
Data Races vs. Data Race Bugs:
Telling the Difference with Portend

Baris Kasikci, Cristian Zamfir, and George Candea

School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{baris.kasikci,cristian.zamfir,george.candea}@epfl.ch

Abstract

Even though most data races are harmless, the harmful ones are
at the heart of some of the worst concurrency bugs. Alas, spotting
just the harmful data races in programs is like finding a needle in a
haystack: 76%-90% of the true data races reported by state-of-the-
art race detectors turn out to be harmless [45].

We present Portend, a tool that not only detects races but
also automatically classifies them based on their potential con-
sequences: Could they lead to crashes or hangs? Could their effects
be visible outside the program? Are they harmless? Our proposed
technique achieves high accuracy by efficiently analyzing multi-
ple paths and multiple thread schedules in combination, and by
performing symbolic comparison between program outputs.

We ran Portend on 7 real-world applications: it detected 93 true
data races and correctly classified 92 of them, with no human effort.
6 of them are harmful races. Portend’s classification accuracy is up
to 89% higher than that of existing tools, and it produces easy-
to-understand evidence of the consequences of harmful races, thus
both proving their harmfulness and making debugging easier. We
envision Portend being used for testing and debugging, as well as
for automatically triaging bug reports.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics

General Terms Reliability, Verification, Performance, Security

Keywords Data races, Concurrency, Triage, Testing

1. Introduction

A data race occurs when two threads access a shared memory lo-
cation, at least one of the two accesses is a write, and the relative
ordering of the two accesses is not enforced using synchronization
primitives, like mutexes. Thus, the racing memory accesses may
occur in any order or even simultaneously on a multi-processor.
Data races are some of the worst concurrency bugs, even lead-
ing to the loss of human lives [35] and causing massive material
losses [54]. As programs become increasingly parallel, we expect
the number of data races they contain to increase; as hardware be-
comes increasingly parallel, we expect an increased probability that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

both orderings of any given race get exercised during normal exe-
cutions.

Yet, eliminating all data races still appears impractical. First,
synchronizing all racing memory accesses would introduce per-
formance overheads that may be considered unacceptable. For ex-
ample, for the last year, developers have not fixed a race in mem-
cached that can lead to lost updates—ultimately finding an alternate
solution—because it leads to a 7% drop in throughput [41]. Perfor-
mance implications led to 23 data races in Internet Explorer and
Windows Vista being purposely left unfixed [45]. Similarly, sev-
eral races have been left unfixed in the Windows kernel, because
fixing those races did not justify the associated costs [29].

Another reason why data races go unfixed is that 76%–90% of
data races are actually harmless [15, 29, 45, 58]—harmless races
do not affect program correctness, either fortuitously or by design,
while harmful races lead to crashes, hangs, resource leaks, even
memory corruption or silent data loss. Deciding whether a race is
harmful or not involves a lot of human labor (with industrial prac-
titioners reporting that it can take days, even weeks [23]), so time-
pressed developers may not even attempt this high-investment/low-
return activity. On top of all this, static race detectors can have high
false positive rates (e.g., 84% of races reported by [58] were not
true races), further disincentivizing developers. Alas, automated
classifiers [27, 29, 45, 55] are often inaccurate (e.g., [45] reports
a 74% false positive rate in classifying harmful races).

Given the large number of data race reports (e.g., Google’s
Thread Sanitizer [30] reports over 1,000 unique data races in Fire-
fox when the browser starts up and loads http://bbc.co.uk), we ar-
gue that data race detectors should also triage reported data races
based on the consequences they could have in future executions.
This way, developers are better informed and can fix the critical
bugs first. A race detector should be capable of inferring the possi-
ble consequences of a reported race: is it a false positive, a harm-
ful race, or a harmless race left in the code perhaps for perfor-
mance reasons? To our knowledge, no data race detector can do
this soundly.

We propose Portend, a technique and tool that detects data
races and, based on an analysis of the code, infers the races’ po-
tential consequences and automatically classifies them into four
categories: “specification violated”, “single ordering”, “output dif-
fers”, and “k-witness harmless”. For harmful races, it produces a re-
playable trace that demonstrates the harmful effect, making it easy
on the developer to fix the bug.

Portend operates on binaries, not on source code (more specif-
ically on LLVM [33] bitcode obtained from a compiler or from
an x86-to-LLVM translator like RevGen [11]). Therefore it can
effectively classify both source-code-level races and assembly-
level races that are not forbidden by any language-specific memory
model (e.g., C [26] and C++ [25]).

185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147978620?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We applied Portend to 93 data race reports from 7 real-world
applications—it classified 99% of the detected data races accu-
rately in less than 5 minutes per race on average. Compared to
state-of-the-art race classifiers, Portend is up to 89% more accu-
rate in predicting the consequences of data races. This improve-
ment comes from Portend’s ability to perform multi-path and multi-
thread schedule analysis, as well as Portend’s fine grained classifi-
cation scheme. We found not only that multi-path multi-schedule
analysis is critical for high accuracy, but also that the “post-race
state comparison” approach used in state-of-the-art classifiers does
not work well on our real-world programs, despite being perfect on
simple microbenchmarks (§5.2).

This paper makes three contributions:

• A technique for predicting the consequences of data races that
combines multi-path and multi-schedule analysis with symbolic
program-output comparison to achieve high accuracy in conse-
quence prediction, and thus classification of data races accord-
ing to their severity;

• A four-category taxonomy of data races that is finer grain,
more precise and, we believe, more useful than what has been
employed by the state of the art;

• Portend, a practical dynamic data race detector and classifier
that implements this technique and taxonomy, and a demonstra-
tion that it works well for C and C++ software.

Portend presents two main benefits: First, it can triage data
race reports automatically and prioritize them based on their likely
severity, allowing developers to focus on the most important races
first. Second, Portend’s automated consequence prediction can be
used to double check developers’ manual assessment of data races;
e.g., Portend may prove that a race that was deemed harmless and
left in the code for performance reasons is actually harmful. Por-
tend does not encourage sloppy or fragile code by entitling devel-
opers to ignore seemingly benign races, but rather it improves pro-
grammers’ productivity so they can correctly fix as many important
data race bugs as possible.

In the rest of the paper, we describe our proposed classification
scheme (§2), Portend’s design (§3) and implementation (§4), an
evaluation on real-world applications and benchmarks (§5), discuss
limitations (§6), related work (§7), and then we conclude (§8).

2. Data Race Classification

We now describe the key existing approaches to race classifica-
tion (§2.1) and the challenges they face, the idea behind Por-
tend (§2.2), and our proposed classification scheme (§2.3).

2.1 Background and Challenges

We are aware of three main approaches for classifying data races
into harmful vs. harmless: heuristic classification, replay and com-
pare, and ad-hoc synchronization identification.

Heuristic classification relies on recognizing specific patterns
that correspond to harmless races. For instance, DataCollider [29]
prunes data race reports that appear to correspond to updates of
statistics counters, read-write conflicts involving different bits of
the same memory word, or that involve variables known to develop-
ers to have intentional races (e.g., a “current time” variable is read
by many threads while being updated by the timer interrupt). Like
any heuristic approach, such pruning can lead to both false posi-
tives and false negatives, depending on how well suited the heuris-
tics are for the target system’s code base. For instance, updates on
a statistics counter might be harmless for the cases investigated by
DataCollider, but if a counter gathers critical statistics related to

resource consumption in a language runtime, classifying a race on
such a counter as benign may not be correct.

Replay-based classification [45] starts from an execution that
experienced one ordering of the racing accesses (“primary”) and
re-runs it while enforcing the other ordering (“alternate”). This ap-
proach compares the state of registers and memory immediately
after the race in the primary and alternate interleavings. If differ-
ences are found, the race is deemed likely to be harmful, otherwise
likely to be harmless.

This approach faces three challenges: First, differences in the
memory and/or register state of the primary vs. alternate execu-
tions may not necessarily lead to a violation of the program spec-
ification (e.g., otherwise-identical objects may be merely residing
at different addresses in the heap). Second, the absence of a state
difference may be merely an artifact of the inputs provided to the
program, and for some other inputs the states might actually dif-
fer. Third, it may be impossible to pursue the alternate interleaving,
e.g., because ad-hoc synchronization enforces a specific ordering:
instead of employing synchronization primitives like mutex lock

or cond wait, ad-hoc synchronization uses programmer-defined
synchronization constructs that often rely on loops to synchronize
threads via a shared variable [60]. In this case, replay-based classifi-
cation [45] conservatively classifies the race as likely to be harmful.
These three challenges cause replay based classification to have a
74% false positive rate in classifying harmful races [45].

Identification of ad-hoc synchronization helps improve accuracy
of race classification [27, 55]. If a shared memory access is found
to be protected via ad-hoc synchronization, then it is classified
as harmless, because its accesses can occur in only one order.
Existing approaches use heuristics or dynamic instrumentation to
detect such cases with misclassification rates as high as 50% [27].
Pruning race reports due to ad-hoc synchronization is effective
in reducing the reported harmless races, but it is still insufficient
to correctly classify all races, as there are many other kinds of
harmless races [29, 45].

2.2 Portend’s Approach

Portend addresses two challenges left unsolved by prior work:
(1) how to accurately distinguish harmful state differences from
harmless ones, and (2) how to identify harmful races even when
the state of the primary and alternate executions do not immedi-
ately differ. We observe that it is not enough to reason about one
primary and one alternate interleaving, but we must also reason
about the different paths that could be followed before/after the
race in the program in each interleaving, as well as about the dif-
ferent schedules the threads may experience before/after the race
in the different interleavings. This is because a seemingly harmless
race along one path might end up being harmful along another. To
extrapolate program state comparisons to other possible inputs, it
is not enough to look at the explicit state—what we must compare
are the constraints placed on that state by the primary and alternate
executions. These observations motivate Portend’s combination of
multi-path and multi-schedule analysis with symbolic output com-
parison (§3). Thus, instead of employing heuristic-based classifica-
tion as in previous work [27, 29, 55], Portend symbolically executes
the program to reason precisely about the possible consequences of
races.

2.3 A New Classification Scheme

A simple harmless vs. harmful classification scheme is undecidable
in general (as will be explained below), so prior work typically
resorts to “likely harmless” and/or “likely harmful.” Alas, we find
that, in practice, this is less helpful than it seems (§5). We therefore
propose a new scheme that is more precise.

186

Note that there is a distinction between false positives and
harmless races: when a purported race is not a true race, we say
it is a false positive. Static [15], lockset [49], and hybrid [47] data
race detectors typically report false positives. Detectors based on
happens-before relationship [50] do not report false positives unless
applications employ unrecognized happens-before relationships,
such as ad-hoc synchronization. A false positive is clearly harmless
(since it is not a race to begin with), but not the other way around.

Our proposed scheme classifies the true races into four cate-
gories: “spec violated”, “output differs”, “k-witness harmless”, and
“single ordering”. We illustrate this taxonomy in Fig. 1.

true posi�ves false posi�ves

harmful harmless

specViol outDiff k-witness singleOrd

Figure 1. Portend taxonomy of data races.

“Spec violated” corresponds to races for which at least one or-
dering of the racing accesses leads to a violation of the program’s
specification. These are, by definition, harmful. For example, races
that lead to crashes or deadlocks are generally accepted to violate
the specification of any program; we refer to these as “basic” spec-
ification violations. Higher level program semantics could also be
violated, such as the number of objects in a heap exceeding some
bound, or a checksum being inconsistent with the checksummed
data. Such semantic properties must be provided as explicit predi-
cates to Portend, or be embedded as assert statements in the code.

“Output differs” is the set of races for which the two orderings
of the racing accesses can lead to the program generating different
outputs, thus making the output depend on scheduling. Such races
are often considered harmful: one of those outputs is likely “the
incorrect” one. However, “output differs” races can also be harm-
less, whether intentional or not. For example, a debug statement
that prints the ordering of the racing memory accesses is intention-
ally order-dependent, thus an intentional harmless race. An exam-
ple of an unintentional harmless race is one in which one ordering
of the accesses may result in a duplicated syslog entry—while tech-
nically a violation of any reasonable logging specification, a devel-
oper may decide that such a benign consequence makes the race
not worth fixing, especially if she faces the risk of introducing new
bugs or degrading performance when fixing the bug.

As with all high level program semantics, automated tools can-
not decide on their own whether an output difference violates some
non-explicit specification or not. Moreover, it might even be sub-
jective, depending on which developer is asked. It is for this reason
that we created the “output differs” class of races. The key is to pro-
vide developers a clear characterization of the output difference, so
they can easily decide whether that difference matters.

“K-witness harmless” are races for which the harmless classifi-
cation is performed with some quantitative level of confidence: the
higher the k, the higher the confidence. Such races are guaranteed
to be harmless for at least k combinations of paths and schedules;
this guarantee can be as strong as covering a virtually infinite in-
put space (e.g., a developer may be interested in whether the race
is harmless for all positive inputs, not caring about what happens
for zero or negative inputs). Portend achieves this using a symbolic
execution engine [6, 9] to analyze entire equivalence classes of in-
puts (e.g., all positive integer inputs for which the program executes
along the same path). Depending on the time and resources avail-
able, developers can choose k according to their needs—in our ex-
periments we found k = 5 to be sufficient to achieve 99% accuracy

for all the tested programs. The value of this category will become
obvious after reading §3.

“Single ordering” are races for which only a single ordering
of the accesses is possible, typically enforced via ad-hoc synchro-
nization [60]. In such cases, although no explicit synchronization
primitives are used, the shared memory could be protected using
busy-wait loops that synchronize on a flag. We consider this a race
because the ordering of the accesses is not enforced using syn-
chronization primitives (§1), even though it is not actually possible
to exercise both interleavings of the memory accesses (hence the
name of the category). Such ad-hoc synchronization, even if bad
practice, is frequent in real-world software [60]. Previous data race
detectors generally cannot tell that only a single order is possible
for the memory accesses, and thus report this as a race; such cases
turn out to be a major source of harmless data races [27, 55].

3. Design

Portend feeds the target program through its own race detector (or
even a third party one, if preferred), analyzes the program and the
report automatically, and determines the potential consequences of
the reported data race. The report is then classified, based on these
predicted consequences, into one of the four categories in Fig. 1.
To achieve the classification, Portend performs targeted analysis
of multiple schedules of interest, while at the same time using
symbolic execution [9] to simultaneously explore multiple paths
through the program; we call this technique multi-path multi-sche-
dule data race analysis. Portend can thus reason about the conse-
quences of the two orderings of racing memory accesses in a richer
execution context than prior work. When comparing program states
or program outputs, Portend employs symbolic output comparison,
meaning it compares constraints on program output, instead of the
concrete values of the output, in order to generalize the comparison
to more possible inputs that would bring the program to the specific
race condition. Unlike prior work, Portend can accurately classify
even races that, given a fixed ordering of the original racing ac-
cesses, are harmless along some execution paths, yet harmful along
others. In §3.1 we go over one such race (Fig. 4) and explain how
Portend handles it. Fig. 2 illustrates Portend’s architecture. Portend
is based on Cloud9 [6], a parallel symbolic execution engine that
supports running multi-threaded C/C++ programs.

Div-by-0KLEE Overflow

Memory Error Deadlock

Record & Replay Engine

POSIX Threads Model

Analysis & Classifica on

Engine

DetectorDetector

Detector DetectorM
u

lt
i-

th
re

a
d

e
d

S
ym

b
o

lic
 E

xe
cu

ti
o

n

E
n

g
in

e
 (

C
lo

u
d

9
)

Race

Report

(optional)

Program

Portend

specViol

outDiff

k-witness

singleOrd

Dynamic Data Race Detector

Figure 2. High-level architecture of Portend. The four shaded
boxes indicate new code written for Portend, whereas clear boxes
represent reused code from KLEE [9] and Cloud9 [6].

When Portend determines that a race is of “spec violated” kind,
it provides the corresponding evidence in the form of program in-
puts (including system call return values) and thread schedule that
reproduce the harmful consequences deterministically. Developers
can replay this “evidence” in a debugger, to fix the race.

187

In the rest of this section, we give an overview of our approach
and illustrate it with an example (§3.1), describe the first step,
single-path/single-schedule analysis (§3.2), followed by the second
step, multi-path analysis and symbolic output comparison (§3.3)
augmented with multi-schedule analysis (§3.4). We describe Por-
tend’s race classification (§3.5) and the generated report that helps
developers debug the race (§3.6).

3.1 Overview and Example

Portend’s race analysis starts by executing the target program and
dynamically detecting data races (e.g., developers could run their
existing test suites under Portend). Portend detects races using a
dynamic happens-before algorithm [31]. Alternatively, if a third
party detector is used, Portend can start from an existing execution
trace; this trace must contain the thread schedule and an indication
of where in the trace the suspected race occurred. We developed
a plugin for Thread Sanitizer [30] to create a Portend-compatible
trace; we believe such plugins can be easily developed for other
dynamic race detectors [24].

Portend has a record/replay infrastructure for orchestrating the
execution of a multi-threaded program; it can preempt and sche-
dule threads before/after synchronization operations and/or racing
accesses. Portend uses Cloud9 to enumerate program paths and to
collect symbolic constraints.

A trace consists of a schedule trace and a log of system call
inputs. The schedule trace contains the thread id and the program
counter at each preemption point. Portend treats all POSIX threads
synchronization primitives as possible preemption points and uses
a single-processor cooperative thread scheduler (see §6 for a dis-
cussion of the resulting advantages and limitations). Portend can
also preempt threads before and after any racing memory access.
We use the following notation for the trace: (T0 : pc0) → (T1 →
RaceyAccessT1 : pc1) → (T2 → RaceyAccessT2 : pc2) means
that thread T0 is preempted after it performs a synchronization call
at program counter pc0; then thread T1 is scheduled and performs
a memory access at program counter pc1, after which thread T2 is
scheduled and performs a memory access at pc2 that is racing with
the previous memory access of T1. The schedule trace also con-
tains the absolute count of instructions executed by the program up
to each preemption point. This is needed in order to perform precise
replays when an instruction executes multiple times (e.g., a loop)
before being involved in a race; this is not shown as part of the
schedule trace, for brevity. The log of system call inputs contains
the non-deterministic program inputs (e.g., gettimeofday).

In a first analysis step (illustrated in Fig. 3a), Portend replays
the schedule in the trace up to the point where the race occurs.
Then it explores two different executions: one in which the origi-
nal schedule is followed (the primary) and one in which the alter-
nate ordering of the racing accesses is enforced (the alternate). As
described in §2.1, some classifiers compare the primary and alter-
nate program state immediately after the race, and, if different, flag
the race as potentially harmful. Even if program outputs are com-
pared rather than states, “single-pre/single-post” analysis (Fig. 3a)
may not be accurate, as we will show below. Portend uses “single-
pre/single-post” analysis mainly to determine whether the alternate
schedule is possible at all. In other words, this stage identifies any
ad-hoc synchronization that might prevent the alternate schedule
from occurring.

If there is a difference between the primary and alternate post-
race states, we do not consider the race as necessarily harmful. In-
stead, we allow the primary and alternate executions to run, inde-
pendently of each other, and we observe the consequences. If, for
instance, the alternate execution crashes, the race is harmful. Of
course, even if the primary and alternate executions behave identi-
cally, it is still not certain that the race is harmless: there may be

race

p
rim

ar
y

alternate

(a) (b) (c)

race race

Figure 3. Increasing levels of completeness in terms of paths and
schedules: [a. single-pre/single-post] ≪ [b. single-pre/multi-post]
≪ [c. multi-pre/multi-post].

some unexplored pair of primary and alternate paths with the same
pre-race prefix as the analyzed pair, but which does not behave the
same. This is why single-pre/single-post analysis is insufficient,
and we need to explore multiple post-race paths. This motivates
“single-pre/multi-post” analysis (Fig. 3b), in which multiple post-
race execution possibilities are explored—if any primary/alternate
mismatch is found, the developer must be notified.

Even if all feasible post-race paths are explored exhaustively
and no mismatch is found, one still cannot conclude that the race
is harmless: it is possible that the absence of a mismatch is an arti-
fact of the specific pre-race execution prefix, and that some differ-
ent prefix would lead to a mismatch. Therefore, to achieve higher
confidence in the classification, Portend explores multiple feasible
paths even in the pre-race stage, not just the one path witnessed by
the race detector. This is illustrated as “multi-pre/multi-post” anal-
ysis in Fig. 3c. The advantage of doing this vs. considering these as
different races is the ability to systematically explore these paths.

Finally, we combine multi-path analysis with multi-schedule
analysis, since the same path through a program may generate
different outputs depending on how its execution segments from
different threads are interleaved. The branches of the execution tree
in the post-race execution in Fig. 3c correspond to different paths
that stem from both multiple inputs and schedules, as we detail
in §3.4.

Of course, exploring all possible paths and schedules that expe-
rience the race is impractical, because their number typically grows
exponentially with the number of threads, branches, and preemp-
tion points in the program. Instead, we provide developers a “dial”
to control the number k of path/schedule alternatives explored dur-
ing analysis, allowing them to control the “volume” of paths and
schedules in Fig. 3. If Portend classifies a race as “k-witness harm-
less”, then a higher value of k offers higher confidence that the race
is harmless for all executions (i.e., including the unexplored ones),
but it entails longer analysis time. We found k = 5 to be suffi-
cient for achieving 99% accuracy in our experiments in less than 5
minutes per race on average.

To illustrate the benefit of multi-path multi-schedule analysis
over “single-pre/single-post” analysis, consider the code snippet
in Fig. 4, adapted from a real data race bug. This code has racing
accesses to the global variable id. Thread T0 spawns threads T1

and T2; thread T1 updates id (line 15) in a loop and acquires a lock
each time. However, thread T2, which maintains statistics, reads
id without acquiring the lock—this is because acquiring a lock at
this location would hurt performance, and statistics need not be
precise. Depending on program input, T2 can update the statistics
using either the update1 or update2 functions (lines 20-23).

Say the program runs in Portend with input –use-hash-table,
which makes useHashTable=true. Portend records the primary
trace (T0 : pc9) → ... (T1 → RaceyAccessT1 : pc15) → (T2 →

188

 1: int id = 0, MAX_SIZE = 32;

 5: int main(int argc, char *argv[])){

 6: pthread_t t1, t2;

 8: pthread_create (&t1, 0, reqHandler, 0);

10: ...

Thread T

11:

14:

18: void * updateStats(void* arg){

19: if(useHashTable){

20: update1();

Thread T
0

1

Thread T2

 unlock(l);

 lock(l);

 id++;

void * reqHandler(*arg){void

17: ...

13: ...
 while(1){

15:
16:

12:

 2: bool useHashTable;

 7: useHashTable = getOption(argc, argv);

 9: pthread_create (&t2, 0, updateStats, 0);

22: } else {
23: update2();

25: void update1(){

26: int tmp = id;

27: if (hash_table.contains(tmp))

28: hash_table[tmp] = getStats();

29: void update2(){

31: stats_array[id] = getStats();
30: if (id < MAX_SIZE)

 2: int stats_array[MAX_SIZE];

 4:

21: printf(..., hash_table[id]);

24: ...

Figure 4. Simplified example of a harmful race from Ctrace [39]
that would be classified as harmless by classic race classifiers.

RaceyAccessT2 : pc26) → ... T0. This trace is fed to the first
analysis step, which replays the trace with the same program input,
except it enforces the alternate schedule (T0 : pc9) → ...(T2 →
RaceyAccessT2 : pc26) → (T1 → RaceyAccessT1 : pc15) →
... T0. Since the printed value of hash table[id] at line 21 would
be the same for the primary and alternate schedules, a “single-
pre/single-post” classifier would deem the race harmless.

However, in the multi-path multi-schedule step, Portend ex-
plores additional paths through the code by marking program in-
put as symbolic, i.e., allowing it to take on any permitted value.
When the trace is replayed and Portend reaches line 19 in T2 in the
alternate schedule, useHashTable could be both true and false, so
Portend splits into two executions, one in which useHashTable is
set to true and one in which it is false. Assume, for example, that id
= 31 when checking the if condition at line 30. Due to the data race,
id is incremented by T1 to 32, which overflows the statically allo-
cated buffer (line 31). Note that in this alternate path, there are two
racing accesses on id, and we are referring to the access at line 31.

Portend detects the overflow (via Cloud9), which leads to a
crashed execution, flags the race as “spec violated”, and pro-
vides the developer the execution trace in which the input is
–no-hash-table, and the schedule is (T0 : pc9) → ...(T2 →
RaceyAccessT2 : pc30) → (T1 → RaceyAccessT1 : pc15) →
(T2 : pc31). The developer can replay this trace in a debugger and
fix the race.

Note that this data race is harmful only if the program input is
–no-hash-table, the given thread schedule occurs, and the value of
id is 31; therefore the crash is likely to be missed by a traditional
single-path/single-schedule data race detector.

We now describe Portend’s race analysis in detail: §3.2–§3.4
focus on the exploration part of the analysis, in which Portend looks

Algorithm 1: Single-Pre/Single-Post Analysis (singleClassify)

Input: Primary execution trace primary
Output: Classification result ∈ {specViol , outDiff , outSame,

singleOrd}
current ← execUntilFirstThreadRacyAccess(primary)1

preRaceCkpt ← checkpoint(current)2

execUntilSecondThreadRacyAccess(current)3

postRaceCkpt ← checkpoint(current)4

current ← preRaceCkpt5

preemptCurrentThread(current)6

alternate ← execWithTimeout(current)7

if alternate.timedOut then8

if detectInfiniteLoop(alternate) then9

return specViol10

else11

return singleOrd12

else13

if detectDeadlock(alternate) then14

return specViol15

primary ← exec(postRaceCkpt)16

if detectSpecViol(primary) ∨ detectSpecViol(alternate)17

then
return specViol18

if primary.output 6= alternate.output then19

return outDiff20

else21

return outSame22

for paths and schedules that reveal the nature of the race, and §3.5
focuses on the classification part.

3.2 Single-Pre/Single-Post Analysis

The goal of this first analysis step is to identify cases in which
the alternate schedule of a race cannot be pursued, and to make
a first classification attempt based on a single alternate execution.
Algorithm 1 describes the approach.

Portend starts from a trace of an execution of the target program,
containing one or more races, along with the program inputs that
generated the trace. For example, in the case of the Pbzip2 file
compressor used in our evaluation, Portend needs a file to compress
and a trace of the thread schedule. As mentioned earlier, such traces
are obtained from running, for instance, the developers’ test suites
(as done in CHESS [44]) with a dynamic race detector enabled.

Portend takes the primary trace and plays it back (line 1). Note
that current represents the system state of the current execution.
Just before the first racing access, Portend takes a checkpoint of
system state; we call this the pre-race checkpoint (line 2). The re-
play is then allowed to continue until immediately after the second
racing access of the race we are interested in (line 3), and the pri-
mary execution is suspended in this post-race state (line 4).

Portend then primes a new execution with the pre-race check-
point (line 5) and attempts to enforce the alternate ordering of
the racing accesses. To enforce this alternate order, Portend pre-
empts the thread that did the first racing access (Ti) in the pri-
mary execution and allows the other thread (Tj) involved in
the race to be scheduled (line 6). In other words, an execu-
tion with the trace ...(Ti → RaceyAccessTi : pc1) → (Tj →
RaceyAccessTj : pc2)... is steered toward the execution ...(Tj →
RaceyAccessTj : pc2) → (Ti → RaceyAccessTi : pc1)...

This attempt could fail for one of two reasons: (a) Tj gets sched-
uled, but Ti cannot be scheduled again; or (b) Tj cannot be sched-
uled, because it is blocked by Ti. Case (a) is detected by Portend

189

via a timeout (line 8) and is classified either as “spec violated”, cor-
responding to an infinite loop (i.e., a loop with a loop-invariant exit
condition) in line 10 or as ad-hoc synchronization in line 12. Case
(b) can correspond to a deadlock (line 15) and is detected by Por-
tend by keeping track of the lock graph. Both the infinite loop and
the deadlock case cause the race to be classified as “spec violated”,
while the ad-hoc synchronization case classifies the race as “single
ordering” (more details in §3.5). While it may make sense to not
stop if the alternate execution cannot be enforced, under the expec-
tation that other paths with other inputs might permit the alternate
ordering, our evaluation suggests that continuing adds little value.

If the alternate schedule succeeds, Portend executes it un-
til it completes, and then records its outputs. Then, Portend al-
lows the primary to continue (while replaying the input trace) and
also records its outputs. During this process, Portend watches for
“basic” specification violations (crashes, deadlocks, memory er-
rors, etc.) as well as “high level” properties given to Portend as
predicates—if any of these properties are violated, Portend imme-
diately classifies (line 18) the race as “spec violated”. If the alter-
nate execution completes with no specification violation, Portend
compares the outputs of the primary and the alternate; if they dif-
fer, the race is classified as “output differs” (line 20), otherwise the
analysis moves to the next step. This is in contrast to replay-based
classification [45], which compares the program state immediately
after the race in the primary and alternate interleavings.

3.3 Multi-Path Data Race Analysis

The goal of this step is to explore variations of the single paths
found in the previous step (i.e., the primary and the alternate) in
order to expose Portend to a wider range of execution alternatives.

First, Portend finds multiple primary paths that satisfy the in-
put trace, i.e., they (a) all experience the same thread schedule
(up to the data race) as the input trace, and (b) all experience
the target race condition. These paths correspond to different in-
puts from the ones in the initial race report. Second, Portend uses
Cloud9 to record the “symbolic” outputs of these paths—that is,
the constraints on the output, rather than the concrete output values
themselves—and compares them to the outputs of the correspond-
ing alternate paths; we explain this below. Algorithm 2 describes
the functions invoked by Portend during this analysis in the fol-
lowing order: 1) on initialization, 2) when encountering a thread
preemption, 3) on a branch that depends on symbolic data, and 4)
on finishing an execution.

Unlike in the single-pre/single-post step, Portend now executes
the primary symbolically. This means that the target program is
given symbolic inputs instead of regular concrete inputs. Cloud9
relies in large part on KLEE [9] to interpret the program and prop-
agate these symbolic values to other variables, corresponding to
how they are read and operated upon. When an expression with
symbolic content is involved in the condition of a branch, both op-
tions of the branch are explored, if they are feasible. The resulting
path(s) are annotated with a constraint indicating that the branch
condition holds true (respectively false). Thus, instead of a regu-
lar single-path execution, we get a tree of execution paths, similar
to the one in Fig. 5. Conceptually, at each such branch, program
state is duplicated and constraints on the symbolic parameters are
updated to reflect the decision taken at that branch (line 11). De-
scribing the various techniques for performing symbolic execution
efficiently [6, 9] is beyond the scope of this paper.

An important concern in symbolic execution is “path explo-
sion,” i.e., that the number of possible paths is large. Portend of-
fers two parameters to control this growth: (a) an upper bound Mp

on the number of primary paths explored; and (b) the number and
size of symbolic inputs. These two parameters allow developers to
trade performance vs. classification confidence. For parameter (b),

S1

S2

data race

branch
instruction

that depends

on symbolic

data

pruned

execution

path

complete
execution

path

Figure 5. Portend prunes paths during symbolic execution.

the fewer inputs are symbolic, the fewer branches will depend on
symbolic input, so less branching will occur in the execution tree.

Determining the optimal values for these parameters may re-
quire knowledge of the target system as well as a good sense of
how much confidence is required by the system’s users. Reason-
able (i.e., good but not necessarily optimal) values can be found
through trial and error relatively easily—we expect development
teams using Portend to converge onto values that are a good fit for
their code and user community, and then make these values the de-
faults for their testing and triage processes. We empirically study in
§5 the impact of these parameters on classification accuracy on a
diverse set of programs and find that relatively small values achieve
high accuracy for a broad range of programs.

During symbolic execution, Portend prunes (Fig. 5) the paths
that do not obey the thread schedule in the trace (line 8), thus ex-
cluding the (many) paths that do not enable the target race. More-
over, Portend attempts to follow the original trace only until the
second racing access is encountered; afterward, it allows execution
to diverge from the original schedule trace. This enables Portend to
find more executions that partially match the original schedule trace
(e.g., cases in which the second racing access occurs at a different
program counter, as in Fig. 4). Tolerating these divergences signifi-
cantly increases Portend’s accuracy over the state of the art [45], as
will be explained in §5.4.

Once the desired paths are obtained (at most Mp, line 14), the
conjunction of branch constraints accumulated along each path is
solved by KLEE using an SMT solver [19] in order to find concrete
inputs that drive the program down the corresponding path. For
example, in the case of Fig. 5, two successful leaf states S1 and
S2 are reached, and the solver provides the inputs corresponding to
the path from the root of the tree to S1, respectively S2. Thus, we
now have Mp = 2 different primary executions that experience the
data race.

3.3.1 Symbolic Output Comparison

Portend now records the output of each of the Mp executions, like
in the single-pre/single-post case. However, this time it propagates
the constraints on symbolic state all the way to the outputs, i.e., the
outputs of each primary execution contain a mix of concrete values
and symbolic constraints (i.e., symbolic formulae). Note that by
output we mean all arguments passed to output system calls.

Next, for each of the Mp executions, Portend produces a corre-
sponding alternate (analogously to the single-pre/single-post case)
and records its outputs (lines 19-21). The function singleClassify
in Algorithm 2 performs the analysis described in Algorithm 1.
Portend then checks whether the outputs of each alternate satisfy
the constraints of the corresponding primary’s outputs, i.e., verifies
equivalence between the (partly symbolic) outputs of the primary
and those of the alternate. This is what we refer to as symbolic out-
put comparison (line 22).

190

Algorithm 2: Multi-path Data Race Analysis (Simplified)

Input: Schedule trace trace , initial program state S0 , set of states
S = ∅, upper bound Mp on the number of primary paths

Output: Classification result ∈ {specViol , outDiff , singleOrd
k -witness}

function init ()1

S ← S ∪ S02

current ← S.head()3

pathsExplored ← 04

function onPreemption ()5

ti ← scheduleNextThread(current)6

if ti 6= nextThreadInTrace(trace, current) then7

S ← S.remove(current)8

current ← S.head()9

function onSymbolicBranch ()10

S ← S ∪ current .fork()11

function onFinish ()12

classification ← classification ∪ classify(current)13

if pathsExplored < Mp then14

pathsExplored ← pathsExplored + 115

else16

return classification17

function classify (primary)18

result ← singleClassify(primary)19

if result = outSame then20

alternate ← getAlternate(primary)21

if symbolicMatch(primary .symOutput ,22

alternate.output) then
return k -witness23

else24

return outDiff25

else26

return result27

When executing the primaries and recording their outputs, Por-
tend relies on Cloud9 to track all symbolic constraints on variables,
and Portend records these constraints as symbolic output. For ex-
ample, when Portend runs the primary execution of “i=getInput();
if (i ≥ 0) output(i); ” on input 10, it records the output as i ≥ 0, not
merely value i = 10. Thus, the outputs of primary executions are
recorded as sequences of symbolic formulae.

The alternate executions are fully concrete, and Portend records
their concrete outputs. When comparing outputs, Portend first
checks that the number of output operations match in the two
executions. If yes, then, for each output operation, it checks that
the concrete output (from the alternate) is in the set of values
allowed by the constraints of the symbolic output (from the pri-
mary). For the example above, any positive value output by the
alternate will satisfy the primary’s i ≥ 0 output. This symbolic
comparison enables Portend’s analysis to extend over more pos-
sible primary executions for which i is a positive integer. This
comes at the price of potential false negatives; despite this the-
oretical shortcoming, we have not encountered such a case in
practice, but we plan to investigate further in future work. Of
course, determining semantic equivalence of output is undecid-
able, and our comparison may still wrongly classify as “output
differs” a sequence of outputs that are equivalent at some level
(e.g., <print ab; print c> vs. <print abc>).

To determine if the concrete outputs satisfy the symbolic ones,
Portend directly employs an SMT solver [19]. As will be seen in
§5.2, using symbolic comparison leads to substantial improvements
in classification accuracy.

We do not detail here the case when the program reads input
after the race—it is a natural extension of the algorithm above.

3.4 Multi-Schedule Data Race Analysis

The goal of multi-schedule analysis is to further augment the set of
analyzed executions by diversifying the thread schedule.

We mentioned earlier that, for each of the Mp primary execu-
tions, Portend obtains an alternate execution. Once the alternate
ordering of the racing accesses is enforced, Portend randomizes
the schedule of the post-race alternate execution: at every preemp-
tion point in the alternate, Portend randomly decides which of the
runnable threads to schedule next. This means that every alternate
execution will most likely have a different schedule from the origi-
nal input trace (and thus from the primary).

Consequently, for every primary execution Pi, we obtain multi-

ple alternate executions A1
i , A

2
i , ... by running up to Ma multiple

instances of the alternate execution. Since the scheduler is random,
we expect practically every alternate execution to have a schedule
that differs from all others. Recently proposed techniques [43] can
be used to quantify the probability of these alternate schedules dis-
covering the harmful effects of a data race.

Portend then uses the same symbolic comparison technique as
in §3.3.1 to establish equivalence between the concrete outputs of
A1

i , A
2
i , ...A

Ma

i and the symbolic outputs of Pi.
Schedule randomization can be employed also in the pre-race

stage of the alternate-execution generation as well as in the genera-
tion of the primary executions. We did not implement these options,
because the level of multiplicity we obtain with the current design
appears to be sufficient in practice to achieve high accuracy. Note
however that, as we show in §5.2, multi-path multi-schedule anal-
ysis is indeed crucial to attaining high classification accuracy.

In summary, multi-path multi-schedule analysis explores Mp

primary executions and, for each such execution, Ma alternate
executions with different schedules, for a total of Mp × Ma path-
schedule combinations. For races that end up being classified as “k-
witness harmless”, we say that k = Mp×Ma is the lower bound on
the number of concrete path-schedule combinations under which
this race is harmless.

Note that the k executions can be simultaneously explored in
parallel: if a developer has p machines with q cores each, she could
explore p × q parallel executions in the same amount of time as a
single execution. Given that Portend is “embarrassingly parallel,” it
is appealing for cluster-based automated bug triage systems.

3.5 Data Race Classification

We showed how Portend explores paths and schedules to give the
classifier an opportunity to observe the effects of a data race. We
now provide details on how the classifier makes its decisions.

“Spec violated” races cause a program’s explicit specification
to be violated; they are guaranteed to be harmful and thus should
have highest priority for developers. To detect violations, Portend
watches for them during exploration.

First, Portend watches for “basic” properties that can be safely
assumed to violate any program’s specification: crashes, deadlocks,
infinite loops, and memory errors. Since Portend already controls
the program’s schedule, it also keeps track of all uses of synchro-
nization primitives (i.e., POSIX threads calls); based on this, it de-
termines when threads are deadlocked. Infinite loops are diagnosed
as in [60], by detecting loops for which the exit condition cannot
be modified. For memory errors, Portend relies on the mechanism
already provided by KLEE inside Cloud9. Even when Portend runs
the program concretely, it still interprets it in Cloud9.

Second, Portend watches for “semantic” properties, which are
provided to Portend by developers in the form of assert-like predi-
cates. Developers can also place these assertions inside the code.

191

Whenever an alternate execution violates a basic or a semantic
property (even though the primary may not), Portend classifies the
corresponding race as “spec violated”.

“Output differs” races cause a program’s output to depend
on the ordering of the racing accesses. As explained in §2.1, a
difference between the post-race memory or register states of the
primary and the alternate is not necessarily indicative of a harmful
race (e.g., the difference may just be due to dynamic memory
allocation). Instead, Portend compares the outputs of the primary
and the alternate, and it does so symbolically, as described earlier.
In case of a mismatch, Portend classifies the race as “output differs”
and gives the developer detailed information to decide whether the
difference is harmful or not.

“K-witness harmless” races: If, for every primary execution Pi,
the outputs of alternate executions A1

i , A
2
i , ...A

Ma

i satisfy Pi’s out-
put constraints, then Portend classifies the race as “k-witness harm-
less”, where k = Mp ×Ma, because there exist k executions wit-
nessing the conjectured harmlessness. The value of k is often an
underestimate of the number of different executions for which the
race is guaranteed to be harmless; as suggested earlier in §2.3, sym-
bolic execution can even reason about a virtually infinite number of
executions.

Theoretical insights into how k relates to the confidence a devel-
oper can have that a “k-witness harmless” race will not cause harm
in practice are beyond the scope of this paper. One can think of k
in ways similar to code coverage in testing: 80% coverage is better
than 60%, but does not exactly predict the likelihood of bugs not
being present. For all our experiments, k = 5 was shown to be suf-
ficient for achieving 99% accuracy. We consider “k-witness harm-
less” analyses to be an intriguing topic for future work, in a line of
research akin to [43]. Note that Portend explores many more exe-
cutions before finding the required k path-schedule combinations
that match the trace, but the paths that do not match the trace are
pruned early during the analysis.

“Single ordering” races are harmless races, because only one
ordering of the racing accesses is possible. One might even argue
they are not races at all. Yet, dynamic data race detectors are not
aware of the implicit happens-before relationship and do report a
race.

When Portend cannot enforce an alternate interleaving in the
single-pre/single-post phase, this can either be due to ad-hoc syn-
chronization that prevents the alternate ordering, or other thread
in question cannot make progress due to a deadlock or an infinite
loop. If none of the previously described infinite-loop and dead-
lock detection mechanisms trigger, Portend simply waits for a con-
figurable amount of time and, upon timeout, classifies the race as
“single ordering.” Note that it is possible to improve this design
with a heuristic-based static analysis that directly identifies ad-hoc
synchronization [55, 60].

3.6 Portend’s Debugging Aid Output

To help developers decide what to do about an “output differs”
race, Portend dumps the output values and the program locations
where the output differs. Portend also aims to help in fixing harmful
races by providing for each race two items: a textual report and a
pair of execution traces that evidence the effects of the race and
can be played back in a debugger, using Portend’s runtime replay
environment. A simplified report is shown in Fig. 6.

In the case of an “output differs” race, Portend reports the stack
traces of system calls where the program produced different output,
as well as the differing outputs. This simplifies the debugging effort
(e.g., if the difference occurs while printing a debug message, the
race could be classified as benign with no further analysis).

Data Race during access to: 0x2860b30

current thread id: 3: READ

racing thread id: 0: WRITE

Current thread at:

/home/eval/pbzip/pbzip2.cpp:702

Previous at:

/home/eval/pbzip/pbzip2.cpp:389

size of the accessed field: 4 offset: 0

Figure 6. Example debugging aid report for Portend.

4. Implementation

The current Portend prototype consists of approximately 8 KLOC
of C++ code, incorporating the various analyses described earlier
and modifications to the underlying symbolic execution engine.
The four shaded components in Fig. 2 were developed from scratch
as part of Portend: the dynamic data race detector, the analysis and
classification engine, the record-replay engine, and the deadlock
detector.

Portend works on programs compiled to LLVM [33] bitcode
and can run C/C++ programs for which there exists a sufficiently
complete symbolic POSIX environment [6]. We have tested it on
C programs as well as C++ programs that do not link to libstdc++;
this latter limitation results from the fact that an implementation of
a standard C++ library for LLVM is in progress, but not yet avail-
able [12]. Portend uses Cloud9 [6] to interpret and symbolically ex-
ecute LLVM bitcode; we suspect any path exploration tool will do
(e.g., CUTE [52], SAGE [22]), as long as it supports multi-threaded
programs.

Portend intercepts various system calls, such as write, under the
assumption that they are the primary means by which a program
communicates changes in its state to the environment. A sepa-
rate Portend module is responsible for keeping track of symbolic
outputs in the form of constraints, as well as of concrete outputs.
Portend hashes program outputs (when they are concrete) and can
either maintain hashes of all concrete outputs or compute a hash
chain of all outputs to derive a single hash code per execution. This
way, Portend can deal with programs that have a large amount of
output.

Portend clusters the data races it detects, in order to filter out
similar races; the clustering criterion is whether the racing accesses
are made to the same shared memory location by the same threads,
and the stack traces of the accesses are the same. Portend provides
developers with a single representative data race from each cluster.

The timeout used in discovering ad-hoc synchronization is con-
servatively defined as 5 times what it took Portend to replay the
primary execution, assuming that reversing the access sequence of
the racing accesses should not cause the program to run for longer
than that.

In order to run multi-threaded programs in Portend, we extended
the POSIX threads support found in Cloud9 to cover almost the en-
tire POSIX threads API, including barriers, mutexes and condition
variables, as well as thread-local storage. Portend intercepts calls
into the POSIX threads library to maintain the necessary internal
data structures (e.g., to detect data races and deadlocks) and to con-
trol thread scheduling.

5. Evaluation

In this section, we answer the following questions: Is Portend ef-
fective in telling developers which races are true bugs and in help-
ing them fix buggy races (§5.1)? How accurately does it classify
race reports into the four categories of races (§5.2)? How long does
classification take, and how does it scale (§5.3)? How does Portend
compare to the state of the art in race classification (§5.4)?

192

To answer these questions, we apply Portend to 7 applications:
SQLite, an embedded database engine (used, for example, by Fire-
fox, iOS, Chrome, and Android), that is considered highly reliable,
with 100% branch coverage [53]; Pbzip2, a parallel implementation
of the widely used bzip2 file compressor [20]; Memcached [16],
a distributed memory object cache system (used, for example,
by services such as Flickr, Twitter and Craigslist); Ctrace [39],
a multi-threaded debug library; Bbuf [61], a shared buffer imple-
mentation with a configurable number of producers and consumers;
Fmm, an n-body simulator from the popular SPLASH2 benchmark
suite [59]; and Ocean, a simulator of eddy currents in oceans, from
SPLASH2.

Portend classifies with 99% accuracy the 93 known data races
we found in these programs, with no human intervention, in under
5 minutes per race on average. It took us one person-month to man-
ually confirm that the races deemed harmless by Portend were in-
deed harmless—this is typical of how long it takes to classify races
in the absence of an automated tool [23] and illustrates the ben-
efits of Portend-style automation. For the deemed-harmful races,
we confirmed classification accuracy in a few minutes by using the
replayable debug information provided by Portend.

We additionally evaluate Portend on homegrown micro-bench-
marks that capture most classes of harmless races [30, 45]: “redun-
dant writes” (RW), where racing threads write the same value to a
shared variable, “disjoint bit manipulation” (DBM), where disjoint
bits of a bit-field are modified by racing threads, “all values valid”
(AVV), where the racing threads write different values that are nev-
ertheless all valid, and “double checked locking” (DCL), a method
used to reduce the locking overhead by first testing the locking cri-
terion without actually acquiring a lock. Table 1 summarizes the
properties of our 11 experimental targets.

Program Size (LOC) Language # Forked threads

SQLite 3.3.0 113,326 C 2
ocean 2.0 11,665 C 2

fmm 2.0 11,545 C 3
memcached 1.4.5 8,300 C 8
pbzip2 2.1.1 6,686 C++ 4
ctrace 1.2 886 C 3
bbuf 1.0 261 C 8
AVV 49 C++ 3
DCL 45 C++ 5
DBM 45 C++ 3
RW 42 C++ 3

Table 1. Programs analyzed with Portend. Source lines of code are
measured with the cloc utility.

We ran Portend on several other systems (e.g., HawkNL, pfs-
can, swarm, fft), but no races were found in those programs with
the test cases we ran, so we do not include them here. For all exper-
iments, the Portend parameters were set to Mp = 5, Ma = 2, and
the number of symbolic inputs to 2. We found these numbers to be
sufficient to achieve high accuracy in a reasonable amount of time.
To validate Portend’s results, we used manual investigation, ana-
lyzed developer change logs, and consulted with the applications’
developers when possible. All experiments were run on a 2.4 GHz
Intel Core 2 Duo E6600 CPU with 4 GB of RAM running Ubuntu
Linux 10.04 with kernel version 2.6.33. The reported numbers are
averages over 10 experiments.

5.1 Effectiveness

Of the 93 distinct races detected in 7 real-world applications, Por-
tend classified 5 as definitely harmful by watching for “basic” prop-
erties (Table 2): one hangs the program and four crash it.

Program
Total #

of races

of “Spec violated” races
Deadlock Crash Semantic

SQLite 1 1 0 0
pbzip2 31 0 3 0
ctrace 15 0 1 0
fmm 13 0 0 1
memcached 18 0 1 0

Table 2. “Spec violated” races and their consequences.

To illustrate the checking for “high level” semantic properties,
we instructed Portend to verify that all timestamps used in fmm are
positive. This caused it to identify the 6th “harmful” race in Table 2;
without this semantic check, this race turns out to be harmless, as
the negative timestamp is eventually overwritten.

To illustrate a “what-if analysis” scenario, we turned an arbi-
trary synchronization operation in the memcached binary into a no-
op, and then used Portend to explore the question of whether it is
safe to remove that particular synchronization point (e.g., we may
be interested in reducing lock contention). Removing this synchro-
nization induces a race in memcached; Portend determined that the
race could lead to a crash of the server for a particular interleaving,
so it classified it as “spec violated”.

Portend’s main contribution is the classification of races. If one
wanted to eliminate all harmful races from their code, they could
use a static race detector (one that is complete, and, by necessity,
prone to false positives) and then use Portend to classify these
reports.

For every harmful race, Portend’s comprehensive report and
replayable traces (i.e., inputs and thread schedule) allowed us to
confirm the harmfulness of the races within minutes. Portend’s
report includes the stack traces of the racing threads along with
the address and size of the accessed memory field; in the case
of a segmentation fault, the stack trace of the faulting instruction
is provided as well—this information can help in automated bug
clustering. According to developers’ change logs and our own
manual analysis, the races in Table 2 are the only known harmful
races in these applications.

5.2 Accuracy and Precision

To evaluate Portend’s accuracy and precision, we had it classify all
93 races in our target applications and micro-benchmarks. Table 3
summarizes the results. The first two columns show the number
of distinct races and the number of respective instances, i.e., the
number of times those races manifested during race detection. The
“spec violated” column includes all races from Table 2 minus the
semantic race in fmm and the race we introduced in memcached.
In the “k-witness harmless” column we show for which races the
post-race states differed vs. not.

By accuracy, we refer to the correctness of classification: the
higher the accuracy, the higher the ratio of correct classification.
Precision on the other hand, refers to the reproducibility of exper-
imental results: the higher the precision, the higher the ratio with
which experiments are repeated with the same results.

To determine accuracy, we manually classified each race and
found that Portend had correctly classified 92 of the 93 races (99%)
in our target applications: all except one of the races classified “k-
witness harmless” by Portend are indeed harmless in an absolute
sense, and all “single ordering” races indeed involve ad-hoc syn-
chronization.

To measure precision, we ran 10 times the classification for
each race. Portend consistently reported the same data set shown
in Table 3, which indicates that, for these races and applications, it
achieves full precision.

193

Program

Number of data races

Distinct races Race instances Spec violated Output differs
K-witness harmless

Single ordering
states same states differ

SQLite 1 1 1 0 0 0 0

ocean 5 14 0 0 0 1 4

fmm 13 517 0 0 0 1 12

memcached 18 104 0 2 0 0 16

pbzip2 31 97 3 3 0 0 25

ctrace 15 19 1 10 0 4 0

bbuf 6 6 0 6 0 0 0

AVV 1 1 0 0 1 0 0

DCL 1 1 0 0 1 0 0

DBM 1 1 0 0 1 0 0

RW 1 1 0 0 1 0 0

Table 3. Summary of Portend’s classification results. We consider two races to be distinct if they involve different accesses to shared
variables; the same race may be encountered multiple times during an execution—these two different aspects are captured by the Distinct
races and Race instances columns, respectively. The last 5 columns classify the distinct races. The states same/differ columns show for how
many races the primary and alternate states were different after the race, as computed by the Record/Replay Analyzer [45].

 20

 40

 60

 80

 100

Ctrace Pbzip2 Memcached Bbuf

A
c
c
u

ra
c
y
 [

%
]

Single-path
Ad-hoc synch detection

Multi-path
Multi-path + Multi-schedule

Figure 7. Breakdown of the contribution of each technique toward
Portend’s accuracy. We start from single-path analysis and enable
one by one the other techniques: ad-hoc synchronization detection,
multi-path analysis, and finally multi-schedule analysis.

As can be seen in the “k-witness harmless” column, for each
and every one of the 7 real-world applications, a state difference
(as used in [45]) does not correctly predict harmfulness, while our
“k-witness harmless” analysis correctly predicts that the races are
harmless with one exception.

This suggests that differencing of concrete state is a poor clas-
sification criterion for races in real-world applications with large
memory states, but may be acceptable for simple benchmarks. This
also supports our choice of using symbolic output comparison.

Multi-path multi-schedule exploration proved to be crucial for
Portend’s accuracy. Fig. 7 shows the breakdown of the contribution
of each technique used in Portend: ad-hoc synchronization detec-
tion, multi-path analysis, and multi-schedule analysis. In particu-
lar, for 16 out of 21 “output differs” races (6 in bbuf, 9 in ctrace,
1 in pbzip2) and for 1 “spec violated” race (in ctrace), single-path
analysis revealed no difference in output; it was only multi-path
multi-schedule exploration that revealed an output difference (9
races required multi-path analysis for classification, and 8 races
required also multi-schedule analysis). Without multi-path multi-
schedule analysis, it would have been impossible for Portend to ac-
curately classify those races by just using the available test cases.
Moreover, there is a high variance in the contribution of each tech-
nique for different programs, which means that none of these tech-
niques alone would have achieved high accuracy for a broad range
of programs.

We also wanted to evaluate Portend’s ability to deal with false
positives, i.e., false race reports. Race detectors, especially static

OutputBuffer[blockNum].buf = DecompressedData;

Thread T
0

Thread T
1

allDone = 1;

...

while (allDone == 0)

 usleep(50000);

ret = write(..., OutputBuffer[currBlock],...);

...

(d)

Thread T and T
0 1

if(_initialized){

 for(i=0; i<tNum; ++i)

 free(threads[i])

_initialized = 0;

}
(a)

Thread T and T
0 1

 trc_on =1

(b)

current_time =

(rel_time_t) (timer.tv_sec - process_started);

Thread T
0

Thread T
1

settings.oldest_live = current_time - 1;

...

APPEND_STAT(..., settings.oldest_live, ...);

...

PRINT_STAT(...) (c)

if(_trc)

Figure 8. Simplified examples for each race class from real sys-
tems. (a) and (b) are from ctrace, (c) is from memcached and (d) is
from pbzip2. The arrows indicate the pair of racing accesses.

ones, may report false positives for a variety of reasons, depending
on which technique they employ. To simulate an imperfect detector
for our applications, we deliberately removed from Portend’s race
detector its awareness of mutex synchronizations. We then elim-
inated the races in our micro-benchmarks by introducing mutex
synchronizations. When we re-ran Portend with the erroneous data
race detector on the micro-benchmarks, all four were falsely re-
ported as races by the detector, but Portend ultimately classified all
of them as “single ordering”. This suggests Portend is capable of
properly handling false positives.

Fig. 8 shows examples of real races for each category: (a) a
“spec violated” race in which resources are freed twice, (b) a “k-
witness harmless” race due to redundant writes, (c) an “output
differs” race in which the schedule-sensitive value of the shared
variable influences the output, and (d) a “single ordering” race
showing ad-hoc synchronization implemented via busy wait.

5.3 Performance (Time to Classify)

We evaluate the performance of Portend in terms of efficiency
and scalability. Portend’s performance is mostly relevant if it is to
be used interactively, as a developer tool, and also if used for a

194

5

10

15

20
5

20

100

800

C
la

s
s
if
ic

a
ti
o

n
 t

im
e

 [
s
e

c
]

(l
o

g
 s

c
a

le
)

de

pe
nd

en
t

br
an

ch
es

preemption points (log scale)

20 50 100 400

sqlite
1

bbuf
1

ctrace
1

fmm
1

memcached
1

ocean
1

memcached
2

memcached
3

Figure 9. Change in classification time with respect to number of
preemptions and number of dependent branches for some of the
races in Table 3. Each sample point is labeled with race id.

large scale bug triage tool, such as in Microsoft’s Windows Error
Reporting system [21].

We measure the time it takes Portend to classify the 93 races;
Table 4 summarizes the results. We find that Portend classifies all
detected data races in a reasonable amount of time, the longest
taking less than 11 minutes. For bbuf, ctrace, ocean and fmm, the
slowest classification time is due to a race from the “k-witness
harmless” category, since classification into this category requires
multi-path multi-schedule analysis.

The second column reports the time it took Cloud9 to inter-
pret the programs with concrete inputs. This provides a sense
of the overhead incurred by Portend compared to regular LLVM
interpretation in Cloud9. Both data race detection and classifica-
tion are disabled when measuring baseline interpretation time. In
summary, the overhead introduced by classification ranges from
1.1× to 49.9× over Cloud9.

In order to get a sense of how classification time scales with
program characteristics, we measured it as a function of program
size, number of preemption points, number of branches that depend
(directly or indirectly) on symbolic inputs, and number of threads.
We found that program size plays almost no role in classification
time. Instead, the other three characteristics play an important role.
We show in Fig. 9 how classification time varies with the number
of dependent branches and the number of preemptions in the sche-
dule (which is roughly proportional to the number of preemption
points and the number of threads). Each vertical bar corresponds to
the classification time for the indicated data race. We see that, as
the number of preemptions and branches increase, so does classifi-
cation time.

Program
Cloud9 running

time (sec)

Portend classification time (sec)

Avg Min Max

SQLite 3.10 4.20 4.09 4.25

ocean 19.64 60.02 19.90 207.14

fmm 24.87 64.45 65.29 72.83

memcached 73.87 645.99 619.32 730.37

pbzip2 15.30 360.72 61.36 763.43

ctrace 3.67 24.29 5.54 41.08

bbuf 1.81 4.47 4.77 5.82

AVV 0.72 0.83 0.78 1.02

DCL 0.74 0.85 0.83 0.89

DBM 0.72 0.81 0.79 0.83

RW 0.74 0.81 0.81 0.82

Table 4. Portend’s classification time for the 93 races in Table 3.

 25

 50

 75

 100

 1 3 5 7 9 11

A
c
c
u

ra
c
y
 [

%
]

Value of k

Pbzip2
Ctrace

Memcached
Bbuf

Figure 10. Portend’s accuracy with increasing values of k.

We analyzed Portend’s accuracy with increasing values of k and
found that k = 5 is sufficient to achieve overall 99% accuracy for
all the programs in our evaluation. Fig. 10 shows the results for
Ctrace, Pbzip2, Memcached, and Bbuf. We therefore conclude that
it is possible to achieve high classification accuracy with relatively
small values of k.

5.4 Comparison to State of the Art

We compare Portend to the Record/Replay-Analyzer technique [45],
Helgrind+’s technique [27], and Ad-Hoc-Detector [55] in terms of
the accuracy with which races are classified. We implemented the
Record/Replay-Analyzer technique in Portend and compared ac-
curacy empirically. For the ad-hoc synchronization detection tech-
niques, since we do not have access to the implementations, we an-
alytically derive the expected classification based on the published
algorithms. We do not compare to RACEFUZZER [51], because it
is primarily a bug finding tool looking for harmful races that occur
due to exceptions and memory errors; it therefore does not provide
a fine-grain classification of races. Similarly, no comparison is pro-
vided to DataCollider [29], since race classification in this tool is
based on heuristics that pertain to races that we rarely encountered
in our evaluation.

In Table 5 we show the accuracy, relying on manual inspec-
tion as “ground truth”. Record/Replay-Analyzer does not tolerate
replay failures and classifies races that exhibit a post-race state
mismatch as harmful (shown as specViol), causing it to have low
accuracy (10%) for that class. When comparing to Helgrind+ and
Ad-Hoc-Detector, we conservatively assume that these tools incur
no false positives when ad-hoc synchronization is present, even
though this is unlikely, given that both tools rely on heuristics. This
notwithstanding, both tools are focused on weeding out races due to
ad-hoc synchronization, so they cannot properly classify the other
races (36 out of 93). In contrast, Portend classifies a wider range of
races with high accuracy.

specViol k-witness outDiff singleOrd

Ground Truth 100% 100% 100% 100%

Record/Replay
10% 95%

0%

Analyzer (not-classified)

Ad-Hoc-Detector, 0%
100%

Helgrind+ (not-classified)

Portend 100% 99% 99% 100%

Table 5. Accuracy for each approach and each classification cate-
gory, applied to the 93 races in Table 3. “Not-classified” means that
an approach cannot perform classification for a particular class.

The main advantage of Portend over Record/Replay-Analyzer
is that it is immune to replay failures. In particular, for all the races
classified by Portend as “single ordering”, there was a replay di-
vergence (that caused replay failures in Record/Replay-Analyzer),
which would cause Record/Replay-Analyzer to classify the cor-
responding races as harmful despite them being harmless; this
accounts for 57 of the 84 misclassifications. Note that even if

195

Record/Replay-Analyzer were augmented with a phase that pruned
“single ordering” races (57/93), it would still diverge on 32 of the
remaining 36 races and classify them as “spec violated”, whereas
only 5 are actually “spec violated”. Portend, on the other hand, cor-
rectly classifies 35/36 of those remaining races. Another advantage
is that Portend classifies based on symbolic output comparison, not
concrete state comparison.

We manually verified and, when possible, checked with devel-
opers that the races in the “k-witness harmless” category are indeed
harmless. Except for one race, we concluded that developers inten-
tionally left these races in their programs because they considered
them harmless. These races match known patterns [29, 45], such as
redundant writes to shared variables (e.g., we found such patterns
in Ctrace). However, for one race in Ocean, we confirmed that Por-
tend did not figure out that the race belongs in the “output differs”
category (the race can produce different output if a certain path in
the code is followed, which depends indirectly on program input).
Portend was not able to find this path even with k = 10 after one
hour. Manual investigation revealed that this path is hard to find
because it requires a very specific and complex combination of in-
puts.

In summary, Portend is able to classify with 99% accuracy and
full precision all the 93 races into four data race classes defined
in §2.3 in under 5 minutes per race on average. Furthermore, Por-
tend correctly identifies 6 serious harmful races. Compared to pre-
viously published race classification methods, Portend performs
more accurate classification and is able to correctly classify up
to 89% (83 out of 93) more data races than existing replay-based
tools. Portend also correctly handles false positive race reports.

6. Discussion

In this section, we discuss Portend’s usage model and limitations.
Data Race Detection. Portend currently only handles data races
with respect to the POSIX threads synchronization primitives thus
not detecting data races that may occur inside synchronization
primitives (as in [29]). Detection is done on the LLVM bitcode,
not x86 assembly; analyzing the program at this level shields Por-
tend from the peculiarities of a specific CPU’s ISA and memory
consistency model, while at the same time being ignorant of fea-
tures that may make code be correctly synchronized on a specific
platform despite not using POSIX primitives.
Multi-processors and Memory Consistency. Portend works for
multi-processors, however it can simulate only serializable sched-
ules that assume sequential memory consistency [32]. In order to
augment Portend with the capability to reason about weaker mem-
ory consistency models, two key aspects of such models need to
be handled, namely the relaxation of write atomicity and program
order modification [1]. In order to model the relaxation of the write
atomicity requirement, it is possible to break non-atomic instruc-
tions into multiple LLVM instructions. Then, Portend would be
able to generate currently missing schedules that stem from non-
atomic operations. Modeling the modification of program order can
be achieved using a technique similar to adversarial memory [17].
Adversarial memory maintains a history buffer of writes per shared
memory location and, upon a read from that memory location, com-
putes a subset of values that can be validly read under the con-
straints of a particular relaxed consistency model. Portend can use
those different read values to explore more paths during multi-path
multi-schedule analysis.
Language Memory Models. Several language specifications, such
as Ada 83 [34] and the new C [26] and C++ [25] specifications,
do not guarantee any semantics for programs that contain data
races at the source level, essentially considering all such races to
be harmful. In other words, the corresponding compilers are al-
lowed to perform optimizations that break racy programs in arbi-

trary ways [4]. Nonetheless, races at assembly level are not dis-
allowed by any specification (typically synchronization primitives
are implemented with racy assembly code), and, more importantly,
there is a plethora of software written with races at the source
level. Since Portend operates on LLVM bitcode, it can classify both
source-code-level races and LLVM bitcode-level races. Moreover,
Portend can also correctly classify not-buggy-in-source races that
the compiler (legitimately) turned into LLVM level buggy ones [4].
Single-Processor Scheduler. Most data race detectors use a single
processor thread scheduler and Portend does too. Such a sched-
uler has the advantage that it simplifies the record/replay compo-
nent and improves its performance: for example, Portend does not
have to record the ordering of memory reads and writes in differ-
ent threads, since they are naturally ordered by scheduling (a single
thread at a time). The scheduler does not impact Portend’s ability to
detect races, but it may decrease the probability of exploring some
atomicity violations [36] or thread interleavings that would occur
on a multi-processor (and are specific to its memory model). This
loss of coverage is compensated by the fact that, if, during the anal-
ysis, Portend detects a racing access, it will consider it as a possible
preemption point. Moreover, Portend’s multi-schedule analysis is
more likely to uncover more interleavings than “single-pre/single-
post” analysis, thus increasing the thread schedule coverage.
Scalability of Symbolic Execution. Advances in improving the
scalability of symbolic execution would help Portend explore more
executions in the same amount of time, improving triaging ac-
curacy. Since Portend is “embarrassingly parallel”, performance
could also be improved by running Portend in a cluster.
K-witness Harmless Races. It is theoretically undecidable to say
if a race classified as “k-witness harmless” by Portend is indeed
harmless unless all thread interleavings and all possible inputs were
analyzed. However, as we found in our evaluation, in most cases,
Portend produces highly accurate (but not perfect) verdicts in a
reasonable amount of time.

We envision integrating Portend with an IDE to perform race
classification in the background while the developer is modify-
ing the code, in the spirit of automated software reliability ser-
vices [10]. Portend would perform race classification and warn the
developer that a race on the variable in question can have harmful
effects, and should be protected. Test cases that are generated by
Portend in the background can be integrated into a test suite for
developers to validate their applications as part of regression tests.

Portend could also use reports from static race detectors [15] by
feeding them to an execution synthesis tool like ESD [63], which
can try to obtain the desired trace and then classify it with Portend.
If ESD finds such an execution, it effectively confirms that the race
is not a false positive, and Portend can automatically predict its
consequences.

While analyzing a specific data race, Portend may also detect
other unrelated races. This is a side effect of exploring various dif-
ferent thread schedules during classification. Portend automatically
detects these new races, records their execution trace, and analyzes
them subsequently, one after the other.

7. Related Work

Data race detection techniques can be broadly classified into two
major categories: static data race detection [15, 58] and dynamic
data race detection [49, 50, 62]. Static data race detection attempts
to detect races by reasoning about source code, and dynamic race
detection discovers races by monitoring particular execution of a
program. Dynamic data race detection can further be classified into
three categories: (1) detection using the happens-before relation-
ship [5, 31, 40, 42, 46, 48, 50], (2) detection based on the lockset
algorithm [49, 62], and (3) hybrid algorithms that combine these

196

two techniques [30, 47, 62]. Portend uses a happens-before algo-
rithm.

Portend’s race detector can benefit from various optimizations,
such as hardware support [42, 48] that speeds up race detection, or
sampling methods [5, 38] that reduce detection overhead.

Prior work on data race classification employs record/replay
analysis [45], heuristics [29], detection of ad-hoc synchronization
patterns [27, 55] or simulation of the memory model [17].

Record/replay analysis [45] records a program execution and
tries to enforce a thread schedule in which the racing threads access
a memory location in the reverse order of the original race. Then,
it compares the contents of memory and registers, and uses a
difference as and indication of potential harmfulness. Portend does
not attempt an exact comparison, rather it symbolically compares
outputs and explores multiple paths and schedules, all of which
increase classification accuracy over replay-based analysis.

DataCollider [29] uses heuristics to prune predefined classes
of likely-to-be harmless data races, thus reporting fewer harmless
races overall. Portend does not employ heuristics to classify races,
but instead employs precise analysis of the possible consequences
of the data race.

Helgrind+ [27] and Ad-Hoc Detector [55] eliminate race
reports due to ad-hoc synchronization; Portend classifies such
races as “single ordering”. Detecting ad-hoc synchronizations or
happens-before relationships that are generally not recognized by
race detectors can help further prune harmless race reports, as
demonstrated recently by ATDetector [28].

Adversarial memory [17] finds races that occur in systems with
memory consistency models that are more relaxed than sequential
consistency, such as the Java memory model [37]. This approach
uses a memory that returns stale yet valid values for memory
reads, in an attempt to crash target programs. This approach is
useful for a race like DCL, which is harmless on x86 but can
be harmful under weaker memory models. On the other hand,
systems like Sober [7] and Relaxer [8] detect executions that do not
obey sequential consistency under relaxed memory models while
only exploring sequentially consistent executions. Either of these
approaches can be used to enable Portend to reason about weaker
memory consistency models.

RACEFUZZER [51] generates random schedules from a pair
of racing accesses to determine whether the race is harmful.
Therefore, RACEFUZZER performs multi-schedule analysis but
not multi-path, and does so only with the goal of finding bugs,
not classifying races. Portend uses multi-path analysis in addition
to multi-schedule analysis to improve triage accuracy.

Output comparison was used by Pike to find concurrency bugs
while fuzzing thread schedules [18]. Pike users can also write state
summaries to expose latent semantic bugs that may not always
manifest in the program output. If available, such state summaries
could also be used in Portend.

Frost [57] follows a similar approach to Record/Replay Ana-
lyzer and Pike in that it explores complementary schedules (simi-
lar to primary and alternate schedules in Portend) and detects and
avoids potentially harmful races comparing the program states af-
ter following these schedules. This detection is based on state com-
parison and therefore is prone to false positives as shown in §5.4.
If used in conjunction with Portend, Frost could avoid provably
harmful races.

Deterministic execution systems have recently gained popular-
ity in academia [2, 3, 13, 14]. Deterministic execution requires
making the program merely a function of its inputs [56]. In order
to achieve this in the general case, races must be eliminated from
programs, which leads to high overhead. Combined with Portend,
it may be possible to relax determinism guarantees and eliminate

races that really matter from the point of view of a developer or
user, and make deterministic execution more practical.

8. Conclusion

This paper presents the first technique for triaging data races based
on their potential consequences through an analysis that is both
multi-path and multi-schedule. Triaging is done based on a new
four-category data race classification scheme. Portend, an embodi-
ment of our proposed technique, detected and classified 93 different
data races in 7 real-world applications with 99% accuracy and full
precision, with no human effort.

Acknowledgments

We thank the anonymous reviewers for providing insightful feed-
back and suggesting paths for future research. We thank Katerina
Argyraki, Ryan Johnson, Olivier Crameri, Christopher Ming-Yee
Iu, Sotiria Fytraki, and all our DSLAB colleagues for helping us
improve this paper. We thank Microsoft for supporting Cristian
Zamfir through an ICES grant.

References

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 1996.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. In Symp. on Operating Sys. Design and

Implem., 2010.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: a compiler and runtime system for deterministic multithreaded
execution. In Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, 2010.

[4] H.-J. Boehm. How to miscompile programs with ”benign” data races.
In USENIX Workshop on Hot Topics in Parallelism, 2011.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: proportional
detection of data races. In Conf. on Programming Language Design

and Implem., 2010.

[6] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In ACM EuroSys

European Conf. on Computer Systems, 2011.

[7] S. Burckhardt and M. Musuvathi. Effective program verification for
relaxed memory models. In Intl. Conf. on Computer Aided Verifica-

tion, 2008.

[8] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent programs
on relaxed memory models. In Intl. Symp. on Software Testing and

Analysis, 2011.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In Symp. on Operating Sys. Design and Implem., 2008.

[10] G. Candea, S. Bucur, V. Chipounov, V. Kuznetsov, and C. Zamfir.
Automated software reliability services: Using reliability tools should
be as easy as webmail. Symp. on Operating Sys. Design and Implem.,
2010. Research Vision Session.

[11] V. Chipounov and G. Candea. Enabling sophisticated analyses of x86
binaries with RevGen. In Intl. Conf. on Dependable Systems and

Networks, 2011.

[12] Chris Lattner. libc++. http://libcxx.llvm.org/ .

[13] H. Cui, J. Wu, C. che Tsai, and J. Yang. Stable deterministic multi-
threading through schedule memoization. In Symp. on Operating Sys.

Design and Implem., 2010.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In Intl. Conf. on Architectural Sup-

port for Programming Languages and Operating Systems, 2009.

[15] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In Symp. on Operating Systems Principles,
2003.

197

http://libcxx.llvm.org/

[16] B. Fitzpatrick. memcached. http://memcached.org/ .

[17] C. Flanagan and S. N. Freund. Adversarial memory for detecting
destructive races. In Conf. on Programming Language Design and

Implem., 2010.

[18] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency
bugs in large multi-threaded applications. In ACM EuroSys European

Conf. on Computer Systems, 2011.

[19] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and
arrays. In Intl. Conf. on Computer Aided Verification, 2007.

[20] J. Gilchrist. Parallel BZIP2. http://compression.ca/pbzip2 .

[21] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: ten years of implementation and experience. In Symp. on Oper-

ating Systems Principles, 2009.

[22] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symp., 2008.

[23] P. Godefroid and N. Nagappan. Concurrency at Microsoft – An
exploratory survey. In CAV Workshop on Exploiting Concurrency

Efficiently and Correctly, 2008.

[24] Helgrind. http://valgrind.org/docs/manual/hg-manual.html .

[25] ISO/IEC 14882:2011: Information technology – programming lan-
guages – C++. International Organization for Standardization, 2011.

[26] ISO/IEC 9899:2011: Information technology – programming lan-
guages – C. International Organization for Standardization, 2011.

[27] A. Jannesari and W. F. Tichy. Identifying ad-hoc synchronization for
enhanced race detection. In Intl. Parallel and Distributed Processing

Symp., 2010.

[28] Y. L. Jiaqi Zhang, Weiwei Xiong, S. Park, Y. Zhou, and Z. Ma.
ATDetector: Improving the accuracy of a commercial data race detec-
tor by identifying address transfer. In IEEE/ACM International Sym-

posium on Microarchitecture, 2011.

[29] S. B. John Erickson, Madanlal Musuvathi and K. Olynyk. Effective
data-race detection for the kernel. In Symp. on Operating Sys. Design

and Implem., 2010.

[30] T. I. Konstantin Serebryany. ThreadSanitizer - data race detection in
practice. In Workshop on Binary Instrumentation and Applications,
2009.

[31] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7), 1978.

[32] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
28(9):690–691, Sep 1979.

[33] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In Intl. Symp. on Code Genera-

tion and Optimization, 2004.

[34] H. Ledgard. Reference Manual for the ADA Programming Language.
Springer-Verlag New York, Inc., 1983.

[35] N. G. Leveson and C. S. Turner. An investigation of the Therac-25
accidents. IEEE Computer, July 1993.

[36] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity viola-
tions via access interleaving invariants. In Intl. Conf. on Architectural

Support for Programming Languages and Operating Systems, 2006.

[37] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
Symp. on Principles of Programming Languages, 2005.

[38] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective
sampling for lightweight data-race detection. In Conf. on Program-

ming Language Design and Implem., 2009.

[39] C. McPherson. Ctrace. http://ctrace.sourceforge.net .

[40] J. Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. In Supercomputing, 1991.

[41] Memcached issue 127. http://code.google.com/p/memcached/issues/
detail?id=127 .

[42] S. L. Min and J.-D. Choi. An efficient cache-based access anomaly
detection scheme. In Intl. Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, 1991.

[43] M. Musuvathi, S. Burckhardt, P. Kothari, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs.
In Intl. Conf. on Architectural Support for Programming Languages

and Operating Systems, 2010.

[44] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-
grams. In Symp. on Operating Sys. Design and Implem., 2008.

[45] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. Conf. on Programming Language Design and Implem., 2007.

[46] A. Nistor, D. Marinov, and J. Torrellas. Light64: Lightweight hard-
ware support for data race detection during systematic testing of par-
allel programs. In IEEE/ACM International Symposium on Microar-

chitecture, 2009.

[47] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
Symp. on Principles and Practice of Paralle Computing, 2003.

[48] M. Prvulovic and J. Torrellas. ReEnact: using thread-level speculation
mechanisms to debug data races in multithreaded codes. In Intl. Symp.

on Computer Architecture, 2003.

[49] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM

Transactions on Computer Systems, 15(4), 1997.

[50] E. Schonberg. On-the-fly detection of access anomalies (with retro-
spective). SIGPLAN Notices, 39(4), 2004.

[51] K. Sen. Race directed random testing of concurrent programs. Conf.

on Programming Language Design and Implem., 2008.

[52] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In Symp. on the Foundations of Software Eng., 2005.

[53] SQLite. http://www.sqlite.org/ , 2010.

[54] The Associated Press. General Electric acknowledges Northeastern
blackout bug. http://www.securityfocus.com/news/8032 .

[55] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic recognition
of synchronization operations for improved data race detection. In Intl.

Symp. on Software Testing and Analysis, 2008.

[56] N. H. Tom Bergan, Joseph Devietti and L. Ceze. The deterministic ex-
ecution hammer: How well does it actually pound nails? In Workshop

on Determinism and Correctness in Parallel Programming, 2011.

[57] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. De-
tecting and surviving data races using complementary schedules. In
Symp. on Operating Systems Principles, 2011.

[58] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static race detection
on millions of lines of code. In Symp. on the Foundations of Software

Eng., 2007.

[59] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological consider-
ations. Intl. Symp. on Computer Architecture, 1995.

[60] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad-hoc synchro-
nization considered harmful. In Symp. on Operating Sys. Design and

Implem., 2010.

[61] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Distributed
dynamic partial order reduction based verification of threaded soft-
ware. In Intl. SPIN Workshop, 2007.

[62] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection
of data race conditions via adaptive tracking. In Symp. on Operating

Systems Principles, 2005.

[63] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated debugging. In ACM EuroSys European Conf. on Computer

Systems, 2010.

198

http://memcached.org/
http://compression.ca/pbzip2
http://valgrind.org/docs/manual/hg-manual.html
http://ctrace.sourceforge.net
http://code.google.com/p/memcached/issues/detail?id=127
http://code.google.com/p/memcached/issues/detail?id=127
http://www.sqlite.org/
http://www.securityfocus.com/news/8032

	Introduction
	Data Race Classification
	Background and Challenges
	Portend's Approach
	A New Classification Scheme

	Design
	Overview and Example
	Single-Pre/Single-Post Analysis
	Multi-Path Data Race Analysis
	Symbolic Output Comparison

	Multi-Schedule Data Race Analysis
	Data Race Classification
	Portend's Debugging Aid Output

	Implementation
	Evaluation
	Effectiveness
	Accuracy and Precision
	Performance (Time to Classify)
	Comparison to State of the Art

	Discussion
	Related Work
	Conclusion

