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Abstract

Keywords: electrochemical capacitors, energy storage, vertically-aligned

carbon nanotubes, functionalization, long lifetime

As reliable mobile energy sources became more and more needed and alter-

native energy demands became more prevalent, the research in advanced

energy storage technologies turned into a topic of utmost importance in

today’s society. Innovative electrode materials that are able to provide in-

creased energy densities and long lifetime must be then be developed. Nano-

materials such as carbon nanotubes are of tremendous prospects in that

context. This master thesis aims at realizing an electrochemical capacitor

using a vertically grown carbon nanotube array, which is used as electrode

in different sets of experiments to evaluate its electrical energy storage ca-

pability. Cyclic voltammetry and electrochemical impedance spectroscopy

are used to determine the specific capacitance of the device, which is com-

posed of two nanotubes electrodes separated by a polypropylene filter, in

an adequate electrolyte. The surface chemistry was modified by adding hy-

droxyl groups onto the nanotubes surface, thus making them hydrophilic

and providing an efficient way to increase their storage ability by a fac-

tor of two to three. Different electrolytes were compared, both aqueous

and non aqueous, and the important parameter in choosing an appropriate

electrolyte for a high storage ability was shown to be the polarity of the so-

lution. The carried out performance studies gave encouraging results with

a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg

for a hydrophilic electrode using tetraethylammonium tetrafluoroborate in

propylene carbonate. Respectively, a maximum power density was found

to be 22 kW/kg at energy density of ∼2 Wh/kg for a hydrophobic sample.



This device can be claimed to be entirely carbon-based, with a relatively

small ecological print compared to most lithium-based capacitors and inex-

pensive. The lifetime is also extremely long, indeed more than hundreds of

thousands cycles without failure have been achieved.
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Chapter 1

Introduction

This chapter aims at introducing the context, the problematic and the

objectives of this master thesis. It also explores the adopted methodology.

1.1 Energy storage and the challenges of global energy

supply

The world energy supply is facing multiple issues, which from individual concerns had

become an affair of state. The fast and nearly uncontrollable development of emerg-

ing countries, both in terms of improved living standards and economy, has led to

a formidable increase in energy needs, and the energy production can hardly follow.

Moreover, the unbridled and frantic use of fossil energies is coming to a dead-end: re-

serves of oil and other non-renewable fuels are starting to be depleted. Consequently,

the earth is facing the consequences of this overuse of its resources, and suffering from

the climate change due the rising of greenhouse gas emission. Indeed, according to the

International Energy Agency statistics, fossil fuels (oil, coal and gas) account for most

of the world energy supply, representing 81% (1) of the world energy. This represents

35.2 Gt of CO2 in 2008 (1). In its reference scenario, the World Energy Outlook projects

that world CO2 emissions from fuel combustion will continue to grow unabated, reach-

ing 40.2 Gt CO2 by 2030 (2), thus meeting with the worst-case scenario presented by

the Intergovernmental Panel on Climate Change (3).
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1. INTRODUCTION

A course of action must be taken to develop new sources of energy, mainly renewable,

such as solar energy, wind energy, or even wave energy. Because the sun does not shine

during the night, the wind does not blow all the time and at the exact time when we

want it, and we want our cars to have at least a couple of hours of autonomy, energy

storage systems have become a crucial component in our daily routine. Both these

two objectives - development of new green energies and advances in energy storage

technologies - are to be met if one can hope facing the environmental issues that our

world is now dealing with as well as settle down political tensions over non-renewable

fuels.

1.1.1 Scope of study

This project mainly deals with the second objective highlighted in the previous section,

aiming at optimizing the efficiency and the reliability of the energy storage.

Supercapacitors (also called electrical double-layer capacitors) offer very promising

alternatives compared to batteries and fuel cell to store and deliver energy, mainly

because of :

• their extremely long lifetime, that can go up to millions of cycles

• very high rates of charge and discharge : they are fully charged and discharged

within seconds

• high power density, around 10 kW/kg

They however suffer from a lower energy density (4), about 5 Wh/kg (5). All

these characteristics make them a very valuable asset to meet the increasing demands

of energy storage, with uses ranging from consumer electronic devices to hybrid cars.

Rather than totally replacing the existing batteries, they will complement them ef-

ficiently, since they meet different goals. Supercapacitors utilize the double-layer of

charge formed when a voltage is applied to an electrode immersed in a given electrolyte

(6). Unlike batteries, which use chemical reactions to store energy, supercapacitors

store energy through the physical separation of electrical charges. The electrodes used

for supercapacitors are commonly made out of highly porous carbon, like activated car-

bon. This project chose to use vertically-aligned carbon nanotubes. Carbon nanotubes

are of tremendous prospects in a very wide variety of applications, explaining their

2



1.1 Energy storage and the challenges of global energy supply

broad interest in several fields of research: lightweight spacecraft, drug delivery, molec-

ular sensors, electronic devices, electron field emission, hydrogen storage, nanowires,

and supercapacitors are some examples of this huge diversity (7). The main interest in

supercapacitors lies in their intrinsically large surface area and their high electrical con-

ductivity. In addition, the cost to produce them is expected to decrease quickly in the

future (8). Since only the wetted part of the nanotube can contribute to capacitance,

the increase of the effective surface-area in contact with the electrolyte is extremely

important. In order to increase the effective surface-area and achieve a maximum

performance, the carbon nanotubes have to be modified with appropriate functional

groups, which are chosen in accordance to the electrolyte used in the capacitor.

1.1.2 Methodology and outline of the report

The overall goal of this project is to understand the energy storage mechanism involved

in a supercapacitor, as well as to improve its performance using the striking properties

of vertically aligned carbon nanotubes (CNT).

Chapter 2 consists in the explanation and description of what has been done and

achieved in terms of supercapacitor through literature studies, as well as some in-depth

characterization of the basic mechanisms involved.

Chapter 3 is dedicated to the understanding of the basic methods used throughout

this project, as well as the techniques required.

Chapter 4 explores the characteristics of both the carbon nanotubes and graphite

samples used throughout this study, and review comparatively their features, and use-

fulness when employed as electrodes for supercapacitors.

Results are presented and analyzed in the following chapter (Chapter 5), and some

conclusions are shown in details. The last part is devoted to the evaluation of the

performance of the device, in terms of power, energy, and lifetime.

Finally, a last chapter (Chapter 6) is dedicated to leads that did not succeed or were

not thoroughly looked into, but are worth mentioned and very probable for further

investigation had time permitted it.
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Chapter 2

Literature review

This chapter goes through the basic knowledge useful for this study.

Some theoretical background is underlined, as well as practical comparison

with the existing market and technological advances in this field of knowl-

edge.

2.1 Electrochemical double-layer capacitor

Electrochemical capacitors (EDLC, also known as electric double-layer capacitors or

supercapacitors) store energy as an electric field of charged particles at the interface

between a metal electrode and the electrolyte. Such capacitors can be charged very

rapidly and have an extremely long lifetime, which are far more superior to conventional

batteries (6). On the contrary, conventional batteries store energy through charge

carriers (usually electrons) removed from one metal plate and deposited onto another

through a liquid electrolyte, thus creating a potential between the two plates, further

harnessed in an external circuit. The liquid viscosity thus hampers the movement of

the charge carriers.

Because the storage capacity of a capacitor is proportional to the surface area of

the electrodes (9), an enlargement of the effective surface area is necessary to allow the

capacitor to store a much larger amount of energy than what is currently achieved by

conventional batteries at the same size. The use of carbon nanotubes electrodes is a

5



2. LITERATURE REVIEW

very efficient way to answer this issue, since they exhibit a high surface area-to-volume

ratio. A sketch of this device is presented on figure 2.1.

2.1.1 Mechanism of action

The most basic model used to describe a supercapacitor is composed of two electrodes

immersed in a conductive liquid - or polymer - called the electrolyte. A filter separates

the electrodes, acting as an ionic-conducting separator that prevents shorts. (10)

Figure 2.1: Electrochemical double-layer capacitor - (a) Sketch of the electrochem-

ical double-layer capacitor with VANT array electrode (b) Schematic view of the EDLC

test cell (11)

Electrochemical double-layer capacitors store the charge electrostatically and re-

leases electric energy through the transfer of ions to and from the electrode/electrolyte

interface, usually using materials with a high surface area to maximize and enhance

the charge transfer. Charge is described as:

Q = CV (2.1)

C is the capacitance in Farads [F]

V is voltage applied between the devices terminals in Volts [V]

Q is the capacitor charge in Coulombs [C =A.s=F.V]

6



2.2 Comparison and highlights

Charge separation takes place at the interface between electrode and electrolyte,

producing a double-layer capacitance C:

C =
εoεrA

d
(2.2)

εr electrolyte dielectric constant

εo dielectric constant of the vacuum

d effective thickness of the double-layer

A electrode surface area

2.1.2 Useful formulas used

By deriving the first basic formula 2.1, we get:

dQ

dt
= V

dC

dt
+ C

dV

dt
(2.3)

Assuming the capacitance is constant relatively to time, we obtain:

I = C
dV

dt
(2.4)

I current in Amperes [A]

C is the capacitance in Farads [F]
dV
dt

the scan rate in mV/s

The energy stored in a capacitor, calculated in Joules [J], is defined as:

E =
1

2
CV 2 (2.5)

The power drawn from a capacitor during discharge, in Watts [W], depends on both

the capacitor potential and the electrical current:

P = UI ⇒ P = CV
dV

dt
(2.6)

2.2 Comparison and highlights

Electrochemical double-layer capacitors can deliver a high power output during a ex-

tremely long time, despite their comparatively low ability to store energy, which is

about 10 to 100 times lower than lead-acid batteries. Carbon represents a very attrac-

tive material for use in electrochemical applications, and storage energy in particular:

indeed, it boasts a diverse portfolio of useful features, such as:

7



2. LITERATURE REVIEW

• Multiple allotropes: graphene, diamond, Buckminsterfullerenes (or buckyballs),

nanotubes ...

• Different microstructures, depending on the degree of graphitization.

• Various forms of macrostructures, ranging from powders to foams and composites.

• A high electrical conductivity (except diamond).

Much research is now focusing on supercapacitors since they have both a long cycle

life and a high efficiency, as seen on table 2.2. Moreover, the theoretical capacitance

is extremely high for supercapacitors with carbon-based electrodes; for instance, the

theoretical capacitance that can be achieved with a graphene-based supercapacitor ex-

ceeds 550 F/g (12). And finally, the lifetime for supercapacitors is extremely high, up

to millions of cycles. This is highlighted on figure 2.2.

Advantages Disadvantges Current applications

Higher charge and

discharge rates (high

power density)

Higher self-discharge

rate
Hybrid Electric Vehicles

Longer cycle life

(>100,000 cycles)
Lower energy density

Diesel engine starting

systems

Low toxicity materials Lower cell voltage Cordless power tools

Operation over a wide

temperature range
Poor voltage regulation

Emergency and safety

systems

Low cost per cycle High initial cost

Table 2.1: Comparison with battery - Overview from GAMRY.

The gravimetric energy density - or in other words the amount of energy that can be

stored in a given weight - of commercial supercapacitors is usually around 5-6 Wh/kg,

which is about 8 times below the lower limit of batteries (4). However, some recent

commercialized supercapacitors are able to withstand up to 30 Wh/kg (Premlis, JEOLs

supercapacitor), at the cost of a relatively bulky and heavy device. It is composed

of multiple matched series-connected individual EDLC, like series-connected cells in

8

http://www.gamry.com/App_Notes/Cap_AppNote_Part1.pdf


2.2 Comparison and highlights

Figure 2.2: Life efficiency - Efficiency and cycle life both affect the overall storage cost.

Indeed, low efficiency increases the effective energy cost as only a fraction of the stored

energy can be used. Low cycle life also increases the total cost as the device needs to be

replaced more often. Taken from the Energy Storage Association.

batteries, rather than one single extremely efficient supercapacitor cell. The use of

graphene in a graphene-based supercapacitors allows to go even further beyond these

limits, by reaching a specific energy density of ∼85 Wh/kg at room temperature (and

60% more at elevated temperature of 80 ◦C) (12).

Hence, the performance of supercapacitors rely somewhere in between batteries

and traditional capacitors. The advantages and disadvantages of supercapacitors when

compared to batteries are summarized in table 2.1.

9
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2. LITERATURE REVIEW

Table 2.2: Technology comparison and range of application. Taken from the Electricity

storage association

Storage tech-

nologies
Main advantages Disadvantages

Power

application

Energy

application

Pumped storage
High capacity, Low

cost

Special site require-

ment
 

Compressed air

energy storage

High capacity, Low

cost

Special site require-

ment, Need gas fuel
 

Flow batteries:

PSB, VRB, ZnBr

High capacity, Inde-

pendent Power and

Energy ratings

Low energy density G#  

Metal-Air
Very high Energy

Density

Electric charging is

difficult
 

Sodiumsulfur

(NaS) battery

High Power and En-

ergy Densities, High

Efficiency

Production costs,

Safety concerns

(addressed in design)

  

Li-Ion battery

High Power and En-

ergy Densities, High

efficiency

High production

costs, Requires

special charging

circuit

 #

Nickel-cadmium

(Ni-Cd) battery

High Power and En-

ergy Densities, High

Efficiency

 G#

Other advanced

batteries

High Power and En-

ergy Densities, High

Efficiency

High production

costs
 #

Lead-Acid Low capital cost

Limited cycle life

when deeply dis-

charged

 #

Flywheels High power Low energy density  #
Superconducting

Magnetic Energy

Storage (SMES)

High power

Low energy density,

High production

costs

 

Electrochemical

Capacitors

Long cycle life, High

Efficiency
Low energy density  G#

 G# # None

Fully capable

and reasonable

Reasonable for

this application

Feasible but not

quite practical or

economical

Not feasible or

economical

10
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Chapter 3

Material and methods

This chapter describes the basic material and methods used throughout

this entire research, both for the characterization and performance study.

3.1 Carbon nanotube growth

The first essential step for this entire study is to be able to grow nanotubes samples.

They are grown on silicon wafer using standard thermal chemical vapor deposition

(CVD) with ethylene and hydrogen as the precursor gasses.

The substrate is composed of different layers, being respectively:

• A bottom layer of single crystalline silicon substrate.

• An intermediate layer of aluminum oxide buffer, with thickness of 10nm ± 2nm.

• A top layer of iron catalyst, with thickness of 1nm ± 0.2nm.

Without the aluminum oxide buffer layer, the iron layer melts at the high tempera-

ture needed for the CVD process and diffuses into the silicon wafer, thus circumventing

any growth. The presence of aluminum oxide buffer layer between the iron layer and the

silicon wafer prevents this effect and allows the iron to catalyze the growth reaction at

high temperatures. Aluminum oxide and iron layers are deposited on the silicon wafer

by electron beam evaporation at a very low pressure of 10−6 Torr. In contrast to the

sputtering technique, thin film deposition using electron beam evaporation technique
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results in a very uniform thickness and a very low surface roughness. To align CNT

in an array, a high density of catalysts on a flat surface is necessary to confine CNT

growth direction (13).

This evaporation technique requires an extreme precision of ± 0.2nm in thickness

onto the substrate deposition, which required multiple new calibrations over the year.

During this whole year, numerous experiments had to be redone multiple times because

of issues with the calibration of the electron beam evaporator. Thus obtaining wafers

is a very challenging task despite their apparent theoretical simplicity.

The growth recipe had also been changed three times this year, when a check valves

and filters of the furnace had to be replaced. This involves a lot of trial and errors, and

tentative research, since there are so many parameters involved, it is hard to determine

which one - or which set of parameters - is responsible for the bad growth. Moreover,

the anchoring technique of nanotubes on PDMS (as explained in the article ”Controlled

partial embedding of carbon nanotubes within flexible transparent layers”, by E. Samson

(14)) and on copper tape for use in electrochemical cells have a low success rate of about

40% and 50% of the as-grown samples respectively. The anchoring process on copper

tape is similar to the anchoring process on PDMS, which is described in figure 3.1,

although the curing process is omitted. Once the nanotubes are anchored on the tape,

the wafer is immediately removed.

The average length of the arrays used for this study is about 700 to 1000 µm.

3.2 Functionalization

Even though as-grown carbon nanotubes possess an array of unprecedented structural,

physical, mechanical and electrical properties, a lot of improvement can be achieved

through further functionalization. The surface chemistry tuning of the CNT was

achieved through a combination of UV-ozone and vacuum pyrolysis treatments, as

shown in figure 3.2.

3.2.1 Hydrophobization

Different processes can be used to produce hydrophobic nanotubes, such as dry plasma

treatments or wet chemical coating. However, vacuum pyrolysis treatment was found

to be the easiest way to proceed, although not the fastest. It reverses the effect of

12



3.2 Functionalization

Figure 3.1: Anchoring of VANT on PDMS substrate - The dashed rectangles

represent the silicon wafer, while the black rectangles depict the VANT. The grey area is

the uncured PDMS, baked at 80C to solidify and allowing an easy removal of the wafer.

oxidation by removing the oxygenated groups from the surface of the nanotubes, while

keeping the microscopic structure of the array intact (15).

A hydrophobic CNT array is defined as an array that has purity higher than 95%

and has static contact angle for water higher than 150 ◦.

3.2.2 Hydrophilization

Several papers report the significant improvements achieved by making the carbon

nanotubes hydrophilic, which can be made by functionalizing their surface with oxy-

genated functional groups, such as -COOH and -OH. Such functional groups provide

hydrophilic sites on the surface of the nanotubes. Hydrogen bonds can form between

the water molecules and the functional groups added to the surface of the nanotubes.

(15). UV-ozone treatment was the method chosen to oxidize the nanotubes with oxy-

genated groups at standard room temperature and pressure. UV radiation creates

defects on the caps and outer sidewall of the nanotubes, which allows ozone to oxidize

these sites with oxygenated groups. The hydrophilic CNT array is defined as an array

13
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that has been previously functionalized with oxygenated functional groups, e.g. hy-

droxyl groups, via oxidation process and has static contact angle for water lower than

30 ◦.

Figure 3.2: UV/ozone and vacuum pyrolysis treatments - Both are used to vary the

wetting properties of CNT arrays. Oxygen adsorption occurs during UV/ozone treatment

and oxygen desorption take places during vacuum pyrolysis treatment. Taken from (15)

3.3 Cyclic voltammetry

This section is greatly inspired by the article ”Cyclic voltammetry” from Peter T.

Kissinger (16).

3.3.1 Theory

Cyclic voltammetry is a widely used electrochemical characterization technique, be-

cause of its ability and effectiveness to quickly observe an electrochemical behavior

over a wide potential range. This electrochemical characterization records the working

electrode potential as it is cycled over time. For each cycle, this potential is varied

linearly in time between a given minimum potential and a predetermined maximum

potential. This gives a typical excitation signal, the triangular waveform seen on figure

14



3.3 Cyclic voltammetry

3.3. The electrode potential sweeps between the two peak values set at the beginning

of the experiment for a predefined number of cycles. A pair of sweeps in opposite

directions - forward scan plus reverse scan - is called a cycle.

Figure 3.3: Excitation signal for cyclic voltammetry - Taken from Peter T.

Kissinger’s article (16)

The rate of change of potential with time is referred as the scan rate (ν), it is

reflected by the slope and measured in mV/s. The voltammogram measures the current

at the working electrode, as the response signal to the excitation signal in function of

the voltage. Some examples can be seen on figures 4.2, 4.3 and 4.6. Since the voltage

is varying linearly with time, one can think of the voltage x-axis as a time axis. The

potential range is chosen accordingly to the electrolyte: in an aqueous solution, we

want to avoid the electrolysis of water (E ◦ = 1.23V), so the maximum will be kept

around 1V. As mentioned previously, the advantage of non-aqueous solution is that

the potential range can be extended to nearly 3V in theory. Such a system has a

higher energy density because the working voltage window is larger (17). With the

increase of scan rate, the voltammogram becomes tilted. This reflects that at fast scan

rates, the ohmic resistance is very prominent, thus affecting the double layer formation

mechanism and the charge stored in the capacitor (18).
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3.3.2 Setup

For the first half of the year, a three-electrode setup was used. The working electrode

(WE) was controlled against a reference electrode (often a saturated calomel electrode,

with a constant electrochemical potential), and the counter electrode (CE) was an inert

platinum (Pt) electrode. When the measurement was conducted, all electrodes were

immersed in the electrolyte. This setup allows studying only one electrode in isolation,

without having to worry about the interference from the other electrodes. However,

most of the measurements made during the last part of this project were carried out

using a two-electrodes setup in a real electrochemical cell made for R&D research as

depicted on figure 3.4. The WE was set to be the same material as the CE, which

includes graphite, dispersed nanotubes or VANT. These electrodes were separated by

a filter of polypropylene while immersed in the electrolyte.

Figure 3.4: Split Flat Cell - Split Flat Cell for R&D Battery, from MTI Corporation

3.3.3 Formulas used using the CV curves

The formula used for specific capacitance [F/g] reflects the fact that the anodic and

cathodic voltammetric charges are not same (19), and thus uses the integral area of the

CV curve:

SC =

∫ E2

E1
i(E)dE

2(E2 − E1)mν
(3.1)

m mass of the active material, with or without the current collector

ν scan rate [mV/s], between 1mV/s and 200 mV/s usually

E1, E2, initial and final voltage [V], typically [0 – 1.5V] in 1M Et4NBF4-PC∫ E2

E1
i(E)dE area enclosed by the curve [mA.V]
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3.4 Electrochemical Impedance Spectroscopy

The integral was directly calculated on the voltammogram, using the integration

tool from EC-Lab.

3.4 Electrochemical Impedance Spectroscopy

The following chapter is highly based on the article by Byoung-Yong Chang and Su-

Moon Park, ”Electrochemical Impedance Spectroscopy” (20).

3.4.1 Basic knowledge

The Ohm’s law defines resistance in terms of the ratio between voltage, E [V], and

current, I [A]:

R =
E

I
(3.2)

However, this relationship is only valid for ideal resistors, which are independent of

frequency, phase, and follows the relationship 3.2 for any current and voltage. This can-

not explain the behavior of more complex circuits. Impedance is hence used to replace

the too simple concept of resistance. Impedance measures the capacity of a circuit to

withstand a flow of current, but without the limitations listed before (frequency and

phase independence, Ohm’s law valid at all times).

Electrochemical impedance spectroscopy (EIS) characterizes the system response

when a small periodic AC signal is applied to the electrochemical cell, at different

frequencies, ranging from tens of mHz to a few MHz. It then records the emerging

current passing through the cell. Analysis of the system response offers useful infor-

mation about the EDLC interface, its structure and the chemical reactions that might

occur. Because the excitation signal is small, a linear or pseudo-linear response can be

expected, which means that at a small enough scale, the behavior appears to be linear

(10). Hence, if a sinusoid potential is applied, a sinusoid with an equal frequency but

phase-shifted will be observed for the response, as seen on figure ??.

3.4.2 Analysis of the curves

EIS data is analyzed by fitting it to an equivalent electrical circuit. Such equivalent

circuit can be extremely complicated, but is often composed of basics elements such as

resistors and capacitors. Each element should explain the physical and electrochemical
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behavior of the system or part of it. The most frequent model used in this study is

described in figure 3.5, and is based on Randle’s model to describe the electrochemical

reactions that occur at the electrode-electrolyte interface.

Figure 3.5: Equivalent electrical circuit

Figure 3.6: Randle’s model and equiva-

lent circuit

This circuit is an equivalent to the Randle’s model shown in figure 3.6, with Zw

(explained in more details below) representing a capacitor that is in parallel with a

resistor. As shown on figures 3.5 and 3.6, the R1+C1/(R2+C3/R3) model is equivalent

to the R1+C2/R2+C3/R3 one.

• R1 describes the cell’s electrolyte resistance. This resistance depends on the ionic

concentration, the type of ions involved, the temperature as well as the geometry

of the electrolyte in which the current flows.

• R2 and C2 are the characteristic resistance and capacitance of the electrode-

electrolyte interface. R2 describes the polarization resistance across the interface,

or in other words, the activation barrier for an electron transfer across the double-

layer that has to be overcome (22). When an electrode is polarized, namely

forced away from its value at open-circuit, electrochemical reactions occur at the

18



3.5 Field emission Scanning Electron Microscope (FESEM)

electrode surface, causing an electric current to flow. C2 describes the capacitive

behavior of the double-layer capacitance.

• Finally, the term Zw describes the charge and mass transfers taking place at the

interface, i.e. the diffusion of oxidant to the cathode.

This is summarized in figure 3.7. Specific capacitance obtained from EIS was only

used to corroborate the data found from CV and charge-discharge tests; if they were

in the same order of magnitude, the experiment was considered reliable. The EIS data

will not be mentioned in this study

Figure 3.7: Simple electrified interface - An equivalent circuit representing each

component at the interface and in the solution is also shown (20)

3.5 Field emission Scanning Electron Microscope (FESEM)

High-energy electrons from an electron gun are accelerated in a vacuum through a

voltage difference of a few keV between cathode and anode. The interaction between

these incident electrons and the sample produces a signal of scattered electrons that

19



3. MATERIAL AND METHODS

can be recorded by detectors inside the specimen chamber (23). This output signal

includes secondary electrons, back-scattered and forward-scattered electrons, and X-

rays, as depicted on figure 3.8. Among these, only the secondary electrons were useful

for imaging the carbon nanotubes. The detectors collect these electrons and convert

them into a signal that is sent to the screen to produce the final image.

Figure 3.8: Interaction effects - A focused beam of electrons bombards the sample,

and most incident electrons, rather than penetrating the sample, interact with the sample

atoms and are scattered. Image taken from Northern Arizona University.

Carbon nanotubes are naturally dry, which is really important because water or

any aqueous solution would vaporize inside the vacuum chamber and damage the mi-

croscope. Because the nanotubes are conductive, usually no additional preparation is

needed. However, with some samples covered with amorphous carbon or embedded in

PDMS, sputter-coating was used to make them conductive by coating the sample with

a thin layer of metal, usually 5nm of Pt-Pd alloy. This prevents surface charging, which

causes an apparent movement, distortion and artifact of the image viewed under SEM.

This was a recurring problem, especially when using VANT anchored in PDMS or bad

samples with a lot of amorphous carbon. Surface charging is caused by an accumulation

of electrons on the surface, which build up charged regions. These deflect the incident

electron probe irregularly, because the charging alters secondary electron emission and

make the signal electrons unstable. A good electrical conduction ensures the removal
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3.6 Energy-dispersive X-ray spectroscopy (EDS)

of excess electron easily (24).

3.6 Energy-dispersive X-ray spectroscopy (EDS)

This technique uses the SEM to bombard the sample with electrons, and decode the

resulting pattern of electron reflection to generate a detailed quantification of every

element involved. Some higher energy electrons replace the electrons ejected from the

surface of the sample. To maintain energy balance, some energy must be released, in

the form of X-rays. The X-ray spectrum is then analyzed, and decoded in function of

the element from which it is released (25). This technique gives quantitative insights

on the sample composition.

3.7 Galvanostatic charge-discharge

The discharge curves should be linear in the total range of potential with constant

slopes to show a perfect capacitive behavior, namely, a perfect triangular shape (26).

However, this was not the case here, such that the formula

C =
I

dV/dt
(3.3)

used in most papers is no longer valid, because of the inconstant slope. Therefore, a

more appropriate formula is found by integrating the equation 2.1 over time:∫
Qdt =

∫
CV dt = C

∫
V dt−

∫ (
dC

dt

∫
(V dt)

)
dt (3.4)

Assuming once more that dC
dt = 0 , we obtain:∫

Qdt = C

∫
V dt (3.5)

Recall that:

I =
dQ

dt
(3.6)∫ (∫

Idt

)
dt = C

∫
V dt (3.7)

With I being constant over time and ∆t being the discharge time, we find:

1

2
I∆t2 = C

∫ ∆t

0
V dt =⇒ C =

I∆t2

2
∫ ∆t

0 V dt
(3.8)
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SC =
I∆t2

2m
∫ ∆t

0 V dt
(3.9)

This formula is used to determine the specific capacitance from the charge-discharge

curves, which is then compared to the specific capacitance obtained via CV. When those

values agree to each other the experiment is validated.
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Chapter 4

Characterization

This chapter aims at specifying and detailing the whole system, com-

prised of the electrolyte and the electrodes.

4.1 Electrolytes

4.1.1 Saline solution and sulfuric acid solution

These solutions were found to give quite low specific capacitance, unstable and their

cyclic voltammograms show some non-expected shapes and peaks that could not be

easily explained. In addition, acid electrolytes were found to be too destructive for the

carbon nanotubes.

These were abandoned quickly.

4.1.2 Aqueous solution

This part of the experiments inspired by the paper ”Flexible energy storage devices

based on nanocomposite paper”, by Pushparaj and al (27). The idea was to use a

similar setup, and to compare the results obtained, and see similar results can be

obtained. This would assess the suitability of our nanotubes as good electrodes for

supercapacitors. A solution of 6M KOH was used. Using an operating voltage of 0.9V,

the paper reports a specific capacitance of 36 F/g.
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Figure 4.1: Electrochemical double-layer capacitance measurements - (a) Cyclic

voltammograms and (b) Charge-discharge behavior of the nanocomposite supercapacitor

devices with KOH electrolytes. The CV measurements are carried out at a scan rate of

50 mV/s at room temperature. The near-rectangular shape of the CV curves indicates

good capacitive characteristics for the device. Charge-discharge behavior was measured at

a constant current of 1 mA (27).

Using the same potential window, a specific capacitance of 29.7 ± 3.4 F/g was

obtained for a hydrophilic sample. Even though this result is lower, the order of mag-

nitude is comparable. In conclusion, the setup used was good and able to reproduce

comparable results. Some improvements were then added and carried out with a similar

setup to the one used in the paper.

4.1.3 Non aqueous solution

Specific capacitance achieved with aqueous solutions, either basic or acid, is often higher

than that in organic electrolytes. Nevertheless, organic electrolytes are more widely

used since they can sustain a higher operation voltage, up to 2.7-3V in symmetric

systems (28), compared to only 1V in aqueous solution (7). However, some specific

applications can take advantage of either solution: supercapacitors using aqueous sys-

tems are appropriately designed as power sources for pulsed applications, whereas non

aqueous supercapacitors are designed for high energy applications (17)

Various non-aqueous electrolytes were investigated, as listed below:

• Iodine-iodide (I−/I−3 ): because it is a very strong oxidizing agent, corroding

metals especially in the presence of water and oxygen, and because the results

were extremely bad, it was quickly abandoned. The initial idea was to use this

electrolyte for the energy generation project, but the deleterious and detrimental
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4.1 Electrolytes

Aqueous Organic

Voltage per cell Maximum = 1V Maximum = 2.7V

Manufacture Easy Difficult

Cost Low price High price

Leakage current Quick stabilization Long stabilization needed

Environmentally friendly Green product Not a green product

Table 4.1: Comparison of aqueous and organic electrolytes - From Cellergy Tech-

nology - Supercapacitor

effect of iodine-iodide on carbon hindered further use of this electrolyte. It was

also the beginning of the re-orientation of the project from energy generation

toward energy storage, since the carbon nanotubes needed milder electrolytes.

• Tetrabutylammonium tetrafluoroborate in propylene carbonate (But4NBF4/PC)

• Tetrabutylphosphonium tetrafluoroborate in propylene carbonate (But4PBF4/PC)

• Tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4/PC)

These three electrolytes salts were dissolved in propylene carbonate (PC), at a concen-

tration of 1M for both Et4NBF4 and But4NBF4, which is reported to be an optimal

concentration that gives the maximum conductivity and the best results (29). In the

case of But4PBF4, 0.1M was used due to availability issues of the salt. Ethylene car-

bonate has a higher dielectric constant than propylene carbonate up to 87.2 at 25 ◦C

against only 64.6 for propylene carbonate. Ethylene carbonate has a calculated dipole

moment of 4.87 Debye (30, 31). Despite these very promising characteristics, EC is

hard to manipulate: it has a melting temperature higher than the standard room tem-

perature such that it needs to be heated for use as a solvent, and has to be kept away

from humid air because it is hygroscopic. The results were slightly better than that

with propylene carbonate, with an improvement in the order of 10%. Nevertheless, the

slight increase was not worth the trouble with the handling and manipulation, and the

rest of the experiments were conducted using propylene carbonate.

The table 4.1 summarizes the different advantages and drawbacks of both organic

and aqueous electrolytes.
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4.1.4 Choice of liquid solution over gels and polymers

Many studies have reported the use of polymers or gels instead of liquid electrolytes,

with overall great results. However, some fundamental drawbacks of these materials,

such as their higher resistivity and their poor contact with electrodes have limited their

use in supercapacitors (32, 33, 34).

Hence, liquid electrolytes were preferred for this study.

4.2 Capacitive behavior

VANT electrodes were compared to graphite electrodes to show that the former would

yield higher specific capacitance. This comparison is in agreement with previously

reported studies (35).

4.2.1 Graphite voltammogram
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Figure 4.2: Voltammograms of graphite - Experiment realized in 1M Et4NBF4-PC,

at different scan rates
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Figure 4.3: Voltammograms using a graphite electrode - Experiment realized in

1M Et4NBF4-PC, with a smaller voltage window

First, graphite was investigated as a carbon-based material with a high surface area.

Graphite electrodes were used in 1M Et4NBF4-PC electrolyte. The capacitive behavior

of the graphite based double-layer capacitor is studied through cyclic voltammetry at

different scan rates ranging from 1mV/s to 100mV/s, as seen on figure 4.2.

The voltammogram clearly shows that the graphite is not a good choice for the

electrode, and cannot be used at a voltage range of 0-1.5V, since an elbow is clearly

distinguishable around 0.8V. A much better voltammogram was obtained if the voltage

range is limited to 0-1V, as seen on figure 4.3. Note that the tilted voltammogram is

due to high scan rates. The graphite voltammogram shows narrow loops with a large

oblique angle around 0.8V,a typical behavior for an electrode with a large electrical

resistance (36). This finding further supports the idea of graphite as a poor electrode

material despite of its relatively high conductivity.

Interestingly, the graphite electrode voltammogram is nearly independent of scan

rate for scan rates higher than 50 mV/s. A possible explanation for this behavior is

that the size of the diffusion layer is more or less constant for scan rates higher than

25 mV/s, and we can suppose this is the minimum diffusion layer size possible since

slower scan rates tend to have larger diffusion layers.

A very similar behavior, in term of both specific capacitance value and voltammo-
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gram, was observed for dispersed nanotubes. Some SEM images of dispersed nanotubes

and graphite are presented in figures 4.4 and 4.5 respectively.

Figure 4.4: SEM images of dispersed nanotubes at different magnifications

The dispersed nanotubes presented in figure 4.4 show the characteristic tubes, en-

tangled and twisted. The effective surface area available is slightly higher than that of

the graphite layer displayed in figure 4.5.

4.2.2 VANT voltammogram

After investigating the properties of graphite-based electrodes, a similar study was

conducted with VANT, and the capacitive behavior of a VANT based double-layer

capacitor was recorded in figure 4.6. The scan rates were chosen between 10mV/s and

100mV/s. A good rectangular and symmetric shape is exhibited over a large range

of scan rates and in accordance to the rectangular shape expected in theoretical ideal

capacitors. The charge and discharge processes are very fast at the interface between

the VANT and electrolyte, and the voltammogram is perfectly featureless, confirming

the usefulness of VANT for supercapacitors. The featureless voltammogram probably
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4.2 Capacitive behavior

Figure 4.5: SEM images of graphite at different magnifications

results from the atomic structure variations of the nanotubes. Recall that the electronic

properties of the nanotubes are extremely sensitive to changes in length, diameter,

helicity of the carbon hexagon rings on the walls, or chirality (Armchair or Zigzag).

Therefore, the featureless voltammogram might be an average of multiple closely spaced

peaks, each one being the signature of a single electron transfer into one single tube

(37).

Characterization via SEM images demonstrates that the VANT are densely packed.

A quick density measurement of the VANT gave values somewhere between 0.007 and

0.013g/cm3. Therefore, a density of 0.01 g/cm3 is assumed. It is important to notice

that high magnification reveals that the nanotubes are not perfectly straight, but rather

curly and entangled at the nanometer scale (figure 4.7). A low contact resistance and

a good capacitive behavior are assumed. Indeed, no significant difference (in terms

of specific capacitance, resistance and voltammogram shape) appeared between bare

samples and samples coated with metal, in an attempt to obtain a better contact

between the sample and the copper tape. Pt-Pd alloy coats the nanotubes conformally,

while Ag creates a distinct layer of metal. An increase in specific capacitance of less than
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Figure 4.6: Voltammograms for a setup with VANT electrodes - Experiment

realized in 1M Et4NBF4-PC for different scan rates

3% was observed in sample coated with 50 nm Pt-Pd, and an increase of 5% obtained

by samples coated with 50nm Pt-Pd and 50nm Ag. Therefore a metal coating was

considered unnecessary. This finding is encouraging since noble metals are expensive.

4.3 Relationship with scan rate

The values of specific capacitance obtained with graphite-based electrodes in function

of the scan rate are summarized in the figure 4.8 below. They are low compared to that

obtained with the VANT electrodes. Such low values of specific capacitance are the

result of a much smaller surface area available, because only the top layer of graphite

is accessible by the electrolyte. Figure 4.9 shows the relationship between specific

capacitance and scan rate for VANT.

It is interesting to highlight that in both cases the behavior of the specific capaci-

tance as a function of the scan rate follows a power law. But unlike graphite, VANT

based electrode offers a very large surface area, and thus gives rise to higher specific

capacitance. At lower scan rate, the specific capacitance is higher, indicating little
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Figure 4.7: SEM images of VANT (a) Close up at 150 KX (b) Wider view at 10KX

(c) 60 angle at 200X to see the height of the nanotube array (d) 60 angle highlighting the

fact that the nanotubes are indeed vertically-aligned, but not completely straight at higher

magnification

ionic transport limitations (38). An opposite behavior is expected at higher scan rates,

where the ionic transport is slower and thus reducing the specific capacitance. A be-

havior that is extremely dependent of the voltage scan rate indicates some losses due

to internal resistance. One of the main factors contributing to the internal losses is a

high concentration of the electrolyte. At very high concentration, the electrolyte ions

cannot be fully ionized, because there are not enough solvent molecules, so the current

is not carried at its maximum efficiency. On the other hand, a higher concentration of

electrolyte allows an increase in the specific capacitance. Hence an optimum balance

between a high specific capacitance and a low resistance has to be found.

Graphite, as an allotrope of carbon with sp2 hybridization, shares a lot of common

properties with carbon nanotubes, including good electrical conductivity. However, the
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Figure 4.8: Log-log plot of relationship between the specific capacitance and

the scan rate for electrodes made of graphite - A power relationship for electrodes

made of graphite in 1M Et4NBF4-PC electrolyte holds. The following regression equation

is found: SC ' 130
(
dV
dt

)−3/4
.

specific capacitance obtained when graphite is used as the electrode yields considerably

lower specific capacitance, namely 3 to 5 times lower for the same scan rate than what

can be achieved with VANT, as can be seen in figure 4.8 and 4.9.

The specific capacitance (SC, in F/g) is linked to the scan rate (ν, in mV/s) via

the empirical formula:

SC ≈ α
(
dV

dt

)β
(4.1)

Where α and β for the graphite-based electrode are found to be 130 and -3/4 respec-

tively. In the case of VANT-based electrode, α and β are found to be 310 and -3/5

respectively.

My hypotheses is that the curves obtained with additional data will tend toward a

similar relationship as defined in equation 4.1, with only the α-term different - probably

by a factor two to three, depending on whether graphite or VANT is analyzed. The

β-term on the other hand is probably going to be similar, around -3/4.
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Figure 4.9: Log-log plot of relationship between the specific capacitance and

the scan rate for VANT electrode - A power relationship for electrodes made of

VANTs in 1M Et4NBF4 - PC electrolyte holds. The following regression equation is found:

SC ' 310
(
dV
dt

)−3/5
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Chapter 5

Performance evaluation

This chapter presents the results obtained using the previously character-

ized samples. Different improvements and ameliorations are explored and

discussed. In particular, the efficiency of the device is analyzed through its

power and energy efficiencies, and lifetime.

5.1 Functionalization

In agreement to some published and studies (39, 40),the specific capacitance of a VANT-

based electrode in an aqueous solution can be significantly increased by the addition of

hydroxyl and carboxyl groups to the electrode. These groups increase the number of

contact sites between the electrode and the electrolyte ions that leads to the increase of

the global charge transfer between the electrode and electrolyte. For any polar solution,

a functionalized hydrophilic VANT sample should give a higher specific capacitance due

to a higher proton transfer between water and the VANT.

A 1M Et4NBF4 - PC solution was as an electrolyte to compare the effect of surface

functionalization on both VANT array electrode and graphite electrode. The result was

then compared to the literatures. Figure 5.1 summarizes these findings. A quick com-

parison of the performance of graphite and VANT shows that the specific capacitance

of the VANT electrodes is two to three times higher than that obtained with graphite

electrodes. The specific capacitance of the graphite electrode is about 20 F/g whereas
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Figure 5.1: Surface functionalization - Specific capacitance of the vertically-aligned

CNT array electrodes in 1M Et4NBF4 - PC is extremely higher than that of the graphite

when both of them are functionalized, at 25 mV/s.

the specific capacitance of the hydrophobic VANT electrode is about 60 F/g. On the

other hand, an increase of specific capacitance from 42 F/g for a hydrophilic graphite

electrode to nearly 90 F/g for a hydrophilic VANT array electrode was observed. These

findings agree with a recently reported study (35), confirming the importance of struc-

turally aligning carbon nanotubes in the direction of ion diffusion as a way to increase

the specific capacity. Such alignment leads to both an increase of the surface area

available, because the electrolyte ions can access more easily and freely the sidewall of

the nanotubes, and a diminution in the overall resistance of the electrode. EIS exper-

iments were carried out to verify such behavior where a resistance of ∼ 10 kΩ± 0.3kΩ

for graphite was measured, while only ∼1.5 kΩ± 0.1kΩ was measured for VANT, which

is nearly an order of magnitude lower.

Different electrolytes were also investigated. First of all, aqueous solutions were

explored. In an aqueous acid solution (1M H2SO4), the specific capacitance increases

from 16± 1 F/g to 51± 2.1 F/g once VANT or equivalent to an increase of ∼ 320%

when the hydrophilic VANT are used as electrodes. Similar behavior was also observed

in 6M KOH, where the specific capacitance increases from 1± 0.3 F/g to 29± 2.5 F/g
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Figure 5.2: Electrolyte comparison - Specific capacitance of the vertically aligned

CNT array electrodes in both aqueous (6M KOH) and non-aqueous (1M Et4NBF4 - PC)

solution, measured at 25 mV/s.

once the VANT are functionalized, as shown on figure 5.2.

The next logical step to follow up this experiment was to investigate the effect of

surface functionalization of VANT electrodes in a non-aqueous solution. As a first

hypothesis, it seemed reasonable to see a difference between aqueous and non-aqueous

solutions. In other words, it was expected that in a non-polar solution, the addition

of hydroxyl groups on VANT would decrease the electrolyte accessibility to the entire

surface area available on the nanotubes, and thus decreased the specific capacitance.

This idea was further explored using a 1M Et4NBF4-PC electrolyte. This solution is not

soluble in water although both PC and Et4NBF4 are highly soluble in water. Both PC

and water are indeed polar solvents. Et4NBF4 is also soluble in water as an ionic solute

in a polar solvent. However, unlike water, PC is an aprotic solvent, i.e. it does not

donate protons so there is no possible interaction with the hydroxyl functional groups

that were attached to the VANT. Therefore, the first logical idea was to defunctionalize

the VANT such that they would not have any -OH terminal group, and making them

hydrophobic. Although this idea was thought to yield higher specific capacitance, the

experimental results showed the contrary. When a polar non-aqueous solution was used

as the electrolyte, the functionalized VANT gave a way higher specific capacitance than
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the non functionalized VANT, as seen on figure 5.2. This finding disproves the initial

hypothesis made.

This early hypothesis was proven to be wrong since not all parameters were taken

into consideration. Indeed, the critical factor responsible for the increase in specific

capacitance was not about the fact that the solution was aqueous or not, but whether

it was polar or not. The acidic and basic solutions used in this study are highly polar, as

part of their Arrhenius definitions. PC is also highly polar, with a very high molecular

dipole moment of nearly 5 Debye, as well as a very high dielectric constant of 64. We

can suppose its high polarity creates a very effective solvation shell around Et4N+ ions,

thus creating a very conductive electrolyte. The specific capacitance of the hydrophobic

electrodes in 1M Et4NBF4-PC was measured to be below 60 F/g, which is significantly

lower than the specific capacitance of the hydrophilic electrodes, measured to be nearly

90 F/g. This 50% increase of specific capacitance is clearly seen on figure 5.2.

So in conclusion, in both aprotic polar and protic polar solutions, an increase in

hydrophilicity of the electrodes leads to an increase in specific capacitance.

As a comparison, a recent article gives a specific capacitance of 83 F/g using the

same 1M Et4NBF4-PC electrolyte and VANT arrays electrode (41). This finding is

in the same order of magnitude as what was found in this current study when using

the hydrophilic CNT array electrodes (88 F/g). While encouraging, this finding is

much smaller compared to another recent finding, where an extremely higher specific

capacitance up to 135 F/g was achieved (42). Such high specific capacitance was

achieved using either LiBF4 in ethylene carbonate/diethyl carbonate as the electrolyte,

and electrochemical lithium insertion into the nanotubular carbon host, or 6M KOH.

The results obtained in this study with 6M KOH were extremely lower than those

reported in the above mentioned article, which may probably be attributed to a different

quality of nanotubes. It was found that the VANT samples used in this study got

damaged quite easily by a high concentration of basic solution, thus lowering the overall

performance. Presumably a different growth recipes or growth techniques may give

better nanotubes that are able to resist such a strong electrolyte.
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5.2 Energy density and power density

While the specific capacitance is a good indication of the energy storage capability of a

capacitor, energy density and power density are commonly used as standard normalized

values.

The power density represents how much power the device can supply, while the

energy density corresponds to how long the device can supply the power. Power and

energy are respectively defined as follows:

P = CV
dV

dt
(5.1)

E =
1

2
CV 2 (5.2)

The power density (PD) and energy density (ED) are easily deduced by dividing

by the mass of the active material (VANT) with or without including the mass of the

current collector:

PD =
CV dV

dt

m
(5.3)

ED =
1

2

CV 2

m
(5.4)

Figure 5.3: Charge-discharge curves - VANTs, for a voltage window of [0-1.5V]
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Figure 5.4: Charge-discharge curves for a smaller potential window - Use of

VANT electrodes, for a voltage window of [0-1V]

The charge-discharge curves for the first three cycles are presented on figure 5.3. The

most striking feature that needs to be mentioned is the non-linear and non-triangular

shape, with a big drop at the beginning of the discharge period (see the ohmic drop on

figure 5.3). This ohmic drop is common with dissipative systems.

A much better shape of charge-discharge curve can be achieved if the potential

window is reduced to [0-1V], as seen on figure 5.4, even though it is still not perfectly

triangular as expected. Since the electrolyte used for this particular experiment was an

organic electrolyte, such a small potential window seemed peculiar and was unexpected.

Different explanations can be found for such behavior:

• Contamination with water, which explains why the potential window cannot go

past 1V. Recall the standard potential of the water electrolysis cell is -1.23 V at

25 ◦C at pH 0

• Other contamination with parts from the setup (maybe from the PTFE magnetic

stirrer bar employed for stirring the electrolyte).

• A chemical reaction between the glue in the copper tape and the electrolyte.

• A chemical reaction between the amorphous carbon from the samples and the

electrolyte.

Each of these hypotheses was thoroughly checked to discover the origin of the problem.
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1) Experiment to verify if there was a contamination with water

The potential window was progressively increased from [0-1V] to [0-2V], for different

current charge. The results obtained for different current charges are summarized on

table 5.1. If there was a contamination with water, the increase of a potential window

to [0-2V] should show a significant difference, since the standard potential of the water

electrolysis cell is -1.23V. No significant difference was observed, so water is not the

origin of the problem.

2) Other contamination

Different experiments were carried out by isolating every part from the setup that may

induce a chemical reaction. No difference was seen when the Teflon ring, the O-rings

inside the electrochemical cell and the electrolyte were replaced with the new ones.

The carbon tape cannot be held responsible since it was used before without yield-

ing this kind of chemical reaction.

3) Conclusion

The only remaining possibility is that there is an issue with the growth itself (defective

furnace) or with the deposition of Al2O3/Fe on the wafer. Both the furnace and the

electron beam evaporator have encountered some issues during the course of this study.

Further exploration revealed that the electron beam evaporator had been contami-

nated where some unknown metals were deposited on the wafer when the silicon wafer

was coated with iron and aluminium oxide. Such contamination inhibits the growth of

the nanotubes such that the length of the array is shorter than expected and achieved

before and the nanotubes are covered with amorphous carbon. This explains the inex-

plicable shape of the charge-discharge.

The specific capacitance in function of the discharge current is shown in figure

5.5. The values for specific capacitance were found using the formula 3.9 shown in

section 3.7. If only the active material is considered, the maximum specific capacitance

was found to be ∼1 kF/g with a discharge current density of 4.5 A/g. A comparable

specific capacitance of nearly 1000 F/g can be found with cyclic voltammetry with a

very low scan rate (around 0.15 mV/s) assuming the relation 4.1 holds for low voltages
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Figure 5.5: Specific capacitances of the nanotube array electrodes as a function

of discharge current density - For current densities below 1000A/g, a power law holds

as well. Such a very slow scan rate regime was not explored in this study. When taking

into account the mass of the overall device including the filter and current collector, the

maximum specific capacitance achieved is 0.8 F/g for a discharge current of 3.5 mA/g.

The specific capacitance decreases as increases the discharge current as reported by

previous studies (18). The specific capacitance decreases from 0.95 kF/g to 0.4 F/g as

the current discharge increases from 4.5 A/g to 2.5 kA/g. This behavior can mainly be

explained by the lower ionic mobility due to diffusion (35). One can highlight that the

specific capacitance decreases of around two orders of magnitude when the discharge

current is increased by only one order of magnitude. When the discharge current is low

enough, meaning below ∼1000A/g, a power law holds.

Using the results from the experiments using 1M Et4NBF4 electrolyte, the maxi-

mum energy density was found to be 21 Wh/kg at power density of ∼1.1 kW/kg for

a hydrophilic electrode, and the maximum power density was found to be ∼22 kW/kg

at energy density of ∼2 Wh/kg for a hydrophobic sample as seen on figure 5.6. This
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Figure 5.6: Ragone plot - Energy density in function of power density

plot was made using only the mass of the active material.

It is interesting to highlight the different behaviors between the functionalized

VANT electrode and the non functionalized one. When hydrophilic VANT electrode is

used, the obtained specific capacitance is higher, as already shown in figure 5.2. As a

result, the energy density of the hydrophilic samples is twice of that of the hydrophobic

electrodes. On the contrary, the power density is higher by a factor two when using

hydrophobic VANT array electrodes. PC here is used as a polar solvent (43) so the in-

teraction between the non-polar hydrophobic surface of the VANT array and the polar

electrolyte generates a very strong repulsion. When a current is applied, the induced re-

pulsion enhances the charge transport, and hence the power is increased. On the other

hand, when hydrophilic CNT arrays electrode are in contact with polar electrolyte,

dipole-dipole interactions are created between the ions and the nanotubes, which must

then be broken, resulting in a lower charge flow and thus lower power. These values of

power density and energy density were calculated using only the weight of the active

material, i.e. the VANT. However, if the weight of the overall components including

the current collector and filter is taken into account, a maximum energy density of 0.17
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Wh/kg at power density of 9 W/kg, and a maximum power density of 175 W/kg at

energy density of 15 mWh/kg are obtained. Even though these numbers are not that

attractive, one has to remember that copper is used as a current collector. Copper is

extremely heavy, about two orders of magnitude heavier than the VANT. This major

drawback could be overcome by using other lighter weight current collectors, as already

proposed by numerous other groups facing the same issue (44).

5.3 Lifetime
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Figure 5.7: Evolution of specific capacitance in function of cycles - The storage

ability is kept for tens of thousands of cycles

The lifetime of VANT based capacitor is extremely long, with nearly no change in

specific capacitance after being run for more than hundreds of thousands of cycles. The

figure 5.7 shows the last fifty thousand cycles, with no change in the specific capacitance

as well as in the discharge time. A couple of thousands cycles were needed to reach

the maximum value of specific capacitance, as further explained in the next part (see

chapter 6.2). The experiment was stopped after ∼130 000 cycles, not because of the
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degradation of the electrodes but because of time consideration. Indeed, it took several

days to run that many cycles. More extended work to find the full lifetime has to be

done. However, this work could not be achieved if the time is limited. A voltammogram

after the lifetime experiment was stopped at 100 000 cycles is shown in figure 5.8, and

neither any degradation of the electrodes nor any diminution in the capability to store

the energy is observed.

These findings are extremely encouraging, although the energy density is smaller in

comparison to an earlier reported study using nanotubes and silver nanowire films on

a highly conductive paper in a lithium-based electrolyte (LiPF6 in ethylene carbonate)

(45). However, these quality materials are extremely expensive and present some in-

herent danger due to their reactive nature. The working voltage range chosen here is

0-1.5V, which allows for a longer lifetime at the cost of a lower energy density.

Figure 5.8: Voltammogram after 100 000 charge-discharge cycles - The 50 cycles

are recorded at 100mV/s and are very stable over time, proof they can still perfectly store

the energy. Note that a few cycles are needed to reach the steady state, starting from the

open circuit current.
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5.4 Relation to oxygen-carbon ratio

Figure 5.9: Evolution of the specific capacitance in function of the hydrophilic-

ity - An increase of five orders of magnitude in specific capacitance is presented over an

increase of 2.5% to 7.5% oxygen. A solution of in 6M KOH is used.

The increase of specific capacitance in function of the degree of functionalization,

or in other words, the oxygen-carbon ratio, was investigated as well. This investigation

shows that the performance of a carbon-based supercapacitor can be determined by its

oxygen-to-carbon ratio.

An augmentation of nearly five orders of magnitude in the specific capacitance when

the nanotubes are functionalized with hydroxyl groups can be clearly seen, thence

increasing the oxygen-carbon ratio, as seen in figure 5.9. While this behavior was

assessed in an aqueous electrolyte (6M KOH), the behavior is expected to be similar

with an organic solvent. The experiment was repeated in 1M Et4NBF4 electrolyte, but

did not succeed because of issues with the samples.
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Table 5.1: Influence of the voltage window on the charge-discharge curves

Voltage

window

[V]

Current

charge

[mA]

Time to com-

plete 5000 cy-

cles [s]

Steady-state

discharge

time [s]

Plot of the first cycles

[0-1V]

10 75.31 0.005

50 9.99 0.001

100 8.00

<0.001

(resolution

limit)

[0-1.5V]

10 184.63 0.0186

50 24.70 0.0014

100 19.99

<0.001

(resolution

limit)

[0-2V]

10
3070

(51min10s)
0.1032

50 61.00 0.0031

100 21.90

<0.001

(resolution

limit)
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Chapter 6

Future work and perspectives

This final chapter explores different leads and perspectives for future

research.

6.1 Energy generation: solar cells

The initial goal of the project was be to build a solar cell using vertically-aligned carbon

nanotubes, based on a dye-sensitized solar cell platform.

The basic idea was to coat the vertically aligned carbon nanotubes with a layer

of semiconductor titanium dioxide (TiO2), whose role is to absorb the photon energy

coming from the sunlight. Upon light excitation, the dye produces excitons that disso-

ciates at the semiconductor-dye interface. The Coulomb force that maintains together

the electron and the hole will be gone for a very short period of time such that the

photo-excited electrons will then be transferred into the conduction band of the semi-

conductor and moved further towards the conducting plate (anode). On the other

hand, the oxidized dye molecules are regenerated (reduced) by the electrolyte, which is

commonly made of iodide/triodide redox couple.

The use of carbon nanotubes would have enhanced the transport of electrons and

thus increased the quantity of energized electrons after illumination. This energy gen-

eration project was however soon abandoned when very encouraging results were found

in the domain of energy storage.
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6.2 Plastic behavior of nanotubes

This part was the most exciting and promising part, and was not explored due to time

limitation. As previously stated, the specific capacitance was found to increase over

time, in a very discreet way. After a couple of thousands cycles, a sudden jump in the

specific capacitance was observed, where the value of the specific capacitance increases

significantly by an order of magnitude.

Mechanical effects or deformation looks like the reason for this sudden increase.

My hypothesis is that during charge and discharge, the CNT are deforming, an idea

already proven in the case of SnO2 nanowires by the article: ”In Situ Observation of

the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode”, (46). My guess is

that some ions from the electrolyte are continuously penetrating the inner shell of the

nanotubes, swelling them and increasing the diameter of the nanotubes until a critical

point is reached, where the CNT enter a plastic deformation regime where it cannot be

deformed anymore. The increase in volume induced by this plastic deformation, and

thus of surface area available for reaction, explains such increase in specific capacitance.

The hypothesis to be verified is that in the first thousands of cycles (this value differs

from one experiment to another), the ions from the electrolyte fill the interior of the

nanotubes until it is filled completely. The tube begins to swell gradually during the

next thousands or tens of thousands of cycles, where the increase in volume of the

nanotubes leads to the increase in specific capacitance observed in figure 6.1. A critical

point is then reached when the nanotube cannot extend itself any more, and becomes

brittle and distorted due to elongation in the vertical axis. It thus reached a plateau

and either goes on working well for the next thousands of cycles as seen in figure 6.1,

or breaks and fails, as seen in figure 6.2.

The way to check this hypothesis would be to run SEM, TEM and EDS before the

experiment, then to run a charge-discharge experiment for hundreds of thousands of

cycles. Once the experiment is stopped, the samples need to be dried with a critical

point dryer to avoid the formation of bundles and then be seen again under SEM, TEM

and EDS. A critical point drying is needed because when a liquid is introduced into

the empty space between the nanotubes, the surface tension of the liquid starts to pull
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Figure 6.1: Plastic behavior of the nanotubes after thousands of cycles

the nanotubes closer such that the Van der Walls interactions is strong enough to ag-

glomerate the VANT together, an effect known as ’zipping’ (47). A critical point dryer

avoid this effect by drying the nanotubes at the critical point temperature. Finally, a

second round of SEM, TEM and EDS is needed to check if the nanotubes is indeed

swelled, while the specific capacitance increased. Another (longer but more accurate)

idea would be to examine the sample under SEM, TEM and EDS every ten thousand

cycles to precisely correlate the increase of the diameter and length with the increase

of specific capacitance.

However, this extremely exciting idea could not be completely pursued for different
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Figure 6.2: Destruction of the CNT array electrode - A second plateau can never

be reached, the charge-discharge cycles break

reasons. First of all, the critical point dryer was part of another lab and it was difficult

to have an access to it on such short notice due to an additional training. And second,

this extremely time-consuming experiment would have required more than a month to

conduct, which I did not have.

6.3 Fullerenes

Fullerenes are molecules made of 60 carbon atoms arranged in a series of interlocking

pentagons and hexagons rings, forming a symmetrical spherical-shaped structure look-

ing like a soccer ball, as depicted in figure 6.3. It is the roundest and most symmetrical

large molecule known to man, and displays an astonishing array of amazing properties.

With graphite and diamond, it is the third major form of pure carbon, and fosters some

great promises in the field of energy storage.

In the same vein as the functionalization with -OH groups discussed previously,

functionalization with fullerenes seemed to be an interesting and promising idea. The

addition of fullerenes is expected to increase the overall surface area, and thus the stor-

age capacity since it is proportional to the surface area of the electrodes. In addition to

studying the effect of fullerenes themselves on as-grown nanotubes, it would have been
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Figure 6.3: Representation of a Fullerene molecule

interesting to see the effect of functionalization with both -OH groups and fullerenes

(hydrophilic nanotubes functionalized with fullerenes, HiCNTf ), and on hydrophobic

nanotubes functionalized with fullerenes (HoCNTf ). HiCNTf are expected to give the

best results, but different parameters are to be studied, thus it is still unsure if the

addition of fullerenes groups can enhance or impede the action of -OH groups.

Lack of time for training in the deposition of fullerenes on the nanotubes resulted

abandoning this interesting idea.

6.4 Gold particles

This subsection is drawn out from the idea presented in the article ”Nanoporous

metal/oxide hybrid electrodes for electrochemical supercapacitors” (44). This article

demonstrates that hybrid structures made of nanoporous gold and nanocrystalline

MnO2 possesses enhanced conductivity, resulting in a specific capacitance of 1145 F/g,

a value close to the theoretical value (a theoretical value of 1370 F/g is expected for a

redox process involving one electron per manganese atom (48). The nanoporous gold

allows electron transport through the MnO2, and facilitates fast ion diffusion between

the MnO2 and the electrolytes while also acting as a double-layer capacitor.

Such tremendous values for specific capacitance are extremely appealing, and the

idea of functionalizing carbon nanotubes with gold particles seems very promising.

However, this encouraging design had to be left behind for similar reasons as before:
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the training for depositing gold particles on the nanotubes was not possible in the

remaining set time.
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Chapter 7

Conclusion

This chapter provides a synthesis of the project and of its main results,

and draws a general conclusion to the overall project.

7.1 Summary of the main results

Carbon nanotubes have been extensively demonstrated to be an extremely effective

material for electrodes of energy storage devices due to their tremendous surface area,

high electronic conductivity, lightweight and the interesting ability to be functionalized

to optimize their capacitive properties. They are thus particularly well suited for use as

supercapacitors, which can release a huge amount of stored energy within a very short

period of time, thus making this device interesting for a vast range of applications.

The following results are worth being underlined:

• Through different electrolytes and multiple investigated parameters, carbon nan-

otube arrays were shown to be two to three times better than graphite in term

of specific capacitance.

• The surface functionalization with hydroxyl groups was demonstrated to be a

critical factor in both aqueous and non aqueous solutions to increase the specific

capacitance.
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• A maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a

hydrophilic carbon nanotube electrode could be easily achieved using tetraethy-

lammonium tetrafluoroborate in propylene carbonate. Respectively, a maximum

power density was found to be 22 kW/kg at energy density of 2 Wh/kg for a

hydrophobic carbon nanotube electrode.

These are encouraging results in the path of energy-storage devices with both high

energy density and power density, using only carbon-based materials for the electrodes

with a very long lifetime of more than hundreds of thousands of cycles.

7.2 Perspectives

Even though the performance obtained in this study is lower than what can be cur-

rently achieved using lithium-based electrolytes (average energy density of 45Wh/kg

for supercapacitors (45), and specific capacitance of ∼135F/g for CNT-based electrodes

(42), this carbon-based energy storage system still harvests a lot of advantages that

skirt these lower values. First of all because the carbon nanotubes, as well as the copper

and polypropylene filter, are inexpensive and are expected to be much cheaper in the

near future. Moreover, the small ecological print of this device should be highlighted

since most batteries use an electrolyte derived from lithium, which is not environmen-

tally sound. According to the latest report of Meridian International Research, the

mass production of lithium will cause great damage to endangered ecosystems (49).

Moreover, lithium-based batteries will almost entirely be dedicated to portable elec-

tronics, not towards large-scale batteries for transportation or industrial use because

the production can only sustain the portable electronics market (49). Thus, other ma-

terials for such large-scale batteries are yet to be found. This carbon-based energy

storage system is also much less dangerous, since it does not carry the set of reactivity

issues involved with lithium. The danger of a leak, leading to an explosion is not an

issue with lithium-free carbon based EDLC.

Finally, the potential range chosen does not allow tremendous energy and power

densities, but it does allow a lifetime of potentially more than hundreds of thousands

of cycles. In comparison, most articles report a potential range from 0 to 3V (45), but

the lifetime is only a few hundreds of cycles.
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