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Abstract— Ultra-wideband (UWB) localization is a recent
technology that promises to outperform many indoor lo-
calization methods currently available. Yet, non-line-of-sight
(NLOS) positioning scenarios can create large biases in the
time-difference-of-arrival (TDOA) measurements, and must be
addressed with accurate measurement models in order to avoid
significant localization errors. In this work, we first develop
an efficient, closed-form TDOA error model and analyze
its estimation characteristics by calculating the Craḿer-Rao
lower bound (CRLB). We subsequently detail how an online
Expectation Maximization (EM) algorithm is adopted to find an
elegant formalism for the maximum likelihood estimate of the
model parameters. We perform real experiments on a mobile
robot equipped with an UWB emitter, and show that the online
estimation algorithm leads to excellent localization performance
due to its ability to adapt to the varying NLOS path conditions
over time.

I. I NTRODUCTION

Accurate indoor localization is an enabling technology,
with applications ranging from asset management and inven-
tory tracking to assembly control for a variety of differentin-
dustries. Within the research community, the mobile robotics
domain plays an important role with a vast and continuously
growing body of contributions. Popular localization sen-
sors employed on-board robots include cameras [16], ultra-
sound sensors [8], laser range finders [17] and even infrared
sensors [2], and are used independently or in combination
with fixed landmark beacons [3]. Although such systems
are proven accurate and efficient, their great disadvantage
lies in the requirement for line-of-sight (LOS). Wireless
localization signals, in particular those relying on UWB, are
able to penetrate through objects in NLOS scenarios due to
the large frequency spectrum, and thus alleviate the LOS
constraint, ultimately enabling localization over large ranges
and in dynamic environments [9]. Nevertheless, such NLOS
scenarios may cause biases in the signal propagation times,
which ultimately leads to significant localization errors.In
order to guarantee reliable and accurate performance, these
biases need to be addressed by an UWB measurement model
(within the localization algorithm), that is able to accurately
capture measurement distributions in mixed LOS/NLOS sig-
nal path environments.

In this work, we build upon our previous work [12],
where we developed a baseline TDOA measurement model
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Fig. 1. System of one robot located atx and two UWB base stations
Bu and Bv . The figure shows the true rangesru(x) and rv(x) to the
respective base stations, as well as a segment of the hyperbola resulting
from the range-difference measurementτuv(x).

and validated it with real data. By performing a closed-
form approximation, we now produce a new, more efficient
measurement model. Using this new model, we are able to
derive a compact and efficient estimation algorithm that can
be employed in batch mode (offline) as well as online, in
real-time. A derivation of the CRLB for our model illustrates
the achievable lower bound on the variance of any unbiased
estimator. Also, given a vector of true model parameters, we
compare the estimation performance of our batch and online
estimation algorithms. Finally, we perform a real localization
experiment using a mobile robot equipped with an UWB
emitter, and show that the online model estimator produces
excellent localization results.

A. Related Work

UWB has shown to be amongst the most promising
localization techniques for indoor environments [9]. As a
consequence, it has very recently been adopted by the
robotics community. In [15], an UWB receiver is mounted on
a mobile robot which uses a TDOA algorithm between pairs
of anchor nodes to estimate its own position. The robot’s self-
localization algorithm is based on UWB measurements, yet it
does not employ an UWB error model, and instead relies on
a least squares method to solve the multilateration problem.
The studies in [6] and [7] develop probabilistic models for
biased UWB range measurements which are combined with
on-board odometry data. Yet, both papers model NLOS
biases within augmented-state particle filters that do not
take LOS/NLOS signal path conditions and bias probability
distributions into account explicitly, and might therefore be
limited by this simplified approach. To the best of our
knowledge, parametric UWB TDOA measurement models
have hardly been addressed by the research community.
Thus, little work has been done to propose viable model
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estimators, in particular for applications to mobile robot
localization.

B. Problem Formulation

Our problem is illustrated in Figure 1 and is described as
follows. We consider a system of two UWB base station
receiversBu and Bv, each of which is fixed and well-
localized in an absolute coordinate system, and one robot at
positionx equipped with an UWB emitter tag in its center.
At any given time, the robot may receive a measured TDOA
value τ̂uv from the pair of base stations〈Bu,Bv〉. Thus,
we define the TDOA measurement error as the difference
between the nominal (error-free) TDOA valueτuv at the
actual robot positionx and the measured TDOA valuêτuv

∆τuv(τ̂uv,x) = τ̂uv − τuv(x) (1)

where τuv(x) = ru(x) − rv(x), and ru(x) is the range
between base stationBu and x. The first goal of this
work is to develop an efficient TDOA measurement model
p̃uv(∆τuv ; θ), which is defined by the parameter vectorθ.
In order to practically employ the model, the second goal of
this work is to develop an online estimation algorithm that
finds the best estimatêθ for the parameter vectorθ, and that
is sufficiently light to be deployed on a resource-constrained
mobile robotic platform.

II. UWB TDOA M EASUREMENTMODEL

UWB is a radio technology which is characterized by
its very large bandwidth compared to conventional narrow-
band systems, and, in particular, features high positioning
accuracy (due to a fine time resolution on both emitter and
receiver side) and high material penetrability (due to the large
bandwidth). Despite these desirable traits, the resolution of
multipath and NLOS signals remains a very hard problem,
and may lead to complex time-of-arrival (TOA) detection
algorithms prone to estimation errors, which inevitably leads
to ranging inaccuracies. In this section, we first develop a
baseline error model for TOA measurements, and then extend
it analogously to model the errors of TDOA measurements.
We note that as of the following, the terms TOA and TDOA
are used interchangeably with the terms range and range
difference, respectively, as they differ only by a constant
factor (propagation speed).

A. General TDOA Measurement Model

We employ a common error model [14] for the range
between a base stationBu and a target node at positionx:

r̂u = ru(x) + ǫ+ Y bu (2)

whereru(x) represents the true distance,bu is a non-negative
distance bias introduced by a NLOS signal propagation,
and ǫ ∼ N (0, σ2

N ) is a zero-mean Gaussian measurement
noise with varianceσ2

N , common to all base stations. The
random variableY follows a Bernoulli distribution, i.e., it
takes the value 1 with probability(1 − PLu

) and the value
0 with probability PLu

, where PLu
is the probability of

measuring a LOS path, and correspondingly,(1 − PLu
)

is the probability of measuring a NLOS path. Whereas
modelingǫ is straightforward, modeling the biasbu is less
obvious. Indeed, positive time-of-flight biases may not only
be caused by multipath propagation, but also by signal delay
or by signal attenuation, and thus depend on bandwidth and
distance. Despite the complexity of NLOS error patterns,
current work discusses the suitability of a variety of statistical
models with exponential behavior, supported on the semi-
infinite interval(0,∞) [1, 13]. In particular, Alsindi et al. [1]
show in a comprehensive measurement campaign that the
log-normal distribution best characterizes the NLOS error
behavior. Thus, we resort to a biasbu that is modeled as a
log-normal random variablebu ∼ lnN (µu, σu), associated
to each base stationBu.

Our TOA measurement model returns the likelihood that
a given range error occurs. For a range error defined as

∆ru(r̂u,x) = r̂u − ru(x) (3)

the TOA measurement model describes the likelihood of∆ru
occurring when a robot measures a certain range distance
r̂u from a base stationBu at an actual positionx with
a nominal (actual) rangeru(x). Thus, for a log-normal
probability density functionplnN ,u(bu) with parametersµu

andσu, and a normal probability density functionpN (ǫ) with
a standard deviationσN , the probability density of an error
∆ru, occurring in a NLOS event̄Lu, can be written as

pu(∆ru|L̄u) = (plnN ,u ∗ pN )(∆ru) (4)

which is the convolution of the probability density function
of the bias value, with the probability density function of
the Gaussian noise value. Correspondingly, we can write the
probability density of an error∆ru, occurring in a LOS event
Lu, as

pu(∆ru|Lu) = pN (∆ru) (5)

Finally, with use of the total probability theorem, we combine
the above equations to obtain the probability density of∆ru
(which is obtained by measuring a ranger̂u at an actual,
nominal rangeru) as

pu(∆ru) = pu(∆ru|Lu) · PLu
+

pu(∆ru|L̄u) · (1 − PLu
). (6)

An example of this probability density function is shown in
Figure 2(a), for two base stations.

In practice, TOA systems are rarely implemented due to
the complexity induced by the required synchronization of a
mobile node with the base stations. Instead, it is a common
choice to implement TDOA systems which are significantly
more practical, since only the synchronization among base
stations is required. Thus, the direct range measurement
between a mobile node and base station is replaced by the
difference between two individual range measurements each
taken at a different base station.

Extending the TOA formalism shown above, we define
the difference range value (i.e. TDOA) between two base
stationsBu andBv to a target node as

τ̂uv = r̂u − r̂v (7)



Model parameter µu σu PLu

Parameter range [-3,0] [0.2,0.8] [0.01,0.99]

TABLE I

MODEL PARAMETER RANGES FOR A BASE STATIONBu

and then easily model the TDOA error∆τuv as previously
shown in Equation 1. Simultaneously, we can describe the
TDOA error as the difference between the range errors
occurring at the individual base stationsBu and Bv as
described in Equation 2, resulting in

∆τuv = ∆ru −∆rv. (8)

Finally, we describe the probability density of a given
TDOA measurement error∆τuv as the probability density
of the subtraction of two random variables drawn from the
probability densities describing the TOA error models of the
two respective base stations. We use the results of Equations
6 to model this resulting probability density as

puv(∆τuv) = (pu ∗ p−v )(∆τuv) (9)

which is a convolution of the probability densities of
range errors ∆ru and ∆rv, and where we denote
p−v (∆rv) = pv(−∆rv).

B. Efficient TDOA Measurement Model

Although numerical implementations for the TDOA mea-
surement model of Equation 9 are easily found, they imply
nested integrals which may incur a substantial computational
overhead when deploying the model on an embedded plat-
form for real-time operation. Also, the model itself is analyt-
ically non-tractable, which causes difficulties when deriving
viable estimators. For these reasons, we perform a closed-
form approximation to simplify the TDOA measurement
model of Equation 9. In the following, we will also show
that our approximations are easily justified by considering
real world UWB data.

Using basic algebraic properties of the convolution and
inserting Equation 6 into Equation 9, we have

puv(∆τuv) =
(

PLu
PLv

(pN ∗ p−N )+

PLu
(1− PLv

)(pN ∗ p−N ∗ p−lnN ,v)+

PLv
(1− PLu

)(pN ∗ p−N ∗ plnN ,u)+

(1− PLu
)(1 − PLv

)(pN ∗ p−N ∗ plnN ,u ∗ p−lnN ,v)
)

(∆τuv).

(10)

It is well-known that pN ∗ p−N = p√2N , where p√2N
is the density of a normal distributionN (0, 2σ2

N ). Hence,
Equation 10 can be rewritten as

puv(∆τuv) =
(

PLu
PLv

p√2N+

PLu
(1 − PLv

)(p√2N ∗ p−lnN ,v)+

PLv
(1− PLu

)(p√2N ∗ plnN ,u)+

(1− PLu
)(1 − PLv

)(p√2N ∗ plnN ,u ∗ p−lnN ,v)
)

(∆τuv).

(11)
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Fig. 2. We consider a base station pair〈B1,B2〉. The plots show an
example of the probability density functions describing (a) the TOA error
(Eq. 6) for the two base stations and (b) the TDOA error (Eq. 13). Plot (c)
illustrates the four modes which form the complete multimodal probability
density function shown in (b). The model parameters are set to: µ1 =
−0.43, µ2 = −0.2, σ1 = 0.6, σ2 = 0.7, PL1

= 0.3, PL2
= 0.5.

UWB measurement campaigns have shown thatσN ≪ 1
[1, 12]. Thus p√2N ∗ g ≈ g for any function g. Fur-
thermore (as we will verify numerically later on in this
section)plnN ,u ∗ p−lnN ,v can be approximated by the den-
sity function pÑ of a normal distributionN (µ̃, σ̃2). The
parameters̃µ, σ̃2 are obtained by matching the moments (and
thus minimizing the Kullback-Leibler divergence) as follows:
Let Xu ∼ lnN (µu, σ

2
u) andXv ∼ lnN (µv, σ

2
v) be indepen-

dent. For the meañµ and the variancẽσ2, the Kullback-
Leibler divergence is minimized if̃µ = E[Xu −Xv] and
σ̃2 = Var(Xu −Xv). This leads to

µ̃ = E[Xu −Xv] = eµu+σ2

u/2 − eµv+σ2

v/2

σ̃2 = Var(Xu) + Var(−Xv)

= e2µu+σ2

u(eσ
2

u − 1) + e2µv+σ2

v (eσ
2

v − 1). (12)

Finally, using the results obtained above, we further simplify
Equation 11 and define the closed-form TDOA measurement
model as

p̃uv(∆τuv) =
(

PLu
PLv

p√2N+

PLu
(1− PLv

)p−lnN ,v+

PLv
(1 − PLu

)plnN ,u+

(1 − PLu
)(1 − PLv

)pÑ

)

(∆τuv). (13)

Figure 2(b) shows an example of this model. Figure 2(c)
describes the four terms in Eq. 13, and illustrates how they
are interpreted as LOS-LOS, LOS-NLOS, NLOS-LOS, or
NLOS-NLOS configurations for a pair of base stations.

In order to validate our approach, we performed a statis-
tical comparison between the approximated and the general
model. We note that, generally, the true UWB model param-
eter values lie in the ranges reported in Table I (confirmed
by the experimental measurement campaigns performed in
[1] and [12]). We first compared the approximation of
plnN ,u ∗ p−lnN ,v with the normal density functionpÑ (de-
fined by µ̃ and σ̃2 as in Equation 12). For the base station
pair 〈Bu,Bv〉, we varied the parametersµu, µv and σu, σv

of the respective log-normal distributions within the ranges
shown in Table I so that 80’000 tests were performed.



0.2 0.4 0.8

0.8

0.4

0.2

-3 0-1.5

-3

-1.5

0

µ1

µ2

σ1

σ2

Fig. 3. Acceptance results of the Kolmogorov-Smirnov test at a 5%
significance level, for4002 parameter variations (20 values for bothµu

and σu, in the ranges reported in Table I). Accepted tests are shownin
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Figure 3 illustrates the acceptance results of the Kolmogorov-
Smirnov test at a 5% significance level. The approximation
clearly performs well for smallσu, σv for all µu, µv, with an
acceptance rate of 98.5% in the parameter rangeσu, σv =
[0.2, 0.55]. Furthermore, for two base stations with similar
NLOS behavior|σu − σv| ≤ 0.065, the acceptance rate is
85.5% for allσu, σv, µu, µv. Secondly, we compared the full
model (Equation 9) with the approximated model (Equation
13) over 800’000 tests measuring the Kolmogorov-Smirnov
distance, for parametersσu, σv, µu, µv,PLu

andPLv
in the

ranges as reported in Table I. The average Kolmogorov-
Smirnov distance over all tests was 0.07, showing a good
match of the densities.

III. C RAMÉR-RAO LOWER BOUND

In this section, we calculate the Cramér-Rao lower bound
(CRLB) for the efficient TDOA measurement model of
Equation 13. The CRLB provides a lower bound on the
variance of unbiased estimators and thereby provides a useful
tool to assess the quality of algorithms which estimate the
parameters of our model. Let us denote byτ̂

(k)
uv the k−th

measured TDOA value, and byN the total number of mea-
sured values. Given the associated true valuesτ

(k)
uv , our data

is (∆τ
(1)
uv ,∆τ

(2)
uv , ...,∆τ

(N)
uv ). We consider the parameters of

our measurement model

θ = [µu, σu, µv, σv,PLu
,PLv

]T

where we omit the measurement noiseσN , since it can easily
be determined given an actual testbed. In order to determine
the CRLB, we need to calculate the Fisher Information Ma-
trix (FIM) I(θ). Since the observationŝτ (k)uv are independent,
the FIM is then, by definition, the6× 6 matrix with entries

[I(θ)]i,j := −
N
∑

k=1

E

[

∂2 log p̃uv(∆τ
(k)
uv ; θ)

∂θi∂θj

]

. (14)
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Fig. 4. CRLB for (a) a varying number of data samplesN and (b) for
varying LOS probabilityPL1

, for default parameter valuesµ1,2 = −0.4,
σ1,2 = 0.6, andPL1,2

= 0.5. Additionally, (a) shows the average variance
of the batch estimator detailed in Section IV-B, evaluated over 1000 runs.
Symbols⋄ and ◦ show parameter estimates for base stationB1 and B2,
respectively.

Since the observations are identically distributed, we have

[I(θ)]i,j =−N E

[

∂2 log p̃uv(∆τuv)

∂θi∂θj

]

=−N

∫ 0

−∞

∂2 log p̃uv(x)

∂θi∂θj
p̃uv(x)dx−

N

∫ ∞

0

∂2 log p̃uv(x)

∂θi∂θj
p̃uv(x)dx. (15)

Recall that for fixedx ∈ (0,∞) we have

p̃uv(x) =PLu
PLv

p√2N (x) + PLv
(1 − PLu

)plnN ,u(x)+

(1− PLu
)(1− PLv

)pÑ (x) (16)

and forx ∈ (−∞, 0) we have

p̃uv(x) =PLu
PLv

p√2N (x) + PLu
(1− PLv

)plnN ,v(−x)+

(1− PLu
)(1− PLv

)pÑ (x). (17)

Using Equation 17 for the first term and Equation 16 for
the second term of Equation 15, it is now straightforward
to deduce a closed-form expression for its integrand. Then,
due to the complicated structure of this integrand, we are not
able to perform the integration analytically but (for givenθ)
only numerically. Finally, for any unbiased estimatorθ̂ =
(θ̂1, ..., θ̂6) = (µ̂u, ..., P̂Lv

) for θ, we have the CRLB

Var(θ̂i) ≥ [I(θ)−1]i,i. (18)

Figure 4 shows the CRLB for our model and two base
stations〈B1,B2〉, (a) for a varying number of data samples
N , and (b) for a varying LOS probabilityPL1

. As is to be
expected, the CRLB decreases for increasingN . Also, we
see that asPL1

increases with respect toPL2
, it becomes

harder to estimate the log-normal parameters associated to
the NLOS bias of base stationB1.

IV. ESTIMATION OF MODEL PARAMETERS

The application of the TDOA measurement model must be
preceded by the estimation of its parameter vectorθ, given
measurement data(∆τ

(1)
uv ,∆τ

(2)
uv , ...,∆τ

(N)
uv ), resulting in the

model p̃uv(∆τuv ; θ̂). Due to its efficiency in achieving the
CRLB for data set sizes tending to infinity, our approach is
based on Maximum Likelihood Estimation (MLE). Although



several methods can be used to obtain the maximum likeli-
hood estimate, we implement an Expectation Maximization
(EM) approach, which, in contrast to other methods, does not
require the evaluation of first and/or second derivatives ofthe
likelihood function at each iteration. In our particular case,
we will show that our EM formalism produces a compact,
closed-form expression. In the following paragraphs, we
detail an estimation framework that can be implemented
offline (in batch mode) as well as online in real-time.

A. Preliminaries

The maximum likelihood estimator for our model is de-
fined by

θ̂ = argmax
θ

1

N

N
∑

k=1

log p̃uv(∆τ (k)uv ; θ). (19)

Based on this estimator, the parameter vectorθ can be esti-
mated offline by using the standard EM algorithm introduced
by Dempster et al. [5]. Since our online approach builds upon
the EM formalism presented by Cappé et al. [4], our notation
in the following derivations is closely related to that of the
latter. If we write our parameter vectorθ as

θ = [µu, σu, µv, σv, µ̃, σ̃,PLu
,PLv

]T

where we introducẽµ and σ̃ in order to resolve inter-
parameter dependencies, we can formulate the four terms
of our model as

f1(x; θ) = p√2N (x; θ) = p√2N (x)

f2(x; θ) = p−lnN ,v(x; θ) = p−lnN ,v(x;µv, σv)

f3(x; θ) = plnN ,u(x; θ) = plnN ,u(x;µu, σu)

f4(x; θ) = pÑ (x; θ) = pÑ (x; µ̃, σ̃). (20)

By defining α1 = PLu
PLv

, α2 = PLu
(1 − PLv

), α3 =
PLv

(1−PLu
), andα4 = (1−PLu

)(1−PLv
), we can rewrite

the modelp̃uv in the form of a standard mixture model

p̃uv(x; θ) =

4
∑

j=1

αjfj(x; θ). (21)

Thus, we can now leverage the EM estimation framework for
mixture models by assuming that every observation∆τ

(k)
uv

originates from anfj , and by postulating the existence of
a latent variableZ = (Z1, ..., ZN) where Zk = j with
probability αj and j ∈ {1, 2, 3, 4}. Zk specifies whichfj
the k-th observation corresponds to, thus, givenZk = j, the
observation∆τ

(k)
uv has densityfj . In other words, any given

data sample corresponds to the probability density defined
by two base stations in either LOS-LOS, NLOS-NLOS, or
LOS-NLOS (and NLOS-LOS) configuration. For anyk, the
likelihood of (∆τ

(k)
uv , Zk) is

f(x, z; θ) =

4
∑

j=1

αjδzjfj(x; θ)

with δzj = 1 if z = j andδzj = 0 otherwise. Note that here
(and in what follows) there is no dependency onk, since

the observations are i.i.d. We are now able to writef in
exponential family form:

f(x, z; θ) = h(x, z) exp





4
∑

j=1

δzj [log(αj) + log(fj(x; θ))]





= h(x, z) exp





11
∑

j=1

Sj(x, z)φj(θ)



 (22)

where h(x, z) = 0 if z = 2 and x ≥ 0, or z = 3 and
x ≤ 0, and h(x, z) = 1 otherwise.S = (S1, ..., S11) and
φ = (φ1, ..., φ11) are defined as follows:

S(x, z) =[δz,1, x
2δz,1, χ(−∞,0)(x)δz,2,

χ(−∞,0)(x) log(−x)δz,2,

χ(−∞,0)(x) log(−x)2δz,2, χ(0,∞)(x)δz,3,

χ(0,∞)(x) log(x)δz,3, χ(0,∞)(x) log(x)
2δz,3,

δz,4, xδz,4, x
2δz,4]

T (23)

[φ1, φ2]
T(θ) =

[

log(α1)− log(2
√
πσ), − 1

4σ2
N

]T

[φ3, φ4, φ5]
T(θ)) =

[

− log(2
√
πσv) + log(α2)−

µ2
v

2σ2
v

,

−1 +
µv

σ2
v

,− 1

2σ2
v

]T

[φ6, φ7, φ8]
T(θ)) =

[

− log(2
√
πσu) + log(α3)−

µ2
u

2σ2
u

,

−1 +
µu

σ2
u

,− 1

2σ2
u

]T

[φ9, φ10, φ11]
T(θ) =

[

− log(2
√
πσ̃) + log(α4)−

µ̃2

2σ̃2
,

µ̃

σ̃2
, − 1

2σ̃2

]T

(24)

whereχ[.] is the indicator function for a given interval. We

denote byEθ[·|∆τ
(k)
uv = x] the expectation given∆τ

(k)
uv = x

andθ, and define weights̄wj(x; θ) obtained through Bayes’
theorem as

w̄j(x; θ) :=Eθ[δjZk
|∆τ (k)uv = x]

=
αjfj(x; θ)

∑4
m=1 αmfm(x; θ)

(25)

which is equal to the probability thatZk = j given∆τ
(k)
uv =

x. Then for s̄(x; θ) := Eθ[S(∆τ
(k)
uv , Zk)|∆τ

(k)
uv = x] we

have

s̄(x; θ) =[w1(x; θ), w1(x; θ)x
2, w2(x; θ),

w2(x; θ) log(−x), w2(x; θ) log(−x)2,

w3(x; θ), w3(x; θ) log(x), w3(x; θ) log(x)
2,

w4(x; θ), w4(x; θ)x, w4(x; θ)x
2]T. (26)

Finally, for s ∈ R
11 we define the function

l(s; θ) =
∑11

j=1 sjφj(θ). Through straightforward
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Fig. 5. Online EM estimation of model parameters for a base station pair
〈B1,B2〉, with true valuesµ1 = −0.2, µ2 = −0.4, σ1 = 0.7, σ2 =
0.6, PL1

= 0.2, PL2
= 0.8, for N = 5000 data samples andγ =

1/k0.65. Parameters̃µ and σ̃ (not shown here) are defined as in Eq. 12, to
form the full parameter vectorθ.

calculation we can derive conditions ons so that we
can define the function̄θ(s) := argmaxθ l(s; θ), which
leads to

θ̄(s) =

[

s7
s6

,

√

−s27 + s6s8
s26

,
s4
s3

,

√

−s24 + s3s5
s23

,

s10
s9

,

√

−s210 + s9s11
s29

,
s1 + s3

s1 + s3 + s6 + s9
,

s1 + s6
s1 + s3 + s6 + s9

]T

. (27)

We note that Equations 25 and 26 relate to the E-step and that
Equation 27 relates to the M-step of a standard, batch EM
algorithm. As we will see below, the implementations of the
batch and online algorithms now only require the evaluation
of these closed-form vectors.

B. Batch Estimation

Using the notations introduced above, forN data samples,
the k+1-th parameter estimatêθ(k+1) in the batch EM
algorithm is given by

θ̂
(k+1) = θ̄

(

1

N

N
∑

i=1

s̄(∆τ (i)uv ; θ̂
(k))

)

. (28)

Figure 4 (a) shows how, as expected, the estimator variance
tends towards the CRLB forN → ∞, confirming its
efficiency for growingN .
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with θ̂ resulting from the batch and the online estimation algorithms. The
boxplot edges mark the 25th and 75th percentiles, the bar marks the median,
and the whiskers cover 99.3% of the data.

C. Online Estimation

The k+1-th parameter estimatêθ(k+1) for observations
(∆τ

(1)
uv , ...,∆τ

(k)
uv ) takes the form

ŝ(k+1) = ŝ(k) + γ(k+1)
[

s̄
(

∆τ (k+1)
uv ; θ̂(k))

)

− ŝ(k)
]

θ̂
(k+1) = θ̄(ŝ(k+1)) (29)

where γ(k+1) is a user-defined step size. Variations of
γ(k) = 1/k have shown to produce good convergence
speed [4] – typically, the choiceγ defines the trade-off
between adaptability and stability of the estimate. In practice,
one should boundγ from below to allow the estimation
algorithm to continuously adapt to a changing environ-
ment. Since the second and third term of our mixture
model are defined by densities that are only supported on
a semi-infinite interval, we do not update the entries of
ŝ
(k+1)
3,4,5 when∆τ

(k+1)
uv ∈ (0,∞) and similarly ofs(k+1)

6,7,8 when

∆τ
(k+1)
uv ∈ (−∞, 0). Also, we use Equation 12 for calculat-

ing µ̃ and σ̃ in function of the parameter estimatesµ̂1, µ̂2,
σ̂1, and σ̂2, instead ofθ̄(ŝ(k+1))5,6, since the convergence
speed is significantly improved.

Figure 5 shows an example of online parameter estimation
using our EM framework, on a data set comprising 5000
samples. Cappé et al. [4] resolve issues due to the depen-
dency on the initialization by updating onlŷs for a number
of first iterations. Thus, we use the first 100 observations
to build up an estimate of̂s(100), before calculating the first
parameter estimatêθ(101). Figure 6 shows the true probability
densities superimposed by the (final) estimated probability
densities of the online estimation example shown in Figure 5.
The plots confirm, qualitatively, that a good estimation is
achieved. Figure 7 shows a systematic comparison of the
batch with the online estimation algorithm. We performed a
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Fig. 8. (a) Experimental setup, including a 3m×3m arena, an overhead
camera tracking system, and 4 UWB base station receivers mounted on the
ceiling. Base stationB2 is occluded by a metal sheet to provoke a NLOS
scenario. (b) Khepera III robot equipped with a LED-based tracking module,
which simultaneously carries the UWB emitter tag.

set of 10’000 simulations, where for each simulation, true
parametersθ were sampled randomly in the intervals as
reported in Table I. Both algorithms were tested on a sample
size N = 1000, where, for the online algorithm, the final
estimate ofθ̂ is found by averaging the last 100 estimates.
The results confirm good estimation of the model parameters.
As is to be expected, the batch algorithm produces slightly
smaller estimation errors than the online algorithm.

V. EXPERIMENTS

Our experimental setup is shown in Figure 8(a). The UWB
localization system employed in this work is commercially
available from Ubisense1, Series 7000 (sensors and compact
tags). It is installed on the ceiling of a 40m2 laboratory, with
each of the four base stations mounted at the extremities
of a 9m2 square robotic arena. To perform experiments,
we use a Khepera III robot, which is a differential drive
robots of 12cm diameter produced by K-Team corporation2,
see Figure 8(b). The robot uses wheel encoders to provide
odometry readings (the dead-reckoning error of the Khepera
III has been reported to reach 0.1m after traveling for 18
meters [11].) The Khepera III robot has a KoreBot exten-
sion board providing a standard embedded Linux operating
system on an Intel XSCALE PXA-255 processor running
at 400 MHz. Communication is enabled through an IEEE
802.11b wireless card which is installed in a built-in Com-
pactFlash slot. The robot is equipped with an LED ground-
truth position tracking module, which also carries a Ubisense
UWB emitter tag. To measure ground truth positioning,
an overhead camera system is installed over the arena in
combination with the open source tracking softwareSwis-
Track [10]. The maximum error of the resulting ground truth
positioning is below 3cm (as reported in [11]). Odometry
updates are made at a frequency of 5Hz, the UWB tags emit
positioning pulses at an update frequency of about 1Hz, and
the overhead camera tracks the robot at 10Hz. In order to

1http://www.ubisense.net
2http://www.k-team.com/
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Fig. 9. Experimental results obtained from data gathered onthe real setup
(the performance is shown by the root-mean-square-error, in meters). Evalu-
ations were performed on three model variants:(i) online model estimation,
(ii) batch model estimation, and(iii) random model. The boxplots show the
25th, 50th, and 75th percentile, and the whiskers contain 85% of the data.

provoke a partial NLOS setting, we suspend a metal sheet
in front of base stationB2 (as seen in Figure 8(a)), which
occludes the LOS signal path from the robot for certain
localities. Using this setup, we perform experiments of 50
minutes duration, during which the robot (driving at 12 cm/s)
is able to fully cover the arena. We collect synchronized
data consisting of unfiltered UWB TDOA measurements
for three base station pairs, robot odometry measurements,
and ground truth positioning information from the overhead
camera, which we use to build a dataset of∆τ (k) values, and
k ≤ N = 1600. The robot runs a particle filter localization
algorithm (with a set of 100 particles), which employs a
standard motion model based on odometry readings, and the
UWB measurement model described in this paper (apart from
these two modalities, the robot employs no other sensors).
We test the performance of this localization algorithm over
500 evaluations on our dataset, for the following 3 scenarios:

Online We usep̃uv(∆τuv ; θ̂
(k−1)) for localization. The

measurement model is then re-evaluated for each new
incoming data sample∆τ

(k)
uv , using the online expres-

sion (Eq. 29) with the practical considerations explained
in Sec. IV-C. We setγ(k) = 0.45 to ensure adaptability.

Batch The model is calculated a priori for all data at once
using the batch expression (Eq. 28), iteratedM = 40
times (leading to convergence). At all times, we use
p̃uv(∆τuv; θ̂

(M)).
Random A random model is defined a priori, with param-

eter valueŝθrand sampled randomly in the intervals re-
ported in Table I. At all times, we usẽpuv(∆τuv ; θ̂rand).

We discuss the localization performance in terms of the
mean positioning error (RMSE, in meters) of all particles
in the robot’s belief, a metric which implicitly includes
the spread (or variance) of the particle positions. Figure 9
shows the distribution of the localization errors throughout
the experiments in form of boxplots for all scenarios. We note
that for our experimental setup, odometry by itself would
reach an error of about 1.6m. We also note that if we were to
calculate the positions by resolving the trilateration problem
(given the TDOA data) via maximum likelihood estimates,
the mean localization error would amount to 0.66m (quan-
tifying the poor quality of the TDOA measurement data).
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Our results show that the online model estimation leads to
a localization performance improved by a factor of almost 3
(with an average error of 0.1m) with respect to the batch
model estimate and the random model. Furthermore, the
robustness of this method is indicated by the small spread of
the localization errors. Due to the fact that LOS/NLOS path
conditions are defined by the physical environment, certain
localities may produce measurements with large biases with
a greater probability than other localities. This artifactis
illustrated in Figure 10, where we clearly see how two
distinct localities produce very different error statistics. As a
result, the performance of the batch method and the random
methods are quite similar, since both models assume non-
spatiality by using a single, a priori determined error model
over the whole space.

Finally, we conclude that the online estimation algorithm
is able to capture the spatiality of the UWB signal path by
adapting its estimate to recent data samples. The adaptive
behavior of the model can be observed in Figure 11, where
we show the development of parameter estimates over time,
for base stationB1.

VI. CONCLUSION

This work is situated in the context of on-board UWB
TDOA localization in mixed LOS/NLOS positioning scenar-
ios. We consider a general UWB range model, and propose
a closed-form approximation which is validated for model
parameter values that are specific to UWB signals in indoor
environments. We address the problem of estimating the
parameters of this new model using the ML estimator.
Considering the similarity of our model and a mixture model,

the EM estimation algorithm takes a simple form. Moreover,
we are able to derive an elegant online estimation algorithm.
Experimental results on a mobile robot equipped with an
UWB emitter show excellent localization performance when
employing the online model estimation in real-time. Through
its adaptive nature, the online estimation algorithm ultimately
enables the measurement model to capture the spatiality of
LOS/NLOS path conditions over time, and thus proves to be
a promising tool for localization in indoor environments.
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