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Low-Cost Collaborative Localization for Large-Scale MiRipbbot Systems

Amanda Prorok, Alexander Bahr and Alcherio Martinoli

Abstract— Large numbers of collaborating robots are advan- a number of subsequent studies. In an early work, Roumeli-
tageous for solving distributed problems. In order to efficently  otis et al. [18] enable the distribution of a Kalman estimati
solve the task at hand, the robots often need accurate local- gcheme by constructing communicating filters, which allows
ization. In this work, we address the localization problem ly . . .
developing a solution that has low computational and sensn team-members to propagate thelr-state and_covarlance estl-
requirements, and that is easily deployed on large robot teas ~Mates independently. Yet, as covariance matrix updates occ
composed of cheap robots. We build upon a real-time, partig-  during each update step and require information exchange
filter based localization algorithm that is completely dece- petween all robots and a centralized processor, the method
tralized and scalable, and accommodates realistic robot as g particularly vulnerable to single-point failures. Reutarly
sumptions including noisy sensors, and asynchronous anddsy . . .
communication. In order to further reduce this algorithm’s the-reqUIrement t(_) update tlhellr?formatlon in all robotsrafte
overall complexity, we propose a low-cost particle clusténg @ Single observation of an individual robot assumes a com-
method, which is particularly well suited to the collaboratve = munication infrastructure without any packet loss at atles
localization problem. Our approach is experimentally valdated  which is impossible to achieve except for maybe a very small
on a team of ten real robots. set of robots in a very confined environment. The method

. INTRODUCTION scales inO(N?) with respect to the number of robots, and

A variety of tasks performed by multi-robot systems sucUS limits its scalability due the high computational cdst

as search and rescue and environmental monitoring oftehtl: Martinelli et al. propose an extension to [18], which
need accurate localization to succeed. Due to the intringj€/2Xes the assumptions on relative observations, bubuith
nature of such tasks, the individual agents are often canfinérther improving the algorithm’s scalability and cost. In
to small size and weight, which sets hard limits on on-boar@ "€cent work, Nerurkar et al. [14] address the reduction
resources. Simultaneously, a large portion of the robot@ computational complexity and single-point failures by
resources may be dedicated to the task at hand, leavirg liff"Plementing a maximum a posteriori estimation method.
room for solving the localization problem. These compoundyevertheless, th&)(V°) computational cost is significant.
ing problems pose the challenge of designing systems aftf0: the proposed method requires synchronous communi-
algorithms that can flexibly accommodate given restrictjon Cation among the robots, and its feasibility still remaias t
without compromising performance. be validated on real robots. Mourikis et al. [13] consider

In this paper, we consider the problem of absolute locaf'® Problem of resource-constrained collaborative laeali
ization of a team of mobile robots for unknown initial robottion With the goal of deriving optimal sensing frequencies.
positions. Our method builds upon previous work [15], wherd®€l: @S exteroceptive data is dealt with in a centralized
we proposed a collaborative localization algorithm target W&y, the sensing frequencies inevitably decrease with an
miniaturized, computationally limited platforms equigpe INcreasing number of robots, thus limiting the scalabibfy
with noisy, low-power sensing modalities. The collabarati the approach. Finally, a decentralized localization ator
strategy employs a robot detection model based on noiég;’esented in [3] tries to alleviate the problems .descrlb(.ad
local, relative range and bearing observations. The wo@P0Ve. The approach is based on an extended information
in this paper extends our previous approach by proposirwer' whose |mplementat|o_n is dlstrlbutled over the robot
a particle clustering method which reduces the complexit??am members. However, its computational cost increases
of the overall localization algorithm. We detail how thefOr €ach new observation made and it assumes bidirec-
clustering method accommodates the constraints of thet roi®na! synchronous communication, the feasibility of whic
detection model, and show that, for modest range and bearifn@ins to be evaluated on real robots. Fox et al. first
noise, it finds a near-optimal approximation. Finally, wette Introduce a multi-robot Monte-Carlo localization algorit
the scalability and robustness of our approach by perfagmirl” [4] which simultaneously relaxes noise assumptions as

experiments on a team of ten real robots. well as inter-robot dependencies. They propose a method
with which robots mutually synchronize their position leddi
A. Related Work upon detection, and show successful global localizatiet, y

The problem of collaborative multi-robot localization wasprovide no information about the scalability and procegsin
first addressed by Kurazume et al. [10], and was followed byequirements of their algorithm.

All authors are with the Distributed Intelligent Systemsiahlgorithms B, Problem Formulation
Laboratory, School of Architecture, Civil and Environm&nEngineering at . ) .
the Ecole Polytechnique Fédérale de Lausanne. The wesepted in this Our problem is described as follows. We have a multi-
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supported by the Swiss National Science Foundation undert gumber N does not need to be known by the robots. The robots
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Rn. Thus a communication message is composed as
N dmnt = (Tmnts Omn,t, Xm,t). If several robots in a neigh-
| borhood \V,,; communicate with robotR,, the received
7}% information is the set of all relative observations of robot
m R, at timet, as well as the belief representatiofs, ; of
all detecting robotR,,, € N,, ;. We denote this data set as
Dn,t = {dmn,t|Rm € Nn,t}-
Fig. 1. System of two robotsi,, andR ) sharing a common localization

frame. The figure illustrates the robots’ relative rangg,{ andr,») and B. Range & Bearing Detection Model
bearing 0nm and6,,,) values. '

The detection modep,,, (x,|dn») describes the prob-
posex;, . is given by the Cartesian coordinatgs;, y.. and  apility that robot R,, detects robotR, at pose
orientationg,, ;. Also, at timet, a robotR,, is in the set of Xp = |[Tn, Yn, ¢n]T’ given the detection dat#,,,,. This prob-
neighborsh\;, ¢ of robotR,, if robot R,,, can determine a apility density function is applied to the ensemble of et
ranger,,,. and bearing,,; to robotR,. Thus, at every n the belief of robotR,,, in order to adjust their weights to
moment in time, the neighborhood topology is defined by thgyrrent relative observations. We define the transformatio

physical constraints given by the relative observatiorssen  from Euclidean to polar coordinaté®’ (x,, x,) as
deployed on the robots. Also, R,, € N, :, we make the

assumption that the robd®,, can communicate with the TP(x,,x,) = { Tgp ] 3)
robotR,,. Apart from a sensing modality which enables the ORI By

robots to determine inter-robot range and bearing (inclydi

a unique robot identifier), they are also equipped with a deathere

reckoning self-localization module (e.g., odometry), dot B 5 2

not make use of any exteroceptive sensors capable of feature " ~ \/(xl’ —2¢)* + (Yp — Ya) )
recognition. Opp = atan2((yp — yq), (zp — 24)) — 0q. (5)

Every robot runs (locally) a collaborative particle filter _ _ _
with the goal of localizing itself, without any prior knowl- Thus, assuming Gaussian noise and knowledge of the range

edge of the initial state or previous measurements. Thefbeli@nd bearing standard deviations, (and oy, respectively),
of its pose is formulated as and the independence of range and bearing measurements,

the detection model is

pmn(xnldmn) =n- Z P (Tg(xwmxn); I, E) wm (6)
(el ),

Bel(x,,) ~ {(xl, wll )i =1, .M}y = X,., (1)

n,t)
[i]

where M is the number of particlest,’, is a sample of
the random variable,, ; (the pose), anduk!t is its weight.
The symbolX,, , refers to the set of particle.”,, w!’,) at  where ®(-; ., %) is a multivariate normal probability den-

n,tr “n,t
time ¢ belonging to robotR,,. Given this contéxt, the aim sity function with meany = [rpn, 0mn]’ and where
of our paper is to improve the default algorithm complexity; is a normalization constant. The covariance matrix is
of O(|NV,.,+|M?) [15], by devising a novel algorithm which X = diag([02, ¢2]) (the work in [5] provides experimental
respects an upper complexity limit @?(|V,, :|M K) for a evidence for our platform showing that a range and bearing
robot R,, at any timet, where K <« M is a user-defined measurement behaves like two independent Gaussian vari-
value (K is detailed later, in Section IlI). ables). As seen in [15], the detection model can easily be
augmented by an additional component in case rdbgpt

II. COLLABORATIVE LOCALIZATION ALGORITHM 4
reciprocally detects robdk,, .

In this section, we briefly review the collaborative local-
ization algorithm presented in [15], which, together withc  Reciprocal Sampling
the Monte-Carlo Localization (MCL) method presented in i ) )
[4], forms the baseline for our work. For convenience, the [N addition to using a robot detection model for up-

complete localization algorithm is shown in Algorithm 1. dating the belief representatioBel(x,;), our approach
relies on areciprocal sampling method. Let us refer to

A. Multi-Robot MCL the iterative process described in Algorithm 1: instead of
Let us from here on consider a rob®},, that is detected sampling fromBel(x,, ;1) in line 11, the reciprocal MCL

by robotR,,, and simultaneously receives localization in-algorithm samples from the distributio«ﬁﬂt ~ p(Dn,t|x5]7t),

formation from robotR,,. At time ¢, after a sequence of according to a robot detection model. Thus, samples are

motion control actions.,, ;, we formulate this event as drawn at poses which are probable given the reciprocal robot

observations, and which are independent of the previous

belief Bel(x, :—1). By defining a reciprocal proportioa,

/p(Xn,tlxm.,t,Tmn,t,9mn,t)Bel (Xpm.t) Ox,, ¢ (2) particles are sampled from the robot's own belief with a
probability 1 — «, and with a probability ofa from the
For such a collaboration to take place, rol®f, needs probability density function proposed by the detection elod
to communicater,y +,0mn+ and Bel(x,,:) to robot (line 13).

Bel (x,,t) = p(Xn,tltno..t)



Algorithm 1 MultiRobRecip MCL( Xy, 11, Un,ts Zn,ts Dn,t)

1 Xn,t = Xn,t =0
2: for 4 =1to M do

x;,t < Motion_Model(un,¢, XZ],t—l)

wlf]t — Measurement_Model(xg]’t) .

K Ko + (x50l

n

: end for
cfor i =1to M do
9 r~U0,1)
10:  if r < (1 — «) then

3
4
5: wlf’t — Detection_Model(Dn,t,xk]’t, w,[ﬁt)
6
7
8

11: X[;],t < Sampling(Xn,¢)

12:  else

13: X[;],t < Reciprocal_Sampling(Dn,¢, X'n,t)

14:  end if il .

12 en(j{fgrt = Xt <X"'t’w"’t> Fig. 2. The dgtectio_n model (here with range and _bearipgem,i_s: 0.1
17: retumnX, ; and oy = 0.2) is projected on the detected robot (in white). Final cluste

partitions are superimposed on the particles of the detgaibot. From
left to right, top to bottom, the number of clustef§ employed by the
clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total numbe particles
M = 100.

[1l. PARTICLE CLUSTERING o ] ]
where p,,,, is an approximated detection model, alda

distance measure between two probability density funstion
Jain et al. [8] point out that in a typical clustering taske th
actual grouping (or clustering) and cluster data abstacti

The algorithm complexity of the detection model
Pmn(Xn|dmn) (EQ. 6) leads taD(M?) for Algorithm 1 (for
better clarity in the following derivations, we will assume

that |\V,¢| = 1). This cost can be prohibitive for a large o ciyster representation) are separate components of the
number of particlesV/ (i.e., large with respect to available (5 and are commonly treated sequentially. Hence, we deal

computational resources). Also, a multi-robot system mayn our problem by dividing it into the two following sub-
have communication constraints that make sending large p roblems:(i) we consider the set of particles,, and find

_ticIe_sets infeasible. Hence, even tho_ugh the method applig, optimal way to create a partitiah,, and(ii) we consider
in this paper allows for very small particle sets [15], weorgs aln arbitrary clustee in C., and find an optimal way to

to a clustering method to further reduce the CompUtation%etermine its cluster abstractioi’). For a given setx
. ma

and communication overhead. .
Let us consider a case where rolidt, detects roboR these two steps togeth_er ultimately I(_ea(_j to a set of cluster
"*  apstractionsX,,,, which, instead ofX,,, is included into the

The goal of the clustering method is to reduce the r]umb((e]'retection data tuplé,,, for every new detection made. The

of operations needed to compute the probability densi%IIOWing paragraphs detail our low-cost clustering a
functionp,,.,,. Thus, for every detection that it makes, robot”%at aims to meet these specifications [aio

R, resorts to a clustering method which summarizes its se
X,, composed ofA particles to a setX,, composed of A. Clustering Algorithm
K cluster abstractions (or centroids), reducing the overall Tpe optimal, combinatorial solution to the clustering prob
computational cost ta)(MK) (this clustering routine is |em of Equation 9 requires the evaluation of a very large
detailed later, in Algorithm 2 of Section Ill-A). The resialf  nymper of partitions (the number of ways to partition a set
partition of the particle set is denotég,, with |C,,,| = K. An 5f A/ data points intoX non-empty clusters is given by
individual clustercly] € C,, is defined as the set of particles Stirling number of the second kind). Even though efficient
S 0 approaches have been proposed [9], combinatorial sofution
cL’,fL] - {<X£”}’w’[”]> | f(<x£”]’wu>’ ) =k}, (7) stFi)I? remain prohibitivelypexppensiv[e.] Given the usefulpes
where f is a function mapping a particle to a cluster index9f clustering in a large range of disciplines, many non-
Also, we defineé”) as the data abstraction of clustdf, combinatorial clustering approaches have been propoged [8

representing all particles in its set by the tuple Yet, since our goal is to reduce the final complexity of
X our algorithm, the complexity of the actual clustering al-
ekl — (K plFl | plk) SIkDy (8) gorithm must be at most equal ©©(MK). One of the

N i i ] most commonly used low-cost clustering methods is the k-
where jim is a two dl[nensmp[%l vector andi, is @ means algorithm [12]. It starts off with a random initial
covariance matrix. ThusX,, = {&n' [ cm' € Cin} is the set  ¢jyster assignment and iteratively reassigns clusterd unt
of K cluster abstractions. Finally, we denote the clustereg convergence criterion is met or a maximum number of
detection data agmn = (Fmn,0mn, Xim). Formally, given jterationsL is attained. Although the algorithm has a low
the notation introduced above, finding an optimal particlgme complexityO(M K L), its main disadvantage is that it
clustering is equivalent to solving the following optimi@an  js sensitive to the initial cluster assignment. The varis@-
problem DATA algorithm [1] is also an iterative clustering algorith
. . 5 with a time complexity ofO(M K L), with the additional
min D d d 9 - . ' . )
don (P (@ [domn) || Do (2] don)), ©) capability to split and merge clusters according to preeefin



threshold values. It is therefore more flexible than the kthe Kullback-Leibler divergence between,, and p,,, is
means and able to find the optimal partition, provided that thminimal if

user is able to define correct threshold values. Non-iteati o
incremental clustering algorithms have the advantage thdtm

> v, (12)

(K]
they are even less time consuming than iterative algorithms e’ xileclk]
The leader algorithm [6] is the simplest of that kind. Data 1 Qo G\ T
. . : O e 1Y (Vwm] _ u[k])(v[m _ u[k])
points are incrementally assigned to existing clustergdas ~m™ |c[k]| _q m m m m
on a distance metric, with new clusters being created if all " i ek
distance measures exceed a predefined criterion. Yet, given (13)

the algorithms incremental nature, the final clusteringiltes
is dependent on the order of the assignments made.

We take inspiration from the methods described above to jﬁﬁ = xﬁﬁ + Tonn €OS(Omn + ¢£ﬁ) (14)
develop a non-iterative, order-independent, non-pandamet ﬁ[i] _ ym £ o S (G +¢m)' (15)
approach that produces a predefined numbeK oflusters. Proof:  Our proo%nis inspired by the ggneral methodol-

Our solution is inspired by the construction of multidimen-Ogy shown in [7]. Let us use the polar coordinate framé
sional binary trees [2], and consists of a 2-dimension

- .. ~[k] prolkl .. .
sorting algorithm which repetitively separates the plﬁtic?”thtl.ts ergin atx:;[k](cf..Te (x;n ’f)t)ﬁ The proba?hﬂdeqsﬂyf
set along the mean of the dimension producing the highefinc !Onpm”(x"| mn) 1S part ot the exponential family 0
variance, until the predefined maximum number of cluste nctions and can be written )

K is attained. We note that splitting along the median insteag,,,,, (x,, [dl%),) = h(p,9)g(al}], Sk en(@n EiDr(0.9) - (16)
of the mean incurs a higher complexity. A description of 9 ) T i
this algorithm is shown in Algorithm 2. The function onWith 7(p.9) = [p,p*, 9,97, pd,1]7. The Kullback-Leibler

line 5 has a complexityO(M), the function on line 6 divergence
[kmaz]

are the mean and covariancedf’” = TP (iﬁﬁ],iﬁﬁ), with

has a complexit}OS|cm [), and function on line 10 has 7 3 P (% |Cz[k] )
a complexity O(|c}¥)]). Hence, the total algorithm cost is DKL(PmnHﬁmn):/pmn(xn|d¥ﬂn)10g i
O(MK). Figure 2 shows examples of final cluster partitions — Prn (Xn|dinn)
for six different total number of clusters, performed on 17)

an identical set of 100 particles. We note that, even fds minimized by taking its gradient with respect e, and
maximal clustering £ = 1), the detection model is well s and setting it to zero:

approximated. N o . o
PP ~Vlogg(altl, SH) = vy(al, SE)TE,  [r(p,9)]-

Algorithm 2 Cluster(X,, ., K) (18)
1 Xm0 Note that the integral of,,,, is one, and thus we have
2: c£ﬁ<— Xm
3 C Y T .
4:for k=1t K —1do g(@l), s //h(p, ﬁ)e"(ﬂgﬁ]’zgﬁ]ﬁ(p’ﬂ)dpdﬁ =1. (19)
5: kmaz,dim < find highest_variance_cluster(Cp,)

6: clﬁmw],clﬁ“] — split_cluster(c%im”],dim) —m 0
7. Cm ¢ Cm +cEHY Computing the gradient on the left and right side of the above
S ?or;dxff(l Lo K do equation with respect gt and S yields

L k] . . [k] . .

1 e bemaction(en) ~Viogg(alt), S = Va(al, SETE,,, [7(0,0)].
12; end frgr mem . . . (20)
13: returnX,, Finally, by combining Equations 18 and 20, we obtain
B. Cluster Abstraction Eppn [T(0,0)] = Ep,,,, [7(p, V)] (21)

For an arbitrary C|uste(f£§], we have the non-summarized From this we conclude that mean and covariance, respec-
detection datadlh, = (Fmn,0mn,c). The problem of tively, of p,, and p,, must be the same in order to
finding an optimal cluster abstractioft”) can, thus, be Minimize their Kullback-Leibler divergence, hence Eqaa8
formalized as 12 and 13. .

. y R S We note that Theorem 1 does not take into account the
min Dxr, (P (@) || P (zaldll))),  (10)  uncertainty of the range and bearing observations. Thus, we
Cm propose a variant detection modg},, (cf. Equation 6) that

whereDxt. is the Kullback-Leibler divergence, antf, = explicitly takes into account noise. We have

<rmn,9mn,é¥2]> is the summarized detection data. Let us

consider the following theorenll. . Prn (X |dimn ) = n.Z@(Tg(,zg;an); Al Sk 2) ik (22)
Theorem 1. Given a pointchl] = [:EH,@H,HH]T, and Fex,,

the probability density function . i
A . ] ] k] where ;ﬁn] and 2 + % approximate the true mean and
Prmn(Xn|dipy,) = @ (Té’ (Xyn's Xn ) fyp ?Em) , (11)  covariance, respectively, in the presence of noise (wer@mi
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Fig. 4. Average localization error over 100 evaluationse #rrorbars
show 95% confidence intervals. (a) The algorithm is testegl@ying
{25, 50, 100, 200, 400} particles per robot. (b) The algorithm is tested with
detection data messages corrupted bj0a, 0.2,0.4} failure rate.

Fig. 3. Fleet of ten Khepera Ill robots. The robots are alligged with
an inter-robot, relative range and bearing module, whicboimposed of a
ring of 16 infrared LEDs.

the reader that = diag([o?, 03])). Indeed, finding a closed

form solution for the true values is intractable. However, i ar :
the set of particlesﬂi] is densely populated, our approxima- .| ;8 o8
tion is very good. Moreover, if the particle positions code; i o8
and if for a given clusterlt the pointxy,i] is its center of fo_s \ %’, .
mass, the solution is optimal. Hence, we complete the daga. \ o o
abstractiorely] = (x5 @l al¥ S (cf. Equation 8) with  ® o] ¥~ "\‘ﬂ\m s 2 o :
5#2] as the weighted center of mass, aﬁﬁ] the cumulative o o -
Welght 0 40 80 120 160 200 14 8 16 32
1 Time [s] Number of clusters
N ; ]l [T b
o= e >0 il il ol @9 @ ®
Wm il whilyeclkl Fig. 5. (a) Average localization error over 100 evaluatioHse localization
~[k] [ algorithm is tested, employing the clustering method ugihgt, 8,16, 32}
Wy, = Z Wy, - (24) clusters. (b) The Kullback-Leibler divergence between fhk and the
1 i - (k] approximated detection models, as a function of the numbesiusters
(m wii ) Ecm employed by the clustering method.

Finally, we note that the constraints given by our ap- . .
proximated detection mode,.,, motivate the choice of a @/gorithm on a data set gathered over experiments of 3.5
clustering algorithm which clusters densely located phsi minutes duration, where one of the ten robots was initially

into common clusters (a condition which is satisfied b)LocaIized (and all other robots initially lost) . The data is
Algorithm 2). comprised of inter-robot detection data messages (inutudi

range and bearing measurements), and odometry readings
IV. EXPERIMENTAL EVALUATION (recorded at 5Hz). Reciprocal robot detections are made
We validate our proposed approach by performing exasynchronously, f'md. in average once every 5 seconds. If
periments on a team of ten Khepera Ill rodofd6] (see hot stated otherwise in the following evaluations, the ditfa
Figure 3). Our real experimental setup consists of a 3m largégorithm configuration employs 100 particles per robot, no
empty square arena. In order to measure the ground trufystering & = M), and a reciprocal sampling proportion
we installed an overhead camera system, which allows @s= 0-06 (empirically determined, see [15]). We discuss the
to monitor the robot positions in real-time with a maximumlocalization performance in terms of the mean positioning
error below 3cm (as reported in our previous work [16])€rror of all particles in a given robot's belief (RMSE), a
The robots move straight at a speed of one robot-size p@etric which implicitly includes the spread of the particle
second (12cm/s), and perform standard Braitenberg olesta@0Sitions, and thus represents the uncertainty of theiposit
avoidance. They are equipped with wheel encoders and ugglimate. Figure 4 discusses the sensitivity of our algo-
odometry for self-localization (the dead-reckoning eroér fithm with respect to the number of particléd, as well
the Khepera IIl robot has been reported to reach 0.1m aft@f its robustness with respect to communication failures.
traveling for 18 meters [16]). We note that our measuremefiigure 4(a) shows the localization performance for a vagiab
model routine (line 4 in Algorithm 1) simply reduces the_number of pa_rtlclgs. Larger particle sets co_ntnbute to an
particles’ weights as they leave the bounded space, aHgproved Iocah;aﬂon accuracy. Yet, an 8-fold increasthim
does not take into account any exteroceptive sensor remdingumber of particles produces a reduction of only 25% of the
The robots use a relative range and bearing module [1 Bcallzatlon error. Thls_result coincides with th_e cona_lms
which provides the measures used by the detection modBlade in [15], where it was shown that by increasing the
Figure 3 shows this platform mounted on every robot. ThBumber of particles, the performance converges to that of an
noise values were experimentally determined on our actuéieal localization filter with an infinity of particles. Fige
hardware setupof. = 0.15 - r.,,, and oy = 0.15 rad), 4(b) shows the localization performance for variable mgssa

with a maximum detection range of 3m. We tested outailure rates. Increasing failure rates induce a graceggla-
dation of the localization performance. This result confirm

Lhitp:/iwww. k-team.com/ the algorithm’s robustness with respect to communication



failures, which ultimately reinforces the underlying asynwith respect to the number of robots in the system. In

chronous nature of our collaborative paradigm. addition, the algorithm poses no communication constsaint
Figure 5 discusses our proposed clustering method. Figuaed shows a graceful performance degradation in case of

5(a) shows the localization performance when employing thmessage failures. Our approach was experimentally velidat

clustering method for a variable number of clustéfsWe on a team of ten real robots.
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Fig. 6. The figure shows eight snapshots with 18s intervalarobxperimental run on the team of 10 Khepera Il robots. Hablot employed 100
particles with a reciprocal proportion = 0.06, and used the clustering routine wih= 1. The black lines show the trajectories completed in the time
intervals between snapshots, with the filled black dotsesgmting the robot positions at the end of the previous $wépsThe red robot was initially
localized.



