical blocks by copying them from
one surviving node to another in parallel.

to be written to node i. The effective bandwidth bi available
for reading blocks from node i is proportional to the amount
of data read, that is,

bi =
wi

wi + w′
i

b. (1)

One may argue that the fastest way to read out all wi blocks
before node i fails would be to first read all these blocks using
the full rebuild bandwidth b available, and then to write the w′

i

blocks. However, in a large system, if all
∑

i wi = w blocks
from all the nodes are read in parallel at full rebuild bandwidth
without copying them to other nodes simultaneously, then a
large reliable buffer capable of storing data at rates of up to
(n − 1)b is required to store these w blocks until they have
been fully read out, and then copy them from the buffer to the
nodes. We assume that in general such a large buffer capable
of storing data at such high speeds is not available. This means
that we need to interleave the reads and writes at each node,
that is, a few blocks are read out from each node, then the
copies of these blocks are written to other nodes, and so on
until all blocks have been read and copied. This results in an
effective read bandwidth bi as given above.

We assume that a typical disk has a read-write bandwidth of
40 MB/s. Therefore a node with 12 disks will have about 480
MB/s of read-write bandwidth. During the rebuild process, if
a fifth of this is used for rebuild on an average, then b =
96 MB/s. For a system with n = 100 nodes, the network



bandwidth must support up to about (n − 1)b ≈ 9.6 GB/s
for exchange of data among all nodes during rebuild. This
number is, however, the worst-case estimate, which holds for
the case of declustered placement because the replicas of the
lost data blocks are present in all surviving nodes. On the other
hand, clustered placement only requires about rb = 0.2 and
0.3 GB/s of network bandwidth for exchange of data during
rebuild for a replication factor of 2 and 3, respectively. This
is because in clustered placement the replicas of the lost data
block are present only in (r − 1) nodes, and new replicas are
written “effectively” to one node. In this paper, the network
bandwidth is considered to be sufficiently high (> (n − 1)b)
to allow exchange of data among all nodes during rebuild.

The mean time to complete reading all wi blocks from node
i is given by

E
[

T i
R(wi, w

′
i)

]

=
wis

bi
=

{ s

b
(wi + w′

i) if wi %= 0,

0 if wi = 0.
(2)

The nodes are expected to serve user requests while per-
forming rebuild and there is also some randomness in the
location of the data to be rebuilt. As the bandwidth b available
for rebuild is only on average, the time to complete reading all
wi blocks at node i is assumed to be exponentially distributed,
that is,

T i
R(wi, w

′
i) ∼ exp

(

1/E
[

T i
R(wi, w

′
i)

])

. (3)

It is further assumed that T i
R(wi, w′

i) is independent of

T j
R(wj , w′

j) for i %= j and independent of the times to failure

T i
F . This is because, once wi and w′

i are fixed for all nodes,
the only sources of randomness are the location of the blocks
to be read and the serving of user requests. The location of
these blocks and the user requests are not assumed to have any
specific patterns that might induce correlations in the access
times across different nodes.

IV. MEASURES OF RELIABILITY

Two measures of reliability that will be used in this paper
are described in this section.

A. Mean Time to Data Loss (MTTDL)

A data loss is said to have occurred in the system if the
replicas of at least one data block have been lost by the
system and cannot be restored. The average time it takes for
the system until a data loss event occurs, also referred to as the
mean time to data loss (MTTDL), is a well-known measure
of reliability of the system that is widely used by the storage
systems community.

Analytically computing this measure for a replication-based
system with a given replica placement scheme under certain
failure and rebuild models of the nodes is intractable except for
a few select cases, such as for the basic mirroring scheme for
replications factors r ≥ 2 [3]. To circumvent this problem,
some authors have proposed approximate continuous-time
Markov chain models that enable analytical tractability of
the MTTDL computation [9], whereas others have proposed

different measures of reliability, such as the probability that
a storage system survives without data loss until time t as a
function of t [5], [6]. We take the latter approach and use a
different measure of reliability, namely, the probability of data
loss during rebuild in the critical mode of the system. This
measure has also been used in [16, Eq. (38)]. The difference
to earlier work [5], [6] is that in this measure we also take the
rebuild time into account. Rebuild time, and hence the time
window of vulnerability, is known to be greatly affected by the
placement scheme used and hence it is an important factor to
be considered in measuring reliability. For a replication factor
of two, we directly relate the newly introduced measure to the
MTTDL.

B. Probability of Data Loss during Rebuild in Critical Mode

To keep the problem analytically tractable, a simple measure
of reliability is used. Assume that at a given point in time,
(r − 1) nodes of the system, chosen uniformly at random,
have failed. This will result in the loss of one or more replicas
of some user data blocks. Data blocks that have lost (r − 1)
copies and have only one other copy surviving in the system
are called critical blocks. Data blocks that have 2 or more
copies in the system are called non-critical blocks. The nodes
containing these critical blocks are called critical nodes and
the system is said to be in a critical mode when there is at least
one critical block in the system. The rebuild process attempts
to first create replicas of these critical blocks to prevent data
loss that can occur if any of the critical nodes fail. The measure
of reliability P is defined as

P = Pr{DL|(r − 1) nodes failed}, (4)

where DL is the event that data loss occurs because of a critical
node failure before the critical blocks in that node have been
copied to another node. If this event does not occur, the system
goes to a new state upon exiting the critical mode. As the
rebuild of non-critical data blocks is still pending, this state
is different from the initial one with all data blocks having
r replicas. Modeling of the exact operation of the system
using a Markov chain requires an enormous number of such
intermediate states. This is why the evaluation of MTTDL is
intractable.

The probability of loss of non-critical data blocks caused
by two or more node failures before the rebuild of critical
blocks completes is typically of higher order than P and
hence ignored. This can be seen in two placement examples:
(i) In declustered placement, if a node fails after the critical
blocks in it have been copied to another node, it does not
result in data loss. However, if two or more nodes fail after
the corresponding critical data in them have been copied to
other nodes, it could result in the loss of non-critical data
blocks. The probability of such an event happening before the
rebuild completes is however negligible compared to P . (ii)
In clustered placement, each mirrored set is an independent
storage system which is unaffected by node failures and
rebuilds in other mirrored sets. Given that (r−1) nodes failed,
there are two cases: (a) all these (r − 1) nodes belonged to



the same mirrored set, or (b) all these (r − 1) nodes did not
belong to the same mirrored set. In case (a), the system is in
critical mode, but all the non-critical data have r replicas. This
means that the probability of losing a non-critical data block
by losing r nodes in the same mirrored set before the rebuild
in the critical mirrored set completes is negligible compared
to P . In case (b), there are no critical blocks to rebuild and
so the time to “rebuild” critical blocks is zero. Therefore, the
probability of losing non-critical data blocks before rebuild
completes is zero.

For a replication factor of two, the measure of reliability P

can be directly translated to MTTDL when the mean time to
rebuild is much smaller than the mean time to failure, that is,
when E[TR] ' E[TF ].

MTTDL =
1

nλP
, r = 2, E[TR] ' E[TF ]. (5)

This can be shown for a k-clustered placement (and thereby
for declustered and clustered placements as well) as follows.
Let MTTDLclus. be the MTTDL of a cluster. As the clusters are
independent of each other and there are n/k clusters in total,
the MTTDL of the system is MTTDLclus./(n/k). In a given
cluster, the loss of a node leads to critical mode. The mean
time taken to lose a node is E[TF ] = E[min{T 1

F , · · · , T k
F }] =

1
kλ

. As the probability of data loss in critical mode is
P , the cluster enters critical mode 1

P
times on average

before data loss occurs. Assuming that the time to rebuild
E[TR] ' E[TF ], MTTDLclus. = 1

kλ
× 1

P
. Therefore, MTTDL

= MTTDLclus./(n/k) = 1
nλP

.

V. EFFECT OF REPLICA PLACEMENT ON RELIABILITY

The following proposition shows that the measure of relia-
bility P is not affected much (within a factor of two) by the
choice of replica placement scheme.

Proposition V.1. For the system model described in Sec-

tion III, for all possible replica placement schemes and for

any replication factor r ≥ 2, the measure of reliability P as

defined in Section IV-B is bounded as follows:

λnc

b

1
(

n
r−1

)
1

(

1 + λc
b

) ≤ P <
2λnc

b

1
(

n
r−1

) . (6)

Proof: The proof is given in Section VI.
These bounds lie approximately within a factor of two for all

practical values of the failure rate λ, node rebuild bandwidth
b, and node capacity c. For λ = 10−5 h−1, b = 480 MB/s,
and c = 12 TB, the factor

(

1 + λc
b

)

is equal to 1.001 which
implies that the reliability of all placement schemes for a given
replication factor is of about the same order. Even for low-
power systems such as FAWN [17] and Pergamum [18] with
comparable failure rate λ and an order of magnitude higher
rebuild time c

b
, the factor

(

1 + λc
b

)

is equal to 1.01 and the
bounds are still close to each other.

Furthermore, as will be shown in Section VI-B, Lemma
VI.1, the upper bound corresponds to the case of uniformly
distributed placement of replicas, also referred to as random
placement [9]; and the lower bound corresponds to the case

of mirrored placement of replicas, also referred to as basic
mirroring [5]. Similar results have also been obtained by
others [5], [6], albeit only for a select number of schemes
and a replication factor of two. The above result differs from
the already known results in two main ways: (1) it holds for
all possible placement schemes and for any replication factor,
and (2) it takes the effect of rebuild process into account as it
is known that the rebuild times can differ vastly for different
placement schemes. The intuition behind the result is that, in
critical mode, when all n critical nodes take part in rebuild in
parallel, the rebuild time can be reduced n times; however, as
the failure of any of these n nodes during rebuild can result in
data loss, the probability that data loss occurs during rebuild
in critical mode stays the same. The factor two stems from the
fact that, in declustered placement, each node does an equal
number of reads and writes of critical data, thereby reducing
the effective rebuild bandwidth per node to b/2, whereas in
clustered placement, the nodes having critical data only do
reads and the rebuild bandwidth is b. Therefore, under this
measure of reliability, clustered placement is about a factor two
better than declustered placement. We formalize this intuition
in the above Proposition.

For a replication factor of two, we have the following bound
on MTTDL:

b

2λ2nc
< MTTDL ≤

b

λ2nc

(

1 +
λc

b

)

, r = 2. (7)

The above bound follows from (5) and Proposition V.1. Once
again, we observe that, for practical values of λ, c/n, and
b, the MTTDL lies within a factor of two for all placement
schemes. The clustered placement scheme has the highest
MTTDL, which is about a factor of two better than that of
declustered placement scheme. This is validated by event-
driven simulation results in Section VII.

Remark 1. Note that the bounds on P (and correspondingly
on MTTDL for a replication factor of two) do not depend on
the size of data blocks s. Although large-sized data blocks
may not permit certain placement schemes, the bounds still
hold true for all s, 0 < s ≤ c.

VI. PROOF OF PROPOSITION V.1

The definition of P in (4) can be expanded as follows:
when (r−1) nodes fail, let there be w critical blocks. Denote
the distribution of critical blocks in the surviving nodes by
w = (w1, · · · , w(n−r+1)), where wi is the number of critical

blocks in the ith surviving node, and
∑n−r+1

i=1 wi = w.
As the (r − 1) failed nodes were chosen uniformly at ran-
dom from the n nodes in the system, the replica place-
ment scheme chosen induces a probability distribution on w,
Pr{w|(r − 1) nodes failed}. In the critical mode, the rebuild
process attempts to make replicas of these critical blocks
before the failure of a critical node results in data loss. Let
w

′(w) = (w′
1, · · · , w′

(n−r+1)) denote the distribution of the
first replicas of all the critical blocks in the surviving nodes.
Once these replicas are created, the system is no longer in
critical mode. As this distribution is chosen such that replica of



a critical block from a node is not created in the same node, the
distribution w

′ depends on w itself, and therefore is expressed
as a function of w. Note that there may be more than one
choice of w

′ for a given w, that is, w′(w) is not unique. When
computing the bounds on P , we find the choices of w

′(w)
that maximize and minimize P . Depending on the failure rate
λ, the rebuild bandwidth b, the distribution of critical blocks to
be read w, the distribution of replicas of critical blocks to be
written w

′(w), there is a certain probability, Pr{DL|w,w′},
that there is data loss because of a failure that occurs before
successful rebuild of these critical blocks. The probability P

is expressed in terms of these two conditional probabilities as
follows:

P =
∑

w

(

Pr{DL|w, w
′(w)}

×Pr{w|(r − 1) nodes failed}
)

, (8)

where the summation is over all possible distributions w of
critical blocks under the replica placement scheme chosen.

An upper bound on P is obtained as follows:

P =
∑

w

∑

w:
P

wi=w

(

Pr{DL|w, w
′(w)}

×Pr{w|(r − 1) nodes failed}
)

(9)

≤
∑

w

(

max
w:

P

wi=w
max
w

′(w)
Pr{DL|w, w

′(w)}

×
∑

w:
P

wi=w

Pr{w|(r − 1) nodes failed}
)

(10)

=
∑

w

(

max
w:

P

wi=w
max
w

′(w)
Pr{DL|w, w

′(w)}

×Pr{w critical blocks|(r − 1) nodes failed}
︸ ︷︷ ︸

=: q(w)

)

(11)

=
∑

w

(

q(w) max
w:

P

wi=w
max
w

′(w)
Pr{DL|w, w

′(w)}

)

, (12)

where (9) follows by splitting the sum in (8) into two parts
by introducing the number of critical blocks w; (10) follows
by pulling the maximum value of Pr{DL|w, w

′(w)} out of
the inner summation; and (11) follows by noting that the
second summation is equivalent to Pr{w critical blocks|(r −
1) nodes failed} because it counts all possible distributions of
w critical blocks.

Similarly a lower bound on P is obtained as follows:

P ≥
∑

w

(

q(w) min
w:

P

wi=w
min
w

′(w)
Pr{DL|w, w

′(w)}

)

. (13)

We now compute the terms inside the summation in inequal-
ities (12) and (13) in the next three subsections.

A. Rebuild at Any One Node

Owing to our assumptions on failure and rebuild models,
and by making use of (2), the probability that all the critical

blocks in node i are successfully read before the node fails is
given by

Pr{T i
R(wi, w

′
i) < T i

F }

=
1

1 + λE
[

T i
R(wi, w′

i)
] (14)

=







1

1 + λs
b

(wi + w′
i)

if wi %= 0,

1 if wi = 0.

(15)

B. Rebuild at All Nodes

In a critical mode with w critical blocks, the probability of
data loss is equal to one minus the probability that each of the
(n − r + 1) nodes successfully completes reading its critical
blocks, that is,

Pr{DL|w, w
′(w)}

= 1 −

(n−r+1)
∏

i=1

Pr{T i
R(wi, w

′
i) < T i

F }. (16)

Substituting (15) in (16), we get

Pr{DL|w, w
′(w)} = 1 −

∏

i∈I(w)

1

1 + λs
b

(wi + w′
i)

, (17)

where I(w) = {i : wi %= 0, 1 ≤ i ≤ (n− r + 1)} is the set of
critical nodes. The following lemma gives the maximum and
the minimum of the above probability:

Lemma VI.1. For any distribution of critical blocks w = (w1,
· · · , w(n−r+1)) such that the total number of critical blocks is

w, and any distribution w
′(w) = (w′

1, · · · , w′
(n−r+1)) of the

first replicas of these critical blocks such that no two replicas

of the same block lie on the same node, the probability of

data loss before successful completion of rebuild is bounded

as follows:

λsw

b

1
(

1 + λsw
b

) ≤ Pr{DL|w, w
′(w)} <

2λsw

b
.

The lower bound is achieved for {w, w
′(w)|wj= w for some j

and wi = 0∀ i %= j}; the set {w, w
′(w)|wi+w′

i = 2w
n−r+1 ∀i}

achieves the highest probability of data loss.

Proof: See Appendix A.

The above lemma is a key result in the proof of Propo-
sition V.1. It shows the main points of this paper: (i) the
probability of data loss during rebuild in critical mode for
a given number of critical blocks w lies within a tight range
of values; (ii) the lowest probability of data loss occurs when
all w critical blocks are in one node, which is the case in
clustered placement; and (iii) the highest probability of data
loss occurs when the rebuild is uniformly distributed across
all nodes, which is the case in declustered placement.

C. Expected Number of Critical Blocks

As q(w), defined in (11), is the probability of having w
critical blocks when (r − 1) nodes fail, the expected number



of critical blocks when (r− 1) nodes fail is given by E[w] =
∑

w wq(w).

Lemma VI.2. For any placement scheme, the expected num-

ber of critical blocks given (r − 1) node failures is E[w] =
∑

w wq(w) = nc

s( n

r−1)
.

Proof: Let x1, x2, · · · , xd be the d := nc
sr

distinct data
blocks which have been replicated r times and stored in the
system. Any given xi is replicated and stored in r different
nodes. So the data block xi can become critical when any
(r−1) out of these r nodes fail, which can occur in

(
r

r−1

)

= r
ways. Given the failure of (r − 1) nodes chosen uniformly at
random from n nodes, the probability that xi becomes critical
is independent of the replica placement scheme and is always
equal to

Pr{xi is critical|(r − 1) nodes fail} =
r

(
n

r−1

) , ∀i.

Given that there are a total of d distinct blocks, the expected
number of critical blocks when (r − 1) nodes fail is given by

E[w] = d × Pr{xi is critical|(r − 1) nodes fail}

=
nc

sr
×

r
(

n
r−1

) =
nc

s
(

n
r−1

) .

D. Upper Bound

The upper bound on P in (6) is obtained as follows:

P <
∑

w

2λsw

b
× q(w) =

2λnc

b

1
(

n
r−1

) ,

where the inequality in the first step follows by applying
Lemma VI.1 in (12), and the second step follows from
Lemma VI.2.

E. Lower Bound

The lower bound on P in (6) is obtained as follows:

P ≥
∑

w

λsw

b

1
(

1 + λsw
b

)q(w) (18)

≥
λs

b

1
(

1 + λc
b

)

∑

w

wq(w) (19)

=
λnc

b

1
(

1 + λc
b

)
1

(
n

r−1

) , (20)

where (18) follows by applying Lemma VI.1 in (13); (19)
follows by noting that the number of critical blocks w cannot
be greater than the number of blocks on one node, that is,
w ≤ c

s
; and (20) follows from Lemma VI.2.

VII. SIMULATION RESULTS

A. Placement Schemes

Three different placements schemes were used in the sim-
ulations - (a) declustered, (b) clustered, and (c) k-clustered

placement. From our theoretical result on MTTDL for a repli-
cation factor of two (7), we expect clustered placement to have
the highest MTTDL, followed by k-clustered placement and
then by declustered placement. We also expect that clustered

placement is better than declustered placement by about a
factor of two. This is attributed to the fact that, in declustered
placement, each node performs equal number of reads and
writes of critical data, thereby reducing the effective rebuild
bandwidth per node to b/2, whereas in clustered placement,
the nodes having the critical data perform reads only and
therefore the rebuild bandwidth is b.

B. Simulation Method

Event-driven simulations were used to calculate the MTTDL
for the three placements schemes. Three types of events drive
the simulation time forward: (a) failure events, (b) rebuild-

complete events, and (c) node-restore events. The state of the
system is maintained by three variables - time, the simulated
time, activeNodes, the number of active nodes in the system,
and a vector of length (r+1) dataExposure = (d0, · · · , dr),
where di is the number of distinct data blocks that have lost
i replicas. Data loss occurs when dr > 0. At each event these
variables are updated.

(a) Failure Event: A failure event triggers the following: (i)
decreasing activeNodes by one, (ii) scheduling the next
failure event after time TF (activeNodes×λ), (iii) updating
dataExposure by taking into account the fact that a partial
rebuild of the most exposed data has occurred, and (iv)
scheduling the rebuild-complete event based on the most ex-
posed data in dataExposure and the placement scheme used.
By nature of the rebuild process, data placement is preserved,
that is, declustered remains declustered and clustered remains
clustered. This is because, when the placement is declustered,
critical blocks are read from and written to all nodes at
the same time and the new replicas are placed such that
declustering is preserved. When the placement is clustered, the
replicas are created in a new node directly instead of creating
them in the spare space of existing nodes first and then copying
them to a new node. This preserves clustered placement. We
have another tunable parameter, namely, the time taken to
detect the failure of a node and start the rebuild process, Tdelay.
This is added to TR while scheduling the rebuild-complete
events. This parameter is seen to have an influence only when
Tdelay is comparable to 1/(nλ). For practical systems, 1/λ is
on the order of 100, 000 h. If the system has n = 100 nodes,
1/(nλ) = 1000 h. Typically Tdelay is much smaller than 1000
h and so we do not present the effect of this parameter in the
simulation results presented in this paper.

(b) Rebuild-Complete Event: A rebuild-complete event triggers
the following (i) updating dataExposure by setting the
amount of most exposed data to zero and adding this amount
to a lower exposure level (this means that the rebuild process
always creates replicas of the most exposed data first), and (ii)
scheduling the node-restore event when all data have r copies
(completion of rebuild process). The node-restore event is the
time when all the replicas that were newly created have been
successfully transferred to new nodes and the number of nodes
is brought back to n. The number of nodes to restore is stored
in nodesToRestore.



TABLE II
RANGE OF VALUES OF DIFFERENT PARAMETERS FOR SIMULATION.

Parameter Meaning Range

c storage capacity of each node 12 TB
n number of storage nodes 4 to 100
r replication factor 2, 3
b rebuild bandwidth available at

each node
96 MB/s

λ failure rate of a storage node 10−3 – 10−5 h−1

(c) Node-Restore Event: This event increases activeNodes

by nodesToRestore.

For each set of parameters, the simulation is run 100 times,
and the MTTDL and its bootstrap 95% confidence intervals are
computed. Whereas for declustered placement, the simulation
is run for n nodes, for clustered and k-clustered placement,
the simulations are run only for one cluster, that is, r and k
nodes respectively, and the obtained MTTDL of the cluster is
divided by n/r and n/k, respectively, to obtain the MTTDL
of the system. This is because clusters are independent of the
each other, and the number of clusters is n/r and n/k for
clustered and k-clustered placement, respectively.

C. Simulation Results

Table II shows the range of different parameters that were
used for the simulations. Typical values for practical systems
are used for all parameters, except for the mean time to failure
of a node for a replication factor of three. For simulating a
system with a replication factor of three, the mean time to
failure has been chosen artificially low (1000 h instead of
100, 000 h) to run the simulations fast because the running
times of simulations with λ = 10−5 h−1 are prohibitively
high. Although this approach scales down the MTTDL by
making failure events more frequent, it has been used (as
in [9]) because it preserves the ratios of MTTDLs of the
various schemes.

Replication Factor Two: Fig. 2 shows the comparison of
theoretically predicted MTTDLs (from the bounds in (7)) and
simulated values of MTTDL as a function of the number of
nodes for a system with a replication factor of two with declus-
tered and clustered schemes. It is seen that the theoretical
predictions are quite accurate. In addition, a third theoretical
curve for the mirrored placement scheme based on the formula
from [16, Eq. (46)] is plotted. It is observed that this curve
coincides with the upper bound of (7), which corresponds
to clustered placement. The simulated MTTDL values for
4-clustered placement scheme are found to lie between the
corresponding MTTDL values for clustered and declustered
placement schemes. This is in agreement with our theoretical
prediction.

Replication Factor Three: Fig. 3 shows the simulated values
of MTTDLs for a replication factor of three for clustered
and declustered placements. Declustered placement appears to
be generally better than clustered placement. The theoretical
values for clustered placement based on [3, Eq. (2)] agree with
the simulation values.

To investigate why the behavior of MTTDL is different
from that of P , we plot P obtained from the simulations
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Fig. 2. Comparison of theoretically predicted and simulated values of
MTTDL for a replication factor of two with mean time to failure of
a node equal to 100, 000 h; For the simulated results, 95% bootstrap
confidence intervals are shown.
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Fig. 3. Comparison of theoretically predicted and simulated values
of MTTDL for replication factor three with mean time to failure of
a node equal to 1000 h; For the simulated results, 95% bootstrap
confidence intervals are shown.

in Fig. 4. We observe that the simulation values are half of
the theoretical ones. This is because the theoretical results
are obtained assuming there is no rebuild between node
failures, whereas in simulation, when the second node fails,
approximately half of the data in the first lost node has already
been rebuilt. The simulation results, however, support the
theoretical results of Proposition V.1 and Lemma VI.1 in that
the declustered placement has a higher probability of data
loss (by factor of two) than the clustered placement. This
shows that the measure of reliability used, while being suitable
for predicting the MTTDL for a replication factor of two,
is no longer suitable for predicting the MTTDL for higher
replication factors.

In Fig. 5 we plotted the probability of data loss given one

node failure obtained from our simulations. This measure, the
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Fig. 5. Comparison of theoretically predicted and simulated values
of probability of data loss given one node failure for a system with a
replication factor of three and mean time to failure of a node equal to
1000 h; For the simulated results, 95% bootstrap confidence intervals
are shown.

theoretical calculation of which is work in progress, appears
to better predict the MTTDL for a replication factor of three.
Note that, for a replication factor of two, this measure is the
same P .

VIII. CONCLUSION AND FUTURE WORK

In this paper, we showed that all placement schemes have
MTTDL values that differ by at most a factor of two for
a practical storage system using a replication factor of two.
We used a measure of reliability that is not only simple
enough to enable sufficient analytical tractability but also
comprehensive enough to take into account the effect of the
placement schemes on the rebuild process. The measure used,
namely, the probability of data loss during rebuild in critical

mode, is shown to be affected by at most a factor of two
by the choice of placement scheme for any replication factor.
However, simulation results reveal that this property also holds
for the corresponding MTTDLs, but only for a replication
factor of two. For higher replication factors, the measure
used is not a suitable indicator of the MTTDL behavior. This
suggests that alternate measures of reliability are not always
appropriate for comparing the MTTDL of different placement
schemes.

We also show that the clustered placement scheme has the
lowest probability of data loss during rebuild in critical mode,
whereas the declustered placement scheme has the highest
probability. This particular result is consistent with results
of [4], [5], [6]. However, it differs from the results of [7],
[8], [9]. We believe that the inconsistency with the latter set
of publications is mainly because their analysis is based on
an idealistic assumption that the replica sets (referred to as
redundancy sets or groups in [7], [8], and as objects in [9])
fail independently. In contrast, in our analysis we take into
account the correlations among the failures of different replica
sets that are induced by node failures.

It is likely that the probability of data loss given the first
node failure is a suitable measure that can be used to compare
MTTDLs of different placement schemes. However, it is still
to be seen whether this probability is as intractable as MTTDL
or not. On the other hand, we conjecture that the core results
of this paper extend beyond replication-based systems. It is
likely that such results also exist for general erasure codes.

APPENDIX A
PROOF OF LEMMA VI.1

Let the total number of data blocks read from and written
to each node be given by the distribution v := w + w

′(w).
Let the set of all v for a given number of critical blocks w be
denoted by V(w), that is, V(w) := {v|w critical blocks}.

Lemma A.1. The set V(w) has the following properties:

(i) 0 ≤ vi ≤ w, ∀ i ∈ {1, · · · , n − r + 1}, ∀v ∈ V(w),
(ii)

∑

i vi = 2w, ∀v ∈ V(w),
(iii) The corner points of the convex hull of V(w) are {v|vj

= vk = w for some j, k and vi = 0∀ i %= j, k}.

Proof: (i) For any node i, vi ≥ 0 as it is the sum of
the number of blocks, which is always non-negative. The total
number of critical blocks is w and the new replicas of critical
blocks are created such that no two replicas of the same block
lie on the same node. This means that, the number vi = wi+w′

i

for any node i cannot be greater than w, because if the sum
is greater than w, by the Pigeonhole principle, there has to be
at least one block with two of its replicas on the same node.
(ii)

∑

i vi =
∑

i wi +
∑

i w′
i = w + w = 2w.

(iii) The corner points of the convex hull of V(w) are exactly
the points where vi’s are allowed to take the extremal values
of 0 and w. As the sum of all vi should be 2w according to
Property (ii), the corner points are given the by set of all v,
where vj = vk = w for some j, k ∈ {1, · · · , n − r + 1} and
vi = 0∀ i %= j, k.



A. Upper Bound

To obtain the upper bound in Lemma VI.1, it suffices to
find (see (17))

max
w:

P

wi=w
max

v∈V(w)

∏

i∈I(w)

(

1 +
λs

b
vi

)

.

Then, as all terms are inside the product above are non-
negative by Lemma A.1 Property (i), we use the Arithmetic-
Geometric Mean Inequality to get

∏

i∈I(w)

(

1 +
λs

b
vi

)

≤

(

1 +
λs

b

∑

i vi

|I(w)|

)|I(w)|

=

(

1 +
2λsw

b|I(w)|

)|I(w)|

,

where the second step follows from Lemma A.1 Property (ii).
Equality holds above when all vi’s are equal. As the sum of
all vi’s is 2w, equality holds when vi = wi +w′

i = 2w
n−r+1 ∀i.

Plugging the above inequality into (17), we get

Pr{DL|w, w
′(w)}

≤ 1 − min
w:

P

wi=w

(

1 +
2λsw

b|I(w)|

)−|I(w)|

.

By Taylor’s theorem, it can be shown that

(

1 +
2λsw

b|I(w)|

)−|I(w)|

> 1 −
2λsw

b
. (21)

Therefore, Pr{DL|w, w
′(w)} < 2λsw

b
.

B. Lower Bound

To obtain the lower bound in Lemma VI.1, it suffices to
find (see (17))

min
w:

P

wi=w
min

v∈V(w)

∏

i∈I(w)

(

1 +
λs

b
vi

)

︸ ︷︷ ︸

=: f(v)

.

The function f(v) is a concave function defined on the convex
hull of V(w). Therefore, the minimum of the function is
attained at the corner points of the convex hull, which by
Lemma A.1 Property (iii), are given by {v ∈ V(w)|vj = vk =
w for some j, k ∈ {1, · · · , n − r + 1} and vi = 0∀ i %= j, k}.
The above minimization problem thus reduces to finding

min
w:

P

wi=w

∏

i∈{j,k}∩I(w)

(

1 +
λsw

b

)

.

The minimum is attained when |{j, k} ∩ I(w)| = 1. Without
loss of generality, let {j, k}∩ I(w) = {j}. This implies wj =
w. Therefore, plugging the above minimum into (17), we get

Pr{DL|w, w
′(w)} ≥

λsw

b

1
(

1 + λsw
b

) , (22)

where equality holds for all {w, w
′(w)|wj=w for some j and

wi = 0∀ i %= j}.
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