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d for the rigorous propagation of uncertainties in initial concentrations and in
dosing rates into the errors in the rate constants fitted by multivariate kinetic hard-modelling of
spectroscopic data using the Newton–Gauss–Levenberg/Marquardt optimisation algorithm. The method
was successfully validated by Monte-Carlo sampling. The impact of the uncertainties in initial concentrations
and in the dosing rate was quantified for simulated spectroscopic data based on a second and a formal third
order rate law under batch and semi-batch conditions respectively. An important consequence of this study
regarding optimum experimental design is the fact that the propagated error in a second order rate constant
is minimal under exact stoichiometric conditions or when the reactant with the lowest associated
uncertainty in its initial concentration is in a reasonable excess (pseudo first order conditions). As an
experimental example, the reaction of benzophenone with phenylhydrazine in THF was investigated
repeatedly (17 individual experiments) by UV–vis and mid-IR spectroscopy under the same semi-batch
conditions, dosing the catalyst acetic acid. For all experiments and spectroscopic signals, reproducible formal
third order rate constants were determined. Applying the proposed method of error propagation to any
single experiment, it was possible to predict 80% (UV–vis) and 40% (mid-IR) of the observed standard
deviation in the rate constants obtained from all experiments. The largest contribution to this predicted error
in the rate constant could be assigned to the dosing rate. The proposed method of error propagation is
flexible and can straightforwardly be extended to propagate other possible sources of error.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
It is a common trend in the chemical and pharmaceutical industry
to maximise yield and safety while minimising the waste produced
during manufacturing [1–3]. New processes need to be designed
accordingly and existing onesmay require re-evaluation of the process
conditions in order to meet new standards [4].

There are various techniques in order to optimise a reaction
process based on spectroscopic measurements. Soft-modelling meth-
ods such as principal component analysis [5], evolving factor analysis
[6] and alternating least squares [7–10] have no or limited predictive
capability. Predictive capability is possible for calibrationmethods [11]
such as principal component regression [5], partial least squares [12]
and neural networks [13]. However, these methods only allow for
interpolation within the calibration set and are not suitable for
extrapolation. The method used in this work, kinetic hard-modelling,
does allow for both interpolation and extrapolation when an
appropriate empirical or molecular rate law is applied reflecting the
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underlying reaction mechanism [14–19]. This task is facilitated by the
recent development of multivariate analytical in-situ devices and
optimisation algorithms [20,21].

For kinetic analysis via absorption spectroscopy (e.g. UV–vis and
mid-IR), two classes of model parameters can be distinguished based
on their relationship to the measured signal. Rate constants that
define the kinetic model and thus the concentration profiles are
nonlinear parameters with respect to the measured absorbance.
According to Beer's law, molar component spectra are linear
parameters that can be eliminated from the optimisation problem
[14]. It is then the task of optimisation algorithms to minimise the
difference between the experimental and modelled absorbance data.
In recent years, the Newton–Gauss-Levenberg/Marquardt (NGL/M)
algorithm that minimises this difference in the least squares sense has
become the method of choice to solve such problems [14,19,22–25].

As a gradient method, the NGL/M algorithm directly allows
estimation of the uncertainty in the fitted rate constants based on
the corresponding variance/covariancematrix from onemeasurement
only [24,25]. However, this calculation systematically underestimates
this uncertainty when compared to the one resulting from multiple
repetitions of the experiment under the same conditions.

Some other contributions to the uncertainty in the rate constants,
such as baseline shifts [26,27], spectral constraints in the least squares
[28] and preceding calibration procedures [29] have been studied.
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Fig. 1. Simplified scheme of the NGL/M algorithm used in kinetic hard-modelling.
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Also, bootstrapping has been compared to variance-covariance based
uncertainty calculations [30]. However, under strictly controlled
isothermal conditions, and provided the kinetic model is correct,
uncertainties in the initial concentrations and/or dosing rates (semi-
batch) are also likely to represent major contributing factors. To our
knowledge, these uncertainties have not yet been incorporated into a
kinetic hard-modelling procedure.

In the present article, the impact of these additional uncertain-
ties is investigated and quantified by classical error propagation. In
this context, based on some selected kinetic mechanisms, simu-
lated spectroscopic data are analysed under batch or semi-batch
conditions by the NGL/M algorithm combined with error propaga-
tion. This method was also applied to the reaction of benzophenone
with phenylhydrazine [31] and the predicted error in the rate
constant was compared to the uncertainty obtained from multiple
experimental repetitions. The reaction was followed by UV–vis
and mid-IR spectroscopy under strictly isothermal semi-batch
conditions.

2. Theoretical considerations

Kinetic modelling applied to spectroscopy relies on Beer's law to
decompose a measured signal into the concentration and the molar
spectra of the pure components. Beer's law can be written elegantly in
matrix notation.

Y ¼ CAþ R ð1Þ

where Y (nt×nw) represents the spectroscopic measurements, i.e. the
time and wavelength/wavenumber resolved absorbance signals, C
(nt×nc) the concentration profiles of the contributing species and A
(nc×nw) the pure component spectra, i.e. the molar absorptivities
multiplied by the path length. Here, nt is the number of reaction
times, nw the number of wavelengths/wavenumbers and nc the
number of absorbing species. The residual matrix R (nt×nw)
comprises the deviation from Beer's law due to inherent experimental
noise. It is assumed that the baseline does not change with time. For
details on the notation, we refer to Section 6.

The matrix of concentration profiles C are calculated by numerical
integration of the system of ordinary differential equations describing
the kinetic ‘hard’ model by elementary steps of the corresponding
chemical equations [17,32]. Note that C is a function of the selected
model, the rate constants k (1×nk), the initial concentrations c0
(1×nc) and the dosing (flow) rate f (1×nf); nk denotes the number of
chemical rate constants, nf is the number of different dosing steps. In
kinetic hard-modelling, c0 and f are treated as known a priori
information and generally not fitted.

R model;k; c0; fð Þ ¼ Y−C model;k; c0; fð ÞA ð2Þ

In least-squares analysis, the sum of squares, ssq, is calculated from
the residuals R and used as the objective function to be minimised by
iteratively changing k. The gradient-based Newton–Gauss–Leven-
berg/Marquardt algorithm (NGL/M) [14,19,22–25] is used to solve this
nonlinear regression.

ssq ¼ ∑
nt

i¼1
∑
nw

j¼1
r2i;j ð3Þ

Note that A is comprised by linear parameters only and can be
eliminated from the nonlinear optimisation by its linear least-squares
estimate according to Eq. 4 [14].

A ¼ CþY ¼ CTC
� �−1

CTY ð4Þ
whereC+denotes thepseudo-inverseofC. Importantly, baselinevariations
along thewavelengths/wavenumbers have no impact on the least squares
minimum, they only affect the fitted pure component spectra A.

Any gradient-based optimisation method requires the calculation
of a Jacobian, i.e. the first partial derivative of the residuals R with
respect to k. As this would lead to a three dimensional Jacobian, it is
convenient to unfold R into a long vector r (nt ·nw×1) [18]. Then, the
Jacobian J (nt ·nw×nk) can be calculated by a forward finite difference,
as illustrated by Eq. 5.

J ¼ Ar
Ak

� �
¼ Ar

Ak1

� �
Ar
Ak2

� �
: : : Ar

Aknk

� �� �
with

Ar
Aki

� �
≈
r kþ δkið Þ−r kð Þ

δki
ð5Þ

where ki is the i-th rate constant and δki the finite difference applied
to the i-th rate constant.

The Jacobian is used by the NGL/M algorithm to iteratively shift k
towards an optimum. For details see [17]. J is also used to approximate
the HessianH(nk×nk)≈ JTJ [19]. Based on the inverted HessianH−1, the
variance σki

2 associated with the i-th rate constant can be estimated
from the variance/covariance matrix.

σ2
ki
¼ di;iσ2

r ð6Þ

where di,i denotes the i-th diagonal element of the inverted HessianH−1.
The scalar σr

2, the variance of the residuals, is an estimate of the ‘true’
varianceσy

2 in themeasurementmatrixY, provided thenoise is normally
distributed and homoscedastic. It can be calculated from

σ2
r ¼ ssq

nt � nw− nkþ nc � nwð Þ ≈ σ
2
y ð7Þ

The denominator of this equation represents the degrees of
freedom, i.e. the number of experimental data points (nt ∙nw) minus
the number of fitted rate constants (nk) and fitted molar spectra of all
absorbing species (nc ∙nw).

Eq. 6 can be written in convenient matrix notation.

σ2
k ¼ diag H−1

� �
σ2

r ð8Þ

Note that in analogy to Matlab [33], the ‘diag’ operator extracts a
vector of diagonal elements from the corresponding matrix.
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The iterative process performed by the NGL/M algorithm in order
to optimise the vector of rate constants k is outlined in Fig. 1.

The vector of variances, σk
2, calculated by Eq. 8, only covers the

variances due to the residuals and the sensitivities of the rate
constants with respect to these residuals. However, other additional
sources of error are inherently present. Amongst these, the uncer-
tainties in the initial concentrations and in the dosing rates are likely
to have a significant impact on the variances of the calculated rate
constants, provided the temperature is constant during the reaction
and its fluctuation can be neglected. Eqs. 6 and 8 can be adapted to
consider these additional uncertainties by classical error propagation
[34].

σ2
ki
¼ di;iσ2

r þ ∑
nc

n¼1

Aki
Ac0;n

� �2

σ2
c0;n þ ∑

nf

m¼1

Aki
Afm

� �2

σ2
fm ð9Þ

or in matrix notation:

σ2
k ¼ diag H−1

� �
σ2

r|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼σ2

k;r

þdiag
Ak
Ac0

� �T

DIAG σ2
c0

� �
Ak
Ac0

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼σ2
k;c0

þdiag
Ak
Af

� �T

DIAG σ2
f

	 
 Ak
Af

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼σ2
k;f

ð10Þ

In Eq. 10, vectors σc0
2 and σf

2 contain the variances corre-
sponding to the initial concentrations c0 and to the dosing rates
Fig. 2. Simplified scheme to determine the inverted Hessian H−1 and the
f. The partial derivatives ∂k/∂c0 and ∂k/∂f comprise the sen-
sitivities of the rate constants with respect to the initial con-
centrations and with respect to the dosing rates. Throughout this
manuscript, we will refer to the first term of Eq. 10 as the var-
iance of k due to the residuals, σk,r

2 , to the second term as the
variance due to the initial concentrations, σk,c0

2
, and to the last

term as the variance due to the dosing rates, σk,f
2 . Note that the

upper case ‘DIAG’ operator generates a diagonal matrix from the
corresponding vector argument and thus performs the reverse
operation compared to the lower case ‘diag’ operator introduced
previously.

The sensitivity factors ∂k/∂c0 and ∂k/∂f were evaluated
numerically and estimated by the method of central finite dif-
ferences. The use of this method, as opposed to the forward finite
difference, was required to improve the numerical stability of the
derivatives.

Ak
Ac0;n

� �
≈
kopt c0 þ δc0;n; f

	 

−kopt c0−δc0;n; f

	 

2δc0;n

ð11Þ

Ak
Afm

� �
≈
kopt c0; f þ δfmð Þ−kopt c0; f−δfmð Þ

2δfm
: ð12Þ

The finite differences δc0,n and δfm used to calculate the deri-
vatives were set to 0.1% of the corresponding values c0,n and fm. This
derivatives (∂k/∂c0) and (∂k/∂f) calculated by the NGL/M algorithm.



Table 1
List of the mechanisms used to generate simulated data

Mechanism Rate lawa kb Order Dosing Section

A+B→P or Sc dct,P/dt=dct,S/dt=k ·ct,Act,B 0.5 2 No 4.1.1

A+B+C→P+C with C as catalyst dct;P=dt ¼ k � ct;Act;Bct;C− 1
Vt

dVt

dt

� �
ct;P

dct;C=dt ¼ 1
Vt

dVt

dt

� �
cdos;C−ct;C
	 
d

1.75 ·10−4 3e Yes 4.1.2

a The remaining derivatives can be calculated by closure.
b [LmoL−1s−1] for 2nd and [L2mol−2s−1] for 3rd order rate constants.
c Pure component spectra of P and S were generated to produce different overlaps with A and B (see Fig. 3).
d The change of volume per unit of time, dVt/dt, is the flow rate f associated with the dosing event for species C of dosed catalyst concentration cdos,C.
e Observed order due to a steady state assumption (see Section 4.1.2 for details).
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ensured the numerical stability for all examples presented in this
article. kopt refers to the calculated optimum rate constants that
minimise the residuals in the least-squares sense. For each finite
difference by which an initial concentration or the dosing rate is
modified, kopt has to be re-determined by the NGL/M algorithm. The
whole procedure is presented in Fig. 2.

As indicated by Figs. 1 and 2, error propagation problems of this
kind cannot be solved explicitly. This is due to the fact that outer
nonlinear regression coupled to the inner nested integration of rate
laws has no explicit solution except for some rare cases. Therefore an
iterative computation is required.

3. Simulations and experiments

3.1. Simulations

Additional contributions to the variance in the rate constant
according to Eq. 10 are first investigated with simulated mechanisms.
The simulated kinetic schemes considered here are summarised in
Table 1.

Note that we defer from an investigation of zero and first
order mechanisms. Formally, zero order kinetics depend on the
initial concentration. However, as the rate is constant, the rate
constant is linear with respect to the concentration profiles C.
Fig. 3. Pure component spectra as a function of wavelength. The spectrawere generated
using Gaussian functions centred at 0.25 (species A), 0.35 (P), 0.45 (B), 0.65 (C), 0.75 (S)
with a constant half width of 0.2. Species names correspond to the models given in
Table 1. For the sake of simplicity, component spectra are set to a maximum of one and
wavelengths are evenly distributed between 0 and 1.
Thus it cannot be distinguished (and separated) from the molar
spectra (that are also linear with C) within the fitting process
without a priori knowledge on the pure component spectrum of
the product. Incorporating a pure spectrum into the NGL/M fit-
ting would require the propagation of its associated uncertainty.
This was beyond the scope of this article. Naturally, first order
kinetics are independent from initial concentrations, i.e. the op-
timum of the NGL/M fitting is invariant to their change. There-
fore there is no associated error propagation for first order rate
constants.

Simulations were performed using Matlab [33]. Based on the
selected molecular mechanism, the initial concentrations and the
specified dosing rate, the corresponding system of differential
equations was integrated by a 4th order Runge–Kutta method
(Matlab's ode45 solver) resulting in the concentration profiles C for
the individual species. Pure component spectra A were generated
using Gaussian functions, displayed in Fig. 3. According to Eq. 1,
spectroscopic absorbance data Y were generated by multiplication of
C and A. Normally distributed noise with a constant absolute standard
deviation σy=10−4 was added, accounting for 0.01–0.02% relative to
the maximum absorbance of the corresponding Y.

For the second order mechanism in Table 1, data were simulated for
ten thousanddata points up to anend time representing95% conversion.
The third ordermodelwas chosen to correspond to themechanism, time
range, initial conditions, dosing rate and associated uncertainties that
were the basis for the analysis of the experimental data. The mean
optimum rate constant as determined from the fitting of all experi-
mentaldata (see3.2)wasused for the simulation (1.75·10−4 L2mol−2s−1).
Pure component spectra were used according to Fig. 3.

Using the third order model, the validation of the proposed
method for error propagationwas done by Monte-Carlo sampling. For
this, a set of 104 normally distributed initial concentrations and dosing
rates was generated. The means were chosen to be the same as the
experimental initial concentrations and dosing rate; the associated
standard deviations were taken from a preceding error estimation
covering the experimental preparation procedure (see 3.2 and
Appendix). For each of the Monte-Carlo samples the rate constant
was re-optimised. The standard deviation of these 104 calculated rate
constants was then compared to its prediction from the propagation
of the error in the mean initial concentrations and dosing rate.

3.2. Experiments

The reaction of benzophenone with phenylhydrazine under acidic
excess can be followed both in the mid-IR and UV–vis spectral range
[31]. The reaction scheme is given in Fig. 4.

3.2.1. Sample preparation
Seventeen solutions of benzophenone (Fluka purum, certified

99.9%) in THF (Across Organics for analysis) were prepared



Fig. 4. Reaction between benzophenone and phenylhydrazine catalysed by acetic acid to form benzophenone phenylhydrazone and water.

Fig. 5. Time resolved UV–vis (a) and mid-IR (b) absorbance spectra before dosing (light
gray curves) and after dosing (dark gray curves) with corresponding kinetic traces as
insets. The sudden changes in absorbance in the mid-IR region are due to dilution and
absorption from dosing of the catalyst acetic acid. In the UV–vis region only dilution
effects are observed during dosing.
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independently by weighing between 7.3022 g and 7.3027 g of
benzophenone into a volumetric flask and making up to 50 mL
with THF. Phenylhydrazine (Aldrich-Fine Chemicals, certified
99.6%) solutions were prepared by weighing between 13.0004 g
and 13.0010 g of phenylhydrazine into a 50 mL flask and making up
to 50 mL with THF. At the start, the reactor vessel was charged
with 15 mL of each solution and thermostated at 25 °C. This
resulted in initial concentrations between 0.40033 molL−1 and
0.40036 molL−1 of benzophenone, and between 1.19737 molL−1

and 1.19743 molL−1 of phenylhydrazine. Note that for calculation of
all concentrations, manufacturer's specifications for the purity
were considered.

Error estimation in these initial concentrations due to sample
preparation was performed by considering the following factors:
standard deviation due to weighing (±0.0001 g), due to filling the
volumetric flasks (±0.06 mL), and due to pipetting (±0.04 mL/
pipette). For details, see Appendix. As the differences in weighed
samples are very small, the impact of weighing is negligible
compared to filling the flask and pipetting. This leads to one
common set of initial concentrations with an associated uncertainty
of 0.292% for both compounds and all 17 experiments. Note that
manufacturer's uncertainties in the stated purity of the reactants
were not available and so were not propagated through the sample
preparation.

Initially, the dosing pump was calibrated at 8.17 mLmin−1 by
repeatedly weighing delivered volumes of water at 25 °C. The
corresponding standard deviation (0.14 mLmin−1) was close to the
manufacturer's specification (0.2 mLmin−1). For the dosed catalyst,
glacial acetic acid, only an error in the dosing rate was considered as it
was used directly from the bottle and there was no sample
preparation procedure involved. For each experiment, the pump was
filled at room temperature with 17.48376 molL−1 glacial acetic acid
(Carlo Erba Reagents for analysis, certified 100.0%). To initiate the
reaction, 4.91 mL of the acid were dosed into the reactor content
within 36 s. During the dosing period, a maximum temperature
change of 0.5 °C was observed.

Any potential volume expansion or contraction due to the
mixing of the reactant solutions was tested by the addition of
appropriate volumes of all three compounds into a graduated
cylinder. No deviation from volume additivity (15+15+5=35 mL)
was detected during the course of the reaction within the scale of
the cylinder (0.25 mL) or the overall uncertainty due to pipetting
(±0.20 mL).

3.2.2. Instrumentation
Experiments were carried out in the Combined Reaction

Calorimeter (CRC.v4) [35], a small-scale reaction calorimeter
that combines the principle of power compensation and heat
balance. It allows a maximum volume of 50 mL. Dosing was
done by a Jasco HPLC pump (model PU-1580). Power compen-
sation of the CRC.v4 is achieved by means of a compensation
heater made of Hastelloy immersed into the reaction solution.
The sensitivity of this compensation heater allows this calori-
meter to maintain highly isothermal conditions (±0.04 °C), a
prerequisite in order to minimise temperature effects on the
error propagation. The jacket temperature is kept constant by
Peltier elements. For a detailed description of the reactor, refer
to [35].
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Mid-IR signals were monitored between 1200 and 1650 cm−1 at
4 cm−1 resolution by Mettler Toledo's ReactIR 4000 system comprised
of an FT-IR spectrometer connected via a K4 conduit to an ATR-IR
crystal directly built into the bottom of the reactor vessel. UV–vis
signals were followed between 240 and 400 nm at 1 nm resolution by
a Cary 50 UV–vis spectrometer (Varian) coupled to a Hellma ATR-UV
dip probe (model 661.804) immersed into the reactor. UV–vis and
mid-IR signals were recorded simultaneously every minute for a total
of 150 min. Fig. 5 shows a representative example of absorbance
spectra acquired in the UV–vis and mid-IR range (solvent THF as
reference background). No measurements were taken during the
dosing period of 36 s.

4. Results and discussion

In the theoretical section, equations for error propagation were
derived in a general way, i.e. covering multi step mechanisms and
multiple dosing events. This required the use of a vector k for the
rate constants and a vector f for the flow rates. As examples
discussed in this section only comprise one step reactions and one
dosing event, vectors k and f collapse to scalars. However, for the
sake of simplicity, the vector notation (boldface lowercase) is
maintained. Thus, these vectors and their corresponding variances
contain one element only.

4.1. Simulated data

4.1.1. Second order model (A+B→P or S)
Second order reactions are amongst the most common reactions

(although often simplified to pseudo-first order for mathematical
ease). In the following, we investigate in detail the individual
contributions of Eqs. 9 or 10 that lead to a propagated error in a
second order rate constant. Batch conditions were considered (no
dosing), so there is no uncertainty to be propagated that corresponds
to a dosing rate and the third term of Eq. 10 can be disregarded. Thus,
the variance of the second order rate constant σk

2 is the sum of the
variance due to the residuals σk,r

2 and the variance due to the initial
concentrations σk,c0

2
.

To study the impact of these individual contributions to the
variance of the fitted rate constant, the ratio of the initial con-
centrations of reactants A and B was varied between 0.01 and 100
Fig. 6. Individual contributions σk,r
2 (dotted line) and σk,c0

2 (crossed line) to the variance
σk

2 (full line) of the fitted rate constant k as calculated from Eq. 10 for the second
order model A+B→P at various ratios c0,A/c0,B of the initial concentrations (c0,A+c0,B=
1 molL−1) and imposed uncertainties of σc0,A=0.2% c0,A and σc0,B=0.1% c0,B.
while keeping the sum of the initial concentrations of the two
reactants, ctot = c0,A+ c0,B, constant at 1 molL−1. Data with strongly
overlapped simulated component spectra were used here (product
P, see Table 1 and Fig. 3). As can be seen in Fig. 6, the variance σk

2

is dominated by σk,c0
2 , and σk,r

2 only plays a minor role at the
chosen noise level of the simulated data (σy=10−4). Both σk,c0

2 as
well as σk

2 show a sharp minimum at stoichiometric conditions (c0,A/
c0,B=1). Slight deviations from stoichiometric conditions lead to
an increase in σk

2 (and σk,c0
2

) whereas larger deviations (i.e. when
moving towards pseudo-first order conditions) to a subsequent
decrease.

However, in very large excess of either species (strong pseudo-first
order conditions), σk,r

2 becomes more and more prominent and
significantly adds to the total variance σk

2. This is due to the fact that
the concentration of the limiting species is gradually decreasing as is
the change in the absorbance. Eventually, it will reach the detection
limit and no kinetics can be observed within the noise level of the
instrument (σr≈σy).

Note that a significant increase in the noise level σy of the
simulated data matrix Y increases the contribution of σk,r

2 on σk
2

and distorts the characteristic shape of σk,c0
2 shown in Fig. 6 no

longer allowing for an interpretation. However, within one
or two orders of magnitude in the noise level, σk,c0

2 is hardly
affected.

For further interpretation of the variance due to the initial
concentrations (see Fig. 6), the factors contributing to σk,c0

2 are
investigated separately. According to Eq. 10, the variances in the
initial concentrations σc0

2 estimated by the experimenter weight the
partial derivatives of k with respect to these initial concentrations.
For this particular example, the variance σk,c0

2 is (∂k/∂c0,A) 2·σc0,A
2 +

(∂k/∂c0,B)2 ·σc0,B
2 . Fig. 7a shows that the vector σc0

2 = [σc0,A
2

,σc0,B
2 ] is

responsible for the asymmetry of σk,c0
2 in Fig. 6, reflecting the

difference in the relative errors imposed on the initial concentra-
tions. Minima and maxima in σk,c0

2 are due to the derivatives and
their interpretation or prediction is difficult as they are the result of
two preceding optimisations (NGL/M) required for the numerical
differentiation (see Fig. 2).

A dramatic decrease of the spectral overlap (product P replaced
by S, see Fig. 3) does not result in any observable effect on the
squared derivatives of Fig. 7b and thus was not further investigated.
However, a limited investigation on the effect of rate constant,
conversion and sum of the initial concentrations on σk,c0

2 revealed an
impact on the squared derivatives (∂k/∂c0,A)2 and (∂k/∂c0,B)2. From
an alternating variation of these parameters, the three following
observations were made: (a) an increase of the rate constant
narrows the minima and maxima of σk,c0

2 in Fig. 6 and increases
the derivatives; (b) with an increasing sum of the initial concentra-
tions of the two reactants the derivatives also increase but their
shape remains invariant; (c) both shape and magnitude of the
derivatives are influenced by the conversion. The greater the
conversion, the narrower becomes the minimum and the greater
are the derivatives.

Nonlinear optimisation problems generally do not have explicit
solutions. Therefore it is impossible to predict ∂k/∂c0 without the
numerical solution of the NGL/M algorithm. However, second
order rate laws can be integrated explicitly and may be used to
estimate some boundaries for these derivatives. In order to test
this, the concentration profiles resulting from the explicit in-
tegration [36] of the corresponding differential equations (see
Table 1) were rearranged for k and then derived analytically with
respect to the initial concentrations (see Appendix). These
obtained predicted derivatives do not reflect the impact of fitting
the absorbance data, i.e. they do not depend on Y, and are only a
function of the rate law and the corresponding set of ordinary
differential equations. Surprisingly, the analytical squared deriva-
tives of k with respect to the species in excess approximate the



Fig. 7. (a) Squared estimated uncertainties σc0
2 (full line σc0,A

2 , dashed line σc0,B
2 ) in

the initial concentrations and (b) squared derivatives of the fitted rate constant k with
respect to the initial concentrations (full line (∂k/∂c0,A)2, dashed line (∂k/∂c0,B)2) for the
second order model A+B→P at various ratios c0,A/c0,B and for c0,A+c0,B=1 molL−1.
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ones from the fitting towards strong pseudo-first order conditions
(far right or far left of Fig. 7b). In such conditions, the squared
derivatives of k with respect to the limiting species and to the
species in excess tend to zero and to (k/ctot)2 respectively.
These limits coincide with the analytical solution presented in the
Appendix. This is also the case at the stoichiometric ratio (c0,A/c0,B=1)
where the squared derivatives from the fitting can again be
predicted by their analytical solution, i.e. (k/ctot)2 for A and B (see
Fig. 7b).

Despite these limits, it is not possible to approximate ∂k/∂c0 by an
analytical equation due to an unpredictable impact of the nonlinear
fitting. Inparticular, the analytical derivation from the rate law requires
breaking the continuity of the derivatives towards stoichiometric
conditions, i.e. there are two different explicit functions that define the
squared derivatives at stoichiometric (c0,A=c0,B) and nonstoichio-
metric (c0,A≠c0,B) conditions. As the analytical squared derivatives
with respect to the species in excess tend towards infinity
approaching stoichiometric conditions, the two maxima close to
the stoichiometric point of Fig. 7b can be attributed to the fitting.

Figs. 6 and 7b suggest optimum experimental conditions when
the two reactants are mixed in stoichiometric ratio. At this ratio,
the impact of the errors in the initial concentrations on k is at its
minimum. However, due to the fairly steep increase in the vicinity of
the stoichiometric ratio (depending on the magnitude of the rate
constant, the total concentration and conversion, as discussed
above), it is preferable to choose pseudo-first order conditions to
perform the experiments. Each squared derivative of Fig. 7b is
weighted by its associated variance given in Fig. 7a to produce the
overall variance profile for the fitted rate constant of Fig. 6. So, the
species with the lowest associated uncertainty in its initial con-
centration should be used in excess (here species B). Naturally, these
findings go inline with experimental conditions often intuitively
followed by kineticists.

4.1.2. 3rd order model (A+B+C→P+C)
Due to collision theory, elementary reactions of third order are

rather unlikely. Nonetheless, empirical mechanisms of this order
can be observed and explained by a steady state approximation of
a more complex reaction [37]. A typical example taken from
homogenous catalysis is a fast pre-equilibrium between a reactant
A and a catalyst C to form a steady state complex AC that sub-
sequently reacts with another reactant B to form a product P and
to regenerate the catalyst C.
Aþ C±
k1

k−1
AC

AC þ BY
k2

P þ C:

ð13Þ

Application of the steady state approximation on AC under the
condition that k−1≫k2·ct,B results in an observed third order reaction
of the form

Aþ Bþ CY
k
P þ C with

dct;P
dt

¼ k � ct;Act;Bct;C ð14Þ

where k ¼ k1k2
k−1

is the observed third order rate constant. Under semi-
batch conditions, e.g. when catalyst C is dosed, Eq. 14 requires a
minor adaptation to take into account dosing and dilution (see
Table 1).

The proposed method of error propagation could be successfully
applied and validated for semi-batch data simulated by this third
order mechanism and subsequent nonlinear optimisations of the
rate constant, starting from various initial concentrations and flow
rates (for the dosed species C) normally distributed around their true
simulated values (Monte-Carlo sampling). The procedure for the
Monte-Carlo sampling has been described at the end of Section 3.1.
The fitted rate constant and its associated standard deviation
(1.75(2)±0.02(2) · 10−4 L2mol−2s−1) predicted by error propagation
(Eq. 10) is in perfect agreement with the mean and standard devia-
tion (1.75(2)±0.02(3) ·10−4 L2mol−2s−1) of the 10000 fitted rate
constants resulting from the Monte-Carlo sampling. This demonstrates
the formal correctness and the accuracy of the developed algo-
rithm to propagate the errors on the initial concentrations and on the
flow rate.

It is interesting to note that σk,f
2 , the variance due to the dosing

rate, contributes the most to the total predicted variance σk
2 and

represents the main source of uncertainty (~94%) whereas the
variance due to the initial concentrations σk,c0

2 only accounts for
~6%. The contribution of the variance due to the residuals (0.004%) is
basically negligible.

4.2. Experimental data

This section compares the uncertainties in the fitted rate
constant based on one experiment only predicted by Eq. 10
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with the ‘real’ one obtained from a collection of 17 independent
experiments. The acid catalysed reaction of phenylhydrazine with
benzophenone (Fig. 4) was repeatedly studied for this purpose by
UV–vis and mid-IR spectroscopy. For batch conditions under acidic
excess, it has previously been shown that this reaction follows an
overall second order rate law, i.e. first order in both reactants [31].
When the catalyst is dosed (semi-batch conditions), the third order
rate law as described in the previous section and in Table 1
(A: phenylhydrazine, B: benzophenone, C: acetic acid, P: benzo-
phenone phenylhydrazone) becomes applicable. Note that water, as
the by-product, has not been included into the kinetic analysis as it
is not required for the rate law and as its spectrum cannot be
separated from the pure spectrum of product P due to parallel
formation.

Fig. 8 compares fitted and measured kinetic absorbance traces at
selected wavelengths and wavenumbers for a typical experiment.
The sudden change in absorbance after 6 min corresponds to the
dosing of acetic acid. Fits were generally good with typical standard
deviations in the residuals, σr≈5 ·10−3 (UV–vis) and 5 ·10−4 (mid-
IR) explaining more than 99.9% of the total variance for both
signals.
Fig. 9. Fitted pure component spectra for benzophenone phenylhydrazone (solid line),
for benzophenone (dashed line), both combined with the spectrum of phenylhy-
drazine, and resolved pure spectrum of acetic acid (dashed dot line) in UV–vis (a) and
mid-IR (b).

Fig. 8. Comparison of fitted (lines) and measured (circles) absorbance traces in UV–vis
(a) and in mid-IR (b). Spectra between 0 and 6min are recorded before the dosing of the
catalyst.
Fitted pure component spectra are presented in Fig. 9 for a
typical experiment. Note that these spectra are normalised to
unity concentrations but not to unity path length as this dis-
tance is difficult to estimate for ATR probes. Because of the
intrinsic rank deficiency in the concentration profiles for third
order rate laws, only linear combinations of the pure component
spectra of A, B and P can be obtained [38,39]. Note that the
dosed catalyst C (acetic acid), although being a low UV–vis
absorber (λmax≈207 nm), was also included as an absorbing
component in order to allow for unavoidable small baseline
shifts during the dosing event (which also affects the mid-IR
spectrum of acetic acid). Due to rank deficiency mentioned
above, only the pure spectra of acetic acid in UV–vis and mid-IR
are resolved and can be compared to independently measured
spectra for validation. They were in very good agreement for
both UV–vis and mid-IR.

Table 2 summarises all fitted rate constants for the 17 kinetic
UV–vis and mid-IR experiments and their associated uncertainties
with (Eq. 10) and without (Eq. 8) propagating the errors in the
initial concentrations and in the flow rate. An analysis of



Table 3
Means of all individually fitted rate constants (columns 2 and 5 of Table 2) compared to
their literature values obtained from UV–vis and mid-IR spectroscopy

UV–vis Mid-IR

ka σk
a ka σk

a

Experimental 1.76(8) 0.02(8) 1.73(9) 0.05(4)
Predicted by error propagation – 0.02(3) – 0.02(2)
Literature 1.40b c 1.51b c

Standard deviations associated with columns 2 and 5 of Table 2 are compared to the
mean uncertainties predicted by error propagation (columns 4 and 7 of Table 2).
Numbers in brackets indicate the first insignificant digit.

a In L2mol−2s−1×10−4.
b For comparison, pseudo-second order rate constants of reference [31] have been

recalculated to third order rate constants by division with the excess catalyst
concentration given in [31].

c Not available.

Table 2
Fitted third order rate constants and associated uncertainties calculated with and
without error propagation for the reaction of benzophenone with phenylhydrazine
under semi-batch conditions studied by UV–vis and mid-IR spectroscopy

UV–vis mid-IR

ka σk without
error
propagationa,b

σk with error
propagationa,c

ka σk without
error
propagationa,b

σk with error
propagationa,c

# 1 1.75(6) 0.003 0.02(2) 1.74(5) 0.002 0.02(2)
# 2 1.76(6) 0.003 0.02(3) 1.73(0) 0.001 0.02(2)
# 3 1.74(4) 0.003 0.02(2) 1.66(1) 0.003 0.02(2)
# 4 1.75(7) 0.003 0.02(2) 1.72(3) 0.004 0.02(2)
# 5 1.75(2) 0.003 0.02(2) 1.74(8) 0.002 0.02(2)
# 6 1.76(1) 0.003 0.02(2) 1.70(6) 0.003 0.02(1)
# 7 1.78(8) 0.004 0.02(4) 1.76(8) 0.002 0.02(2)
# 8 1.85(2) 0.004 0.02(5) 1.83(5) 0.002 0.02(3)
# 9 1.76(2) 0.004 0.02(3) 1.78(1) 0.004 0.02(2)
# 10 1.76(7) 0.004 0.02(3) 1.78(4) 0.002 0.02(3)
# 11 1.79(2) 0.004 0.02(4) 1.81(2) 0.002 0.02(3)
# 12 1.78(6) 0.004 0.02(4) 1.73(7) 0.004 0.02(2)
# 13 1.76(1) 0.004 0.02(3) 1.75(5) 0.002 0.02(2)
# 14 1.77(7) 0.004 0.02(3) 1.77(4) 0.002 0.02(2)
# 15 1.75(5) 0.004 0.02(3) 1.71(3) 0.003 0.02(2)
# 16 1.71(0) 0.004 0.02(3) 1.62(4) 0.002 0.02(0)
# 17 1.77(8) 0.004 0.02(3) 1.67(2) 0.003 0.02(1)

Numbers in brackets indicate the first insignificant digit.
a In L2mol−2s−1×10−4.
b Based on Eq. 8.
c Based on Eq. 10.
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significance was performed using a z test on the calculated rate
constants. It showed that some few calculated rate constants were
just close to the significance level of 95% confidence. Removing
these values from such a small statistical sample (17 experiments)
is arguable and does not affect the subsequent conclusions that can
be made on the entire sample. This is why the entire statistical
sample was kept intact. Considering the 95% confidence limit, the
fitted rate constants and all associated uncertainties in Table 2 are
reproducible for both UV–vis and mid-IR. As expected, the
uncertainties of the individual rate constants predicted by error
propagation are significantly larger than those without error
propagation.

As shown in Table 3, the mean rate constants for UV–vis (1.76(8) ·
10−4 L2mol−2s−1) and for mid-IR (1.73(9) ·10−4 L2mol−2s−1) are the
same within their experimental standard deviation, and are com-
parable to previously published values reported for the same
temperature under batch conditions [31]. Differences could be
due to discrepancies in the ‘real’ nominal temperature, fluctua-
tions thereof, different experimental design (batch versus semi-
batch conditions) and a different method for kinetic data analy-
sis (PLS-calibration with subsequent direct fitting of concentration
profiles).

For UV–vis spectroscopy, the uncertainty predicted by error
propagation (σk=0.02(3) · 10−4 L2mol−2s−1) covers more than
80% of the experimental standard deviation over all individually
fitted rate constants (σk=0.02(8) · 10−4 L2mol−2s−1). This sug-
gests that the approach used to propagate uncertainties in
initial concentrations and flow rate is suitable. Possible sources
for the remainder could be attributed to effects such as minor
instrumental drifts (e.g. in baseline or flow rate) that have not
been modelled. Additionally, minor fluctuations in temperature
(σT

2≈0.04 °C) have an impact. Assuming, for example, an ac-
tivation energy between 50 and 100 kJmoL−1 (to our knowledge,
the true value is not known), a corresponding contribution
incorporated in Eq. 10 due to fluctuations in temperature, σk,T

2 =
diag((∂k/∂T)TσT
2(∂k/∂T)) with ∂k/∂T determined from Arrhenius'

law, would add between 2% and 8% to the total predicted error σk.
Note that the lack of information in manufacturer's uncertainties
in the purity of chemicals did not allow them to be taken into
account in the error estimate of the initial concentrations from the
sample preparation.

For mid-IR measurements, error propagation (σk=0.02(2) ·10−4

L2mol−2s−1) only explains approximately 40% of the experimental
uncertainty (σk=0.05(4) ·10−4 L2mol−2s−1) in the fitted rate con-
stant. All sources explaining the remaining contributions to the
experimental uncertainty listed for UV–vis certainly also apply to
mid-IR spectroscopy. One possible reason to explain the lower
error predictability observed for mid-IR (40%) compared to UV–vis
(80%) could be a generally larger sensitivity to temperature for
mid-IR spectroscopy. Another explanation could be a larger devia-
tion from the ‘silent’ assumption of normally distributed and
homoscedastic (i.e. constant standard deviation) noise in the
experimental mid-IR absorbance data used for the least squares
fitting [40]. This last statement was supported by multiple kinetic
fittings at single wavelengths/wavenumbers (with similar absor-
bance changes) for both UV–vis and mid-IR data leading to a
lower wavelength dependency of the residual noise level and of
the fitted rate constant for UV–vis. The residual standard
deviation of the noise in mid-IR spectroscopy is possibly less
constant along the wavenumbers. This could be counteracted by
an appropriate weighing of the residuals in Eq. 3 according to a
time and wavenumber dependent standard deviation in Y. This
method is often called χ2 (chi square) fitting. The χ2

fitting will
result in another experimental standard deviation in the rate
constants (over all 17 experiments) that needs to be compared
with their predicted uncertainties for each individual measure-
ment that will also be affected. Thus, the percentage of
experimental standard deviation explained by error propagation
will change accordingly. A similar effect has already been dis-
cussed by Maeder et al [19]. In practice, however, for time
resolved multivariate absorbance measurements it can be fairly
difficult to reliably determine the individual standard deviations
in Y as the access to the instrument control is generally rather
limited by the instrument manufacturer.

The total predicted variance σk
2 of the rate constant fitted to

the UV–vis or mid-IR measurements can be broken down into its
individual contributions (σk,r

2 , σk,c0
2 , σk,f

2 ) given in Eq. 10. For both
UV–vis and mid-IR, the variance due to the residuals, σk,r

2 , has the
lowest contribution (~2%), followed by the variance due to the
initial concentrations, σk,c0

2 that explains approximately 6% of
the total variance. Clearly the major contribution (~92%) is attrib-
uted to σk,f

2 , the variance due to the flow rate. This is in good
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agreement with the results obtained for simulated data based on
the same model discussed in section 4.1.2. Particularly for mid-IR,
the ‘real’ individual contributions might be somewhat different
due to possible heteroscedastic noise as outlined in the previous
paragraph.

5. Conclusion

The impact of uncertainties in the initial concentrations and
dosing rate (batch and/or semi-batch) on the error of rate constants
fitted by multivariate nonlinear regression of spectroscopic data
has been studied on simulated and experimental data following
2nd and formal 3rd order rate laws. For this, a rigorous approach
based on classical error propagation was developed and theoreti-
cally validated with simulated data by a ‘brute force’ Monte-Carlo
sampling. Rigorous error propagation required significantly less
computation time compared to the Monte Carlo procedure
(typically seconds compared to hours on a modern personal
computer).

Based on simulated data for a second order rate law under batch
conditions, the effect of the uncertainties in the initial reactant
concentrations on the predicted error of the fitted rate constant was
thoroughly investigated. It was shown that the predicted error in the
fitted second order rate constant is minimal when the reactants are
mixed in exact stoichiometric amounts, or if the species with the
lowest associated uncertainty in its initial concentration is in excess
(pseudo-first order conditions). These findings have an immediate
application in the optimum experimental design of second order
reactions.

The reaction of benzophenone with phenylhydrazine was
repeatedly investigated by UV–vis and mid-IR spectroscopy
under semi-batch conditions dosing the catalyst (acetic acid).
Each measurement was analysed individually using a third order
rate law and the standard deviation of each fitted rate constant
was predicted by the proposed method of error propagation. For
UV–vis, each individual predicted standard deviation covered
more than 80% of the experimental standard deviation over all
individually fitted rate constants. For mid-IR, the prediction was
only capable to explain approximately 40% of the experimental
uncertainty in the fitted rate constant. Possible reasons for this
lower error predictability could be a larger sensitivity to tem-
perature and/or stronger deviations from an assumed normally
distributed and homoscedastic noise for mid-IR compared to
UV–vis. Amongst the individual contributions towards the
predicted variance in the rate constant, the dosing rate has by
far the largest impact (~92%), followed by the initial concentra-
tions (~6%) and the variance due to the residuals (~2%). These
individual contributions are in good agreement with the re-
sults obtained for data simulated and analysed under similar
conditions.

The possibility to reasonably predict the error in the rate
constant based on one single multivariate kinetic measurement
was demonstrated. The proposed method of error propagation is
simple to implement and fast to perform in order to receive a quick
estimate of the error in the rate constant and the individual
contributions to this error. In practice, however, errors obtained
from error propagation should always be compared with the
experimental standard deviation obtained from a reasonable
number of replicates. One obvious advantage of the rigorous error
propagation is its ability to pinpoint the major source of error and
to quantify their impact onto the fitted rate constant. In the
presented case study, this would clearly be the dosing rate of the
pump. Furthermore, Eq. 10 can straightforwardly be extended to
also cover other sources of uncertainty provided reasonable error
estimates are available and can be propagated; for example,
manufacturer's uncertainties in the purity of the chemicals, if
available, could be included in Eq. 10 as a fourth term in the error
propagation.
6. Notation

As a convention for the notation used in this article, matrices are
written in boldface capitals (e.g. R), vectors in boldface lowercase (r)
and scalars in italics (r). For indices, lowercase characters are used.
Elements of a matrix R are denoted as ri,j and elements of a vector r as
ri.
Symbol
 Dimension
 Units
 Description
Y
 (nt×nw)
 Spectroscopic measurements

C
 (nt×nc)
 molL−1
 Concentration profiles

A
 (nc×nw)
 LmoL−1
 Pure component spectra

R
 (nt×nw)
 Residuals

r
 (nt ·nw×1)
 Vectorised residuals

J
 (nt ·nw×nk)
 Jacobian

H
 (nk×nk)
 Hessian matrix

k
 (1×nk)
 a)
 Rate constants

c0
 (1×nc)
 molL−1
 Initial concentrations

f
 (1×nf)
 Ls−1
 Dosing (flow) rates for the

different dosing steps

kopt
 (1×nk)
 a)
 Optimised rate constants

Δk
 (1×nk)
 a)
 Shift vector applied on k

σk

2
 (1×nk)
 b)
 Variances in the rate constants

σc0

2
 (1×nc)
 mol2L−2
 Variances in the initial concentrations

σf

2
 (1×nf)
 L2s−2
 Variances in the dosing (flow) rates

σk,r

2
 (1×nk)
 b)
 Variances of k due to the residuals

σk,c0

2
 (1×nk)
 b)
 Variances of k due to the initial
concentrations
σk,f
2
 (1×nk)
 b)
 Variances of k due to the dosing rates
diag( )
 Operator extracting a vector of
diagonal elements from a matrix
argument
DIAG( )
 Operator generating a diagonal matrix
from a vector argument
nt
 Scalar
 Number of reaction times

nw
 Scalar
 Number of wavelengths/wavenumbers

nc
 Scalar
 Number of absorbing species

nk
 Scalar
 Number of rate constants

nf
 Scalar
 Number of different dosing steps

Vt
 Scalar
 L
 Volume at time t

di,i
 Scalar
 i-th diagonal element of the inverted

Hessian H−1
σr
2
 Scalar
 Variance of the residuals R or r
σy
2
 Scalar
 Variance of the measurement Y
ssq
 Scalar
 Sum of squared residuals

A, B, C, P, S
 Chemical species A, B, C, P and S

ct,A, ct,B, ct,C, ct,P,
ct,S
molL−1
 Concentrations of species A, B, C, P
and S at time t
cdos,C
 molL−1
 Dosed concentration of species C

c0,A, c0,B
 Scalar
 molL−1
 Initial concentration of species A, B

ctot=c0,A+c0,B
 Scalar
 molL−1
 Sum of the initial concentrations

of species A and B

c0,A
flask, c0,Bflask
 Scalar
 molL−1
 Initial concentration of species A,

B in the flask

VA
flask, VB

flask
 Scalar
 L
 Volume of the flask containing
species A, B
VA
pip1, VB

pip1
 Scalar
 L
 Volume of species A, B
delivered by a 10 mL pipette
VA
pip2, VB

pip2
 Scalar
 L
 Volume of species A, B
delivered by a 5 mL pipette
Vtot
 Scalar
 L
 VA
pip1+VB

pip1+VA
pip2, VB

pip2
mA, mB
 Scalar
 g
 Weighed mass of A, B

MA, MB
 Scalar
 gmoL−1
 Molecular mass of A, B

X
 Scalar
 Conversion

tX
 Scalar
 s
 Time required to reach a conversion X

δki, δc0,n, δfm
 Scalar
 Finite difference applied to

ki, c0,n and fm for numerical
differentiation
a) Units depend on the order of the rate law ([molL−1s−1] for 0th, [s−1] for 1st, [LmoL−1s−1] for
2nd and [L2mol−2s−1] for 3rd order rate constants).
b) Units depend on the order of the rate law ([mol2L−2s−2] for 0th, [s−2] for 1st, [L2mol−2s−2]
for 2nd and [L4mol−4s−2] for 3rd order rate constants).
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Appendix A

1. Error estimation in the initial concentrations due to sample preparation

Errors in the sample preparation (as described in 3.2.1) for the reactants phenylhydrazine (A) and benzophenone (B) were determined by
propagating the following uncertainties of the equipment:
1. Weighing: σmA

=σmB
=0.0001 g

2. Filling the volumetric 50 mL flasks: σVA
flask =σVB

flask = 0.06 mL

3. Pipetting (pip1: 10 mL, pip2: 5 mL): σVA
pip1 =σVB

pip1=σVA
pip2=σVB

pip2 = 0.04 mL

For description of the variables we refer to the list of symbols. The initial concentrations (c0,A and c0,B) in the reactor were calculated according to:

c0;A ¼
cf lask0;A � Vpip1

A þ Vpip2
A

� �
Vtot

and c0;B ¼
cf lask0;B � Vpip1

B þ Vpip2
B

� �
Vtot

with cf lask0;A ¼ mA= MA � V f lask
A

	 

; cf lask0;B ¼ mB= MB � V f lask

B

	 

and Vtot ¼ Vpip1

A þ Vpip2
A þ Vpip1

B þ Vpip2
B

Rigorous error propagation is performed via the total derivatives of c0,A and c0,B:

σ2
c0;A ¼ Ac0;A

AmA

� �2

�σ2
mA

þ Ac0;A
AV f lask

A

 !2

�σ2
V f lask
A

þ Ac0;A
AVpip1

A

 !2

�σ2
Vpip1
A

þ Ac0;A
AVpip2

A

 !2

�σ2
Vpip2
A

þ Ac0;A
AVpip1

B

 !2

�σ2
Vpip1
B

þ Ac0;A
AVpip2

B

 !2

�σ2
Vpip2
B

σ2
c0;B ¼ Ac0;B

AmB

� �2

�σ2
mB

þ Ac0;B
AV f lask

B

 !2

�σ2
V flask
B

þ Ac0;B
AVpip1

B

 !2

�σ2
Vpip1
B

þ Ac0;B
AVpip2

B

 !2

�σ2
Vpip2
B

þ Ac0;B
AVpip1

A

 !2

�σ2
Vpip1
A

þ Ac0;B
AVpip2

A

 !2

�σ2
Vpip2
A

The variances of A and B have therefore the following expression:

σ2
c0;A ¼ σmA

mA

� �2

þ
σV flask

A

V f lask
A

 !2

þ 1

Vpip1
A þ Vpip2

A

−
1

Vtot

 !2

� σ2
Vpip1
A

þ σ2
Vpip2
A

� �
þ 1

Vtot

� �2

� σ2
Vpip1
B

þ σ2
Vpip2
B

� �0
@

1
Ac20;A

σ2
c0;B ¼ σmB

mB

� �2

þ
σV flask

B

V f lask
B

 !2

þ 1

Vpip1
B þ Vpip2

B

−
1
Vtot

 !2

� σ2
Vpip1
B

þ σ2
Vpip2
B

� �
þ 1

Vtot

� �2

� σ2
Vpip1
A

þ σ2
Vpip2
A

� �0
@

1
Ac20;B

2. Analytical derivatives of a second order rate constant with respect to the initial concentrations

The system of ODEs describing a second order rate law can be integrated explicitly [36] in order to obtain the concentrations of A and B at any
time tX, i.e. the time required to reach conversion X. Subsequent rearrangement for the rate constant k leads to:

k ¼ 1
tX c0;B−c0;A
	 
 � ln c0;B−c0;AX

c0;B 1−Xð Þ
� �

for c0;Abc0;B

k ¼ 2X
tX c0;A þ c0;B
	 
 � 1−Xð Þ for c0;A ¼ c0;B

k ¼ 1
tX c0;B−c0;A
	 
 � ln c0;A 1−Xð Þ

c0;A−c0;BX

� �
for c0;ANc0;B

The analytical partial derivatives of k with respect to c0,A and c0,B are given by the following expressions:

Ak
Ac0;A

� �
¼ k

c0;B−c0;A
	 
þ 1

tX
� X
c0;AX−c0;B
	 


c0;B−c0;A
	 


Ak
Ac0;B

� �
¼ −

k
c0;B−c0;A
	 
 − 1

tX
� c0;A
c0;B

� X
c0;AX−c0;B
	 


c0;B−c0;A
	 
 for c0;Abc0;B

Ak
Ac0;A

� �
¼ Ak

Ac0;B

� �
¼ −

1
tX

� 2X
1−Xð Þ �

1

c0;A þ c0;B
	 
2 ¼ −

k
c0;A þ c0;B
	 
 ¼ −

k
ctot

for c0;A ¼ c0;B

Ak
Ac0;A

� �
¼ k

c0;B−c0;A
	 
þ 1

tX
� c0;B
c0;A

� X
c0;BX−c0;A
	 


c0;B−c0;A
	 


Ak
Ac0;B

� �
¼ −

k
c0;B−c0;A
	 
 − 1

tX
� X
c0;BX−c0;A
	 


c0;B−c0;A
	 
 for c0;ANc0;B

Towards strong pseudo-first order conditions in B (c0,A≪c0,B):

lim
c0;AY0

Ak
Ac0;B

� �
¼ lim

c0;AY0
−

k
c0;B−c0;A
	 
 −c0;A 1

tX
� 1
c0;B

� X
c0;AX−c0;B
	 


c0;B−c0;A
	 
 !

¼ −
k
c0;B

¼ −
k
ctot
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Towards strong pseudo-first order conditions in A (c0,A≫c0,B):

lim
c0;BY0

Ak
Ac0;A

� �
¼ lim

c0;BY0

k
c0;B−c0;A
	 
þ c0;B

1
tX

� 1
c0;A

� X
c0;BX−c0;A
	 


c0;B−c0;A
	 
 !

¼ −
k
c0;A

¼ −
k
ctot
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