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Abstract— We consider MapReduce workloads that are pro-
duced by analytics applications. In contrast to ad hoc query
workloads, analytics applications are comprised of fixed data
flows that are run over newly arriving data sets or on different
portions of an existing data set. Examples of such workloads
include document analysis/indexing, social media analytics, and
ETL (Extract Transform Load).

Motivated by these workloads, we propose a technique that
predicts the runtime performance for a fixed set of queries
running over varying input data sets. Our prediction technique
splits each query into several segments where each segment’s
performance is estimated using machine learning models. These
per-segment estimates are plugged into a global analytical model
to predict the overall query runtime. Our approach uses minimal
statistics about the input data sets (e.g., tuple size, cardinality),
which are complemented with historical information about prior
query executions (e.g., execution time).

We analyze the accuracy of predictions for several segment
granularities on both standard analytical benchmarks such as
TPC-DS [17], and on several real workloads. We obtain less
than 25% prediction errors for 90% of predictions.

I. INTRODUCTION

Query performance prediction is a highly desirable feature

for both users and resource management (e.g., schedulers).

Users and application developers want to know how long is

needed to complete execution while automated resource man-

agement often seeks accurate runtime estimations to optimize

resource provisioning and scheduling in accordance with user

contracted Service Level Agreements (SLAs). For instance,

FLEX [19] is such an SLA aware scheduler for MapReduce

workloads, which requires accurate execution time estimates

to produce the optimal schedule.

In the past few years MapReduce [3] has become popular

as an infrastructure for large scale data analysis. MapReduce

runs on clusters that scale to thousands of commodity nodes

by considering availability and fault tolerance as first class

concerns. MapReduce is often used for ETL tasks, and in

part as an alternative for parallel data processing at large

scale. To simplify querying in MapReduce, several high-

level, SQL-like languages have been introduced: Hive-QL [16]

(Facebook), Pig Latin [12] (Yahoo!), and Jaql [2] (IBM). These

systems enable users to express their queries declaratively, and

automatically translate them into flows of MapReduce jobs.

In contrast to traditional DBMS, modeling query runtime

performance for MapReduce data flows using pure analytical

models (as in traditional query optimization) is still an open

problem. One of the main differences, is that MapReduce does

not “own” the data or the query runtime operators. The input

data is in-situ files whose structure is opaque to the system.

Queries, even if written in a high-level language, often contain

user defined functions (UDFs) typically written in Java. In this

context, modeling the query runtime using learning techniques

based on prior query executions is more feasible.

Previous work on runtime prediction, in the context of

traditional DBMS [1], [4], [6] or in the context of MapReduce

[5], mostly focuses on estimating the runtime performance of

similar queries on the same input datasets. Such techniques

use a similarity metric to correlate the query of interest,

whose runtime is being predicted, with other similar queries

from the training set, for which the runtime is known. In

our context, analytics applications use fixed data flows that

are run at regularly scheduled intervals over newly arriving

data sets. Such workloads include document analysis/indexing,

social media analytics, and ETL (Extract Transform Load).

For such scenarios, traditional approaches in query runtime

prediction require re-training on each of the datasets to provide

accurate estimates, which is not practical, or runtimes must be

extrapolated. In contrast, our approach can accurately model

the processing speeds that correspond to various data sets by

sampling the input space and building functions that can model

processing speed trends rather than assuming them constant.

In this context, we propose a prediction technique which

does not require model fitting every time the input data sets

change. Typically, several training data sets suffice for fitting

a model per query, which can be later used to predict the

runtime performance of the query on new data sets. The

proposed prediction technique uses a set of minimal statistics

about the input data (i.e., tuple size, input cardinality) and

historical information about prior query executions (i.e., query

logs).

To compute a runtime estimate, our approach combines a

set of machine learning models with a global analytical model.

Machine learning has powerful mechanisms to extract corre-

lations from historical data. Thus, machine learning models

are used as building blocks to capture the processing cost and

the output cardinalities of each query segment. Then, a global

analytical model is used to estimate the query runtime from

its segments’ estimates.

A query can be modeled using one segment (coarse-

grain) or multiple segments (fine-grain). We consider several
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options for segmentation since different granularities may

be useful for different scenarios. For example, coarse grain

segments are good candidates for dedicated infrastructures

where performance interference and runtime variability is low.

In contrast, fine granularity segments are good candidates

for shared infrastructures where the dynamics of the system

(e.g., slowdown/speed-up) must be captured. For example,

such segmentation is used for query progress estimators [10],

[11]. Since all of these scenarios are of interest for our

workloads, we propose a generic prediction mechanism which

can be applied at different segment granularities according to

the particular use case.

In this paper, we evaluate our proposed prediction technique

in the context of applications that were written using Jaql. We

investigated correlations between input / output query features

including data characteristics and per segment processing costs

for several real workloads such as social media analytics,

data pre-process for machine learning algorithms, and general

analytics (the set of workloads is described in Section III).

As a result of the analysis, we found strong correlations

between per segment input / output cardinalities, and between

input cardinalities / segment processing speeds. Figure 1 and

Figure 2 show the observed correlations for a a typical task

(pre-process for mining step of social media analytics). We

note that, if the observed correlations can be mapped to a

function, it is possible to model them either using simple

linear regression (i.e., for linear functions) or more specialized

regression models such as transform regression [14], which

can handle non-linearities in the data (i.e., for more complex

functions).

The proposed technique is applicable to MapReduce jobs

in general and other high-level languages so long as sufficient

information is available in log files to identify traces from

similar MapReduce jobs. We note that identifying job types by

only comparing job binaries is not robust because additional

configuration parameters may be used to decide the actual

code fragments executed by the job. For our case, Jaql’s use

of transparent functions and their parameters facilitated this

task.

In this paper we make the following contributions:

• We propose a technique that predicts the runtime of the

same queries on different input datasets.

• We analyze the sources of errors in predicting query

performance and discuss how prediction errors are prop-

agated in our models.

• We evaluate our prediction technique for different levels

of segment granularities and show its feasibility experi-

mentally. For the investigated workloads, we obtain less

than 25% runtime prediction errors for 90% of predic-

tions.

II. PREDICTING THE QUERY RUNTIME

A. Assumptions

First, we assume that the cluster configuration settings are

constant. This assumption typically holds in practice if we

consider that the best set of configuration settings is usually

chosen at the deployment time per workload rather than per

each input query. Second, we assume that data distribution

of the inputs does not change. Increasing the table sizes

maintains the relative distribution of values constant, i.e. all

datasets sample data from the same distribution. An important

effect of this assumption is data proportionality. I.e., for an

input schema, the average record size remains constant. We

experimentally validated the last assumption on the work-

loads that we investigated, which were typically composed

of multiple UDFs that were executed on semi-structured data.

However, if the data distribution assumption does not hold

for workloads which store data in more traditional, structured

format, orthogonal approaches may be employed to build

histograms on the columns of interest. For instance, online

aggregation techniques as proposed in [13] may be used to

build approximate histograms at a low cost.

B. Approach

We separate queries into query types and we build predic-

tion models per query-type as follows. Each query type is

defined by the set of MapReduce jobs it requires in the query

execution. Further, each MapReduce job is identified by the

set of Jaql functions that describe the query semantics of the

given job (e. g., filter, aggregate, join, etc). In order to filter

the log files of a workload on a particular query-type, we

use the following definition of job similarity: two jobs are

considered similar iff all of their Jaql functions are equal.

Such a restrictive definition allows us to use a feature vector

consisting of only data processing characteristics instead of a

query feature vector that combines query semantics with data

processing characteristics.

A typical Jaql query is composed of several MapReduce

jobs. A MapReduce job consists of several phases (i.e., the

map and reduce phases). In turn, each phase has several

processing steps (i.e., read, map, sort, write, shuffle, reduce).

In our approach we break the query into several segments

and build prediction models at segment granularity. Then,

we compute the query runtime using a global model that

aggregates each segment’s performance. A segment can be

a query, a job, a phase or a processing step according to the

level of granularity considered. Figure 3 illustrates phase-level

segments.

There was no overhead to collect the data needed to build

the models since existing logs were used ’as-is’. The time to

build the models for the experiments used in this paper ranged

from seconds to minutes, depending the amount of log files

analyzed. This overhead and the required disk space needed to

store the logs can be tuned as needed by limiting the maximum

number of instances stored per job type.

C. Modeling Segment Performance

We use two machine learning models to predict segment

performance: a model is used to predict the processing speed

of the segment and another model is used to predict the output

cardinality of the segment. In constructing these models, we



Fig. 1. Input / output cardinality correlations for Workload-A Fig. 2. Input cardinality / processing speed correlations for Workload-A

Fig. 3. Modeling per segment cardinality functions (i.e., Ci) and processing
speed functions (i.e., Pi) for phase-level segments.

use uni-variate linear regression as follows: For predicting the

processing speed we use a feature vector (input cardinality,

processing speed), while for predicting the output cardinality

of a segment we use a feature vector (input cardinality, output

cardinality). These models are later used to compute the

runtime estimate of the segment. Using the input cardinality

and the processing speed we compute the system utilization

time of the segment, while the output cardinality is used as

the input into the subsequent segment. For the first segment

of the query pipeline we compute the input cardinality based

on the input and tuple size of the input datasets.

D. Modeling Query Runtime

To predict the query runtime we combine the performance

of each segment on the critical path of the query using a

global analytical model. Depending on the level of segment

granularity, there are several factors that may need to be

considered such as: the level of parallelism (i.e., the number of

map / reduce tasks), scheduling overheads, segment overlaps

and data skew. In the following we present the methodology

for computing the query runtime performance for prediction

models that use phase-level segments. This methodology can

be easily adapted for other segment granularities (e.g., job,

query), and therefore is not presented here.

In order to compute the effective running time of a segment,

we divide the system utilization time of the segment by the ac-

tual number of tasks used to execute the segment (i.e., multiple

tasks are used to increase the degree of parallelism). The actual

number of tasks is determined by the cluster configuration, the

job configuration and the amount of input data processed. For

instance, the number of map tasks is usually computed based

on the size of the input data, while the number of reduce tasks

is typically taken from the configuration file.

Given that there are no queuing delays in the system and

that the MapReduce cluster is configured such that the reduce

phase starts after the map phase finishes, we can use the

following formulas to compute the runtime estimate of a

query: SegmentRuntime = (TaskRuntime + SOtask) ×
numWaves , where TaskRuntime is the average runtime of

a map task or a reduce task, SOtask is the average scheduling

overhead per task, and numWaves is the number of waves

(i.e., the maximum number of tasks that a worker node is

expected to run sequentially) required to execute the job.

The job runtime is computed as follows:

JobRuntime =
∑

k SegmentRuntimek + SOjob ,

where SegmentRuntimek is given by the previous formula

and the SOjob is the scheduling overhead per job. Currently,

all the MapReduce jobs of a given Jaql query are executed

sequentially. Therefore, the query runtime estimate is given

by adding up the runtime of all MapReduce jobs.

E. Sources of Errors

There are two categories of factors that contribute to inac-

curate runtime predictions:

i) Prediction errors caused by non-representative feature

vectors or insufficient training at the segment level; in the

same category, we also include prediction errors caused by

inter-connecting segment models together (i.e., using the pre-

dicted output cardinality of one segment as the input of the

subsequent segment).

ii) Simplification assumptions about the scheduler (i.e.,

potential schedules, scheduling overheads), simplification as-

sumptions about data skew and hardware homogeneity as-

sumptions across cluster nodes; In order to show how much

errors are introduced by the segment level models (case i))

as compared with the errors introduced by simplification

assumptions used in the global model (case ii)), we introduce

a new metric called the aggregated running time. This metric

shows the accuracy of the query runtime that is obtained by

composing 100% accurate segment level models. Hence, it

exposes the errors introduced by composing the performance



of segment granularity models into a global runtime estimate

(it is effectively measuring the errors introduced by ii)).

We currently account for data skew at the reduce tasks by

modeling the skew exposed by earlier job runs on already

seen data sets (i.e., we model the performance of the longest

reduce task rather than that of the average task). Yet, we omit

possible block size differences at the map tasks which may

cause additional estimation errors (i.e., we use the average

performance of a map task in the global analytical model).

III. EXPERIMENTAL STUDY

We evaluate our prediction techniques on a standard bench-

mark on decision support systems and on several real work-

loads.

TPC-DS [17]: TPC-DS is a decision support workload

modeling a retail supplier. We use TPC-DS because it covers

a large variety of decision support queries (e.g., reporting,

iterative, data mining) which were designed to cover more

realistic scenarios [15] as compared with its precursor (i.e.,

TPC-H [18]).

Workload-A: Social media data analysis. The categories of

queries investigated include: mining pre-process, general pre-

process and analytics.

Workload-B: Data pre-processing for machine learning

algorithms. The categories of queries include: summarization,

cleansing, and statistics computation.

A. Experimental Methodology

Each of the above workloads was run on a dedicated cluster

so in this paper, we quantify query prediction accuracy only

for this case.

Each time a MapReduce job is evaluated, it outputs a

historical file that summarizes how it ran. For Workload-A,

we used existing historical files instead of re-executing the

queries. For evaluating our models, we used k-fold cross-

validation [7]. Historical files corresponding to each query

were split into k sets where k-1 sets were used for training the

models, and 1 set was used for testing the model. For building

these sets, we considered only historical files corresponding to

query executions on different input data sets. This process was

repeated k times. All prediction errors are computed as the

relative error between the predicted and the actual values. We

report all prediction errors as cumulative distribution functions.

B. Experimental Setup

We use several different cluster infrastructures. For the

TPC-DS benchmark we run our experiments on a 10 node

cluster, each of the node having two 6-core CPUs Intel X5660

@ 2.80GHz, 48 GB RAM and 1 Gbps network bandwidth.

Workload-A uses a 4 node cluster, while Workload-B uses

a 20 node cluster. In all experiments we use Hadoop 0.20.2

configured with FAIR scheduler. The reason for using several

infrastructures is that for particular workloads we use existing

historical log files from production clusters instead of re-

playing all the workloads on the same cluster infrastructure.

C. Job-Level Predictions

We evaluate job-level predictions at multiple segment gran-

ularities: i.e., job and phase level. We use 3-level cross-

validation to validate our prediction models.

Our first workload consists of a mix of three TPC-DS

queries (i.e., Q3, Q7, Q10) and three synthetic queries, all of

them using the TPC-DS data. We choose these queries because

they include a different number of joins and aggregates, and

hence have different complexity (i.e., with query pipelines

varying from one single MapReduce job up to a maximum of

seven MapReduce jobs). The job runtime varies in the range

of [25sec, 4mins]. Figure 4 shows the cumulative distribution

function of errors for a total of 186 predictions. For 95% of

the workload the prediction errors were less than 20% for all

the prediction models analyzed, while job-level models were

more accurate, with 10% error for 95% of the workload. The

reason that job-level models were more accurate is that they do

not require to model the scheduling overheads or the critical

path of the query explicitly. The effects of these factors are

implicitly included into the features of the job-level models.

The small differences between the aggregated runtime and

the predicted runtime for phase-level segments show that the

main causes that induced a large part of errors for phase-

level segments were the simplifying assumptions presented in

Section II-E rather than the fine grain models per se.

Figure 5 illustrates the absolute predicted values as com-

pared with the actual values for phase-level segments. With

a few outliers the predicted values closely match the actual

values. This is also illustrated by traditional metrics used

in prediction: the coefficient of determination R2=0.98 (the

closer to 1, the better), the normalized root-mean-squared

error NRMSE=0.09 (the closer to 0, the better), and the

maximum under-prediction error MUPE=22% (for a job of

136 sec). A full description of these metrics can be found

in [7] and a summary in Section 4.2 of [20].

Similar results for Workload A and Workload B are il-

lustrated in Figure 6 and Figure 7. These graphs show the

prediction errors for phase-level segments only. For Workload

A, the job running time varied in the range [16sec, 7.5 hrs],

while the job runtime estimation error is less than 15% for

80% of the workload. For Workload B, the job running time

varied in the range [1min, 30mins], while the job runtime

estimation error is 30% for 80% of the workload. In both

cases, our predictions are very close to the aggregated runtime,

effectively showing that the prediction models per se have a

good accuracy. Similarly, most of the prediction errors were

caused by scheduling and critical path approximations.

D. Query-Level Predictions

We evaluated query level predictions at various levels of

segment granularities: i.e., query, job and phase levels. We

used 3-level cross-validation to validate our prediction models.

Figure 8 shows the distribution of prediction errors for the

TPC-DS workload. We use the same set of queries as presented

in Section III-C. The errors introduced by all prediction

schemes was kept under 25% for 90% of the workload.
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Fig. 8. Query runtime estimation for TPC-DS

Similarly with job-level predictions, coarse granularity models

(i.e., that use query level segments) achieved better accuracy

than fine granularity models (i.e., that use job or phase level

segments).

Typically, queries with a larger number of MapReduce jobs

accumulate more errors than queries with a fewer number of

jobs. Yet, an interesting observation is that fine granularity

models do not only cumulate errors on the critical path of

the query, but may also neutralize cumulated errors if both

over- and under- estimations are present. This is one of the

reasons that phase granularity models accumulate only 10%

more errors than query granularity models for query pipelines

composed of up to seven MapReduce jobs.

The total number of predictions is less than for the case of

predicting job-level performance because only query-level pre-

dictions are reported. For the job-level case, prediction errors

for all the jobs of a query were reported. Traditional metrics

used in prediction are still in reasonable limits as follows.

For phase granularity models: R2=0.97, NRMSE=0.25, and

MUPE=45%, while for query granularity models: R2=0.99,

the NRMSE=0.07, and MUPE=12%.

In the context of dedicated cluster infrastructures, our tech-

nique is more accurate when applied on coarse grain segments

rather than on fine grain segments. This result is not surprising,

considering the additional sources of errors for fine granularity

models (i.e., scheduling approximations, data skew) and the

cumulative errors caused by connecting a larger number of

models together. This point is also corroborated by small

differences between the predicted runtime and the aggregated

runtime, which show the maximum achievable accuracy for

fine granularity models. An interesting direction of future work

is to combine fine granularity models with coarse granularity

models to further improve runtime estimations. The idea is

to use the fine granularity models that predict the size and

the speed of processing intermediate results and then to use

the predicted values as additional inputs in the feature vector

of the coarser grain models. Such an approach resembles the

models proposed in [21] with the difference that some of the

input features of the model are at their turn predicted in a

preliminary phase.

IV. RELATED WORK

Previous work on predicting the runtime execution of

MapReduce DAGs was studied from several angles:

Morton et al. propose ParaTimer [11], a progress estimator

for MapReduce DAGs. ParaTimer splits each MapReduce job

into segments and builds the estimated time left until the



query completes execution using the processing speeds and

the input cardinalities of each query segment. Our approach

complements ParaTimer as it builds models that predict the

cardinality and the processing speed of each query segment.

Herodotou et al. propose Starfish [8], [9], a self-tunning

system for Hadoop that aims to find the best set of config-

uration settings. Starfish was designed to help practitioners

in data analytics getting the best job performance without

requiring them knowing the tunning knobs of the underly-

ing MapReduce infrastructure. Starfish combines analytical

models, simulation and controlled black box models with the

goal of finding the best job configuration settings on a given

cluster infrastructure. The key building block is the job profile,

which models the processing characteristics of each job. We

similarly investigate prior job executions but not only on one

representative data set. Instead, for each job type our models

use several reference executions on different data sizes such

that they can approximate processing speed trends (which may

change with the input data size). Further, instead of using third

party profiling tools, we exploit existing log files produced by

Hadoop.

Ganapathi et al. propose an approach for predicting the

runtime execution of Hive queries [5]. The proposed approach

correlates similar queries using the m nearest neighbor queries.

However, the proposed model is not designed to predict the

runtime performance given that the input datasets change.

V. CONCLUSION AND FUTURE WORK

In this paper we introduce an approach for predicting the

runtime of Jaql queries given that the input datasets change.

We propose a hybrid prediction method which combines local

linear regression models with a global analytical model. The

local models are used to predict per segment performance,

while the global analytical model is used to compute the

query runtime by aggregating the segment-level estimates. We

evaluate and show the feasibility of our approach at various

levels of segment granularities on a standard decision support

benchmark and on several real workloads.

As ongoing work, we are investigating methods for cor-

relating the error causes presented in Section II-E with the

actual prediction errors with the goal of providing estimation

guarantees. Prediction guarantees are useful to the end users

or applications as they may use or disregard an estimation

according to the level of guarantee. The challenge sits in

providing weights to each error source and to quantify the

impact of one error on the other.

We also consider extending our approach such that it can

predict the runtime execution when the input data distribution

changes. The idea is to introduce the input data distribution

as another variable in our prediction models. Specifically,

for each attribute of the input data set that is required in

the query execution we record its corresponding distribution

of values. Prediction models are then built per classes of

input distributions (defined by the group of attribute-level

distributions). Given a new dataset, our approach will find the

model that is closest in terms of its distribution class. For this

purpose, a similarity metric will be defined at the distribution

level.

Finally, we plan to evaluate the accuracy of our prediction

approach in the context of progress indicators. In particular,

we want to study the trade-offs between fine- and coarse-

granularity models in the context of shared infrastructures.
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