
Evaluation of Network Coding Techniques for a
Sniper Detection Application

Lorenzo Keller Abdulkadir Karaagac Christina Fragouli Katerina Argyraki
{lorenzo.keller,abdulkadir.karaagac,christina.fragouli,katerina.argyraki}@epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract—This paper experimentally studies the reliability and
delay of flooding based multicast protocols for a sniper detection
application. In particular using an emulator it studies under
which conditions protocols based on network coding deliver
performance improvements compared to classic flooding. It then
presents an implementation of such protocols on mobile phones.

I. INTRODUCTION

In this paper we study the performance gains of network
coding when applied to multicast for a particular application:
sniper detection.
In this application mobile sensors, carried by soldiers,

measure the time at which they hear a shot and exchange
these measurements. Thanks to signal processing techniques
[12] the nodes can then infer the position of the shooter.
We focus on the communication aspect of the system.

Communication happens over wireless and therefore is limited
in range and subject to noise. Moreover when nodes transmit
at the same time their communication can collide and in this
case packets are potentially lost.
A key characteristic of our setup when compared to other

studies on multicast for mobile ad-hoc networks is that, instead
of having at a given time one source and a set of receivers,
all nodes are both generating and receiving traffic at the same
time.
In our application two performance criteria are important:

reliability and delay of data exchange. Every node must receive
within a small amount of time the measurements of at least a
subset of the other nodes.
In this paper we perform an experimental evaluation of

already proposed coding approaches. Our contribution is to
assess the impact of these schemes on delay and reliability. We
also study how different parameters such as transmission rate,
network topology and computing power of the nodes influence
delay and reliability of these protocols.
The questions we try to answer is whether coding can

improve delay and reliability regardless of the particular
network parameters. In the rest of the paper we will show
that coding indeed significantly increases reliability and under
some conditions also reduces delay.
The paper is organized as follows: in Section II we discuss

relevant work in existing literature, in Section III we describe

This work was funded by ArmaSuisse Wissenschaft + Technologie (W+T),
Project no. 8003413832.

our setup and in Section IV we introduce the coding schemes
under study. In Section V we present the results of our tests
and in Section VI we conclude.

II. RELATED WORK

In the past decades many multicast protocols for mobile ad-
hoc wireless networks have been proposed [2], [13]. The main
challenge in this setup are the frequent changes in the network
topology that require suitable protocols.
The solutions that have been proposed can be classified

in three categories: efficient tree construction protocols ( e.g.
MAODV [11]), mesh based protocols ( e.g. ODMRP [7]) and
flooding based protocols (e.g. SMF [9]). The first approach
tries to quickly adapt a multicast tree to network topology
changes, in the second approach nodes do not simply build a
tree but instead build a mesh and therefore link failures can
be better tolerated. In the third approach, flooding, each node
that receives a multicast message retransmits it. To improve
the rate of flooding and reduce network contention protocols
can leverage knowledge of their neighborhood to reduce the
number of transmitted packets (e.g. E-CDS [10], S-MPR [1]
or probabilistic flooding [13]).

In this paper we don’t propose a new approach to multicast:
instead we propose coding schemes to be used in conjunction
with flooding. We work with flooding because this approach
doesn’t require to proactively maintain information about the
network. In our setup this would be extremely costly in terms
of energy since events are rare. For the same reason we will
also not use any rate reduction technique.

The performance of network coding when used in conjunc-
tion to multicast has been studied in other papers. Most of
them look at the problem of a single source transmitting to
many receivers. Some papers study our setup but either use
rate as performance metric [8], [6] or study rate delay trade-
offs from a theoretical point of view [14].

III. PROBLEM SETUP

We now proceed to formalize our setup. A set of N (mobile)
sensor nodes σ1, ..., σN distributed in a given area have to
exchange their observation o1, ..., oN ∈ A about an event that
happens at time t = 0. Sensors σi is ready to communicate
its observation of the event to the other sensors at a time ti
that can depend on the distance of the sensor from the event
and the time necessary for processing the raw sensed data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Data is exchanged by the nodes via packet based radio
communications; the sensors run a communication protocol
that defines when and what to transmit. The radio supports
communication at a certain data rate R. We don’t assume that
nodes have directional antennas and or that they know their
relative positions.

In our study we assume that the radios are using carrier
sense multiple access (CSMA) with back-off to decide when
to transmit as specified in the 802.11 standard. Therefore
each node before sending checks if another station is already
transmitting. If so it backs-off its transmission until the channel
becomes free. When the channel is free the node performs
an additional random back-off to avoid collisions with other
nodes that were also waiting to send.

We assume that node movement is such that during the
data dissemination for an event nodes can be considered static
while from one event to the next the network topology is
likely to have completely changed. This assumption models
many situations in which the timescale at which events happen
(minutes or hours) is much larger than the timescale at which
data is exchanged (milliseconds or seconds).

We study the performance of different protocols in respect
of two quality metrics: delay and reliability. Delay measures
the average time at which every node receives the first,
second, etc. observation from its peers. Reliability measures
the average probability for a given node to receive 1, 2, etc.
observations from its peers.

IV. DESCRIPTION OF PROTOCOLS

In this section we describe four coding schemes for flood-
ing, one of them is purely theoretical and will be used to
give bounds on the performance of any other protocol while
four of them are practical and can be used to perform data
dissemination in a real network. In Section V we will analyze
their performance in different setups.

A. Classic flooding

In classic flooding source σi transmits its observation by
simply sending a packet (i, oi). Every node that receives the
packet checks if it has already received oi in another packet.
If not it retransmits the packet. All the recipients of this new
message repeat the same procedure. At some point all sent
packets will be received by nodes that have already seen oi

and therefore forwarding will stop.

In this protocol every observation is potentially retransmit-
ted N times. If there is collisions or poor radio conditions
however, some observations may never be received by some
nodes and therefore it is possible that they are retransmitted
less than N times. In particular if the first transmission of an
observation is lost then nobody will ever retransmit it.

B. Aggregation flooding

In classic flooding any given packet contains exactly one
observation and therefore some packet transmissions are use-
less for some nodes. In particular if a node is only missing

the observation of a specific source all the packets containing
any other observation are useless.
In aggregation flooding every node transmits all observa-

tions it has heard up to now in every packet it sends, and not
only the new observation that triggered the packet transmis-
sion. This means that the “usefulness” for the recipients of the
packets is increased.
Implementing such a protocol is not always possible. Pack-

ets containing multiple observations grow in size and the more
sources are present, the larger the packets will be. When the
packet size exceeds the maximal packet size allowed by the
link layer in use it will not be possible to send them.
In our comparison we will therefore assume that there

exists an ideal algorithm that is able to compress the size
of packet containing multiple observations to the size of
packet containing only one observation. We will implement the
protocol by just sending the source identifiers in the packets.

The performance of this hypothetical protocol will give us
a bound to any flooding based protocol.

C. Random network coding

In this protocol, based on the ideas proposed in [3], every
packet p instead of containing a source identifier and the
corresponding observation it contains a coding vector hp , a
vector of length N over the finite field Fq, and a payload dp,
a vector over the same finite field of length K = "logq(|A|)#.
Each source σi maps its observation oi to a vector xi ∈ FK

q

and creates a coding vector ci ∈ FN
q where (ci)j = 0 if j $= i

and 1 otherwise. It then sends the two in a packet as (ci, xi).
Upon reception of a packet p = (hp, dp) every node checks

if the received coding vector hp is linearly independent from
the coding vectors previously received. If so if creates a
random linear combination of the packets received up to now
and send it. The packet sent will have therefore the form :

(

∑

i

αi · hi,
∑

αi · di

)

for some randomly chosen αi. It is easy to see that all sent
packets can be equivalently expressed as:

(

N
∑

i=1

βi · ci,

N
∑

i=1

βi · di

)

By appropriately combining received packets the nodes can
reconstruct the original x1, ..., xN . In particular they can do
so by performing Gaussian elimination on the matrix:







hp1
dp1

...
...

hpm
dpm






.

Notice that in this protocol a packet can potentially be used
to recover different sources. In this sense it is therefore similar
to aggregation. However a big difference is that to decode a
packet which is a linear combination of k sources the receiver
may need to first receive up to k packets. In aggregation on
the contrary packets can be decoded individually.



D. Opportunistic coding

This protocol, based on ideas proposed in [5], is similar to
random network coding but nodes instead of randomly picking
the coefficients they carefully choose them in a way that allows
all the receivers to decode the received packets immediately.
This is done by ensuring that if a packet is a linear combination
of M observations then every node that receives it already
knows at least M − 1 of the contained observations.
In order to be able to build the packets each node maintains

a list of neighbors and for every neighbor a list of observations
that the neighbor linearly combined in its packets up to now.
We know that since every packet has been sent such that the
neighbors could decode it, every neighbor can only linearly
combine observations that it has already decoded and therefore
this list can only contain observations already decoded by the
neighbor.
As in random network coding a packet can be useful to

more receivers than in classic coding. Opportunistic coding
also solves the problem of having packets that need to wait
to be decoded. However depending on the structure of the
network the number of coding opportunities can be very small.
In those situations opportunistic coding behaves exactly like
classic flooding.
Critical for this protocol is the knowledge of the neighbor-

hood of each node. Proactively maintaining this knowledge is
too expensive in our application. Our implementation therefore
collects this information passively during the packet dissemi-
nation. Each node at the beginning of the dissemination has an
empty neighbor table and doesn’t perform any coding. Every
time it hears a packet it adds the transmitting node to his table
and start coding its packets. Neighbor table entries expire after
some time of inactivity of the neighbor. This can lead to errors
in the construction of packets but we observe that they are
quite rare.

E. Limited coding

This protocol is an hybrid between opportunistic and ran-
dom network coding. In this case as in opportunistic coding
only packets that have already been decoded are linearly
combined in transmitted packets. The difference is that this
protocol takes no precautions to make sure that the neighbors
can decode the packets immediately. This protocol has the
advantage compared to random network coding that it sends
linear combination that are potentially easier to decode since
every packet contains at most one additional source compared
to what was sent up to now by the node and therefore it
can potentially reduce the delay. The main drawback of this
protocol is that a new packet is forwarded by a given node
only when a new observation is decoded. This means that
when a node cannot decode most of its received packets, it
will forward very little information and therefore negatively
impact the network performance.

V. EXPERIMENTAL RESULTS

In this section we present the performance measurements
for the protocols described in Section IV under different con-

ditions and we explain their performance. In our experiments
we vary the connectivity of nodes, their processing power and
the transmission rate.
We test the different protocols in the networks described

in Figure 1: two one-hop networks (a and e), a two-hops
network, a network with a bottleneck and a N -hops network.
In the one-hop networks all nodes are within the reception
range of all the others. In the two-hop network, every node
can communicate to every other node by relaying through at
most one other node. In the bottleneck topology every node
can reach every other node through at most 3 hops, the network
is however fully connected only thanks to two nodes that form
a bottleneck. Finally in the N -hop network nodes are arranged
in a line and can communicate only with their immediate
neighbors.
The test consists in running multiple times the data dissemi-

nation. We assume the nodes are measuring the time of arrival
of a sound produced periodically at a fixed position. Every
node σi knows the times at which the sound is emitted and it
knows its distance from the source, it can therefore compute
the time ti at which it can generate its observation. The
observation is then disseminated accordingly to the protocol
in use.
To measure the performance we first measure for every

round and node the arrival time of each packet from the
moment in which the event happened. To compute the average
delay we individually average the arrival time of the first,
second, etc. packet over all rounds and nodes. To compute
the reliability we compute the percentage of rounds every
node received one, two, etc. packets and then we compute
the average over all nodes.
We perform the test using an emulated and a real testbed.

We use the emulated environment to test the performance of
the protocols at a rate R = 16 kbps. This rate is typical
for tactical radios and in sensor networks. We also run the
protocols in a real testbed composed by 6 HTC WildFire
cellphones running Android 2.1 and forming a 802.11b ad-
hoc network. This allows us to test the protocols under real
network conditions and gives an idea of the applicability of
the conclusions found for tactical radios to radio technologies
in widespread use. This also allows us to test the protocols
with limited computational resources.
The tests in the emulated environment are done using

eMANE [4]. This emulator creates on a normal Linux com-
puter a virtual interface for each emulated node and runs
in real time MAC and PHY layer as if the interfaces were
real network cards. We used the 802.11 radio model provided
with the emulator. We changed the code to support the (non-
standard) transmission rate of 16 kbps. We also enabled the
use of Wireless Multimedia Extensions (802.11e) in order
to increase contention widows sizes and therefore reduce
the amount of packets that get lost due to collisions. To
configure link gains between nodes we used a Log-distance
path-loss model. We also used the SNIR to BER curves
provided with the emulator for 1 Mbps communications with
802.11b radios. The protocols are implemented in Java and



packet transmissions at the sources are triggered by the system
clock which is shared among all nodes. The processor of the
computer running the tests is an 3Ghz Intel Xeon.

In the real testbed we use the same Java code used in the
emulation tests packaged as an Android application. In order
to be able to set the phone radios in ad-hoc mode we had to
modify the phone firmware. Synchronized triggering of packet
generation on the phones is more tricky to achieve than in the
emulated testbed. Phones need to be synchronized. To do so
they are running a custom time synchronization protocol that
synchronizes them within approximately 5 ms.

The protocols are implemented on top of UDP. To be able
to receive the packets at multiple receivers we send them to
an IP multicast group to which all the nodes are registered.
This implies that packets are sent as link layer broadcasts
and therefore are not acknowledged as it usually happens on
802.11 data frames.

To implement limited and random network coding we use
operation over F24 in the emulator and F28 in the phones.
Each entry of payload and coding vectors requires half (re-
spectively one) byte to be transmitted. Finite field operations
are implemented using table lookups, addition and subtraction
when using F28 are implemented directly with xor operations.
The finite field is chosen using three criteria: it should be
sufficiently large to ensure correct operation, as small as
possible to reduce coding headers overhead and should allow
fast computations. For our phone implementation in particular
we noticed that using one byte per field element is the best
trade-off between these three criteria. On the emulator we used
a smaller field size since the cost of manipulating vectors over
F24 is not so expensive as on cellphones and we have smaller
headers.

To implement opportunistic coding we use operations over
F2. Each entry of the coding vectors requires therefore 1
bit to be transmitted. We choose which observations to code
iteratively by selecting one by one the one that will be useful
to the largest number of neighbors and that will not cause
them not to decode. If due to errors in the neighbor tables a
node receives a packet it cannot decode it will discard it. We
decided to use this approach after verifying that such packets
are very rare.

A. Emulated network

In this section we discuss the performance of different
coding schemes when the data rate is small. This is the case
in sensor networks and tactical radios. We also discuss which
conclusions are also valid for higher data rates.

The observation sent by the nodes has length 51 bytes.
Coding vectors have length 4 bytes in random network coding
and 1 byte in opportunistic coding. Identifiers in classic
flooding have length 1 byte. The coding schemes, in addition
to 802.11, IP and UDP headers have 4 additional bytes that
store a sequence number that would be used in case of
concurrent dissemination of observation about multiple events.
Sequence numbers are loosely synchronized by changing the

(a) 1-hop topology (b) 2-hop topology

(c) N -hop topology (d) Bottleneck topology

(e) Real deployment

Fig. 1. Diagram of the deployments used for testing. Circles are nodes,
the square is the sound source. The gray area around the highlighted node
indicates the connectivity.

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 e

la
p

se
d

 s
in

ce
 s

h
o

t 
(m

s)

Message #

 

 
Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation
No Flooding

Fig. 2. Average delay in an emulated 1-hop network (R = 16 kbps, N = 8)

local sequence number in case a packet with a larger sequence
number is received.

In this section we present results where we run each protocol
for 70 events.

a) 1-hop network: Figures 2 and 3 illustrate the per-
formance of the different protocols discussed in Section IV.
In addition to those protocols the figures also illustrate the
performance when not using any form of flooding.

First observe the performance when no flooding is per-
formed. We can see that the delay is much lower than all
the other protocols. This due to two factors. First less packets
are sent and therefore less contention happens on the wireless
medium. The second reason is due to the fact that less packets
are received and therefore the average delay is computed
only on “fast” packets. This is an important behavior of the
performance metric we use that should always be considered



1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f 
ro

u
n

d
s 

w
h
e

re
 n
−

th
 m

e
ss

a
g

e
 is

 r
e
ce

iv
e
d

 

 

Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation
No Flooding

Fig. 3. Reliability in an emulated 1-hop network (R = 16 kbps, N = 8)

when studying the graphs presented in this paper.

We see that classic flooding has the largest delay. It is
interesting to observe that opportunistic coding performs better
than classic flooding both in delay and reliability. In this setup
packets are lost only if there is a collision, and when a collision
occur nobody will receive the packet. This means that each
node can have at most one observation not received by all
other nodes and this observation is its own. It will be able to
code it only when it is forwarding an observation that it knows
everybody else has already received. Since this happens rarely
we would expect the performance of opportunistic coding
to be approximately the same as classic flooding. In our
implementation however neighbor tables are not correct at
the beginning of the dissemination and therefore some more
coding opportunities arise. We ran the same tests with static
neighbor tables and we observed that in that case opportunistic
coding and classic flooding perform approximately the same.

In this setup coding performs particularly well. Its delay
is near what is experienced by aggregation and its reliability
is also high. The high reliability is easily explained by the
fact that every node in this setup receives a large amount of
packets, much bigger than N . Therefore it is likely that every
node can decode all the source packets. In particular coding
protects from the problem experienced by classic flooding
when the first transmission of an observation is lost: nobody
will ever receive it because nobody will transmit it again. In
coding every packet sent by a source contains information
about its own observation and therefore it’s much less likely
that this will be lost.

Coding has also a surprisingly good delay performance.
One would expect that coding across packets would introduce
some delay. In this setup however the packets sent are easy
to decode. Indeed since every packet is either received by
everybody or by nobody (in case of collision) every node has
at most one observation unknown to other nodes, namely its
own observation. Packets are therefore always decodable by
all recipients.

In this topology limited coding doesn’t significantly differ
from full coding. We will show that in other topologies it

1 2 3 4 5 6 7
200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
 e

la
p

se
d

 s
in

ce
 s

h
o

t 
(m

s)

Message #

 

 
Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation

Fig. 4. Average delay in an emulated 2-hops network (R = 16 kbps, N = 8)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f 
ro

u
n

d
s 

w
h

e
re

 n
−

th
 m

e
ss

a
g

e
 is

 r
e

ce
iv

e
d

 

 

Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation

Fig. 5. Reliability in an emulated 2-hops network (R = 16 kbps, N = 8)

instead improves performance.

We ran the same experiment at a higher data rate (1 Mbps).
When using the same packet size we observed that almost
no packet losses are experienced because almost no collisions
occur. Delays are also very similar since all nodes receive
the first communication. When we increased the packet size
to 1000 byte we could observe a behavior similar to what
happens at 16 kbps.

b) 2-hops network: Figure 4 and 5 show the performance
of the protocols in a network with diameter 2. In this setup
no protocol can approximate the performance of ideal aggre-
gation. All other protocols have the same performance for the
first three packets, which are from nodes in their immediate
neighborhood. For later observations coding has a higher delay
than the other protocols. This can be explained by the fact that
in this topology packets are not always lost by all nodes in
every case of collision and therefore packets cannot always
be decoded immediately as it was happening in the previous
scenario.

Regarding reliability we see that coding still performs as
well as aggregation, while the performance of classic flooding
and opportunistic coding decreases. This is due to the fact
that some observations must be successfully transmitted twice



1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f 
ro

u
n

d
s 

w
h
e

re
 n
−

th
 m

e
ss

a
g

e
 is

 r
e
ce

iv
e
d

 

 

Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation

Fig. 6. Reliability in an emulated N -hops network (R = 16 kbps, N = 8)

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Message #

%
 o

f 
ro

u
n

d
s 

w
h

e
re

 n
−

th
 m

e
ss

a
g

e
 is

 r
e

ce
iv

e
d

 

 

Classic flooding
Random coding
Limited coding
Opportunistic coding
Aggregation

Fig. 7. Reliability in an emulated bottleneck network (R = 16 kbps, N = 8)

before being received by a given node. Opportunistic coding
performs better than classic flooding only because at the start
of the dissemination neighbor tables are empty. We tested the
same protocol with static neighbor tables and the performance
of opportunistic coding is the same as classic flooding. The
large number of neighbor of each node reduces the number of
coding opportunities.

In this network limited coding helps, we can see that its
reliability is similar to full coding while its delay is comparable
to classic flooding.

Our tests at 1 Mbps with packets of length 1000 bytes show
a similar reliability of protocols. Delay of classic flooding and
the coded protocols are approximately the same.

c) Bottleneck network and N -hop network: Figure 6 and
7 show the reliability of the different protocols in a network
with a bottleneck and in a line network. We can see that
in these setups fixed rate protocols discussed in this paper
are not adequate. Indeed none of them can ensure a proper
dissemination of the data throughout the network. The main
reason of these losses is that transmissions are often lost due
to the hidden terminal effect. Since the protocols use broadcast
communications RTS/CTS cannot be used to mitigate the
problem. Notice also that neither end to end retransmission

1 2 3 4 5
100

120

140

160

180

200

220

T
im

e
 e

la
p

se
d

 s
in

ce
 s

h
o

t 
(m

s)

Message #

 

 
Random coding
Opportunistic coding
Classic flooding
Aggregation

Fig. 8. Average delay in the network composed by six colocated phones
(R = 1 Mbps, N = 6)

1 2 3 4 5
50

55

60

65

70

75

80

85

90

95

100

Message #

%
 o

f 
ro

u
n

d
s 

w
h

e
re

 n
−

th
 m

e
ss

a
g

e
 is

 r
e

ce
iv

e
d

 

 

Random coding
Opportunistic coding
Classic flooding
Aggregation

Fig. 9. Reliability in the network composed by six colocated phones (R = 1

Mbps, N = 6)

nor FEC here would be sufficient to increase reliability. Since
the probability of receiving some of the packets is so low,
end to end erasure protection will require an extremely large
amount of resources. A much better approach is to perform
retransmissions at every node.

The advantage of opportunistic coding compared to classic
flooding in the N -hop topology disappears when we increase
the rate and packet length. This is due to the fact that timing of
packet arrivals is critical to the performance of the protocols.
At 1 Mbps classic flooding performs similarly to opportunistic
flooding (therefore outperforming random coding).

For the bottleneck topology when we performed experi-
ments at 1 Mbps and packets of length 1000 bytes we observed
a behavior similar to what happens at 16 kbps.

B. 1-hop Network of Cellphones

In this setup we test the performance of the different
protocols when they are running on cellphones.

There are mainly two differences with the previous section:
different rate and different computing power. Phones are trans-
mitting at 1 Mbps and their CPU is a Qualcomm MSM7225
at 528 MHz, much slower than the Xeon processor used in



the emulation.

In this setup decoding and encoding overhead must be care-
fully handled. We had to optimize the decoding and encoding
process used in the protocols to make sure that delay due
to them doesn’t dominate packet deliver delay. For example
we had to reduce at minimum the memory allocations during
the coding and decoding process to avoid garbage collection
to happen too frequently. Additionally we perform as many
operations as possible in place on the received vectors. Finally
we also avoid table lookups for additions and multiplication.

At 1 Mbps, dissemination of an observation can be over
before the next observation is inserted in the network. Indeed
to observe a significant number of collisions we had to increase
the observation length to 1000 bytes. Notice that since 802.11
mandates a number slots in the contention window that doesn’t
depend on the rate, collisions have the same likelihood at 1
Mbps as at 16 kbps provided that there is more than one node
waiting to send.

Figure 8 and 9 show the performance of the protocols in this
setup. Notice that for aggregation, in this setup, only packets
identifiers are sent therefore the packet length is much smaller
than any other protocol.

We see that again coding is a good choice to guarantee high
reliability. We can also observe that coding and decoding delay
do not impact the performance of the coded protocols.

VI. CONCLUSION

In this paper we empirically studied the performance of
different coding schemes for data dissemination. We showed
that they can both reduce delay and improve reliability both
through simulations and by running the protocols on low-end
smart-phones.

Coding can reduce delay in networks where each node is
within the range of the all other nodes. In topologies where the
hidden terminal problem is present coding loses its advantage
but the appropriate coding strategy has a delay comparable to
classic flooding.

Coding also improves significantly reliability when nodes
are sufficiently well connected. In situations where classic
flooding for more than 50% of the rounds doesn’t deliver 40%
of the packets coded flooding can achieve more than 99%
reliability for all packets.

REFERENCES

[1] T. Clausen and P. Jacquet. Optimized link state routing protocol. RFC
3626. Technical report, 2003.

[2] C. de Morais Cordeiro, H. Gossain, and D.P. Agrawal. Multicast over
wireless mobile ad hoc networks: present and future directions. Network,
IEEE, 17(1):52 – 59, 2003.

[3] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong. A random linear network coding approach to multicast. IEEE
Transactions on Information Theory, 52(10):4413–4430, 2006.

[4] N. Ivanic, B. Rivera, and B. Adamson. Mobile ad hoc network emu-
lation environment. In IEEE Conference on Military Communications
(MILCOM), 2009.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.
Xors in the air: Practical wireless network coding. In ACM SIGCOMM,
2006.

[6] T. Kunz and L. Li. Broadcasting in multihop mobile tactical networks:
to network code or not. In International Wireless Communications and
Mobile Computing Conference (IWCMC), 2010.

[7] Sung-Ju Lee, M. Gerla, and Ching-Chuan Chiang. On-demand multicast
routing protocol. In IEEE Wireless Communications and Networking
Conference (WCNC), 1999.

[8] Weifa Liang, R. Brent, Yinlong Xu, and Qingshan Wang. Minimum-
energy all-to-all multicasting in wireless ad hoc networks. Wireless
Communications, IEEE Transactions on, 8(11):5490 –5499, 2009.

[9] J.P. Macker, J. Dean, and W. Chao. Simplified multicast forwarding in
mobile ad hoc networks. In IEEE Conference on Military Communica-
tions (MILCOM), 2004.

[10] R. Ogier. MANET extension of OSPF using CDS flooding. In
Proceedings of the 62nd IETF, 2005.

[11] E. Royer and C. Perkins. Multicast operation of the ad-hoc on-demand
distance vector routing protocol. In ACM International Conference on
Mobile Computing and Networking (MobiCom), 1999.

[12] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas,
G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper
system. In ACM International Conference on Embedded networked
Sensor Systems (SenSys), 2004.

[13] B. Williams and T. Camp. Comparison of broadcasting techniques for
mobile ad hoc networks. In ACM International Symposium on Mobile
Ad-Hoc Networking and Computing (MobiHoc), 2002.

[14] Chi Zhang, Yuguang Fang, and Xiaoyan Zhu. Throughput-delay trade-
offs in large-scale manets with network coding. In INFOCOM 2009,
IEEE, 2009.


