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Abstract—The placement of replicas across storage nodes in
a replication-based storage system is known to affect rebuild
times and therefore system reliability. Earlier work has shown
that, for a replication factor of two, the reliability is essentially
unaffected by the replica placement scheme because all placement
schemes have mean times to data loss (MTTDLs) within a factor
of two for practical values of the failure rate, storage capacity,
and rebuild bandwidth of a storage node. However, for higher
replication factors, simulation results reveal that this no longer
holds. Moreover, an analytical derivation of MTTDL becomes
intractable for general placement schemes. In this paper, we
develop a theoretical model that is applicable for any replication
factor and provides a good approximation of the MTTDL for
small failure rates. This model characterizes the system behavior
by using an analytically tractable measure of reliability: the
probability of the shortest path to data loss following the first
node failure. It is shown that, for highly reliable systems, this
measure approximates well the probability of all paths to data
loss after the first node failure and prior to the completion of
rebuild, and leads to a rough estimation of the MTTDL. The
results obtained are of theoretical and practical importance and
are confirmed by means of simulations. As our results show,
the declustered placement scheme, contrary to intuition, offers a
reliability for replication factors greater than two that does not
decrease as the number of nodes in the system increases.

I. INTRODUCTION

Vast amounts of user data are stored in today’s large-scale
distributed storage systems, which are comprised of a large
number of nodes and disks. These systems offer scalability and
a high degree of parallelism, and aim at providing inexpensive,
highly-available storage. Examples of such systems are Farsite,
OceanStore, CFS, PAST, Glacier, and Shark (see [1] and the
references therein). Storing data in a distributed redundant
manner helps ensure reliability, long-term durability, and high
availability in the presence of component failures, such as node
and disk failures. Replication and erasure coding schemes have
been widely used to provide the required redundancy.

In a system using replication to protect data from node
failures, each data block is replicated a certain number of times
and the replicas are stored in different nodes to improve the
probability that replicas are available when multiple storage
nodes fail. When node failures occur, a rebuild process is
initiated to ensure that all lost replicas are recovered and
redundancy is restored to the initial level. Replication in-
creases the system’s reliability; however, this is achieved at
the expense of increased storage space required and bandwidth
consumed.

Placement of replicas affects the duration of the rebuild
process and, potentially, the system reliability. In this paper, we
focus on two particular placement schemes, namely, clustered
and declustered, which represent the two extremes of the
degree of parallelism that can be exploited while rebuilding
data. Declustered placement enables rebuilding from all sur-
viving nodes in parallel, thereby leading to low rebuild times,
whereas clustered placement enables rebuilding only from a
limited number of nodes, which leads to higher rebuild times.
Earlier work [2] showed analytically that, for a replication
factor of two, the reliability is essentially unaffected by the
replica placement scheme because all placement schemes have
mean times to data loss (MTTDLs) within a factor of two
for practical values of the failure rate, storage capacity, and
rebuild bandwidth of a storage node. However, for replication
factors greater than two, different placement schemes result
in significantly different reliability. Furthermore, an analyt-
ical assessment of reliability for the declustered placement
scheme becomes intractable. In this paper, we address this
issue by developing a theoretical model that provides a good
approximation of the MTTDL for small failure rates and is
applicable for any replication factor. The two schemes are
compared based on the analytical results obtained, which are
also confirmed by means of simulation. We show that, for
replication factors greater than two, the reliability of these two
schemes can be significantly different as the number of nodes
in the system increases. It is well known that, for a system
with clustered placement of replicas, the MTTDL decreases
as the number of nodes in the system increases. Our results
reveal that, contrary to intuition, the MTTDL for declustered
placement scheme with replication factors greater than two
does not decrease as the number of nodes increases; in fact,
for a replication factor of four and above, the MTTDL of
declustered placement increases with the number of nodes in
the system. Surprisingly, the difference in reliability between
the two schemes arises not because the rebuilding of a certain
amount of data is faster in declustered placement than in
clustered, but rather because of the fact that, if a node failure
occurs during the rebuild process, the amount of data that
loses one additional copy is significantly smaller in declustered
placement than in clustered.

The remainder of the paper is organized as follows: First, we
review related work in Section II. Then, Section III describes
the storage system model and the parameters considered;
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Section IV describes the measures of reliability that are of
interest and how they relate to each another; Section V presents
the theoretical model developed for deriving the measures
of interest; Section VI compares the reliability of clustered
and declustered placement schemes; Section VII presents
numerical and event-driven simulation results on MTTDL,
demonstrating the reliability that the two schemes offer; and
Section VIII concludes the paper.

II. RELATED WORK

Placement of redundant data with emphasis on erasure cod-
ing has been considered in [3]. For replication-based systems,
the reliability of a system with a number of nodes equal to
the replication factor is addressed in [4], where an explicit
expression of MTTDL for such a system is derived.

Replication-based decentralized storage systems, such as
CFS, OceanStore, Ivy, and Glacier, employ a variety of differ-
ent strategies for placement and maintenance. In architectures
that employ distributed hash tables, the choice of algorithm
for data replication and maintenance can have a significant
impact on both performance and reliability [5]. That work
proposes five different placement schemes. The scheme that
minimizes the probability of data loss is the block placement

scheme, in which replicated data is stored in the same set of
nodes. Similar results are also presented in [6]. However, the
probability of data loss in these works is obtained for the case
when there are no rebuild operations performed.

Both the recovery mechanism and the replica placement
scheme affect the reliability of a system. Fast recovery mech-
anisms, such as rebuilding onto reserved spare space on
surviving storage nodes instead of on a new spare node,
reduce the window of vulnerability and improve the system
reliability [7], [8], [9]. The replica placement scheme also
plays an important role in determining the duration of rebuilds.
In particular, distributing replicas over many storage nodes
in the system reduces the rebuild times, but also increases
the exposure of data to failure. For a replication factor of
two, these two effects cancel out, and therefore, all placement
schemes have similar reliability [2].

III. SYSTEM MODEL

The parameters of the storage system considered and the
failure and rebuild model used are described in this section.
Table I lists the parameters used.

A. Storage System

The storage system considered is a block-based storage
system comprising n storage nodes with total data storage
capacity of nc bytes, where c is the capacity of each storage
node. Every user data block is of size s bytes, and is replicated
r times. These r replicas, also referred to as copies, are stored
in the system such that no two replicas of a data block are in
the same node. The exact way in which the r replicas of each
data block are stored depends on the placement scheme used.
Two specific placement schemes are considered in this paper,
namely, the declustered and the clustered placement schemes.

TABLE I
PARAMETERS OF A STORAGE SYSTEM

c storage capacity of each node (bytes)
n number of storage nodes
r replication factor
s size of each data block (bytes)
b average rebuild bandwidth available at each node (bytes/s)
λ Failure rate of a storage node (s−1)

Declustered Placement: In general, the r replicas of each data
block need to be stored in some r nodes out of the n nodes in
the system. There are

(

n
r

)

ways of choosing r nodes from the
n nodes. In this placement scheme, all

(

n
r

)

choices are used
equally for storing replicas. Therefore, when a node fails, the
remaining replicas of the blocks in the failed node will be
spread uniformly over all remaining nodes.

Clustered Placement: In this placement scheme, the n nodes
are divided into disjoint sets of r nodes. All r nodes in a given
set are mirrors of each other, that is, they store replicas of the
same set of data blocks.

The motivation for considering these particular placement
schemes is as follows: when a node fails, these two schemes
represent the two extremes in which the copies of the data
blocks on the failing node are spread across the remaining
nodes and hence the extremes of the degree of parallelism that
can be exploited when rebuilding this data. For declustered
placement, the copies are spread equally across all remaining
nodes, whereas for clustered placement, the copies are spread
across the fewest possible number of nodes.

B. Failure Model

Storage nodes are comprised of disks, memory, processor,
network interface, and power supply. A failure of any of these
components is assumed to lead to a node failure. However,
as the disks are more reliable than the other components of
a node [10], the failure of a node is mainly determined by
the failure of these other components. We therefore neglect
the effect of disk failures and consider only node failures. In
our model, node failures are assumed to be independent, with
exponentially distributed times to failure with rate λ. However,
this model may not apply to node failures that are caused
by software bugs, DDoS attacks, virus/worm infections, node
overloads and human error, as these factors may result in
correlated node failures [11]. Recent work [12] has shown
that node unavailability can be strongly correlated; however,
there is no specific characterization of the extent of correlation
among permanently failing nodes. Throughout this paper, we
will assume that storage nodes are generally highly reliable
and that the product of the failure rate of a node, λ, and the
time to read all data from a node at a rebuild bandwidth of b,
c/b, is small, that is,

λc/b ! 1. (1)

This assumption is reasonable for real storage nodes where,
for instance, an average node lifetime is of the order of a few
years, i.e. 1/λ ≈ 105 h, and time to read all contents of node
is of the order of ten hours, i.e. c/b ≈ 10 h.
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C. Rebuild Model

When nodes fail, data blocks lose one or more of their r
replicas. The purpose of the rebuild process is to recover all
replicas lost so that all data have r replicas. A good rebuild
process needs to be both intelligent and distributed.

By an intelligent rebuild process, we mean that the system
always attempts to first recover the copies (replicas) of the
blocks that have the least number of replicas left. As an ex-
ample, consider a system that has D0, D1, · · · , De−1, and De

distinct number of data blocks which have lost 0, 1, · · · , e−1,
and e replicas, respectively, and no blocks that have lost more
than e replicas, for some e between 1 and r−1. An intelligent
rebuild process attempts to first create an additional copy of
the De blocks that have lost e replicas because these are the
blocks that are the most vulnerable to data loss if additional
nodes fail. If it is successful and if no other failure occurs
in between, then the system will have D0, D1, · · · , De−2, and
De−1+De distinct data blocks which have lost 0, 1, · · · , e−2,
and e − 1 replicas, respectively. Then the rebuild process
creates an additional copy of the De−1+De data blocks and so
forth until all replicas lost have been restored. In contrast to the
intelligent rebuild, one may consider an unintelligent rebuild,
where lost replicas are being recovered in an order that is not
specifically aimed at recovering the data blocks with the least
number of replicas first. Clearly, an unintelligent rebuild is
more vulnerable to data loss, but has a lower implementation
complexity than an intelligent rebuild. In the remainder of the
paper we consider only intelligent rebuild.

In placement schemes such as the declustered scheme, the
surviving replicas that the system needs to read to recover
the lost replicas may be spread across several, or even all,
surviving nodes. Broadly speaking, two approaches can be
taken when recovering the lost replicas: the data blocks to
be rebuilt can be read from all the nodes in which they are
present, and either (i) copied directly to a new node, or (ii)
copied to (reserved) spare space in all surviving nodes first
and then to a new node. The latter method is referred to
as distributed rebuild and has a clear advantage in terms of
time to rebuild because it exploits parallelism when writing to
many (surviving) nodes versus writing to only one (new) node.
In this context, the reduction of the rebuild time improves
reliability.

During the rebuild process, a read-write bandwidth of b
bytes/s is assumed to be reserved at each node exclusively
for the rebuild. This is usually only a fraction of the total
bandwidth available at each node; the remainder is being used
to serve user requests. In clustered placement, it is assumed
that there are spare nodes, and when a node fails, data is read
from any one of the surviving nodes of the cluster to which
the failed node belonged and written to a spare node. As the
data is being read from one node and written to another, the
speed of rebuild is b. In declustered placement, it is assumed
that sufficient spare space is reserved in each node for rebuild.
During rebuild, the data to be rebuilt is read from all surviving
nodes and copied to the spare space reserved in these nodes in

such a way that no data block is copied to the spare space of a
node in which a copy is already present. As data is being read
from and written to each surviving node, the total read-write
rebuild bandwidth b of each node is equally split between the
reads and the writes. So if there are ñ surviving nodes, the
total speed of rebuild in the system is ñb/2. We assume that
sufficient network bandwidth is available to exploit parallelism
when rebuilding from all nodes of the system. We also assume
that once a node has failed, the rebuild process is immediately
initiated, that is, there is no delay in the start of rebuild
following a node failure.

IV. RELIABILITY MEASURES

A data loss is said to have occurred in the system if all
replicas of at least one data block have been lost and cannot
be restored by the system. The system reliability is typically
assessed in terms of the MTTDL. This measure provides
meaningless results if it is associated with lifetime and mis-
used to obtain absolute measurements [13]. Nonetheless, it is
useful for assessing trade-offs, for comparing schemes, and for
estimating the effect of the various parameters on the system
reliability [14], [13]. To the best of our knowledge, no study
in the literature disproves the validity of MTTDL as criterion
in the comparison of the reliability of one scheme with that
of another. Therefore, in this work we use the MTTDL to
compare the reliability of clustered and declustered placement
schemes.

Consider a timeline starting at zero when the system is in
its original state with all replicas and nodes intact. At some
point in time, the first node failure occurs. By our assumption
of independent and identically distributed times to failure of
each node in the system, the time to the first node failure
is exponentially distributed with parameter nλ. Following the
first node failure, a complex sequence of rebuild and failure
events may follow, at the end of which, the system either
experiences data loss with a certain probability PDL before all
replicas lost have been restored, or recovers to its original state
with a probability 1−PDL. As a first level of approximation,
for a highly reliable system for which assumption (1) is valid,
the time taken for this sequence of events can be neglected
compared to the total time taken until data loss occurs. Call
the first node failure event after each time the system is back
in its original state simply “first-node-failure event.” It is then
easy to see that the timeline is filled with first-node-failure
events with the expected time interval between these events
being 1/(nλ), until data loss occurs. As the probability of
a first-node-failure event resulting in data loss is PDL, the
expected number of first-node-failure events until data loss
is 1/PDL. Therefore, the MTTDL is equal to the product of
the expected time between successive first-node-failure events,
1/(nλ), and the expected number of first-node-failure events
until data loss, 1/PDL, that is,

MTTDL ≈ 1/(nλPDL). (2)

The approximation holds for highly reliable systems for which
(1) holds.
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Although a crude estimate of MTTDL can be obtained
from (2), a theoretical analysis is difficult because the paths,
following a first-node-failure event, to either data loss or
back to the original state are complex as they pass through
a combinatorially large number of states, which makes the
estimation of PDL hard. To circumvent this problem, we
introduce a second level of approximation by estimating the
probability of the direct path to data loss through a state
space of exposure levels (defined in Section V-A). For highly
reliable systems, it is shown in Appendix A that the probability
of all paths to data loss, namely PDL, which is difficult to
analytically compute, is approximated well by the probability
of the direct path, which is amenable to theoretical analysis.

V. RELIABILITY ESTIMATION

This section shows how the complex sequence of failure and
rebuild events following a first-node-failure event is handled in
order to be able to estimate the probability of data loss before
all lost replicas are restored, namely, PDL.

A. Exposure Levels

To keep the problem analytically tractable, we model the
system as evolving from one exposure level to another as nodes
fail and rebuilds complete. At time t ≥ 0, let Dl(t) be the
number of distinct data blocks that have lost l replicas, with
0 ≤ l ≤ r. The system is said to be in exposure level e at
time t, 0 ≤ e ≤ r, if

e = max
Dl(t)>0

l. (3)

In other words, the system is in exposure level e if there exists
at least one block with r− e copies and no blocks with fewer
than r−e copies in the system, that is, De(t) > 0, and Dl(t) =
0 for all l > e. At t = 0, Dl(0) = 0 for all l > 0 and
D0(0) is the total number of distinct data blocks stored in
the system, which according to the parameters in Table I, is
equal to nc/(rs). Node failures and rebuild processes cause
the values of D1(t), · · · , Dr(t) to change over time, and when
data loss occurs, Dr(t) > 0.

B. Paths to Data Loss

A path to data loss following a first-node-failure event is a
sequence of exposure level transitions that begins in exposure
level 1 and ends in exposure level r (data loss) without going
back to exposure level 0, that is, for some m ≥ r, a sequence
of m − 1 exposure level transitions e1 → e2 → · · · → em
such that e1 = 1, em = r, e2, · · · , em−1 ∈ {1, · · · , r − 1},
and |ei − ei−1| = 1, ∀ i = 2, · · · ,m. Note that this collection
of paths excludes visits to exposure level 0 and therefore only
consists of all paths to data loss before all lost replicas are
restored. To estimate PDL, we need to estimate the probability
of the union of all such paths to data loss following a first-
node-failure event. As the set of events that can occur between
exposure level 1 and exposure level r is complex, PDL is
considered to be intractable. To circumvent this problem, we
propose to approximate PDL by the probability of the direct
path to data loss, that is, the probability of the path 1 → 2 →

· · · → r. It is shown in Appendix A that the probability of
the direct path approximates well the probability of all paths,
namely, PDL, for a highly reliable system for which (1) holds.
So, if we denote the probability of transition from exposure
level e to level e+ 1 by Pe→e+1, then

PDL ≈
r−1
∏

e=1

Pe→e+1. (4)

Remark: Although the above approximation holds for small
replication factors and highly reliable systems for which
(1) is valid, we tend to underestimate PDL and therefore
overestimate MTTDL when the replication factors are higher
and the left hand side of (1) is closer to one (see Section VII
and Figs. 5 and 6).

C. Direct Path to Data Loss

Consider the direct path 1 → · · · → r and denote the times
of transitions from exposure levels e − 1 to e by te, e =
1, · · · , r.

The probability of a transition from one exposure level to
the next, Pe→e+1, depends not only on the exposure level e,
but also on the number of data blocks, De(te), with the least
number of replicas that is being rebuilt in that exposure level.
This is because the time taken to create one additional replica
of these De(te) blocks is proportional to De(te), and if another
node containing some copies of these De(te) blocks fails
before an additional copy of these blocks has been created, the
system enters exposure level e+ 1. Therefore, the probability
of a transition to the next level is equal to the probability that
a node containing some copies of these De(te) blocks fails
before an additional copy of these De(te) blocks is created.
The latter probability depends on both the number of nodes
that have some copies of these De(te) blocks, and on the time
to create an additional copy of these De(te) blocks (which is
proportional to De(te) and is also dependent on the placement
scheme). So, to estimate the probability of the direct path to
data loss, we need to estimate the number of most exposed
blocks De(te), the time required to create one additional copy
of these De(te) blocks, as well as the number of surviving
nodes which have copies of these De(te) blocks for each
exposure level e = 1, · · · , r − 1.

D. Amount of Data to Rebuild at Each Exposure Level

In general, the total number of data blocks De(te) to be
rebuilt at exposure level e depends on three factors: (i) the
total number of data blocks De−1(te−1) that was being rebuilt
in exposure level e−1, (ii) the time te of a node failure during
the rebuild process at exposure level e−1 that lead the system
to exposure level e, and most importantly, (iii) the replica
placement scheme. When the first node fails, the amount of
data that lose one replica is exactly equal to the amount of data
stored in that node, c. Therefore, the number of data blocks
D1(t1) that have lost one replica is equal to c/s, s being
the size of each data block. Clearly, D1(t1) is independent
of the replica placement scheme and is simply a constant
for a given system. However, D2(t2), · · · , Dr−1(tr−1) heavily
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depend on the replica placement scheme and are not constants,
but random variables, owing to the randomness of the times
of node failures t2, · · · , tr−1.

Note also that, in general, the blocks lost by a newly failing
node cause an abrupt change in the number of blocks that
have lost l replicas, l = 0, · · · , r. In other words, there may
be jumps in the values of Dl(t), l = 0, 1, · · · , r, at the times
when exposure level transitions occur, that is, when t = te,
e = 1, · · · , r. To distinguish between the values before and
after an exposure level transition at each exposure level e, we
will assume that De(t) is right-continuous, that is, De(t) is
the number of data blocks with the least number of replicas
r − e at time t for te ≤ t < te+1. Thus, at t−e , that is, the
time just before the transition from exposure level e− 1 to e,
the number of data blocks with the least number of replicas
r − e+ 1 is De−1(t−e ).

Let us define the random variables αe ∈ (0, 1], e =
1, · · · , r − 2, as follows:

αe :=
De(t

−

e+1)

De(te)
, e = 1, · · · , r − 2. (5)

The numerator is the number of most exposed data blocks that
had not yet been rebuilt when the exposure level transition e to
e+1 happened at time te+1. Therefore, αe denotes the fraction
of the total number of most exposed blocks De(te) that was
not rebuilt when the system goes from exposure level e to e+1.
In Appendix B, it is shown that, for highly reliable systems,
the random variables αe, e = 1, · · · , r − 2, are uniformly
distributed.

At any given exposure level e, when a node containing
copies of the most exposed De(te) blocks fails, the system
goes to exposure level e+1. When the system goes to exposure
level e+1, the total number of most exposed blocks that need
to be rebuilt at this exposure level, De+1(te+1), depends on
how many of the De(te) data blocks were shared by the newly
failed node and the fraction αe of the De(te) data blocks that
had not yet been rebuilt when the node failed, that is,

De+1(te+1) = αe × (number of data blocks among the

De(te) data blocks that had copies in

the newly failed node). (6)

For clustered placement, a node whose failure can cause
an exposure level transition always has a copy of all the
data blocks being rebuilt. Therefore, the above calculation for
clustered placement goes as follows:

Dclus.
1 (t1) =

c

s

Dclus.
2 (t2) = α1D

clus.
1 (t1) = α1

c

s
· · ·

Dclus.
e (te) =

c

s

e−1
∏

j=1

αj . (7)

For declustered placement, the most exposed De(te) data
blocks being rebuilt at exposure level e have the r− e copies

of these blocks spread equally across all surviving n−e nodes,
with (r − e)/(n − e) ×De(te) copies in each node. Thus, it
follows that:

Ddeclus.
1 (t1) =

c

s

Ddeclus.
2 (t2) = α1

r − 1

n− 1
Ddeclus.

1 (t1) = α1
(r − 1)

(n− 1)

c

s
· · ·

Ddeclus.
e (te) =

c

s

e−1
∏

j=1

αj
(r − j)

(n− j)
. (8)

Remark: From (7) and (8), we note that, for declustered
placement, the amount of data to be rebuilt at exposure level e
is approximately inversely proportional to ne−1, whereas for
clustered placement, the amount of data is independent of n.
Given that the probability of an exposure level transition de-
pends significantly on the amount of data to be rebuilt at each
exposure level, this leads to significantly lower probabilities
of exposure level transitions toward data loss for declustered
placement than clustered placement as will be shown in the
next subsection.

E. Probability of Exposure Level Transitions

Let t′e, e = 1, · · · , r − 1, be the scheduled times of
completion of rebuild of one additional replica of the most
exposed De(te) blocks at each exposure level. For the direct
path, te+1 < t′e for all e because the system goes to the next
exposure level before the scheduled rebuild time.
Clustered Placement: The duration of rebuild t′e − te can be
expressed in terms of the total number of data blocks Dclus.

e (te)
to be rebuilt at exposure level e and the system parameters as

t′e − te = Dclus.
e (te)s/b. (9)

In clustered placement, the data is read from one node and
written to a new node during rebuild and so the total rebuild
bandwidth is b. In exposure level e, there are r − e nodes
whose failure can cause an exposure level transition, and the
minimum of the times to failures of these r − e nodes is
exponentially distributed with parameter (r − e)λ, that is,

te+1 − te ∼ Exp((r − e)λ). (10)

Therefore, the probability P clus.
e→e+1 is equal to the probability

that one of these r − e nodes fails before rebuild completes,
that is,

P clus.
e→e+1 = Pr{te+1 < t′e} = 1− e−(r−e)λ

Dclus.
e (te)s

b

≈ (r − e)
λs

b
Dclus.

e (te). (11)

The approximation holds for a highly reliable system because,
as seen in (7), Dclus.

e (te) ≤ c/s, and by our assumption (1) for
a highly reliable system, the exponent in the above expression
λsDclus.

e (te)/b ≤ λc/b ! 1.
Declustered Placement: The duration of rebuild t′e − te can
be expressed in terms of the total number of data blocks
Ddeclus.

e (te) to be rebuilt at exposure level e as

t′e − te = Ddeclus.
e (te)s/((n− e)b/2). (12)

333!!333!!333!!



In declustered placement, the data is read from and written to
all surviving n − e nodes in parallel and so the total rebuild
bandwidth is (n−e)b/2; the factor 1/2 arises from the fact that
each node reads and writes the same amount of data using a
total node read-write rebuild bandwidth of b. In exposure level
e, the failure of any of the n − e surviving nodes can cause
an exposure level transition, and the minimum of the times to
failures of these n− e nodes is exponentially distributed with
parameter (n− e)λ:

te+1 − te ∼ Exp((n− e)λ). (13)

Therefore, the probability P declus.
e→e+1 is equal to the probability

that one of these n − e nodes fails before the time required
for rebuild to complete:

P declus.
e→e+1 = Pr{te+1 < t′e} = 1− e−(n−e)λ

Ddeclus.
e (te)s

(n−e)b/2

≈
2λs

b
Ddeclus.

e (te). (14)

The approximation holds for a highly reliable system because,
as seen in (8), Ddeclus.

e (te) ≤ c/s, and by assumption (1), the
exponent 2λsDdeclus.

e (te)/b ≤ 2λc/b ! 1.

Remark: From (11) and (14), we observe that, if the number
of data blocks De(te) to be rebuilt were the same for both
declustered and clustered, the difference in transition prob-
abilities would be only a constant factor (dependent on r)
that is independent of the number of nodes n. However, the
difference in rebuild times is a factor proportional to n as seen
in (9) and (12). This shows that reducing the rebuild times
does not necessarily improve reliability. On the other hand, as
seen from (7) and (8), De(te) in fact differs significantly for
clustered and declustered placements, and the difference is a
factor that scales as ne−1. This is the reason for the difference
between the reliability of clustered and declustered placement
schemes.

VI. RELIABILITY OF CLUSTERED VS. DECLUSTERED

Using the tools and concepts developed in Sections IV
and V, we now compare the reliability of clustered and
declustered placement schemes.

A. Clustered Placement

Consider a direct path to data loss with fractions αe, e =
1, · · · , r−2, of the most exposed data not rebuilt during each
exposure level transition and denote the vector (α1, · · · ,αr−2)
by #α for notational convenience. The probability of this direct
path, denoted by P clus.

DL,direct(#α), follows from (11) and (7):

P clus.
DL,direct(#α) =

r−1
∏

e=1

P clus.
e→e+1 ≈

r−1
∏

e=1

(r − e)
λs

b
Dclus.

e (te)

=
r−1
∏

e=1

(r − e)
λs

b

c

s

e−1
∏

j=1

αj

=

(

λc

b

)r−1

(r − 1)!
r−2
∏

e=1

αr−e−1
e .

As αe, e = 1, · · · , r − 2, are independent and uniformly
distributed random variables in (0, 1] (refer Section V-D and
Appendix B), the probability P clus.

DL,direct of all direct paths with
all possible values of #α is found by integration:

P clus.
DL,direct =

∫ 1

0
· · ·

∫ 1

0
P clus.
DL,direct(#α)d#α

=

(

λc

b

)r−1

(r − 1)!
r−2
∏

e=1

1

r − e
=

(

λc

b

)r−1

.(15)

From the approximation (4) of PDL, it follows that

P clus.
DL ≈ P clus.

DL,direct =

(

λc

b

)r−1

. (16)

An estimate for the MTTDL then follows from (2):

MTTDLclus. ≈
(b/c)r−1

nλr
. (17)

B. Declustered Placement

Consider a direct path to data loss with fractions αe, e =
1, · · · , r − 2, of the most exposed data not rebuilt at each
exposure level transition. The P declus.

DL,direct(#α) of this direct path
follows from (14) and (8):

P declus.
DL,direct(#α) =

r−1
∏

e=1

P declus.
e→e+1 ≈

r−1
∏

e=1

2λs

b
Ddeclus.

e (te)

=
r−1
∏

e=1

2λs

b

c

s

e−1
∏

j=1

αj
(r − j)

(n− j)

=

(

2λc

b

)r−1 r−2
∏

e=1

(

αe
(r − e)

(n− e)

)r−e−1

.

As αe, e = 1, · · · , r − 2, are independent and uniformly
distributed random variables in (0, 1], the probability P declus.

DL,direct

of all direct paths with all possible values of #α is found by
integration:

P declus.
DL,direct =

∫ 1

0
· · ·

∫ 1

0
P declus.
DL,direct(#α)d#α

=

(

2λc

b

)r−1 r−2
∏

e=1

1

r − e

(

r − e

n− e

)r−e−1

=

(

2λc

b

)r−1 1

(r − 1)!

r−2
∏

e=1

(

r − e

n− e

)r−e−1

.(18)

From the approximation (4) of PDL, we have

P declus.
DL ≈

(

2λc

b

)r−1 1

(r − 1)!

r−2
∏

e=1

(

r − e

n− e

)r−e−1

. (19)

An estimate for the MTTDL then follows from (2):

MTTDLdeclus. ≈
(b/c)r−1

nλr

(r − 1)!

2r−1

r−2
∏

e=1

(

n− e

r − e

)r−e−1

. (20)
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TABLE II
RANGE OF VALUES OF DIFFERENT SIMULATION PARAMETERS

Parameter Meaning Range

c storage capacity of each node 12 TB
n number of storage nodes 4 to 100

r replication factor 2, 3, 4
b rebuild bandwidth available at

each node
96 MB/s

λ failure rate of a storage node 10−2 to 10−4 h−1

VII. SIMULATIONS

Event-driven simulations are used to verify the theoretical
estimates of MTTDL and probability PDL of data loss follow-
ing a first-node-failure event for the two placement schemes,
clustered and declustered.

A. Simulation Method

The storage system is simulated using an event-driven
simulation with three types of events that drive the simulation
time forward: (a) failure events, (b) rebuild-complete events,
and (c) node-restore events. The state of the system is main-
tained by the following variables: time, the simulated time,
activeNodes, the number of active (surviving) nodes in the
system, exposureLevel, the exposure level, and a vector of
length (r+ 1) dataExposure = (D0, · · · , Dr), where Dl is
the number of distinct data blocks that have lost l replicas. The
values of these variables are updated at each event, and when
Dr > 0, data loss is said to have occurred and the simulation
ends.

For each set of parameters, the simulation is run 100 times,
and the MTTDL and its bootstrap 95% confidence intervals are
computed. Whereas for declustered placement, the simulation
is run for n nodes, for clustered placement, the simulations
are run only for one cluster, that is, r nodes, and the obtained
MTTDL of the cluster is divided by n/r to obtain the MTTDL
of the system. This is because clusters are independent of
each other and the number of clusters is n/r. The probability
PDL is also empirically calculated from the simulations as the
inverse of the number of zero-to-one exposure level transitions
(that is, the number of first-node-failure events) until data loss.
Confidence intervals for PDL are computed based on the 95%
confidence intervals on the number of zero-to-one exposure
level transitions.

(a) Failure Event: Besides updating the simulated time, a fail-
ure event triggers the following: (i) decreasing activeNodes

by one and increasing exposureLevel by one (recall that, for
the declustered scheme, any node failure causes an exposure
level transition, and that, for the clustered scheme, only one
cluster is being simulated and therefore any node failure in that
cluster causes an exposure level transition), (ii) scheduling the
next failure event after an exponentially distributed time with
parameter activeNodes×λ, (iii) updating dataExposure by
taking partial rebuild of the most exposed data into account,
and (iv) scheduling the rebuild-complete event based on the
most exposed data in dataExposure and the placement
scheme used (which determines the parallelism that can be

exploited and therefore the speed of rebuild). By the nature
of the rebuild process, data placement is preserved, that is,
declustered remains declustered and clustered remains clus-
tered. This is because, when the placement is declustered,
critical blocks are read from and written to all nodes at
the same time and the new replicas are placed such that
declustering is preserved. When the placement is clustered, the
replicas are created in a new node directly which preserves the
placement.

(b) Rebuild-Complete Event: A rebuild-complete event updates
the simulated time and triggers the following: (i) decreasing
exposureLevel by one, (ii) at an exposure level e, updating
dataExposure by adding De to De−1 and setting De to zero
(this means that the rebuild process always creates replicas of
the most exposed data first, or in other words, an intelligent
rebuild is done), (iii) scheduling the next rebuild-complete
event based on the most exposed data and the placement
scheme. Besides these, there are a few other updates that differ
based on placement: for declustered placement, when all data
have r copies, that is, when the exposure level becomes 0, a
node-restore event is scheduled. A node-restore event is the
time when all the replicas that were newly created have been
successfully transferred to new nodes and the number of nodes
is brought back to n. The number of nodes to restore is stored
in nodesToRestore. For clustered placement, activeNodes
is increased by one (because copies are being directly created
in a new node and so a node-restore event is not required),
and a new failure event is scheduled which replaces the
earlier scheduled one (because the number of active nodes
has changed and the exponential distribution is memoryless).

(c) Node-Restore Event: Besides updating the simulated time,
this event increases activeNodes by nodesToRestore and
sets nodesToRestore to zero. As the number of active nodes
has changed, a new failure event is scheduled which replaces
the earlier scheduled one.

B. Theory vs. Simulation

Although some of the assumptions used in the theoretical
analysis, such as independent and exponentially distributed
times to node failures, are also used in the simulation, the sim-
ulation results reflect a more realistic picture of the systems’s
reliability. This is because of the following key differences
between the theoretical analysis and the simulations. The
theoretical estimate of MTTDL in (2) takes into account
only the time spent by the system in the failure-free state
and ignores the rebuild times, whereas the simulations do
not ignore the rebuild times when calculating the times to
data loss. Furthermore, in (4), PDL is approximated by the
probability of the most direct path to data loss, thereby
implicitly assuming that this is the only path following a first-
node-failure event other than going back to the original state.
In simulations however, all the complex trajectories of the
system through the different exposure levels are simulated by
simulating random node failure events and updating the data
exposure vector by taking partial rebuilds into account. In the
theoretical analysis, the time required to restore new nodes in a
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declustered placement scheme (following successful rebuild of
lost replicas in the spare space of surviving nodes) is ignored,
whereas in the simulations, the time to restore new nodes is
simulated as well. In addition, other approximations made in
the analysis, such as in (11) and (14) where the exponent
is assumed to be small, are not made in the simulations.
Therefore, the simulations reflect a more complex picture of
the system behavior than what is assumed in theory.

C. Simulation Results

Table II shows the range of parameters used for the simu-
lations. Typical values for practical systems are used for all
parameters, except for the mean times to failure of a node,
which have been chosen artificially low (10000 h, 1000 h,
and 400 h for replication factors 2, 3, and 4, respectively)
to run the simulations fast. The running times of simulations
with practical values of the mean times to node failure, which
are of the order of 10000 h or higher, are prohibitively high;
this is due to the fact that PDL becomes extremely low (of the
order of 10−6) thereby making the number of first-node-failure
events that need to be simulated (along with the other complex
set of events that restore all lost replicas following each first-
node-failure event) extremely high (of the order of 106) for
each run of the simulation for a given set of parameters.
Although this approach scales down the MTTDL by making
failure events more frequent, its use is justified (as in [9])
because it preserves the ratios of MTTDLs of the various
schemes.

Replication Factor 2: Fig. 1 shows the comparison of the-
oretically predicted and simulation-based MTTDL values for
a system with replication factor 2 and mean time to failure
of a node, 1/λ, equal to 10000 h as the number of nodes n
in the system is varied. It is observed that the theoretically
predicted values, although approximate, are a good match to
the simulation-based values as they typically lie within the
95% confidence intervals. From (17) and (20), for r = 2,

MTTDLclus. ≈ b/(ncλ2), (21)

MTTDLdeclus. ≈ b/(2ncλ2). (22)

Both the clustered and the declustered placement schemes have
an MTTDL that is inversely proportional to the number of
nodes, with the declustered placement having a slightly worse
MTTDL (by a factor of two) than the clustered. This result
is similar to that obtained in [2] for exponentially distributed
rebuild times. Fig. 2 shows the comparison of theoretically
predicted and simulation-based PDL values which also shows
agreement between theory and simulation. Thus the MTTDL
approximation (2) is quite good for the set of parameters
considered.

Replication Factor 3: Theoretical estimates of MTTDL match
well with the simulation-based values as seen in Fig. 3. Note
that the approximations made in the theoretical analysis, which
hold for λc/b ! 1, are still valid for the case shown in Fig. 3,
where λc/b ≈ 0.035. Similar agreement is seen for the values
of PDL in Fig. 4. From (17) and (20), for replication factor

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Number of nodes

 

 

M
T

T
D

L
 (

in
 d

ay
s)

clustered (theoretical)

clustered (simulated)

declustered (theoretical)

declustered (theoretical)

r = 2

1/λ = 10000h

Fig. 1. Comparison of theoretically predicted and simulated values
of MTTDL for a replication factor of two with mean time to failure
of a node equal to 10000 h. For the simulated results, 95% bootstrap
confidence intervals are shown.
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Fig. 2. Comparison of theoretically predicted and simulated values
of PDL for a replication factor of two with mean time to failure of
a node equal to 10000 h. For the simulated results, 95% bootstrap
confidence intervals are shown.

r = 3, we get

MTTDLclus. ≈ b2/(nc2λ3), (23)

MTTDLdeclus. ≈ (n− 1)b2/(4nc2λ3). (24)

As seen from the above equations and also from Fig. 3, the
MTTDL of clustered placement is inversely proportional to
the number of nodes, whereas the MTTDL of declustered
placement is essentially independent of the number of nodes.
The reason is that, for declustered placement, if a second node
failure occurs during the rebuild of the first node, the amount
of data that become critically exposed (that is, having only one
copy left) is inversely proportional to n; whereas for clustered
placement, it is independent of n (see (7) and (8)).
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Fig. 3. Comparison of theoretically predicted and simulated values
of MTTDL for replication factor three with mean time to failure of
a node equal to 1000 h. For the simulated results, 95% bootstrap
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Fig. 4. Comparison of theoretically predicted and simulated values of
PDL for replication factor three with mean time to failure of a node
equal to 1000 h. For the simulated results, 95% bootstrap confidence
intervals are shown.

Replication Factor 4: Although there is a difference between
theoretical and simulation results on MTTDL and PDL as seen
in Fig. 5 and Fig. 6 respectively, their behavior with respect
to the number of nodes is well captured by the theoretical
analysis. The MTTDL of declustered placement increases with
the number of nodes which is contrary to common intuition
which may suggest that larger systems are less reliable. From
(17) and (20), for replication factor r = 4,

MTTDLclus. ≈ b3/(nc3λ4), (25)

MTTDLdeclus. ≈ (n− 1)2(n− 2)b3/(24nc3λ4). (26)

The difference between theory and simulation is attributed
to the fact that we make two levels of approximation in the
theoretical analysis: first is when we approximate MTTDL by
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Fig. 5. Comparison of theoretically predicted and simulated values
of MTTDL for replication factor four with mean time to failure of
a node equal to 400 h. For the simulated results, 95% bootstrap
confidence intervals are shown.
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Fig. 6. Comparison of theoretically predicted and simulated values
of PDL for replication factor four with mean time to failure of a node
equal to 400 h. For the simulated results, 95% bootstrap confidence
intervals are shown.

1/(nλPDL) by ignoring the time periods spent by the system
during its rebuilds, and the second is when we approximate
the probability of all paths to data loss by probability of the
direct path to data loss. The first approximation is valid when
assumption (1) can be justified and PDL is computed without
approximation. However, the second approximation of com-
puting the probability of direct path to data loss instead of PDL

is also affected by both the validity of the assumption (1) and
this effect is compounded by the number of exposure levels
(which in turn is equal to the replication factor). Therefore,
it is expected that PDL is underestimated (and therefore the
MTTDL is overestimated) by this approximation for higher
replication factors and when failure rates are high.
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D. Summary of Findings

The following lists the findings of this work:

• The MTTDL, as can be seen in (17) and (20) is propor-
tional to (b/c)r−1/λr. Typically, in the literature [4], a
rebuild rate µ is defined as µ := b/c and we have the
commonly observed factor µr−1/λr in the expressions
of MTTDL; this matches with our results.

• For clustered placement, the MTTDL is inversely pro-
portional to the number of nodes n. This has also been
observed in literature [4].

• For a replication factor of two, the MTTDLs of clustered
and declustered placements differ only by a factor of two.

• For replication factors greater than two, the MTTDL
behaviors of the two placement schemes with respect to n
differ significantly. The MTTDL of clustered placement
is inversely proportional to n for all replication factors,
whereas the MTTDL of declustered placement is propor-
tional to n

1
2 r(r−3) where r is the replication factor.

• The MTTDL of declustered placement scheme decreases
inversely proportional to n for a replication factor of two,
stays constant with n for a replication factor of three, and
increases proportional to n

1
2 r(r−3) for replication factors

greater than three. In contrast, the MTTDL of clustered
placement scheme decreases inversely proportional to n
for all replication factors.

• The significant difference in the MTTDLs of clustered
and declustered placements arises not because of the fact
that the time taken to rebuild the same amount of data
is significantly different – in fact, for the same amount
of data to be rebuilt, the probability of exposure level
transitions is approximately the same for both placements
– but because of the fact that the amount of most exposed
data to be rebuilt at higher exposure levels is significantly
different.

VIII. CONCLUSIONS

In this paper, we compared the reliability of two placement
schemes, namely, clustered and declustered, in terms of the
MTTDL. Rebuilds play an important role in determining the
reliability of a system and these two schemes represent the
two extremes of the degree of parallelism that can be exploited
during rebuild. Declustered placement spreads replicas of data
on each node across all other nodes and hence enables maxi-
mum parallelism during rebuild, whereas clustered placement
spreads replicas of data on each node across the minimum
possible number of nodes and therefore minimizes the degree
of parallelism. Our results demonstrated that, the MTTDL of
the clustered placement scheme is inversely proportional to
the number of nodes for any replication factor. In contrast,
for the declustered placement scheme with replication factors
greater than two, contrary to intuition, the MTTDL does not
decrease as the number of nodes increases; it remains constant
for a replication factor of three, and increases for a replication
factor greater than three. The theoretical estimates match well
with the simulation results obtained.

The reliability in terms of MTTDL was derived by consid-
ering the direct path to data loss after the first node failure. In
this paper, we applied this method to analyze a system model
in which node failures are independent. However, it is likely
that it can be used in future work to also investigate the effect
of correlated failures. The inclusion of factors like delay in the
start of rebuild after a node failure and network bandwidth
constraint in the model are also of interest for future work
as these make the model more realistic. Other directions for
further research are consideration of failure distributions that
not exponential, and the effect of placement of erasure coded
stripes on reliability.

APPENDIX A
PROBABILITY OF ALL PATHS TO DATA LOSS VS. THE

PROBABILITY OF THE DIRECT PATH TO DATA LOSS

Let qj→r, j = 1, 2, · · · , r − 1, denote the probability that,
once the system has entered exposure level j, it goes to
exposure level r prior to going to exposure level j − 1. Note
that the probability of the direct path to data loss following
the first node failure is then equal to q1→r. Let the probability
Pj→j+1 that the system goes from exposure level j to j+1 be
equal to εj . For highly reliable systems, (11) and (14) reveal
that εj ! 1.

We now proceed to derive qj→r, by conditioning on the
subsequent transition given that the system is at exposure level
j. It follows that

qj→r = εj h(j+1)→r +(1− εj) 0 , for j = 1, · · · , r− 1, (27)

where h(j+1)→r denotes the probability that once the system
has entered exposure level j + 1, it goes to exposure level
r prior to going to exposure level j − 1. This probability is
derived by conditioning on which of the two exposure levels j
and r is subsequently entered first, that is, for j = 1, · · · , r−1,

h(j+1)→r = q(j+1)→r + (1− q(j+1)→r) qj→r. (28)

The first term of the summation accounts for the event that
exposure level r is entered first, whereas the second term
accounts for the event that exposure level j is entered first.
In the latter case, the probability that the exposure level r is
subsequently entered prior to entering exposure level j − 1
is given by qj→r, according to its definition. Combining (27)
and (28) yields, for j = 1, · · · , r − 1,

qj→r = εj(q(j+1)→r + (1− q(j+1)→r) qj→r). (29)

Solving (29) for qj→r yields the recursive relation

qj→r =
εj q(j+1)→r

1− εj (1− q(j+1)→r)
, for j = 1, · · · , r − 1. (30)

In particular, for εj ! 1, it follows that

qj→r ≈ εj q(j+1)→r , for j = 1, · · · , r − 1. (31)

Consequently, repeatedly applying (31) yields

qj→r ≈
r−1
∏

i=j

εi , for j = 1, · · · , r − 1. (32)
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Note that the product on the right hand side of the above
equation is equal to the probability of occurrence of the direct
path j → j+1 → · · · → r from exposure level j to data loss.
Thus, for j = 1, Eq. (32) leads to the result sought:

PDL = q1→r ≈
r−1
∏

i=1

εi, for εi ! 1, i = 1, · · · , r − 1, (33)

namely, for a highly reliable system, the probability that, once
the system has entered exposure level one, it goes to exposure
level r prior to reaching exposure level zero, is equal to the
probability of the direct path 1 → 2 → · · · → r to data loss
for a highly reliable system.

APPENDIX B
FRACTION OF DATA REBUILT

Suppose that a node failure occurred at time zero, and a
certain amount of data has to be rebuilt before another node
failure occurs at time F ∼ Exp(λ̃). Let R be the time taken to
complete rebuilding the data and let fR(·) be the probability
density function of R such that

(λ̃2E[R2])/(λ̃E[R]) → 0 as λ̃E[R] → 0, (34)

λ̃E[R] ! 1. (35)

Note that fixed and exponentially distributed rebuild times
satisfy (34). Also it can be shown that (35) is true for
both clustered and declustered placements in a highly reliable
system as follows. For clustered placement at exposure level
e, λ̃ = (r−e)λ. Also, from (7) and (9), it follows that E[R] ≤
c/b. So, by assumption (1), λ̃E[R] ≤ (r − e)λc/b ! 1. For
declustered placement at exposure level e, λ̃ = (n−e)λ. From
(8) and (12), it follows that E[R] ≤ c/((n−e)b/2). So, again
by assumption (1), λ̃E[R] ≤ 2λc/b ! 1.

We are interested in the fraction of data that is not rebuilt
when a node failure happens, given that this failure happens
before rebuild completes, that is, given that F < R. Assuming
that the amount of data rebuilt during a time period is
proportional to that time period, the fraction of data not rebuilt,
α, is

α = (R− F )/R, for F < R.

The distribution function of α for x ∈ (0, 1] is

Pr{α ≤ x} = Pr { (R− F )/R ≤ x|F < R}

=
Pr{R(1− x) ≤ F < R}

Pr{F < R}

=
Pr{F < R}− Pr{F < R(1− x)}

Pr{F < R}

= 1−
Pr{F < R(1− x)}

Pr{F < R}
. (36)

Now, consider Pr{F < R}:

Pr{F < R} =

∫

∞

0
(1− e−λ̃y)fR(y)dy

=

∫

∞

0

(

λ̃y −
θ

2
λ̃2y2

)

fR(y)dy

where θ = e−λ̃ζ for some ζ, 0 ≤ ζ ≤ y (Taylor’s theorem).
So, it follows that

Pr{F < R} = λ̃E[R]−
θ′

2
λ̃2E[R2] ≈ λ̃E[R],

where the equality follows by integration yielding θ′ between
0 and 1 (because 0 ≤ θ ≤ 1), and the approximation follows
from the assumptions (34) and (35) on fR(·). Similarly,

Pr{F < R(1− x)} ≈ λ̃(1− x)E[R],

as x ∈ (0, 1]. Therefore, plugging the above two equations in
(36), we get

Pr{α ≤ x} ≈ x, x ∈ (0, 1].

This means that, for highly reliable systems, α is uniformly
distributed between zero and one.
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