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The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs)
for nonlinear dimensionality reduction. LEMs have been used in spectral
clustering, in semisupervised learning, and for providing efficient state
representations for reinforcement learning. Here, we show that LEMs
are closely related to slow feature analysis (SFA), a biologically inspired,
unsupervised learning algorithm originally designed for learning invari-
ant visual representations. We show that SFA can be interpreted as a
function approximation of LEMs, where the topological neighborhoods
required for LEMs are implicitly defined by the temporal structure of
the data. Based on this relation, we propose a generalization of SFA to
arbitrary neighborhood relations and demonstrate its applicability for
spectral clustering. Finally, we review previous work with the goal of
providing a unifying view on SFA and LEMs.

1 Introduction

Many algorithms in machine and reinforcement learning suffer from the
curse of dimensionality. A common approach to this problem is to apply
dimensionality-reduction techniques that reshape the data into a lower-
dimensional and more convenient format. Linear dimensionality-reduction
techniques are computationally very efficient, but their use is limited in
cases where the data reside on curved manifolds embedded in a high-
dimensional input space. In this case, nonlinear dimensionality-reduction
techniques, although computationally more challenging, can allow a more
efficient compression of the data.

An important objective in nonlinear dimensionality reduction, which is
trivially fulfilled for linear approaches, is to conserve neighborhood rela-
tions in the original data. A technique that allows rich nonlinear mappings
while preserving these relations are Laplacian eigenmaps (LEMs; Belkin
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& Niyogi, 2003), also known as diffusion maps. LEMs find an embedding
of the data in a low-dimensional space by constructing a graph on the
data and finding the eigenvectors of the associated graph Laplacian. They
have found applications in several fields, including clustering (Ng, Jordan,
& Weiss, 2002; Shi & Malik, 2002; for a review, see von Luxburg, 2007)
and semi-supervised learning (Belkin & Niyogi, 2004; Zhou, Bousquet, Lal,
Weston, & Schölkopf, 2004), and they have recently been proposed for
finding state representations in reinforcement learning (Mahadevan &
Maggioni, 2007).

One limitation of LEMs is that the dimensionality of the graph Laplacian
scales with the number of data points. Therefore, the associated eigenvalue
problem can become intractable for large data sets. This problem can be
overcome by a reduction of the effective number of data points (e.g., by
constructing a reduced backbone graph or by Nyquist sampling) or by cal-
culating the eigenmodes in marginalized spaces by exploiting the relation
of the graph Laplacian to the Laplace operator (Fergus, Weiss, & Torralba,
2009).

Here, we show that for temporally structured data, the optimization
problem of the LEM method is formally equivalent to that of slow fea-
ture analysis (SFA), a nonlinear signal processing algorithm that aims at
minimizing temporal variations in the output signals. The neighborhood
function in the associated LEM problem is given by transition probabilities
and is therefore implicitly defined by the temporal structure of the data.
We then show that the SFA algorithm is a function approximation for the
full LEM problem. Based on this equivalence, we suggest a generalization
of SFA from temporal to arbitrary neighborhood relations and show in a
proof-of-concept simulation that it can provide a good approximation of
LEMs while offering a considerable reduction in computational complex-
ity. Finally, we provide a selective review that puts previous work on SFA
in relation to the LEM literature.

2 Laplacian Eigenmaps

LEMs are a J-dimensional representation yt ∈ R
J of a set of T data points

xt ∈ R
N. Because we focus on data in the time domain, we use the index t

to enumerate the data points. The algorithm used to calculate the LEM rep-
resentation consists of two steps. First, an undirected graph is constructed
with the data points xt as nodes and an adjacency matrix Wtt′ that assigns
weights to the edges between the nodes. The adjacency matrix Wtt′ is usu-
ally determined by either a heat kernel Wtt′ ∼ exp(−|xt − xt′ |2/(2σ 2)) or a
binary representation of the graph structure, that is, Wtt′ = 1, if there is an
edge between xt and xt′

and Wtt′ = 0 otherwise.
Second, given the adjacency matrix, the representation yt is determined

using a sequential optimization of the component vectors y j = (y1
j , . . . , yT

j ).
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The optimization aims at minimizing the cost function

�(yj) =
∑
t,t′

Wtt′ (yt
j − yt′

j )2, (2.1)

under the constraint that∑
t,t′

Dtt′ yt
i yt′

j = δi j for i ≤ j . (2.2)

Here, Dtt′ = δtt′
∑

s Wts is a diagonal matrix that contains the degree of the
data points xt on the diagonal, and δi j denotes the Kronecker symbol. The
optimization is sequential in the sense that the first component, y1, is opti-
mized first (the only constraint being the normalization induced by equation
2.2 for i = j = 1); then y2 is optimized (with the orthogonality constraint
2.2 with respect to the first vector y1), then y3, and so on. Note that LEMs
assign a representation yt to each data point xt individually; that is, they do
not provide a smooth functional mapping between the input data and the
representation.

The optimization problem can be reduced to solving a generalized eigen-
value problem for the components y j (Shi & Malik, 2002):

Lyj = λjDyj. (2.3)

Here, L = D − W is the graph Laplacian. The eigenvalue problem corre-
sponds to calculating the right eigenvectors of the so-called normalized
graph Laplacian D−1L. There are alternative approaches, which either do
not normalize the Laplacian (this corresponds to a similar constraint as
in equation 2.2, but with the unit matrix Dtt′ = δtt′ ) or apply a symmetric
normalization (L → D−1/2LD−1/2). Note that the dimension of the graph
Laplacian is given by the number of data points. For large data sets, the
eigenvalue problem 2.3 can become intractable and requires approximate
methods that reduce the dimensionality of the problem.

The cost function � aims at preserving neighborhood relations by pun-
ishing large differences yt

j − yt′
j for neighboring points, that is, for points

with large edge weight Wtt′ . For temporally structured data, where subse-
quent data points are often neighbors, this has the effect that the embedding
yt , when treated as a time series, varies smoothly in time.

3 Slow Feature Analysis

Whereas embeddings yt that vary smoothly in time are a natural conse-
quence of the smoothness objective in LEMs, they are the explicit goal of
SFA (Wiskott & Sejnowski, 2002). SFA aims at minimizing temporal vari-
ations in a set of output signals yt

j = g j(x
t ) generated from a given time-

dependent, vectorial input signal xt . The optimization is performed on the
functions gj, which are constrained to lie within in a given function space F .
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How quickly a signal y j varies in time is quantified by the �-value, which
is defined as the mean square of the temporal derivative �(y j) := 〈(ẏt

j)
2〉t .

Because the data are typically sampled in discretized time, the derivative
is often replaced by the difference ẏt

j ∼ yt+1
j − yt

j. To avoid the trivial con-
stant solution and degeneracies arising from possible additions of arbitrary
constants, the output signals are constrained to have zero mean and unit
variance. Just as for LEMs, the optimization is performed sequentially with
an asymmetric decorrelation constraint: g1 is optimized first, yielding the
slowest possible signal y1. Next, g2 is optimized under the constraint that its
output signal y2 is decorrelated from y1, y3 has to be decorrelated from y1
and y2, and so on. Iterating this scheme yields a set of functions gj ordered
by slowness, that is, by their �-value.

Mathematically, this optimization problem can be formulated as follows:

Sequential optimization problem. Given a function space F and an N-
dimensional, time-dependent input signal xt , find a set of J real-valued input-output
functions g j(x) such that the output signals yt

j := g j(x
t ) minimize

�(y j) = 〈(
ẏt

j

)2〉
t (3.1)

under the constraints
〈
yt

j

〉
t = 0 (zero mean), (3.2)

〈(
yt

j

)2〉
t = 1 (unit variance), (3.3)

∀i < j :
〈
yt

i y
t
j

〉
t = 0 (decorrelation and order), (3.4)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y,
respectively.

The optimal functions can be found in a computationally efficient way.
Usually the function space F is defined by choosing a set of basis functions
fα that span F . All possible output signals can then be generated by a linear
superposition of the output signals zt

α = fα(xt ) of the basis functions fα :

yt
j =

∑
α

Vjαzt
α = V j · zt . (3.5)

The zero mean constraint is enforced by subtracting suitable constants
from the basis functions such that the mean of their output signals van-
ishes: 〈z〉t = 0. Alternatively, one can drop the zero mean constraint and
include the constant function in the function space F . The slowest output
signal is then always the constant, and all other functions must have zero
mean to meet the decorrelation constraint with the constant. Finding the
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slowest possible output signals y j amounts to finding the optimal coefficient
matrix V.

The objective function and the constraints are quadratic in the coefficient
matrix V, as they are for LEMs, so that the solution of the optimization
problem can be reduced to a generalized eigenvalue problem (Berkes &
Wiskott, 2005):

ĊV = CV� , (3.6)

where C := 〈zzT〉t and Ċ = 〈żżT〉t are the covariance matrices of signals z
and their temporal derivatives, respectively. � is a diagonal matrix that
contains the eigenvalues λ j on the diagonal. The optimal functions are
given by g j = ∑

α Vjα fα , and the associated eigenvalue λ j is the �-value
of the function gj. Note that in contrast to LEMs, the dimension of the
covariance matrices scales with the dimension of the function space rather
than the number of data points.

4 SFA and Laplacian Eigenmaps

4.1 Equivalence of SFA and LEMs. We now show that in the limit
of large data sets with temporal structure, the objective functions of SFA
and LEMs are equivalent when the neighborhood function for the LEM is
determined by the transition probabilities of the data.

Let us assume that the data are elements of a set S, which could be either
a finite set or a manifold. We represent the distribution of the data on S
and their temporal dynamics by the joint probability p(x, t; x′, t + 1) of two
subsequent data points. To ensure that temporal averages are equivalent
to ensemble averages, we assume that the dynamics are stationary, that is,
p(x, t; x′, t + 1) = p(x, x′) is independent of t. If we replace the temporal
derivative by the difference between subsequent data points, as usually
done in SFA, and the temporal average in the objective function 3.1 of SFA
by a weighted average over the points in S, we get the objective function in
the limit of infinitely many data points,

�(g) =
∑

x,-x∈S
p(x, x′)(g(x) − g(x′))2, (4.1)

where �(g) denotes the �-value of the signal g(xt ) that arises from applying
the function g to the input signals. If S is a manifold, the sum is replaced by
an integration.

For LEMs, we assume that the data points xt are drawn from the marginal
distribution p(x) = ∑

x′ p(x, x′) on S. Moreover, we can interpret the map-
ping from the data points xt to the embedding yt as a function yt = g(xt ).
Again, taking the limit of many samples, the sample average in the objective
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function � for the LEMs can also be replaced by a weighted average on S,
yielding:

�(g) =
∑

x,x∈S
p(x)p(x′)W(x, x′)(g(x) − g(x′))2. (4.2)

Here, we assumed that the edge weights Wtt′ are determined by a neigh-
borhood function W(x, x′). The two objective functions have the same
mathematical structure and become identical if the neighborhood func-
tion W(x, x′) that measures the topological relations for the LEMs is chosen
according to the joint probability distribution for subsequent data points:

W(x, x′) = p(x, x′)
p(x)p(x′)

= p(x′|x)

p(x′)
. (4.3)

This adjacency function assigns a large weight if the probability of visiting
x′ at time t + 1 given x at time t is large compared to the marginal probability
of visiting x′, independent of the last point. SFA can therefore be thought
of as an LEM problem in which neighborhood relationships are implicitly
defined by the temporal structure of the data.

Although the objective functions become identical for a specific choice of
the adjacency function, the optimization problems are different. In LEMs,
the representation yt can be chosen individually for each data point xt . In
SFA, in contrast, the functions gj that map the input data xt to the embedding
yt are chosen from a given function spaceF . Consequently, the optimization
problems for LEMs and for SFA are equivalent only if the function space F
is sufficiently rich to allow arbitrary mappings.

For poorer function spaces, SFA becomes a function approximation to
the full LEM problem. The quality of the approximation depends on the
character of the function space F .

4.2 Generalized SFA. Due to the close relation between SFA and LEMs,
it is straightforward to devise an algorithm that captures the key properties
of the two approaches: arbitrary neighborhood relations as in LEMs and
the computational tractability of SFA. To this end, let us assume that some
neighborhood function has given rise to a graph Laplacian L. To get a func-
tion approximation in the spirit of SFA, we approximate the eigenvectors
y j of the Laplacian by a linear superposition of basis functions fα :

yt
j =

∑
α

Vjα fα(xt ). (4.4)
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With this ansatz, the objective function 2.1, and the constraint 2.2, for LEMs
can be rewritten in terms of the coefficients Vjα :

�̃(Vjα ) =
∑
α,β

VjαL̃αβVjβ, (4.5)

∑
α,β

ViαD̃αβVjβ = δi j for i < j . (4.6)

Here L̃ and D̃ denote the reduced Laplacian and degree matrices:

L̃αβ :=
∑
t,t′

fα(xt )Ltt′ fβ (xt′
) =

∑
t,t′

Wtt′ ( fα(xt ) − fβ (xt′
))2, (4.7)

D̃αβ :=
∑
t,t′

fα(xt )Dtt′ fβ (xt′
) . (4.8)

The eigenvalue equation associated with this optimization problem has the
same structure as that for the original SFA problem, equation 2.1, just with
the matrices L̃ and D̃ instead of the covariance matrices C and Ċ:

L̃yj = λjD̃yj . (4.9)

Note that the original optimization problem of SFA can be recovered by
using the neighborhood function Wtt′ = (δt,t′+1 + δt+1,t′ ). In this case, the
Laplacian Ltt′ = 2δtt′ − (δt,t′+1 + δt+1,t′ ) is simply a discretized version of the
second temporal derivative.

This algorithm is a generalization of SFA in the sense that it replaces
temporal with arbitrary neighborhoods while maintaining the algorithmic
elements of SFA. Being a hybrid algorithm, however, it could with equal
right be referred to as a function approximation of LEMs.

One advantage of generalized SFA over LEMs is that the mapping from
the input signals to the embedding is explicitly provided as a function.
Therefore, the solution can be applied to new data without the need for an
interpolation between known data points.

4.3 Hierarchical Function Approximations. In SFA, richer function
spaces are often generated by a hierarchical iteration of simpler functions
(Wiskott & Sejnowski, 2002; Franzius, Sprekeler, & Wiskott, 2007; Franzius,
Wilbert, & Wiskott, 2008). This approach reduces the computational com-
plexity for high-dimensional input signals and tends to avoid overfitting
problems (Wiskott & Sejnowski, 2002). A hierarchical iteration for the gener-
alized SFA algorithm introduced in the previous section is straightforward
and takes the form shown in algorithm 1.
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Algorithm 1: Hierarchical Generalized SFA

Step 1. Perform a nonlinear expansion zt
α

= f
α
(xt ) of the input signals in a given

function space F .
Step 2. Calculate the reduced Laplacian and degree matrices L̃ and D̃ by projecting the

full Laplacian (which is the same on all levels) onto the expanded signals:
L̃

αβ
= ∑

tt′ zt
α

Ltt′ z
t′
β

.
Step 3. Solve the generalized eigenvalue problem 4.9 for the reduced matrices.
Step 4. Calculate the output signals yt = Vzt , keeping only the n signals that correspond

to the n lowest eigenvalues.
Step 5. If the hierarchy has additional levels, use the output signals yt as input signals

for the next level and return to step 1. Otherwise return the output signals as a
terminal output signal of the hierarchy.

Of course, the function space and the number of output signals that are
passed on to the next level of the hierarchy can be chosen individually for
each layer when suitable.

Because of the similarity of SFA and LEMs, one would expect that such
an approach can gradually approach the solution of the full LEM problem.
In the following, we provide anecdotal evidence that this is indeed the case
by suggesting a novel, hierarchical approach to spectral clustering.

Example: Hierarchical spectral clustering. Spectral clustering approaches
rely on the observation that if the adjacency matrix W contains no edges
between different clusters, the first eigenvectors of the associated Laplacian
are constant within the clusters and maintain their variance by interclus-
ter differences. Thus, the LEM representation tends to separate clusters
and thereby simplifies subsequent clustering by standard techniques (von
Luxburg, 2007).

We tested the idea of a hierarchical approximation of the full LEM prob-
lem by hierarchically applying generalized SFA to a simple clustering task
on two intertwined semilunar data clouds (see Figure 1). Each level of the
hierarchy performs generalized SFA for the function space of all polyno-
mials of degree 3. The adjacency matrix was calculated using an isotropic
gaussian neighborhood function (σ = 0.05). It is reused on all levels. On
each level, only the four output signals corresponding to the smallest eigen-
vectors are passed on to the next level. Figure 1 shows the dependency of
the first output signal on the depth of the hierarchy for a test data set. As
the depth increases, the output signal approaches a constant value within
each cluster, with different values for the two clusters. Clearly clustering
becomes simple on such a representation of the data.

The algorithm requires the solution of several eigenvalue problems
with relatively low-dimensional matrices (here: 4 signals + polynomial
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expansion of degree 3 → 34 dimensions) instead of a single eigenvalue
problem with the high dimensionality of the data points (in our case, 2000
dimensions) that would have to be solved for the full LEM solution. The
number of data points enters only in the calculation of the reduced Lapla-
cians, with a computational complexity that scales quadratically with the
number of data points instead of the third power associated with eigen-
value problems. For sparse adjacency matrices and Laplacians, there are, of
course, more efficient algorithms that solve the eigenvalue problem, but in
this case, the calculation of the reduced Laplacians can also be simplified
with sparse matrix multiplication techniques. Therefore, an approximation
of LEMs by hierarchical iteration of generalized SFA promises considerable
reductions in computational complexity.

Note that the highest layer effectively calculates a polynomial of degree
34 = 81. The space of polynomials of degree 81 in two input dimensions
is 3403-dimensional. Therefore, trying to find the solution in this space
directly would be computationally more costly than the full LEM problem
(matrix dimension 3403 instead of 2000) and highly prone to overfitting
because the dimension of the function space is larger than the number of
data points. The hierarchical approach evades both of these problems.

5 Earlier Work

In this section, we provide a selective review of previous work on SFA and
LEMs, with the goal of a knowledge transfer between researchers working
in these two domains.

5.1 Optimal Output Signals. As Wiskott (2003) showed, the optimal
output signals for SFA are harmonic oscillations in time. This result was
derived for the case where the dependence of the output on the input data
is neglected, but the same harmonic oscillations are generated if the function
space that SFA can access is sufficiently rich to allow independent values
for the output signal for each data point in time. Because this is the case for
LEMs, it is not surprising that a similar statement can be made for LEMs if
adjacency is determined by temporal neighborhood.

Let us assume that the entries of the adjacency matrix depend on only the
time difference between the data points: Wtt′ = w(t − t′), where w is an ar-
bitrary positive function. Clearly the entries of the Laplacian L = D − W
then also depend on the time difference only. This class of matrices is
known as Toeplitz matrices, and it has been shown that as the size of
such a matrix increases, the eigenvectors of the matrix converge to har-
monic oscillations (Böttcher, Grudsky, Maksimenko, & Unterberger, 2009),
with eigenvalues that are given by the Fourier transform of the temporal
neighborhood function w. Therefore, the eigenvectors for LEMs with tem-
poral adjacency are also harmonic oscillations. As a consequence, the idea
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of temporal neighborhood is not straightforward to incorporate in LEMs
because they would overfit to the trajectories.

5.2 Protovalue Functions and SFA for Reinforcement Learning. One
of the central problems of reinforcement learning (RL) is that the speed of
learning decreases quickly with the complexity of the environment, that
is, with the number of states the agent can visit. A popular way out of
this dilemma is to approximate the relevant state-dependent quantities
(be it a value function or a policy) by a function approximator and learn
merely the parameters of the approximator (Sutton & Barto, 1998). An
unfortunate aspect of this approach is that the function approximation has
to be chosen with care, because its properties critically influence the learning
performance of the agent.

Recently both SFA and LEMs were suggested as a data-driven choice
of such a function approximation. Mahadevan and Maggioni (2007) used
an exploration phase of the agent to learn an LEM embedding—so-called
proto-value functions (PVF)—of complicated state spaces, which was then
used as a basis for the function approximation. Independently, Legenstein,
Wilbert, and Wiskott (2010) trained a hierarchical SFA network on high-
dimensional visual input that shows the moving agent. The state represen-
tations learned in this way were then used as function approximations for
standard RL algorithms and showed substantial performance gains over
standard function approximations. The demonstrated relation of SFA and
LEMs shows that the approach of Legenstein et al. (2010) is closely related
to the PVF approach of Mahadevan and Maggioni (2007). The advantage of
SFA in this context is that no explicit knowledge about the state of the agent
is required. Instead, the input signals can be arbitrary sensory data because,
according to earlier theoretical results (Franzius et al., 2007), the state rep-
resentation is largely independent of how the states are represented in the
input. In constrast, LEMs are not easy to apply to sensory data directly,
because the appropriate metrics in the sensor space is not always obvious
(e.g., for visual input data).

5.3 Function Approximations. Generalized SFA provides a function
approximation approach to LEMs that can lead to a significant reduction in
computational complexity. Unfortunately, this comes at a conceptual cost:
the freedom of choice for the function approximation. This choice can have
a drastic impact on how well the real LEMs are approximated, yet there
is no clear rationale which approximation scheme is suitable for the data
at hand. For SFA, polynomial expansions are popular, although they often
require a failsafe step that clips exceedingly large output signals that arise
from outliers in unknown data (Franzius et al., 2007). A possible reason that
polynomials perform relatively well is that for gaussian input distributions,
the optimal functions are Hermite polynomials of the input (Sprekeler, Zito,
& Wiskott, 2010).
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Other function approximation schemes with localized basis functions
(e.g., radial basis functions) may be more robust to outliers, but for high-
dimensional input signals, they are problematic because a large number
of basis functions is needed for a decent approximation of the delocalized
functions that typically arise in both SFA and LEMs.

The strength of hierarchical function approximations lies in their
tendency to overcome the curse of dimensionality and reduce the risk of
overfitting. A detailed discussion of the advantages and drawbacks of hi-
erarchical function approximations has been provided elsewhere (Wiskott
& Sejnowski, 2002).

5.4 Supervised Learning. Both SFA and LEMs have been used as pre-
processing for supervised classification. There are technical differences,
though, which are worth highlighting.

5.4.1 SFA. Classification problems usually do not offer any temporal
structure, while SFA has no place for a supervision signal. The trick that
makes SFA suitable for supervised learning nevertheless is to smuggle
the supervision signal into the input statistics by defining temporal se-
quences that dominantly contain transitions between stimuli of the same
class (Berkes, 2005; Klampfl & Maass, 2010). The matrix of transition prob-
abilities between the stimuli then has a block structure, with one block for
each class. Consequently, the adjacency matrix and Laplacian of the associ-
ated LEM problem also have a block structure, so that the first eigenvectors
are constant within the classes. Classification with SFA thus uses the same
idea as spectral clustering, but with a hand-engineered adjacency matrix
that reflects the supervision signal.

5.4.2 LEMs. The approach used for SFA, to hand-engineer the adjacency
matrix to incorporate the supervision signal, is unsuitable for LEMs because
it would lead to tremendous overfitting. Instead, LEMs are used to learn the
topological structure of the input data in an unsupervised fashion, followed
by standard classification algorithms. The advantage of this approach is
that the output of the LEMs captures the manifold structure of the data, so
that good generalization can be achieved even when the class affiliation is
known only for a small fraction of the input data (semisupervised learning;
Belkin & Niyogi, 2004; Zhou et al., 2004; Fergus et al., 2009).

5.5 Relation to the Laplace Operator. In the limit of a large data set
from a smooth manifold M, both SFA and LEMs were shown to yield eigen-
functions of a Laplace-type differential operator on the input manifold. For
LEMs, it was shown that in the large-sample limit, the graph Laplacian (with
the normalization we consider here) converges to the Laplace-Beltrami op-
erator on the manifold (Hein, Audibert, & von Luxburg, 2007; Belkin &
Niyogi, 2008). For SFA, it was also shown that the optimal functions are
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the eigenfunctions of a generalized Laplace operator (Franzius et al., 2007)
on the input manifold. (The appendix provides a moment expansion-based
derivation that links SFA and LEMs to the Laplace operator.)

5.6 Manifolds of Statistically Independent Signals. Based on the man-
ifold results for SFA, it was recently shown that if the manifold can be
parameterized by statistically independent signals, the output signals fac-
torize into functions that depend on one of the independent signals each
(Sprekeler et al., 2010). This result forms the basis of a recent extension of
SFA for nonlinear blind source separation (Sprekeler et al., 2010). A similar
factorization statement has been made for LEMs (Fergus et al., 2009), and
an LEM-based approach to nonlinear blind source separation has also been
presented (Singer & Coifman, 2008). Interestingly, Singer and Coifman ob-
served that the factorization statement is true only when the neighborhood
function is locally adapted to the data, so that the main axes of the gaussian
neighborhood function align with the “local directions” of the independent
components. SFA does this adaptation automatically: the neighborhood
function corresponds to the conditional probability for neighboring data
points, which factorizes for statistically independent signals, resulting in
main axes that automatically align with the independent components. On
the other hand, the approach of Singer and Coifman (2008) has the advan-
tage that it can be applied to blind source separation problems that have no
temporal dynamics.

6 Conclusion

We have shown that spectral techniques, that is, LEMs and diffusion maps,
are closely related to SFA if the input data have a temporal structure.
Based on this relation, we have presented a generalization of SFA that
can be hierarchically iterated. In a simple application to spectral cluster-
ing, we have illustrated that hierarchical networks of generalized SFA can
be seen as a function approximation for LEMs that provides significant
reductions in computational complexity. Finally, we selectively reviewed
previous work, showing that the two techniques have been applied in
similar settings, and highlighting similarities and differences in their use.
The relation between the two techniques provides a new perspective on
SFA.

Appendix: Derivation of the Associated Generalized
Laplace Operator

Both the optimal solutions of SFA and LEMs are eigenfunctions of a Laplace
operator. One way of showing this is by a moment expansion of the
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respective objective functions for the limit case of infinitely many data
points,

�(g) =
∫∫

M×M
p(x)π(x, x′)(g(x) − g(x′))2 dx dx′ , (A.1)

with π(x, x′) = p(x|x′) for SFA and π(x, x′) = p(x′)W(x, x′) for LEMs.
We now make the assumption that the function π(x, x′) has significant

deviations from 0 only for x ≈ x′. For SFA, this requires that subsequent
data points are close to each other, so this is basically an assumption of
continuity. For LEMs, it means that the neighborhood function that defines
the adjacency matrix is sufficiently localized.

Because the integrals in the objective function are dominated by x ≈ x′,
we can then replace g(x′) by a Taylor approximation to first order: g(x′) ≈
g(x) + (x′ − x) · ∇g(x). Inserting this into the objective function and carrying
out the integration over x′ yields

�(g) =
∫

M
p(x)(∇g(x))TK(x)∇g(x) dx, (A.2)

where K(x) is the matrix of the second moments of π(x, x′):

K(x) =
∫

π(x, x′)(x − x′)(x − x′)T dx′ . (A.3)

The constraints (see equations 2.2, 3.3, and 3.4) can also be written in integral
form

∫
M

ζ (x)gi(x)g j(x) dx = δi j , (A.4)

with ζ (x) = p(x) for SFA and ζ (x) = p(x)
∫

p(x′)W(x, x′) dx′ for LEMs.
Since we are dealing with a constrained optimization problem, we can

use the method of Lagrange multipliers and transform the problem into
that of finding the stationary points of the Lagrange function,

L(gi) = �(gi) −
∑
j≤i

ηi j

∫
M

ζ (x)gi(x)g j(x) dx , (A.5)

where ηi j are Lagrange multipliers.
Using the same variational calculation as in Franzius et al. (2007), it can

now be shown that the optimal functions gj for which L becomes station-
ary are the solutions of a partial differential eigenvalue problem with von
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Neumann boundary conditions:

−∇ · p(x)K(x)∇g j(x) = η j jζ (x)g j(x), (A.6)

p(x)n(x) · K(x)∇g j(x) = 0 on the boundary, (A.7)

where n(x) is the field of normal vectors on the boundary of the manifold.
The Taylor approximation that was necessary for this derivation is ap-

propriate if the spatial extent of the function π (the square of which is
represented in the eigenvalues of K) is smaller than the spatial scale on
which the function g varies. Because both LEMs and SFA are aiming pri-
marily at smooth functions, this assumption is most likely fulfilled for the
low-eigenvalue solutions of the problem. Significant differences between
the eigenfunctions of the full problem and the eigenfunctions of the ap-
proximate differential operator will appear only for higher-order functions,
which vary on a scale of the same order as or smaller than the characteristic
width of π .
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