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Abstract— Large numbers of collaborating robots are advan-
tageous for solving distributed problems. In order to efficiently
solve the task at hand, the robots often need accurate local-
ization. In this work, we address the localization problem by
developing a solution that has low computational and sensing
requirements, and that is easily deployed on large robot teams
composed of cheap robots. We build upon a real-time, particle-
filter based localization algorithm that is completely decen-
tralized and scalable, and accommodates realistic robot as-
sumptions including noisy sensors, and asynchronous and lossy
communication. In order to further reduce this algorithm’s
overall complexity, we propose a low-cost particle clustering
method, which is particularly well suited to the collaborative
localization problem. Our approach is experimentally validated
on a team of ten real robots.

I. I NTRODUCTION

A variety of tasks performed by multi-robot systems such
as search and rescue and environmental monitoring often
need accurate localization to succeed. Due to the intrinsic
nature of such tasks, the individual agents are often confined
to small size and weight, which sets hard limits on on-board
resources. Simultaneously, a large portion of the robot’s
resources may be dedicated to the task at hand, leaving little
room for solving the localization problem. These compound-
ing problems pose the challenge of designing systems and
algorithms that can flexibly accommodate given restrictions,
without compromising performance.

In this paper, we consider the problem of absolute local-
ization of a team of mobile robots for unknown initial robot
positions. Our method builds upon previous work [15], where
we proposed a collaborative localization algorithm targeting
miniaturized, computationally limited platforms equipped
with noisy, low-power sensing modalities. The collaboration
strategy employs a robot detection model based on noisy,
local, relative range and bearing observations. The work
in this paper extends our previous approach by proposing
a particle clustering method which reduces the complexity
of the overall localization algorithm. We detail how the
clustering method accommodates the constraints of the robot
detection model, and show that, for modest range and bearing
noise, it finds a near-optimal approximation. Finally, we test
the scalability and robustness of our approach by performing
experiments on a team of ten real robots.

A. Related Work

The problem of collaborative multi-robot localization was
first addressed by Kurazume et al. [10], and was followed by
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a number of subsequent studies. In an early work, Roumeli-
otis et al. [18] enable the distribution of a Kalman estimation
scheme by constructing communicating filters, which allows
team-members to propagate their state and covariance esti-
mates independently. Yet, as covariance matrix updates occur
during each update step and require information exchange
between all robots and a centralized processor, the method
is particularly vulnerable to single-point failures. Particularly
the requirement to update the information in all robots after
a single observation of an individual robot assumes a com-
munication infrastructure without any packet loss at all times
which is impossible to achieve except for maybe a very small
set of robots in a very confined environment. The method
scales inO(N3) with respect to the number of robots, and
thus limits its scalability due the high computational cost. In
[11], Martinelli et al. propose an extension to [18], which
relaxes the assumptions on relative observations, but without
further improving the algorithm’s scalability and cost. In
a recent work, Nerurkar et al. [14] address the reduction
of computational complexity and single-point failures by
implementing a maximum a posteriori estimation method.
Nevertheless, theO(N2) computational cost is significant.
Also, the proposed method requires synchronous communi-
cation among the robots, and its feasibility still remains to
be validated on real robots. Mourikis et al. [13] consider
the problem of resource-constrained collaborative localiza-
tion with the goal of deriving optimal sensing frequencies.
Yet, as exteroceptive data is dealt with in a centralized
way, the sensing frequencies inevitably decrease with an
increasing number of robots, thus limiting the scalabilityof
the approach. Finally, a decentralized localization algorithm
presented in [3] tries to alleviate the problems described
above. The approach is based on an extended information
filter, whose implementation is distributed over the robot
team members. However, its computational cost increases
for each new observation made and it assumes bidirec-
tional synchronous communication, the feasibility of which
remains to be evaluated on real robots. Fox et al. first
introduce a multi-robot Monte-Carlo localization algorithm
in [4] which simultaneously relaxes noise assumptions as
well as inter-robot dependencies. They propose a method
with which robots mutually synchronize their position beliefs
upon detection, and show successful global localization, yet
provide no information about the scalability and processing
requirements of their algorithm.

B. Problem Formulation

Our problem is described as follows. We have a multi-
robot system ofN robotsR1,R2, ...RN , where the number
N does not need to be known by the robots. The robots
navigate in a bounded space. For a robotRn, at timet, the
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Fig. 1. System of two robots (Rn andRm) sharing a common localization
frame. The figure illustrates the robots’ relative range (rnm andrmn) and
bearing (θnm andθmn) values.

posexn,t is given by the Cartesian coordinatesxn,t, yn,t and
orientationφn,t. Also, at timet, a robotRm is in the set of
neighborsNn,t of robot Rn if robot Rm can determine a
rangermn,t and bearingθmn,t to robotRn. Thus, at every
moment in time, the neighborhood topology is defined by the
physical constraints given by the relative observation sensors
deployed on the robots. Also, ifRm ∈ Nn,t, we make the
assumption that the robotRm can communicate with the
robotRn. Apart from a sensing modality which enables the
robots to determine inter-robot range and bearing (including
a unique robot identifier), they are also equipped with a dead-
reckoning self-localization module (e.g., odometry), butdo
not make use of any exteroceptive sensors capable of feature
recognition.

Every robot runs (locally) a collaborative particle filter
with the goal of localizing itself, without any prior knowl-
edge of the initial state or previous measurements. The belief
of its pose is formulated as

Bel(xn,t) ∼ {〈x
[i]
n,t, w

[i]
n,t〉|i = 1, ...,M} = Xn,t (1)

whereM is the number of particles,x[i]
n,t is a sample of

the random variablexn,t (the pose), andw[i]
n,t is its weight.

The symbolXn,t refers to the set of particles〈x[i]
n,t, w

[i]
n,t〉 at

time t belonging to robotRn. Given this context, the aim
of our paper is to improve the default algorithm complexity
of O(|Nn,t|M2) [15], by devising a novel algorithm which
respects an upper complexity limit ofO(|Nn,t|MK) for a
robot Rn at any timet, whereK ≪ M is a user-defined
value (K is detailed later, in Section III).

II. COLLABORATIVE LOCALIZATION ALGORITHM

In this section, we briefly review the collaborative local-
ization algorithm presented in [15], which, together with
the Monte-Carlo Localization (MCL) method presented in
[4], forms the baseline for our work. For convenience, the
complete localization algorithm is shown in Algorithm 1.

A. Multi-Robot MCL

Let us from here on consider a robotRn, that is detected
by robot Rm, and simultaneously receives localization in-
formation from robotRm. At time t, after a sequence of
motion control actionsun,t, we formulate this event as

Bel (xn,t) = p (xn,t|un,0..t) ·
∫

p (xn,t|xm,t, rmn,t, θmn,t)Bel (xm,t) dxm,t (2)

For such a collaboration to take place, robotRm needs
to communicatermn,t, θmn,t and Bel (xm,t) to robot

Rn. Thus a communication message is composed as
dmn,t = 〈rmn,t, θmn,t, Xm,t〉. If several robots in a neigh-
borhoodNn,t communicate with robotRn, the received
information is the set of all relative observations of robot
Rn at time t, as well as the belief representationsXm,t of
all detecting robotsRm ∈ Nn,t. We denote this data set as
Dn,t = {dmn,t|Rm ∈ Nn,t}.

B. Range & Bearing Detection Model

The detection modelpmn(xn|dmn) describes the prob-
ability that robot Rm detects robot Rn at pose
xn = [xn, yn, φn]

T, given the detection datadmn. This prob-
ability density function is applied to the ensemble of particles
in the belief of robotRn, in order to adjust their weights to
current relative observations. We define the transformation
from Euclidean to polar coordinatesTp

e(xq ,xp) as

T
p
e(xq,xp) =

[

rqp
θqp

]

(3)

where

rqp =
√

(xp − xq)2 + (yp − yq)2 (4)

θqp = atan2((yp − yq), (xp − xq))− φq. (5)

Thus, assuming Gaussian noise and knowledge of the range
and bearing standard deviations (σr and σθ, respectively),
and the independence of range and bearing measurements,
the detection model is

pmn(xn|dmn) = η ·
∑

〈

x
[i]
m ,w

[i]
m

〉

∈Xm

Φ
(

T
p
e(x

[i]
m ,xn);µ,Σ

)

· w[i]
m (6)

whereΦ(·;µ,Σ) is a multivariate normal probability den-
sity function with meanµ = [rmn, θmn]

T and where
η is a normalization constant. The covariance matrix is
Σ = diag([σ2

r , σ
2
θ ]) (the work in [5] provides experimental

evidence for our platform showing that a range and bearing
measurement behaves like two independent Gaussian vari-
ables). As seen in [15], the detection model can easily be
augmented by an additional component in case robotRn

reciprocally detects robotRm.

C. Reciprocal Sampling

In addition to using a robot detection model for up-
dating the belief representationBel(xn,t), our approach
relies on a reciprocal sampling method. Let us refer to
the iterative process described in Algorithm 1: instead of
sampling fromBel(xn,t−1) in line 11, the reciprocal MCL
algorithm samples from the distributionx[i]

n,t ∼ p(Dn,t|x
[i]
n,t),

according to a robot detection model. Thus, samples are
drawn at poses which are probable given the reciprocal robot
observations, and which are independent of the previous
belief Bel(xn,t−1). By defining a reciprocal proportionα,
particles are sampled from the robot’s own belief with a
probability 1 − α, and with a probability ofα from the
probability density function proposed by the detection model
(line 13).



Algorithm 1 MultiRob Recip MCL(Xn,t−1, un,t, zn,t, Dn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do
3: x

[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(x

[i]
n,t)

5: w
[i]
n,t ← Detection Model(Dn,t,x

[i]
n,t, w

[i]
n,t)

6: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

7: end for
8: for i = 1 to M do
9: r ∼ U(0, 1)

10: if r ≤ (1− α) then
11: x

[i]
n,t ← Sampling(X̄n,t)

12: else
13: x

[i]
n,t ← Reciprocal Sampling(Dn,t, X̄n,t)

14: end if
15: Xn,t ← Xn,t +

〈

x
[i]
n,t, w

[i]
n,t

〉

16: end for
17: returnXn,t

III. PARTICLE CLUSTERING

The algorithm complexity of the detection model
pmn(xn|dmn) (Eq. 6) leads toO(M2) for Algorithm 1 (for
better clarity in the following derivations, we will assume
that |Nn,t| = 1). This cost can be prohibitive for a large
number of particlesM (i.e., large with respect to available
computational resources). Also, a multi-robot system may
have communication constraints that make sending large par-
ticle sets infeasible. Hence, even though the method applied
in this paper allows for very small particle sets [15], we resort
to a clustering method to further reduce the computational
and communication overhead.

Let us consider a case where robotRm detects robotRn.
The goal of the clustering method is to reduce the number
of operations needed to compute the probability density
functionpmn. Thus, for every detection that it makes, robot
Rm resorts to a clustering method which summarizes its set
Xm composed ofM particles to a setX̂m composed of
K cluster abstractions (or centroids), reducing the overall
computational cost toO(MK) (this clustering routine is
detailed later, in Algorithm 2 of Section III-A). The resulting
partition of the particle set is denotedCm, with |Cm| = K. An
individual clusterc[k]m ∈ Cm is defined as the set of particles

c[k]m = {〈x[i]
m , w[i]

m〉 | f(〈x[i]
m, w[i]

m〉, ·) = k}, (7)

wheref is a function mapping a particle to a cluster index.
Also, we definec̄[k]m as the data abstraction of clusterc

[k]
m ,

representing all particles in its set by the tuple

c̄[k]m = 〈x̂[k]
m , ŵ[k]

m , µ̂[k]
m , Σ̂[k]

m 〉, (8)

where µ̂
[k]
m is a two dimensional vector and̂Σ[k]

m is a
covariance matrix. Thus,̂Xm = {c̄

[k]
m | c

[k]
m ∈ Cm} is the set

of K cluster abstractions. Finally, we denote the clustered
detection data aŝdmn = 〈rmn, θmn, X̂m〉. Formally, given
the notation introduced above, finding an optimal particle
clustering is equivalent to solving the following optimization
problem

min
d̂mn

D(pmn(xn|dmn) || p̂mn(xn|d̂mn)), (9)

Fig. 2. The detection model (here with range and bearing noise σr = 0.1
andσθ = 0.2) is projected on the detected robot (in white). Final cluster
partitions are superimposed on the particles of the detecting robot. From
left to right, top to bottom, the number of clustersK employed by the
clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total number of particles
M = 100.

where p̂mn is an approximated detection model, andD a
distance measure between two probability density functions.
Jain et al. [8] point out that in a typical clustering task, the
actual grouping (or clustering) and cluster data abstraction
(or cluster representation) are separate components of the
task and are commonly treated sequentially. Hence, we deal
with our problem by dividing it into the two following sub-
problems:(i) we consider the set of particlesXm and find
an optimal way to create a partitionCm, and(ii) we consider
an arbitrary clusterc[k]m in Cm and find an optimal way to
determine its cluster abstraction̄c[k]m . For a given setXm,
these two steps together ultimately lead to a set of cluster
abstractionsX̂m, which, instead ofXm, is included into the
detection data tuplêdmn for every new detection made. The
following paragraphs detail our low-cost clustering approach
that aims to meet these specifications.

A. Clustering Algorithm

The optimal, combinatorial solution to the clustering prob-
lem of Equation 9 requires the evaluation of a very large
number of partitions (the number of ways to partition a set
of M data points intoK non-empty clusters is given by
Stirling number of the second kind). Even though efficient
approaches have been proposed [9], combinatorial solutions
still remain prohibitively expensive. Given the usefulness
of clustering in a large range of disciplines, many non-
combinatorial clustering approaches have been proposed [8].
Yet, since our goal is to reduce the final complexity of
our algorithm, the complexity of the actual clustering al-
gorithm must be at most equal toO(MK). One of the
most commonly used low-cost clustering methods is the k-
means algorithm [12]. It starts off with a random initial
cluster assignment and iteratively reassigns clusters until
a convergence criterion is met or a maximum number of
iterationsL is attained. Although the algorithm has a low
time complexityO(MKL), its main disadvantage is that it
is sensitive to the initial cluster assignment. The variantISO-
DATA algorithm [1] is also an iterative clustering algorithm
with a time complexity ofO(MKL), with the additional
capability to split and merge clusters according to predefined



threshold values. It is therefore more flexible than the k-
means and able to find the optimal partition, provided that the
user is able to define correct threshold values. Non-iterative,
incremental clustering algorithms have the advantage that
they are even less time consuming than iterative algorithms.
The leader algorithm [6] is the simplest of that kind. Data
points are incrementally assigned to existing clusters based
on a distance metric, with new clusters being created if all
distance measures exceed a predefined criterion. Yet, given
the algorithms incremental nature, the final clustering result
is dependent on the order of the assignments made.

We take inspiration from the methods described above to
develop a non-iterative, order-independent, non-parametric
approach that produces a predefined number ofK clusters.
Our solution is inspired by the construction of multidimen-
sional binary trees [2], and consists of a 2-dimensional
sorting algorithm which repetitively separates the particle
set along the mean of the dimension producing the highest
variance, until the predefined maximum number of clusters
K is attained. We note that splitting along the median instead
of the mean incurs a higher complexity. A description of
this algorithm is shown in Algorithm 2. The function on
line 5 has a complexityO(M), the function on line 6
has a complexityO(|c

[kmax]
m |), and function on line 10 has

a complexityO(|c
[k]
m |). Hence, the total algorithm cost is

O(MK). Figure 2 shows examples of final cluster partitions
for six different total number of clusters, performed on
an identical set of 100 particles. We note that, even for
maximal clustering (K = 1), the detection model is well
approximated.

Algorithm 2 Cluster(Xm,t,K)

1: X̂m ← ∅
2: c

[1]
m ← Xm

3: Cm ← c
[1]
m

4: for k = 1 to K − 1 do
5: kmax,dim← find highest variance cluster(Cm)

6: c
[kmax]
m , c

[k+1]
m ← split cluster(c

[kmax]
m , dim)

7: Cm ← Cm + c
[k+1]
m

8: end for
9: for k = 1 to K do

10: c̄
[k]
m ← assign data abstraction(c

[k]
m )

11: X̂m ← X̂m + c̄
[k]
m

12: end for
13: returnX̂m

B. Cluster Abstraction

For an arbitrary clusterc[k]m , we have the non-summarized
detection datad[k]mn = 〈rmn, θmn, c

[k]
m 〉. The problem of

finding an optimal cluster abstraction̄c[k]m can, thus, be
formalized as

min
c̄
[k]
m

DKL(pmn(xn|d
[k]
mn) || p̂mn(xn|d̂

[k]
mn)), (10)

whereDKL is the Kullback-Leibler divergence, and̂d[k]mn =

〈rmn, θmn, c̄
[k]
m 〉 is the summarized detection data. Let us

consider the following theorem.
Theorem 1: Given a pointx̂[k]

m = [x̂
[k]
m , ŷ

[k]
m , θ̂

[k]
m ]T, and

the probability density function

p̂mn(xn|d̂
[k]
mn) = Φ

(

T
p
e(x̂

[k]
m ,xn); µ̂

[k]
m , Σ̂[k]

m

)

, (11)

the Kullback-Leibler divergence betweenpmn and p̂mn is
minimal if

µ̂
[k]
m =

1

|c
[k]
m |

∑

x
[i]
m∈c

[k]
m

v
[k,i]
m , (12)

Σ̂[k]
m =

1

|c
[k]
m | − 1

∑

x
[i]
m∈c

[k]
m

(

v
[k,i]
m − µ̂

[k]
m

)(

v
[k,i]
m − µ̂

[k]
m

)T

(13)

are the mean and covariance ofv
[k,i]
m = T

p
e(x̂

[k]
m , x̃

[i]
m), with

x̃[i]
m = x[i]

m + rmn cos(θmn + φ[i]
m) (14)

ỹ[i]m = y[i]m + rmn sin(θmn + φ[i]
m). (15)

Proof: Our proof is inspired by the general methodol-
ogy shown in [7]. Let us use the polar coordinate frameρ, ϑ

with its origin atx̂[k]
m (cf.Tp

e(x̂
[k]
m , ·)). The probability density

function p̂mn(xn|d̂
[k]
mn) is part of the exponential family of

functions and can be written

p̂mn(xn|d̂
[k]
mn) = h(ρ, ϑ)g(µ̂[k]

m , Σ̂[k]
m )eη(µ̂

[k]
m

,Σ̂[k]
m

)τ(ρ,ϑ) (16)

with τ(ρ, ϑ) = [ρ, ρ2, ϑ, ϑ2, ρϑ, 1]T. The Kullback-Leibler
divergence

DKL(pmn||p̂mn)=

∞
∫

−∞

pmn(xn|d̂
[k]
mn) log

pmn(xn|d̂
[k]
mn)

p̂mn(xn|d̂
[k]
mn)

dxn

(17)
is minimized by taking its gradient with respect tôµ[k]

m and
Σ̂

[k]
m , and setting it to zero:

−∇ log g(µ̂[k]
m , Σ̂[k]

m ) = ∇η(µ̂[k]
m , Σ̂[k]

m )TEpmn
[τ(ρ, ϑ)] .

(18)
Note that the integral of̂pmn is one, and thus we have

g(µ̂[k]
m , Σ̂[k]

m )

π
∫

−π

∞
∫

0

h(ρ, ϑ)eη(µ̂
[k]
m

,Σ̂[k]
m

)τ(ρ,ϑ)dρdϑ = 1. (19)

Computing the gradient on the left and right side of the above
equation with respect tôµ[k]

m and Σ̂[k]
m yields

−∇ log g(µ̂[k]
m , Σ̂[k]

m ) = ∇η(µ̂[k]
m , Σ̂[k]

m )TEp̂mn
[τ(ρ, ϑ)] .

(20)
Finally, by combining Equations 18 and 20, we obtain

Ep̂mn
[τ(ρ, ϑ)] = Epmn

[τ(ρ, ϑ)] (21)

From this we conclude that mean and covariance, respec-
tively, of pmn and p̂mn must be the same in order to
minimize their Kullback-Leibler divergence, hence Equations
12 and 13.

We note that Theorem 1 does not take into account the
uncertainty of the range and bearing observations. Thus, we
propose a variant detection modelp̂mn (cf. Equation 6) that
explicitly takes into account noise. We have

p̂mn(xn|d̂mn) = η ·
∑

c̄
[k]
m ∈X̂m

Φ
(

T
p
e(x̂

[k]
m ,xn); µ̂

[k]
m , Σ̂[k]

m +Σ
)

· ŵ[k]
m (22)

where µ̂
[k]
m and Σ̂

[k]
m + Σ approximate the true mean and

covariance, respectively, in the presence of noise (we remind



Fig. 3. Fleet of ten Khepera III robots. The robots are all equipped with
an inter-robot, relative range and bearing module, which iscomposed of a
ring of 16 infrared LEDs.

the reader thatΣ = diag([σ2
r , σ

2
θ ])). Indeed, finding a closed

form solution for the true values is intractable. However, if
the set of particlesc[k]m is densely populated, our approxima-
tion is very good. Moreover, if the particle positions coincide,
and if for a given clusterc[k]m the pointx[k]

m is its center of
mass, the solution is optimal. Hence, we complete the data
abstraction̄c[k]m = 〈x̂

[k]
m , ŵ

[k]
m , µ̂

[k]
m , Σ̂

[k]
m 〉 (cf. Equation 8) with

x̂
[k]
m as the weighted center of mass, andŵ

[k]
m the cumulative

weight

x̂
[k]
m =

1

ŵ
[k]
m

·
∑

〈x
[i]
m ,w

[i]
m 〉∈c

[k]
m

w[i]
m · [x[i]

m, y[i]m , φ[i]
m ]T (23)

ŵ[k]
m =

∑

〈x
[i]
m ,w

[i]
m 〉∈c

[k]
m

w[i]
m . (24)

Finally, we note that the constraints given by our ap-
proximated detection model̂pmn motivate the choice of a
clustering algorithm which clusters densely located particles
into common clusters (a condition which is satisfied by
Algorithm 2).

IV. EXPERIMENTAL EVALUATION

We validate our proposed approach by performing ex-
periments on a team of ten Khepera III robots1 [16] (see
Figure 3). Our real experimental setup consists of a 3m large
empty square arena. In order to measure the ground truth,
we installed an overhead camera system, which allows us
to monitor the robot positions in real-time with a maximum
error below 3cm (as reported in our previous work [16]).
The robots move straight at a speed of one robot-size per
second (12cm/s), and perform standard Braitenberg obstacle
avoidance. They are equipped with wheel encoders and use
odometry for self-localization (the dead-reckoning errorof
the Khepera III robot has been reported to reach 0.1m after
traveling for 18 meters [16]). We note that our measurement
model routine (line 4 in Algorithm 1) simply reduces the
particles’ weights as they leave the bounded space, and
does not take into account any exteroceptive sensor readings.
The robots use a relative range and bearing module [17],
which provides the measures used by the detection model.
Figure 3 shows this platform mounted on every robot. The
noise values were experimentally determined on our actual
hardware setup (σr = 0.15 · rmn, and σθ = 0.15 rad),
with a maximum detection range of 3m. We tested our

1http://www.k-team.com/
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Fig. 4. Average localization error over 100 evaluations; the errorbars
show 95% confidence intervals. (a) The algorithm is tested employing
{25, 50, 100, 200, 400} particles per robot. (b) The algorithm is tested with
detection data messages corrupted by a{0.1, 0.2, 0.4} failure rate.
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Fig. 5. (a) Average localization error over 100 evaluations. The localization
algorithm is tested, employing the clustering method using{1, 4, 8, 16, 32}
clusters. (b) The Kullback-Leibler divergence between thefull and the
approximated detection models, as a function of the number of clusters
employed by the clustering method.

algorithm on a data set gathered over experiments of 3.5
minutes duration, where one of the ten robots was initially
localized (and all other robots initially lost) . The data is
comprised of inter-robot detection data messages (including
range and bearing measurements), and odometry readings
(recorded at 5Hz). Reciprocal robot detections are made
asynchronously, and in average once every 5 seconds. If
not stated otherwise in the following evaluations, the default
algorithm configuration employs 100 particles per robot, no
clustering (K = M ), and a reciprocal sampling proportion
α = 0.06 (empirically determined, see [15]). We discuss the
localization performance in terms of the mean positioning
error of all particles in a given robot’s belief (RMSE), a
metric which implicitly includes the spread of the particle
positions, and thus represents the uncertainty of the position
estimate. Figure 4 discusses the sensitivity of our algo-
rithm with respect to the number of particlesM , as well
as its robustness with respect to communication failures.
Figure 4(a) shows the localization performance for a variable
number of particles. Larger particle sets contribute to an
improved localization accuracy. Yet, an 8-fold increase inthe
number of particles produces a reduction of only 25% of the
localization error. This result coincides with the conclusions
made in [15], where it was shown that by increasing the
number of particles, the performance converges to that of an
ideal localization filter with an infinity of particles. Figure
4(b) shows the localization performance for variable message
failure rates. Increasing failure rates induce a graceful degra-
dation of the localization performance. This result confirms
the algorithm’s robustness with respect to communication



failures, which ultimately reinforces the underlying asyn-
chronous nature of our collaborative paradigm.

Figure 5 discusses our proposed clustering method. Figure
5(a) shows the localization performance when employing the
clustering method for a variable number of clustersK. We
note that the difference of performance between maximal
clustering (K = 1) and modest clustering (K = 32) is very
small. Figure 5(b) shows the Kullback-Leibler divergence
between the full and the approximated detection modelspmn

and p̂mn. The more clusters we employ in the clustering
method, the smaller the divergence to the true probability
density function. This shows that our clustering method
produces a valid representation of the original probability
density functions, which is simultaneously confirmed by the
results shown in Figure 5(a). We note that the work in this
paper considers a baseline experimental setup, where the
belief of a robot’s position is well represented by a single
particle cluster (confirmed by results in 5(a)). More com-
plex scenarios (including obstacles and multi-modal sensor
models) should exhibit a larger spread of performance when
clustering. In such cases, a trade-off between number of
clustersK and accuracy must be determined (this exceeds
the scope of this paper).

Finally, to illustrate the localization process, Figure 6
shows eight snapshots based on real data from an experiment
performed over an interval of 126s during which one robot
(in red) is initially localized. Each robot employed 100
particles with a reciprocal proportionα = 0.06, and used
the clustering routine with maximal clustering (K = 1).

V. CONCLUSION

In this work, we presented a fully scalable, probabilistic,
multi-robot localization algorithm based on the Monte Carlo
method. Its maximal overall complexity isO(|N |MK),
where|N | is the number of neighboring robots (at a given
time, for a given robot in the system),M the number of
particles, andK an adjustable number of clusters produced
by the clustering algorithm. This clustering method has
shown to produce increasingly accurate probability density
function representations for largeK, and when employed
in practice, has shown to perform well even for very small
K. Furthermore, given the asynchronous paradigm of our
collaboration strategy, the algorithm’s update rate is much
higher than the inter-robot message communication rate.
Thus, the number of detected neighbors|N | is in practice
no higher than 1, and the complete routine complexity is
reduced toO(MK). Thus, the algorithm is fully scalable

with respect to the number of robots in the system. In
addition, the algorithm poses no communication constraints
and shows a graceful performance degradation in case of
message failures. Our approach was experimentally validated
on a team of ten real robots.
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Fig. 6. The figure shows eight snapshots with 18s intervals ofan experimental run on the team of 10 Khepera III robots. Eachrobot employed 100
particles with a reciprocal proportionα = 0.06, and used the clustering routine withK = 1. The black lines show the trajectories completed in the time
intervals between snapshots, with the filled black dots representing the robot positions at the end of the previous snapshots. The red robot was initially
localized.


