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ABSTRACT

This paper proposes a framework for stereo image coding
with effective representation of geometry in 3D scenes. We
propose a joint sparse approximation framework for pairs of
perspective images that are represented as linear expansions of
atoms selected from a dictionary of geometric functions learned
on a database of stereo perspective images. We then present
a coding solution where atoms are selected iteratively as a
trade-off between distortion and consistency of the geometry
information. Experimental results on stereo images from the
Middlebury database show that the new coder achieves better
rate-distortion performance compared to the MPEG4-part10
scheme, at all rates. In addition to good rate-distortion per-
formance, our flexible framework permits to build consistent
image representations that capture the geometry of the scene.
It certainly represents a promising solution towards the design
of multi-view coding algorithms where the compressed stream
inherently contains rich information about 3D geometry.

Index Terms— Stereo image coding, sparse approxima-
tion, 3D geometry representation.

1. INTRODUCTION

Imaging applications built on stereo and multiview streams are
becoming very popular with the recent advent of services that
offer increased interactivity such as free viewpoint TV (FTV) or
richer content like 3DTV. In general, multiple views are com-
pressed by encoding algorithms that capture the inter-stream
redundancy with block-based motion compensation or dispar-
ity estimation [1]. Multiview compression using disparity in-
formation has also been considered in distributed video coding
solutions such as [2]. However, since these schemes are based
on the classical compression approaches that involve orthogo-
nal transforms and block-based matching, they are not ideal in
representing 3D geometry, especially at low coding rates.

Sparse approximations, on the other hand, offer increased
flexibility in image representation by using overcomplete dic-
tionaries. Studies of sparse models for correlated signals (such

I. Tošić is supported by the Swiss National Science Foundation
under the fellowship no:PBELP2-127847.

as multi-view or stereo images) that are based on joint spar-
sity models are usually limited to decompositions with the
same support, where the difference between signals is noise
[3]. These models are not appropriate for the representation
of stereo images since they cannot capture the geometry infor-
mation. Recently, we have proposed a geometry-based sparse
stereo image model for representation of multivew/stereo omni-
directional images, and developed an algorithm that trades-off
approximation and geometric consistency in the model [4].

This paper addresses the problem of stereo image coding
for perspective cameras. We first show that the geometry-based
correlation model is also valid for pairs of perspective images,
by deriving geometric constraints adapted to the camera ge-
ometry. We further exploit this model in the design of a full
stereo image coder, which achieves efficient compression and
allows implicit geometry representation in the encoded stream.
The coder uses the Multi-View Matching Pursuit (MVMP)
algorithm, which finds pairs of atoms in stereo images that
correspond to the same 3D features in a scene [4]. Atoms are
selected from dictionaries learned under geometric constraints.
The proposed coder includes a coefficient quantization step
and an entropy coding step. We show that the rate-distortion
performance of the proposed coder is better than the baseline
MPEG4-part10 coder. Moreover, our coder outperforms inde-
pendent coding of images using Matching Pursuit [5] at lower
rates, for up to 1dB. It thus represents a flexible framework
for stereo image coding, that offers good coding performance
and allows implicit representation of 3D geometric atom corre-
spondences in the compressed stream.

2. SPARSE STEREO IMAGE REPRESENTATION

Efficient image coding significantly relies on the image repre-
sentation methods. Although single image and video represen-
tations have been widely studied in literature, stereo and multi-
view image representation models have just started to gain in-
terest. Recently, we have proposed a sparse stereo image rep-
resentation method that exploits 3D geometry implicitly con-
tained in stereo images [4]. Although initially applied to omni-
directional images, this method can be adapted to perspective
images taken by two pinhole cameras in a 3D scene, by appro-
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priately incorporating the planar geometric constraints. This
section first overviews the method of [4], and then introduces
the specific changes inherent to pinhole camera geometry.

2.1. Joint geometry-based sparsity model

In the sparse stereo model proposed in [4], the images yL and
yR have m-sparse approximations in dictionaries Φ, resp. Ψ,
of size M , up to an approximation error eL, resp. eR:

yL = Φa + eL =
mX

k=1

alkφlk + eL

yR = Ψb + eR =
mX

k=1

brkψrk + eR, (1)

where the vectors a and b represent the coefficients for the left
and right image, respectively. The index sets L = {lk},R =
{rk}, k = 1, ..., m label the atoms that participate in the sparse
decompositions of yL and yR, respectively. In other words,
{lk}, {rk}, k = 1, ..., m denote the atoms with non-zero co-
efficients, i.e., alk �= 0 and brk �= 0. Since images yL and
yR capture the same 3D scene from different viewpoints, there
is geometric correlation between them. The model further as-
sumes that yL and yR are correlated in the following way:

yR =
mX

k=1

brkψrk + eR =
mX

k=1

brkFlkrk (φlk ) + eR, (2)

where Flkrk (·) denotes a local geometric transform of an
atom φlk in yL to an atom ψrk in yR, and it differs for each
k = 1, ..., m. This correlation can be nicely captured by using
parametric dictionaries, built by applying geometric transfor-
mations to a generative function g(x, y). In this case, an atom φ
is given by gγ , where γ = [sx, sy, θ, tx, ty] is the set of param-
eters that include scaling (sx, sy), rotation (θ) and translation
(tx, ty). Due to such dictionary construction, applying these
geometric transforms (translation, rotation, scaling, or their
combination) on an atom in the sparse image representation
becomes equivalent to a transform of its parameters.

Since transformations between pairs of atoms in stereo im-
age expansions are due to the common 3D geometry of the
scene, they have to satisfy epipolar geometry constraints [6].
The formulation of these constraints obviously depends on the
camera geometry. Therefore, we derive in the next section ex-
plicit geometric constraints for perspective images, which will
then be incorporated in the described stereo image model.

2.2. Geometric constraints in the perspective image model

Let two points v and u represent image projections of the same
3D point p on the left and right camera, respectively. We denote
the essential matrix between cameras as E, which depends on
the rotation and translation between cameras [6]. These points
satisfy the epipolar geometry constraint when uEv = 0. Let v
lie on the atom φl and u lie on the atom ψr = Flr(φl). Since
we consider parametric dictionaries built on the same gener-
ating function, transforming the atom φl with Flr reduces to

a linear transform of the coordinate system Qlr(·), i.e., u =
Qlr(v). This transform immediately follows from translation
t, rotation R and anisotropic scaling sx, sy applied on the x-y
coordinates u = [x y]T , i.e.,: ũ = S ·R(u + t), where

S =

»
1/sx 0

0 1/sy

–
, R =

»
cos θ − sin θ
sin θ cos θ

–
, t =

»
tx

ty

–
, (3)

and it has the form:

u = Qrl(v) = SlRlR
−1
r S−1

r · v − SlRl(tr − tl), (4)

where (Sl,Rl, tl) and (Sr,Rr, tr) denote the transforma-
tion matrices corresponding to the parameters of the left
and right atoms, respectively. In general, u and v will not
satisfy the epipolar constraint exactly, but up to an error
dl = [Qrl(v)]T Ev evaluated on the left image coordinate
system, or error dr = [Q−1

rl (u)]T Eu evaluated on the right
image coordinate system. Taking the average of these two er-
rors and summing them over all pixels, we obtain the epipolar
distance between two atoms φl and ψr in the planar geometry:

Wlr =
qX

i=1

“
w[i]

l (d[i]
l )2 + w[i]

r (d[i]
r )2

”
, (5)

where w[i]
l = wl(xi, yi) is a weighting function that favors

points that are closer to a geometric discontinuity (e.g., a Gaus-
sian envelope). Due to the geometric correlation between stereo
images, transforms Flr between corresponding atoms in the
model (2) will have small epipolar distance Wlr .

3. SPARSE STEREO IMAGE CODING

Besides achieving redundancy reduction using sparse represen-
tation, the described stereo image model for perspective cam-
eras also carries information about the 3D geometry, implicitly
contained in the transform of parameters. We therefore pro-
pose to use this representation in a joint stereo image encoding
scheme, which at the same time reduces the number of bits re-
quired for image transmission and transmits the 3D geometry
information encoded in the transforms. The block scheme of
the proposed joint encoder is shown in Figure 1.
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Fig. 1. Joint stereo image encoder.

Stereo images are first processed by the MVMP algorithm
(Multi-View Matching Pursuit) [4], which decomposes them
into linear combinations of atoms that follow the described
sparse stereo image model (Eqs. 1 and 2). MVMP is a greedy
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algorithm that selects at each iteration a stereo pair of atoms
that gives the minimal value of the following energy:

E =
1

2σ2
I

(||yL −Φa||22 + ||yR −Ψb||22)

+ ρ

2

4
MX

l,r=1

I(al)I(br)Wrl + κ
MX

l,r=1

(br −
al√
Jlr

)2

3

5 , (6)

where Wrl is given by Eq. 5, κ is a normalization parameter,
and I is the activity indicator function: I(x) = 0 if x = 0
and I(x) = 1 otherwise. Jlr is the Jacobian determinant of the
transform Qlr , which in the case of perspective images is:

Jrl =

˛̨
˛̨∂Qlr(v)

∂v

˛̨
˛̨ =

˛̨
˛̨sx,r

sx,l

sy,r

sy,l

˛̨
˛̨ .

Finally, ρ represents a trade-off parameter between the approx-
imation error and the geometric penalty given by the epipolar
matching of atoms and the correlation of their coefficients. Af-
ter finding the atoms, MVMP removes their contributions from
the images, and repeats the selection process on the residues.

The dictionary used in the MVMP can be any parametric
dictionary. However, to achieve the best coding performance,
we propose to use dictionaries whose sets of parameters are
learned from a database of stereo images. We adapt the maxi-
mum likelihood dictionary learning method proposed in [4] to
the case of perspective images. The dictionary parameters are
optimized by iterating between two steps: 1) sparse approxima-
tion: where sparse coefficients are computed for a large set of
images using MVMP and a fixed set of dictionary parameters;
and 2) dictionary update, where the dictionary parameters are
updated while keeping the coefficients constant. The second
step is done using the multivariate gradient descent.

Coefficients obtained by the MVMP are then quantized, as
shown in Figure 1. Besides the simplest uniform quantization
approach, we also propose to use vector quantization, whose
goal is to exploit the correlation between the coefficients of
corresponding atoms in two views. The optimal 2D bins and
centroids are evaluated by the Lloyd-Max (i.e., K-means) algo-
rithm. Quantized coefficients are then entropy coded.

Atom indexes can be represented as a combination of pa-
rameters, corresponding to the geometric transformation of the
generative function. For a given atom, four parameters have to
be encoded : the scale pair index (each pair of scales gets one
index), the rotation index and the two shift indexes. Since the
parameters of two corresponding atoms in the left and right im-
age are correlated (through a local transform), we compute their
differences and perform entropy coding on those differences.

Finally, the decoding scheme involves only simple linear
summations over the decoded atoms, weighted by dequantized
coefficients. Note that the encoding of parameters is lossless,
hence the transforms Qlr between corresponding stereo atoms
are available at the decoder in the original form. This is impor-
tant, as those transforms carry geometric information that can
be used for camera pose or depth estimation [7].

(a) (b)

Fig. 2. Learned dictionaries (10x10): a) Left, Φ; b) Right, Ψ

4. EXPERIMENTAL RESULTS

We first show the results obtained by the dictionary learning
algorithm and then show the rate-distortion performance of the
proposed stereo image coder.

4.1. Learned dictionary

Dictionary learning is performed using 21 planar stereo image
pairs from the Middlebury 2006 dataset [8]. As the images are
rectified and without radial distortion, the essential matrix is
given by [6] : E = [0 0 0; 0 0 − 1; 0 1 0].

We learn the parameters of the parametric dictionary built
on the generative function that is a Gaussian in one direction
and its second derivative in the orthogonal direction:

g(x, y) = − 1
K

(4x2 − 2)e−(x2+y2). (7)

This function has been shown to be well suited for represent-
ing edges in images. We only learn scaling parameters, since
other parameters depend on the relative pose between cameras.
Five samples of the scale parameters are used, initialized by a
random value in the interval [5, 15]. We use four orientations
uniformly distributed from 0 to π, and translations that cover
all pixel shifts. In each iteration of learning, 50 pairs of patches
of size 10×10 are randomly selected from the image database.
The preprocessing of patches includes whitening and variance
normalization [4]. Patches are then decomposed by MVMP
(using 12 atoms/patch) in order to find coefficients used for the
dictionary update step. The process is stopped when the stable
solution is found.

We train dictionaries for two cases: 1) ρ = 0, i.e., learning
only under the approximation constraint; and 2) ρ = 1, i.e.,
learning under both approximation and geometry constrains.
Learned atoms are shown in Figure 2 for the left and right dic-
tionary, displayed at the center and with orientation 0. We can
see that the atoms learned under the geometric constraints tend
to be more spatially compact than the atoms learned in the un-
constrained case (ρ = 0). However, it is hard to tell which
atoms are better using qualitative assessment. Hence, we eval-
uate in the next section the coding performance of learned dic-
tionaries in the stereo image coding scheme proposed in Sec. 3.
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4.2. Sparse stereo image coding results

Coding performance is evaluated on the Moebius stereo pair
from the Middlebury database [8], which is outside the train-
ing set. Coefficients are quantized using uniform quantization
(UQ) or vector quantization (VQ). VQ was performed using the
K-means algorithm on 500 training samples. Quantized coeffi-
cients and indexes are encoded with the Huffman algorithm, us-
ing probability models based on 500 randomly chosen patches.

Figure 3 shows the rate-distortion curves for the proposed
joint sparse stereo coding scheme using UQ (red curve) and VQ
(black curve). The rate is the total rate for encoding both left
and right images, while the PSNR is calculated on the average
mean square error over the two images. Both curves correspond
to the performance of the dictionary evaluated for ρ = 1. We
can see that UQ and VQ perform comparably. VQ performs
slightly better at low rates, when the most of the geometric cor-
relation that leads to the correlation of coefficients is exploited.

For comparison, the stereo pair is encoded using MPEG4-
part10 (high profile, level 1.2), without deblocking filter (green
curve), where the right image is encoded with respect to the first
one, using block-based motion estimation. We also evaluate
the performance of the independent coding scheme, which is
based on the independent Matching Pursuit (MP) encoding of
each image, UQ, and Huffman coding (blue curve). The coder
uses the dictionary optimized for minimal approximation error,
since MP does not use geometric constraints.

The proposed sparse stereo coding scheme outperforms
MPEG4 at all rates in terms of PSNR, and provides competitive
performance in terms of visual quality. Moreover, it outper-
forms independent MP at low rates, showing improvements of
up to 1dB. At higher rates, MP has better performance, which
is due to the fact that the geometric correlation between atoms
is prominent at the beginning of the MVMP, i.e., at lower rates.

5. CONCLUSIONS

We have presented a novel stereo image coder based on joint
sparse approximation under geometry constraints. Our first
contribution is the adaptation of the MVMP and the dictionary
learning algorithm developed for omnidirectional cameras [4]
to the case of perspective cameras, by deriving geometric con-
straints adequate for planar epipolar geometry. Our second
contribution is the development of the entire joint sparse cod-
ing scheme for stereo images, which leads to improved rate-
distortion performance compared to the independent MP coder
at low rates, and to the MPEG4 coder at all rates.
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