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ABSTRACT

We consider the problem of super-resolution from unregistered
aliased images with unknown spatial scaling factors and shifts. Due
to the limitation of pixel size in the image sensor, the sampling rate
for each image is lower than the Nyquist rate of the scene. Thus, we
have aliasing in captured images, which makes it hard to register the
low-resolution images and then generate a high-resolution image.
To work out this problem, we formulate it as a multichannel sam-
pling and reconstruction problem with unknown parameters, spatial
scaling factors and shifts. We can estimate the unknown parameters
and then reconstruct the high-resolution image by solving a non-
linear least square problem using the variable projection method.
Experiments with synthesized 1-D signals and 2-D images show the
effectiveness of the proposed algorithm.

Index Terms— super-resolution imaging, multichannel sam-
pling, variable projection method, nonlinear least squares

1. INTRODUCTION

To keep a reasonable noise level and also due to technology limita-
tion, in today’s commercial image sensor design, one often chooses
a large pixel size. The problem with this design is that it makes
the sampling rate of the image sensor lower than the Nyquist rate of
the scene they want to capture and we have aliasing in the acquired
images.

Can we remove the aliasing and get a high-resolution image?
Researchers proposed super-resolution imaging scheme [1]. In this
imaging scheme, they take several images of the same scene with
slight movement of the camera, and use computational methods to
generate a high-resolution image from the low-resolution images.
Most super-resolution imaging methods contain two steps: image
registration and reconstruction. Vandewalle et al. [2] suggested that
a joint consideration of these two steps would provide opportuni-
ties to achieve a better global solution. They considered the super-
resolution imaging problem as a multichannel sampling problem and
proposed several algorithms to jointly register the low-resolution im-
ages and generate a high-resolution image. The limitation of their
model is that they assumed the camera only had translation motion.
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Lu and Vetterli [3] extended such a model by allowing different gains
for the acquisition of the images and proposed a fast reconstruction
method via overparameterization.

In this paper, we also consider the super-resolution imaging as
a multichannel sampling problem. We extend Vandewalle’s transla-
tion motion model to a more generic motion model by considering
spatial scaling factors. (In the rest of the paper, we call spatial scal-
ing factor as scaling for short.) The reason is that in most cases we
would change focal lengths or distances between the scene and the
camera when capturing the low-resolution images, which makes the
images have different scalings. Adding this makes the model more
realistic. For simplicity, in the rest of the paper, we call the scalings
and shifts as motion parameters. We show that although the non-
linear dependence between motion parameters and captured images
becomes more complicated, it is still possible to recover the correc-
t motion parameters if we have enough images. We use a variable
projection method [4] to estimate the unknown motion parameters
and the high-resolution image.

The paper is organized as follows. In Section 2, we describe the
super-resolution imaging model, how to formulate this as a multi-
channel sampling scheme and the problem we want to solve. We
propose a variable projection method to obtain the unknown motion
parameters and reconstruct the high-resolution image in Section 3.
The experimental results are presented in Section 4, and the conclu-
sion is given in Section 5.

2. IMAGING MODEL AND PROBLEM STATEMENT

In this section, we describe our super-resolution imaging model,
formulate the super-resolution imaging as a multichannel sampling
problem with unknown motion parameters, and establish the recon-
struction problem we want to solve in this paper. To simplify the
presentation, we focus our discussion on a one-dimensional (1-D)
sensor array, but all the results can be easily generalized to the 2-D
case.

2.1. Bandlimited light intensity field model

We consider the super-resolution imaging model as in Fig. 1. The
incoming light intensity field is g0(t). After passing the lens, which
acts as a low-pass filter, it becomes a approximately bandlimited sig-
nal g(t).
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Fig. 1. The super-resolution imaging model. The lens filters the inci-
dent light intensity field g0(t) and generates a smoothed light inten-
sity field g(t). Then we use multiple sensors with different motion
parameters to capture the light intensity field g(t) and get several
low-resolution images.

The bandlimited signal g(t) can be expressed as [2]:

g(t) =
K∑

l=−K

βle
j2πlt, (1)

where βl are the L = 2K + 1 Fourier coefficients of g(t). We can
easily check that the period of this signal is 1.

2.2. Multichannel sampling of the light intensity field

We then use the sensors in Fig. 1 to sample the light intensity field
g(t). Physically there is only one image sensor in the camera. But
through moving the camera, zooming in or out, we can assume that
the camera has multiple sensors with different motion parameters.

This can be formulated as a multichannel sampling problem
shown in Fig. 2. We sample the signal g(t) using M channels with
unknown scalings {am} and shifts {tm}, 1 ≤ m ≤ M . After
scaling and shifting, the signal g(t) becomes g(amt+ tm), which is
equal to g(t) ∗ (amδ(amt+ tm)), where ∗ denotes the convolution.
Since the period of g(t) is 1, the sampling interval T = 1

N
. Note

that, due to the limitation of the pixel size in the image sensor, the
sampling rate is sub-Nyquist. We can write the samples ym(n),
1 ≤ m ≤ M as,

ym[n] = g(am
n

N
+ tm) =

K∑
l=−K

βle
j2πl(am

n

N
+tm)

=
K∑

l=−K

βlW
amlnzlm, (2)

where W = ej2π/N and zm = ej2πtm .
Let F ∗ = [fij ] =⎡
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Fig. 2. The multichannel sampling scheme, where each channel uni-
formly samples a shifted and scaled version of a bandlimited signal
g(t). The shifts {tm} and scalings {am} are unknown. Our goal is
to reconstruct g(t) from all the samples ym[n].

be the N × L inverse discrete Fourier transform (IDFT) matrix [2],
which is the Hermitian transpose of the forward Fourier transfor-
m matrix F , [fam

ij ] denote the pointwise exponential of the matrix
F ∗, Dtm be an L × L diagonal matrix with its diagonal elements
Dtm(l, l) = zlm (−K ≤ l ≤ K), and β = [β−K · · ·β0 · · ·βK ]T

be the Fourier coefficients, then the matrix form of (2) is,

ym =
[
faM

ij

]
Dtmβ.

By stacking the M channels’ samples together into a single vec-
tor y, and

[
fam

ij

]
Dtm into F (a, t), where a = [a1 . . . aM ]T and

t = [t1 . . . tM ]T , we get

y =

⎡
⎢⎣

y1

...
yM

⎤
⎥⎦ =

⎡
⎢⎣

[
fa1
ij

]
Dt1

...[
faM

ij

]
DtM

⎤
⎥⎦β = F (a, t)β. (3)

2.3. Problem statement

We want to reconstruct the signal g(t) from the samples. Due to
the sub-Nyquist sampling of each channel, we can not restore g(t)
from a single channel. We need to use samples of the M channels
to reconstruct g(t). Because g(t) is bandlimited and has L degree
of freedom, to recover g(t) is equivalent to reconstruct its L Fourier
coefficients {βl}. This becomes difficult since the scalings a and
shifts t are also unknown in our setup. From the above analysis, the
samples y, scalings a and shifts t, and Fourier coefficients β have a
nonlinear relationship as in (3). So we need to solve equation (3) to
obtain all the unknowns.

3. RECONSTRUCTION VIA VARIABLE PROJECTION
METHOD

In this section, we show how to simultaneously register low-
resolution images and reconstruct a high-resolution image via the
variable projection method.
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Fig. 3. The diagram of the variable projection method. We estimate the motion parameters (a, t) and the Fourier coefficients β iteratively.
Once the iteration stops, we reconstruct the high-resolution image from the estimated Fourier coefficients β̂.

3.1. Sufficient condition for reconstruction

Note that, each channel is sampled at a sub-Nyquist rate, i.e., N <
L. If we only use a single channel, the number of unknowns is larg-
er than the number of equations. So equation (3) is an underdeter-
mined system. But because of the multichannel sampling, we have
MN samples totally, and L + 2(M − 1) unknown variables in-
cluding Fourier coefficients and motion parameters (Without loss of
generality, we can assume a1 = 1 and t1 = 0.). If the number of
equations MN is larger than or equal to the number of unknowns
L+ 2(M − 1), i.e.,

MN ≥ L+ 2(M − 1),

equation (3) becomes an overdetermined or determined system.
Then we can get the correct parameters and the high-resolution
image. Remark that numerical instability might occur if the matrix
F (a, t) is near singular. As observed in [2], more samples will lead
to more accurate solutions.

3.2. Variable projection method

In this section, we describe the variable projection method [4] for
estimating the motion parameters and Fourier coefficients. Notice
that in equation (3), the two sets of variables, i.e., the motion param-
eters (a, t) and the Fourier coefficients β, are in separable form. We
show that a variable projection method can solve this problem by
iteratively estimating Fourier coefficients β and motion parameters
(a, t) as in Fig. 3.

Let F †(a, t) denote the Moore-Penrose pseudoinverse of the
matrix F (a, t), then

F
†(a, t) = (F ∗(a, t)F (a, t))

−1
F

∗(a, t),

where F ∗(a, t) is the Hermitian transpose of F (a, t).
From (3), when the motion parameters (a, t) are known, we can

get the Fourier coefficients β by solving a least squares problem and
the result is

β = F
†(a, t)y. (4)

We can define the residual as

r(a, t)
def
=

1

2
‖y − F (a, t)β‖22

=
1

2
‖y − F (a, t)F †(a, t)y‖22, (5)

where (5) follows from (4).
So the variables (a, t) can be estimated by solving the following

nonlinear least square problem

(â, t̂) = min
a,t

r(a, t). (6)

Once we get the estimated motion parameters (â, t̂), the esti-
mated Fourier coefficients β̂ can be computed from equation (4) and
g(t) can be reconstructed using equation (1).

We can extend the above model and algorithm to 2-D images
with little effort. A bandlimited image is modeled as

g(x) =

K1∑
k1=−K1

K2∑
k2=−K2

βke
j2πk

T
x, (7)

with k = [k1 k2]
T and x = [x1 x2]

T . Suppose the sampling rates
for the two dimensions are N1 and N2 respectively. Then, the mth
image is:

ym[n1, n2] = g(am,1
n1

N1
+ tm,1, am,2

n2

N2
+ tm,2), (8)

where {am,1} and {am,2} are the vertical and horizontal scalings,
{tm,1}, {tm,2} are the vertical and horizontal shifts. By stacking the
image into a vector, we can get a similar formula as equation (3), and
the rest of the analysis follows what has been done for 1-D signals.

4. EXPERIMENTAL RESULTS

In this section, we show the experimental results on synthesized 1-D
signals and 2-D images. In the above model, the signals are assumed
to be periodic. This is not the case in most real scenarios. However,
we can assume that the scalings and shifts are small and neglect the
differences between the signals due to their aperiodicity.

4.1. 1-D signals

We generate 1-D signals with a decay rate of 1/(|ω| + 1) in the
frequency domain. Such a model is often used for natural images [5,
6]. We set the sampling rate N = 67, the number of channels M =
2, and the number of Fourier coefficients L = 111. We also add
additive white Gaussian noise with variance σ2 to the measurements.
Without loss of generality, we set the scaling a1 = 1 and shift t1 =
0. The ground truth of the scaling a2 and shift t2 are set to 1.05 and
2, where the unit of the shift is pixel size, i.e., 1/N . If the error of
the scaling is smaller than 10−3 and the error of the shift is smaller
than 10−2, a trial is considered to be successful. We repeat 300
independent simulations. In each simulation, the initialization of a2

and t2 are randomly chosen from the interval [1.04, 1.06] and [1, 3]
separately. Fig. 4 (a), (b), and (c) show the mean absolute error
(MAE) of the scaling estimation, shift estimation, and the success
rate as a function of the signal-to-noise ratio (SNR), which is defined
as

SNR = 10 log10
1

Nσ2

∑
n

y2
m[n].

We can see that the higher the SNR, the better the estimation, and
when the SNR is lower than 35dB, the estimation performance drops
rapidly.
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Fig. 4. Simulation results on 1-D signals as a function of the signal-to-noise ratio (SNR). The mean absolute error (MAE) for estimating (a)
the scaling parameter and (b) the shift parameter. (c) Success rate under different SNRs.

Fig. 5. Super-resolution reconstruction for 2-D images. The first
five images are low-resolution images with resolution 33× 33. The
reconstructed high-resolution image with a resolution of 63 × 63 is
the bottom right one.

4.2. 2-D images

We also implement our algorithm for 2-D images. The goal is to
reconstruct an image with spatial resolution 63×63 from five 33×33
low-resolution images. In the simulation, we consider the case that
the scalings in both dimensions of each image are the same. The
scaling a1,1 = a1,2 = a1 = 1, and shift parameters t1,1 = t1,2 =
0. Thus, we have to estimate the remaining 12 unknown motion
parameters. The ground truth of the scaling am,1 = am,2 = am and
shift tm,1 and tm,2 for m = 2, ..., 5 are uniformly distributed in the
interval [1, 1.05], [0, 1/N ], and [0, 1/N ], respectively. Fig. 5 shows
the five low-resolution images and the reconstructed high-resolution
image which is the bottom right image.

5. CONCLUSION

In this paper, we considered super-resolution imaging from multi-
ple unregistered aliased images with unknown scalings and shift-
s. We formulated it as a multichannel sampling problem. The un-
known motion parameters and Fourier coefficients are separable in
the nonlinear least square problem, so we could use a variable pro-

jection method to solve it. The method is also applicable to signals
in a finite-dimensional Hilbert space. At present, the computational
complexity is high because it is a large-scale nonlinear least square
problem. In the future, it is interesting to investigate how to solve this
problem more efficiently, and extend the algorithm to deal with more
generic motion parameters including rotation [7]. It is also interest-
ing to apply the algorithm to satellite imaging [8] and microscopy
imaging [9], for example.
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