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Abstract

Time-delays are common in many physical and biological systems and they give rise to complex dynamic phenomena. The
elementary processes involved in template biopolymerization, such as mRNA and protein synthesis, introduce significant
time delays. However, there is not currently a systematic mapping between the individual mechanistic parameters and the
time delays in these networks. We present here the development of mathematical, time-delay models for protein
translation, based on PDE models, which in turn are derived through systematic approximations of first-principles
mechanistic models. Theoretical analysis suggests that the key features that determine the time-delays and the agreement
between the time-delay and the mechanistic models are ribosome density and distribution, i.e., the number of ribosomes
on the mRNA chain relative to their maximum and their distribution along the mRNA chain. Based on analytical
considerations and on computational studies, we show that the steady-state and dynamic responses of the time-delay
models are in excellent agreement with the detailed mechanistic models, under physiological conditions that correspond to
uniform ribosome distribution and for ribosome density up to 70%. The methodology presented here can be used for the
development of reduced time-delay models of mRNA synthesis and large genetic networks. The good agreement between
the time-delay and the mechanistic models will allow us to use the reduced model and advanced computational methods
from nonlinear dynamics in order to perform studies that are not practical using the large-scale mechanistic models.
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Introduction

Time-Delays in Mathematical Biology
Time-delay models are common in mathematical biology, as is

demonstrated by the use of mathematical models incorporating

time-delays in a wide range of applications. These include

population dynamics, the chemostat, neural networks, blood cell

maturation, transcriptional regulator dynamics, virus dynamics

and genetic networks [1–9]. In the context of protein synthesis in

genetic circuits, time-delay arises from the series of steps required

between the expression of individual genes to the production of the

corresponding protein. The main processes that contribute to the

time delay are promoter induction, mRNA transcription,

transport, splicing and processing, as well as protein translation.

Complex dynamical behavior can arise as a consequence of

time-delays in a system. Biological systems with significant time

delays may exhibit limit cycle oscillations and chaos [10]. In

addition, incorporating time delays in models of gene networks is

often essential to capture the whole range of dynamic behavior.

For example, a single self-repressed gene has been observed in

experiments to display oscillatory behavior which cannot be

captured by models that ignore the time delay required to obtain a

finished protein from the expressed gene. However, this oscillatory

behavior is reproduced by a mathematical model in terms of time

delayed differential equations [7–9]. In addition, mathematical

analysis that ignored time-delays led to the erroneous conclusion

that oscillations were not possible for this single gene, and this

conclusion led to a potentially misleading hypothesis [11].

Gene regulatory circuits possess incredibly diverse functions.

They function as molecular switches, molecular clocks or as

sensors which are able to discriminate noise in the input [12–14].

One goal of synthetic biology and metabolic engineering is the

design of synthetic networks with desired circuit functionalities

[15,16]. The efficient design of these circuits requires guidelines

obtained from mathematical models that account for the essential

mechanistic details of the system through a systematic framework.

The time delays associated with mRNA and protein expression are

usually significant for the complex dynamics of gene regulatory

circuits and must therefore be incorporated into the mathematical

models in a systematic fashion.

Background
We focus on the mathematical modeling of protein synthesis

(translation), which is central to cellular processes and gene

networks. Translation is divided conceptually into three stages:

initiation, elongation and termination (Figure 1). First, the
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ribosomal subunits bind at the initiation site of the mRNA and

assemble the ribosome (initiation). Then, in a repetitive manner,

the ribosome adds one amino acid to the partial polypeptide chain

and it translocates one codon forward (elongation). Finally, the

ribosome reaches the stop codon and detaches from the template

releasing the completed protein molecule (termination). Many

molecular components are required for translation, all working in

conjunction. Furthermore, several ribosomes go through the

elongation process simultaneously on the same mRNA chain,

forming a structure called polysome, or polyribosome, which can

be visualized [17], and can be quantified using biochemical and

biophysical methods [18,19]. Polysome size refers to the number

of ribosomes bound to a particular mRNA at one time. The

protein translation components comprise around half the dry

weight of the cell and up to 80% of its energy.

Mathematical models of protein synthesis have used many

diverse approaches and incorporate different levels of mechanistic

detail. In [20], the authors developed a deterministic Markov

model for RNA transcription and protein translation. In this

model, the DNA and mRNA templates can only be bound with

either a single RNA polymerase or a single ribosome, respectively.

They obtain a compartmental model in which DNA and mRNA

templates flow between compartments as the degree of transcrip-

tion or translation advances without explicitly accounting for the

dynamics of RNA polymerases and ribosomes. The work of

MacDonald et al., [21,22], was one of the first instances in which

the dynamics of ribosomes on the mRNA was explicitly

considered. The model is written in terms of deterministic rate

equations for the ribosomal fluxes on the mRNA templates and

captures ribosome sequestration on the chains. The studies of

several authors and the model extension by Heinrich and

Rapoport has provided a good understanding of the effect of

ribosome dynamics in protein translation [23–25]. More recent

studies have concentrated on performing genome-scale analysis of

expression levels and on including the effect of the sequence of

reactions that occur at each elongation step [26–29].

Stochastic effects in genetic circuits and protein translation have

also been considered [30–37]. Efficient algorithms and software

packages exist for the stochastic modeling of large-scale chemical

systems, and in particular, for gene regulatory networks [38–44].

Ribosome elongation has also been modeled as a driven gas in a

one-dimensional lattice with hard-core repulsion, the so-called

totally asymmetric exclusion process (TASEP) with stochastic

dynamics [45–50]. The TASEP model has demonstrated that the

translation system is capable of undergoing both first and second

order phase transitions, exhibiting jumps in the ribosomal density

and current [51,52]. It is possible to view the protein translation

models of [21–23] as a TASEP with deterministic dynamics in

terms of ODEs with a mean field approximation. Other studies

have concentrated on developing reduced stochastic models of

gene regulatory networks. One possible reduction approach is to

lump chemical processes such as transcription and translation and

model them via time-delays [53–56]. This model reduction has

shown that stochastic effects in a gene regulatory network may

induce behaviors not captured by a deterministic formulation [53].

A detailed consideration of ribosome dynamics in protein

translation usually leads to models with large numbers of

differential equations, complicating the mathematical analysis.

For this reason, when modeling genetic circuits mathematically, it

is common practice to use heuristic arguments and consider

protein synthesis as proportional to the amount of mRNA present,

on occasion including a time delay [5–9,15,16]. However, it is well

known that mRNA and protein levels do not display an exact

correlation [57–60], and that the complex coupling of ribosome

dynamics with protein synthesis is at least partly responsible for

this. The rate of protein synthesis is related to the ribosome

loading of its mRNA, though this loading shows high variability

across mRNA species [61]. Moreover, it has been shown in

experiments that the concentration of free ribosomes is limiting for

protein synthesis in E. coli [62], and computational studies suggest

that the translation machinery is very sensitive to this concentra-

tion [27], as well as to the kinetic parameters of the translation

process. Well established experimental techniques are able to

measure translation rates and monitor time courses of protein

Figure 1. Schematic view of the translation process.
doi:10.1371/journal.pcbi.1000726.g001

Author Summary

Genetic networks display exceedingly complex and rich
behavior which is modulated by multiple mechanisms,
including many diverse types of interactions between
DNA, mRNA and protein molecules. Mathematical models
of gene networks must necessarily consider the essential
mechanistic details of the processes involved in order to
make reliable predictions. However, even though the
description of the process becomes more accurate as more
mechanistic details are incorporated into the mathematical
model, the added mathematical complexity will make it
difficult to parameterize and extract information from such
models given the limited amount of experimental data.
Protein synthesis is precisely one of the phases in the
network machinery where certain mechanistic details are
important and should thus be taken into account. Here, we
develop a methodology to reduce a mathematical model
for protein synthesis by performing approximations on a
mechanistic model, retaining the essential details of the
process. Our methodology opens up the possibility of
utilizing powerful mathematical tools, such as bifurcation
analysis, for understanding the complex dynamics dis-
played by genetic networks and design strategies for
metabolic engineering and synthetic biology.
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levels, [63–65], and these techniques allow the observation and

quantification of non-negligible translational time delays [64]. All

this evidence suggests that the commonly used modeling

framework of taking the protein synthesis rate to be proportional

to the delayed concentration of mRNA, while useful to obtain

some information on the behavior of genetic circuits, is not

suitable in situations where ribosome dynamics are known to be of

importance. This motivates the use of more detailed modeling that

accounts for the mechanistic details of the elementary steps of

translation.

Objectives of Present Study
We present here a systematic mathematical framework for the

development of a delay differential equation model of template

polymerization, such as mRNA and protein synthesis. Our focus

has been primarily on protein translation, which represents the

main source of delay in bacteria where transcription and

translation occur simultaneously. The framework is based on

systematically approximating a mechanistic mathematical model

of ordinary differential equations (ODEs), first derived in [21–23],

by a continuum model in the form of a partial differential equation

(PDE) model and showing rigorously that this PDE model is

completely equivalent to a time delay model. This time-delay

model is a generalization of the model proposed heuristically in

[23].

The delay model derived here offers many advantages. First, the

systematic framework guarantees that all relevant aspects of the

mechanistic model are preserved in the approximation, and it

allows a systematic investigation of the validity of the approxima-

tions. Second, our reduction of the mechanistic model provides a

powerful conceptual picture in which the essential aspects of

protein translation are preserved and the numerous mechanistic

parameters are condensed into the essential parameters of the

process. Third, the time-delay model circumvents the impracti-

cality of the large number of ODEs of the mechanistic model and

the framework developed here is amenable to well known

computational tools for bifurcation analysis of delay differential

equations [66] (manuscript in preparation). This type of analysis

allows us to efficiently explore the system’s behavior in extensive

regions of parameter space. Fourth, the delay model is easily

parametrized and the rigorous map between parameters of the

time-delay and mechanistic models may be complemented by

using well known experimental methods for obtaining the time

delay resulting from protein translation [63,64].

Methods

Background: Mechanistic Model of Protein Synthesis
The mechanistic model for protein translation of Heinrich and

Rapoport [23], takes into account the sequestration and dynamics

of ribosomes on mRNA templates. These are essential aspects of

the process as it has been shown experimentally and computa-

tionally that free ribosomes limit protein synthesis in E. coli [27,62].

The model has been shown to capture qualitative and quantitative

aspects of the process, such as steady state and dynamic

agreement, as well as the ribosomal distribution along the mRNA

molecule [23,25,31]. Commonly used models of protein transla-

tion cannot capture these aspects because they do not describe the

detailed translation process.

The model described in this section is a version of a TASEP

model with deterministic dynamics in terms of ODEs, where a

mean field assumption was made. In contrast with typical TASEP

models, which consider either constant initiation rates or periodic

boundary conditions, the present model considers a finite pool of

ribosomes and their initiation rate is a function of the free

ribosomes.

The model of [21–23] has the form of an ODE system and

considers M identical mRNA molecules, each with N codons, and

RT total ribosomes, both per unit volume. Ribosomes are modeled

as hard bodies that cover L(~12) codons on the mRNA chain.

The variables of the system are the probabilities that each codon j
is occupied by the front of a ribosome and denoted by xj(t),
j~1, . . . ,N. Explicitly, we look at all copies of a single-species

mRNA and take xj as equal to the total number of ribosome fronts

on codon j on all mRNA copies, divided by the total number of

copies.

Treating variables as continuous functions of time, the system

dynamics is described by the following system of ODEs

M
d

dt
(x1)~VI{V1: ð1aÞ

M
d

dt
(xj)~Vj{1{Vj , j~2, . . . ,N{1 ð1bÞ

M
d

dt
(xN )~VN{1{VT , ð1cÞ

where VI is the initiation rate, Vj , for j~1,2, . . . N{1, the

elongation rates, VT the termination rate and M the concentra-

tion of mRNAs.

The initiation rate, VI , is given by

VI~kI M 1{
XL

s~1

xs

 !
RT{M

XN

s~1

xs

 !
ð2Þ

and it is proportional to the number of mRNA molecules with a

free initiation site, M 1{
PL

s~1 xs

� �
, and to the number of free

ribosomes, RT{M
PN

s~1 xs

� �
, whose number decreases due to

ribosomes occupying the template. We denote the initiation rate

constant by kI .

The elongation and termination fluxes, Vj and VT , respectively,

are given as

Vj~MkEjxj

1{
PL
s~1

xjzs

1{
PL{1

s~1

xjzs

, j~2, . . . ,N{L, ð3aÞ

Vj~MkEjxj , j~N{Lz1, . . . ,N{1, ð3bÞ

VT~MkT xN , ð3cÞ

where kEj and kT are the elongation and termination rates

constants, respectively, and the fraction in Eq. 3a approximates to

the conditional probability that codon jz1 is empty given that j is

full and it accounts for steric hindrance. This factor is absent from

Eqs. 3b and 3c since ribosomes unbind once their fronts reach

codon N and therefore there is no hindrance effect for the last L
codons.

Time-Delay in Template Biopolymerization Models
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The reactions in the model are assumed to be irreversible and

the reversible association of ribosomes from its subunits is not

explicitly modeled. Dilution of concentrations due to cell growth is

not included in the model. In general, the reaction rate constants

kI , kEj , kT and total ribosome concentration may be time-

dependent as the additional chemical components involved in

initiation, elongation and termination may vary in time. For E. coli,

typical ranges for the kinetic parameters and other relevant

quantities in the model are given in Table 1.

The protein production rate is equal to the rate of ribosomes

terminating at the last codon and it is described by the following

equation

dP(t)

dt
~kT MxN (t), ð4Þ

where P(t) is the protein concentration.

Some additional fundamental quantities in the mechanistic

model are the concentration of bound ribosomes

RB:M
XN

s~1

xs, ð5Þ

and the related ribosome density, defined mathematically as

r:
L

N

XN

s~1

xs, ð6Þ

which represents the fraction of the mRNA covered by ribosomes.

In terms of the bound ribosome concentration, the mean polysome

size is simply RB=M.

Results

Parameter and Variable Non-dimensionalization
We first introduce new dimensionless variables and parameters

for the system, using characteristic values for the total ribosome

concentration, RTc, the elongation rate constant, kEc and the

mRNA codon number, Nc, (Table 2). We define:

(i) The dimensionless mRNA, ribosome and protein concen-

trations:

m~M=RTc, rT (t)~RT (t)=RTc, p(t)~P(t)=RTc ð7Þ

through the scaling by the characteristic value for the total

ribosome concentration, RTc.

(ii) The dimensionless time variable:

~tt~
t

tNc

, ð8Þ

scaled by the time it takes to synthesize a completed protein,

tNc~
Nc

kEc
. A ribosome located at codon j with codon jz1

empty will elongate in a time
1

kEj

, where kEj is the elongation

rate constant. The total elongation time for an mRNA of Nc

codons is therefore tNc~
PNc{1

j~1

1

kEj

z
1

kT

. The scaling

chosen follows after considering kEj ,kT*kEc, j~
1,2, . . . N{1. Henceforth, the tilde in the non-dimensional

time variable is omitted for notational convenience.

(iii) The dimensionless, time-dependent, rate constants of

initiation, elongation and termination:

a(t)~NckI RTc=kEc, ð9aÞ

bj(t)~NckEj=kEc, j~1,2, . . . N{1, ð9bÞ

c(t)~NckT=kEc, ð9cÞ

Table 1. Typical translation parameters for E. coli.

Notation Description Typical Value References

M mRNA concentration 1400 molecules/cell volume [67,68]

– Single mRNA species copy number 10–100 molecules/cell volume [68]

RT Total ribosome concentration 7,000–70,000 molecules/cell volume [67,68]

RB Bound ribosome concentration 0.8 :RT [68]

N mRNA size v100–1700 codons [92]

L Ribosome length 12 [67,93]

kI Initiation rate 1:10{4{4:10{4 cell volume/seca –

kEj Elongation rate at codon j 10–20 amino acids/sec [67,68]

kT Termination rate 10–20 amino acids/seca –

– Time between initiation events 3.2 sec [69]

– Space between translating ribosomes 40–80 codons [68]

r Density 0.15–0.3b –

aValue chosen to yield uniform distribution of ribosomes [27]. Experimental observations show that initiation is the rate limiting step of translation [18] and [19]. This
yields steady state ribosome distributions with low and nearly uniform amplitude along the mRNA chain [23].
bInferred from the ribosome length, L, and the typical ribosome spacing on the mRNA template.
doi:10.1371/journal.pcbi.1000726.t001
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respectively. The first of these includes an additional factor

of RTc since it deals with a bimolecular reaction.

The mechanistic model, Eqs. 1, may now be written in non-

dimensional form:

m
d

dt
(x1)~vI{v1: ð10aÞ

m
d

dt
(xj)~vj{1{vj , j~2, . . . ,N{1 ð10bÞ

m
d

dt
(xN )~vN{1{vT , ð10cÞ

where vI , vj , for j~1,2, . . . N{1 and vT are the non-dimensional

initiation, elongation and termination rates. They are given by

vI~am 1{
XL

s~1

xs

 !
rT{m

XN

s~1

xs

 !
, ð11aÞ

vj~mbjxj

1{
PL
s~1

xjzs

1{
PL{1

s~1

xjzs

, j~1, . . . ,N{L, ð11bÞ

vj~mbjxj , j~N{Lz1, . . . ,N{1, ð11cÞ

vT~mcxN : ð11dÞ

Finally, we have the non-dimensional versions of the bound
ribosome concentration, Eq. 5, and of the ribosome density, Eq. 6,

rB~m
XN

s~1

xs, ð12aÞ

r~
L

N

XN

s~1

xs, ð12bÞ

respectively.

Physiological Conditions: Translation is Initiation Limited
Experimental data suggests that for most mRNAs in many

organisms, the rate limiting step of the translation process is

initiation [18,19,67,68]. This aspect of the translation process

leads to a steady state distribution in which ribosomes are

uniformly distributed along the mRNA chain with minimal impact

on steric hindrance. Ribosomal densities have been measured

experimentally for both prokaryotes and eukaryotes: in E. coli the

ribosomal density averaged over all mRNA species is around 0.3

[67,69], and 0.2 in S. cerevisiae [18]. Generally, prokaryotes tend to

have larger ribosomal densities than eukaryotes [67]. Simulations

of Eqs. 1 under such initiation limited conditions result in steady

state ribosome distributions with small density that are nearly

uniform along the mRNA chain.

In general, the number of total ribosomes can vary due to

changes in the synthesis of their components. In addition, changes

in the components of the initiation, elongation and termination

processes lead also to changes in the values of the corresponding

rate constants. The primary cause responsible for the changes in

these rate constants are changes in the availability of amino acids.

If we assume that the time average values, S:T, of total ribosomes

and elongation rate constants are equal to their characteristic

values

SRT (t)T&RTc, SkEj(t)T&kEc, SkT (t)T&kEc, ð13Þ

we obtain

SrT (t)T&1, Sbj(t)T&Nc, Sc(t)T&Nc: ð14Þ

The value of the initiation rate constant can vary independently

and determines the ribosome density. A simple estimate shows

that, in order to achieve a uniform ribosome distribution with low

amplitude, the initiation rate constant must also vary slowly

around some mean value and be sufficiently small (Text S1):

a(t)&SaT and SaTSrTT=Nc%1: ð15Þ

PDE Formulation
The low density, slowly varying ribosome distribution condi-

tions occurring in the initiation limited regime permit the use of

two approximations: (i) a mean field ribosome distribution to

effectively approximate steric hindrance effects (Text S2) and (ii) a

hydrodynamic approximation to obtain a PDE model as a

reduction of the mechanistic one (Text S3).

Table 2. Non-dimensional quantities introduced.

Notation Definitiona

Description of
non-dimensional
quantity

m M=RTc mRNA
concentration

r
T

RT=RTc Total ribosome
concentration

rB RB=RTc Bound ribosome
concentration

p P=RTc Protein
concentration

a NckI RTc=kEc Initiation rate

bj NckEj=kEc Elongation rate

c NckT=kEc Termination rate

~tt kEct=Nc Scaled time

aThe quantities RTc , Nc and kEc represent characteristic values of the total

ribosome concentration, the mRNA codon number and the elongation and

termination rate constants, respectively.
doi:10.1371/journal.pcbi.1000726.t002
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The reformulation of the mechanistic model via the hydrody-

namic approximation is based on the following principles:

(i) The discrete description of the codons, labelled as

j~1,2, . . . N, is replaced by a continuous variable s which

measures length along the chain, such that 0ƒsƒN. In this

reformulation, codon j corresponds to the segment

j{1vsvj of the complete domain 0ƒsƒN.

(ii) The number of ribosomes per codon, which was represented

by the variable xj(t) as in Eqs. 10, is described by their

number per unit length of the chain, z(s,t), so that

xj(t)~
Ð j

j{1
z(s,t)ds. It is assumed that the ribosome

distribution, z(s,t), is not far from the uniform one.

(iii) The elongation rate constants, bj(t), are assumed to be slowly

varying as a function of the codon index j and are extended

along the domain 0vsvN to a continuous, slowly varying

version denoted as cE(s,t) and referred to as the velocity

function, as it quantifies the rate of progression of ribosomes

along the template. Its use is equivalent to assuming that

ribosomes move along the mRNAs continuously in space

instead of advancing discretely one codon at a time.

The dimensionless PDE model which approximates the

mechanistic model of Eqs. 10 is described by the following

equations

Lt(z(s,t))zLs(cE(s,t)z(s,t))~0, ð16aÞ

for 0vsvN, tw0,

z(s,0)~z0(s), 0ƒsƒN, ð16bÞ

z(0,t)~
a(t)

cE(0,t)
1{

ðL

0

z(s,t)ds

� �
: rT (t){m

ðN

0

z(s,t)ds

� �
, tw0, ð16cÞ

The function z(s,0) is the initial distribution of ribosomes on the

mRNAs at time t~0 and it is denoted by z0(s). The function

z(0,t) is the ribosomal density at the s~0 boundary and it is

determined by the boundary condition described in Eq. 16.

Hydrodynamic approximations have been used in the past in

the context of models of TASEP and have yielded non-linear

diffusion PDEs for such processes [47,70–75]. Here we retain only

the most dominant terms, i.e., the convective ones (Text S3), in

order to derive a reduced time-delay model based on the

mechanistic description.

In the special case when the elongation rates constants are time-

independent and vary only from codon to codon [28,76–79], the

velocity function depends only on the space variable s. Under

initiation limited conditions, numerical experiments from [23] show

that the ribosomal distribution attains a steady state essentially after

one elongation period. In the case of eukaryotes, where mRNA

chains may have half-lives of several hours, most of the protein

synthesis carried out occurs under steady state conditions. Because

of this, steady state solutions are commonly considered in translation

modeling [21–23,31]. The present PDE formulation of translation

may be used to show that in this special case of elongation rate

constants that only vary from codon to codon, deviations in the

ribosome distribution from the steady state decay in time, i.e. the

steady state ribosome distribution is stable (Text S5).

The following system properties can then be formulated in

terms of the PDE model variables:

(i) The concentration of bound ribosomes (Eq. 12a)

rB~m

ðN

0

zds: ð17aÞ

(ii) The ribosome density (Eq. 12b)

r~
L

N

ðN

0

zds: ð17bÞ

(iii) The initiation rate is given by (Eq. 11a)

g~am 1{

ðL

0

zds

� �
: rT{m

ðN

0

zds

� �
: ð17cÞ

(iv) The non-dimensional rate of protein production is (Eq. 4)

dp(t)

dt
~cE(N,t)mz(N,t): ð17dÞ

Delay Model
We used the PDE formulation of the problem to derive a time-

delay model of protein synthesis (Text S3). The delay model is first

expressed as an integral equation for the initiation rate. For time-

independent kinetic parameters it takes the form

g tð Þ~|{z}a
I

m{

ðt

t{tI

g t’ð Þdt’

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

: rT tð Þ{
ðt

t{tE

g t’ð Þdt’

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

,

where tI and tE are the initiation and elongation time-delays,

respectively, and are given explicitly below. Equation 18 is

complemented by a history function g(t)~hg(t) for {tEƒtƒ0.

The three terms in Eq. 18 arise from mass action kinetics for a

bimolecular reaction and correspond to: the initiation rate

constant (I), the concentration of mRNAs with a free initiation

site (II) and the concentration of free ribosomes (III).

The time delay appears in our model through two mechanisms,

the initiation time delay

tI~

ðL

0

ds

cE(s)
, ð19aÞ

which is equal to the traversal time of the first L codons, and the

elongation time delay

tE~

ðN

0

ds

cE(s)
, ð19bÞ

which is equal to the traversal times of the complete N codons. We

give more general expressions for the delays in Text S3 (Eqs. S3.17

and S3.19) in the case of time-dependent rate constants.

ð18Þ
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The integral equation is complemented by the description of

protein production:

_pp~g(t{tE), ð20Þ

obtained from Eq. 17d and it captures the fact that, in this new

formulation, proteins produced at time t are the result of

ribosomes that initiated at time t{tE .

We use the simple transformation g(t)~ _ss(t) to recast Eq. 18

into a delay differential equation for s(t), and the final delay

model is

_ss(t)~a(t)½rT (t){fs(t){s(t{tE)g�:

½m{fs(t){s(t{tI )g�, if 0ƒtƒtE ,
ð21aÞ

_pp~

hg(t{tE)

a(t{tE)½rT (t{tE){fs(t{tE){s(t{2tE)g�
:½m{fs(t{tE){s(t{tI{tE)g�, if tEvt:

8><
>: ð21bÞ

We note from Eq. 20 that protein production in the interval

0ƒtƒtE is given by the history function of the initiation rate,

g(t)~hg(t), for {tEƒtƒ0.

Our systematic reformulation of the problem into a delay

differential equation offers two main advantages. First is the

lumping of N{1 elongation and termination rate constants, bj ’s

and c, into two parameters, the initiation and elongation time

delays tI and tE . One may use known experimental techniques to

parameterize the delay model and obtain the delay times of Eqs.

19 [63,64].

Second, modeling the problem with a single delay equation

facilitates the use of numerous analytical and computational tools

for the analysis of equations of this type, such as bifurcation

analysis [66] (manuscript in preparation). Using these tools we can

explore the dynamic behavior of the system in wide regions of

parameter space and the properties of genetic networks, such as

the repressilator [16]. This type of parameter exploration would

prove difficult if the system were modeled by a large number of

ODEs.

Our model reduction is similar in spirit to the work in [20],

where the authors also formulate the problem in terms of time

delay using a similar methodology. However, in that work the

authors considered two simplifications: (i) the transcription and

translation rate constants are uniform along the DNA and mRNA

templates, respectively, and (ii) there may only be one RNA

polymerase per DNA and one ribosome per mRNA. In contrast,

we considered the case of non-uniform elongation rate constants

and multiple ribosomes on the mRNA template.

Heinrich and Rapoport [23] proposed a delay model for the

initiation rate, g(t), and the concentration of bound ribosomes,

rB(t), in the special case of constant initiation and termination rate

constants, and constant elongation rate constants, equal for each

codon. Our delay model is a generalization of theirs and reduces

exactly to their model when subject to the same parameter

restrictions (Text S4).

While the model by Heinrich and Rapoport offers the same

advantages discussed above, our delay model is based on a

systematic derivation from Eqs. 1 which ensures that all essential

aspects are captured, and it permits the explicit estimation of the

regimes of agreement with the full mechanistic model. In addition,

our formulation offers an improvement over previous time-delay

models. It accounts for average ribosome sequestration on mRNA

chains and allows a good approximation of the ribosome

distribution and dynamics. In our model the ribosome distribution

may be obtained explicitly and so position dependent effects, such

as codon usage and energetic considerations [80], may be studied.

Computational Studies
We first performed a computational study in order to identify

the ranges of the parameter values for which the time-delay model

is in good agreement with the mechanistic model. We compared

the dynamic responses to step changes and to periodic forcing of

the initiation rate constant. These studies provide the necessary

conditions for the successful application of time delay to the

modeling and analysis of genetic networks which display complex

dynamic behavior [12–16].

Throughout the computational studies in this section, we use

parameters as in Table 3, chosen to be within the typical

parameter ranges for E. coli (see Table 1).

Parameter domain for equivalence between models. The

time-delay model was originally derived under the assumption of

low ribosome density. Therefore, we first verified by simulation the

validity of the our model for very low ribosome density and we

identified the upper bound of ribosome density for which the

responses of the delay model are in good agreement with those of

the mechanistic model.

We first mapped the values of the kinetic parameters of the

mechanistic model into ribosome densities. We considered an

mRNA species of fixed length N codons, and we assumed that the

N{1 elongation rate constants were the same for each codon:

bj~Nc. Under this assumption, the ribosomal density, r, is a

function of only two parameters: the initiation and termination

rate constants, a and c respectively. For each value of r we

calculated a unique curve in the a-c parameter space (Figure 2(A)),

and along each curve, the ribosome flux, V~cmxN , grows in the

direction of increasing termination rate constant, c. As a function

of ribosomal density, the flux increases and reaches a maximum as

ribosomal steric hindrance becomes limiting for protein produc-

tion (Figure 2(B)).

The elongation rate constants are known to be different for each

codon [28,76–79] and this variation has interesting consequences

Table 3. Parameters used for computational studies.

Notation
Description of dimen-
sionless parameter Value

m mRNA single species concentration 0.01a

rT Total ribosome concentration 1a

N mRNA size 144 codonsb

Nc Characteristic mRNA size 144 codonsc

L Ribosome length 12

b1,b2, . . . ,bN{1 Elongation rate at codon j 144d

aFor a single mRNA species, the copy number in E. coli is on the order of 10. Due
to competition with other messages, a single mRNA species is exposed only to
an ‘effective’ ribosome concentration, ~RRT , equal to the total free ribosomes,
which is ~RRT ~0:2:RT (see Table 1). Then rT ~~RRT=RTc~1 by choosing RTc

equal to this ‘effective’ ribosome concentration.
bFollowing [23], mRNA length used corresponds to the mean of a{ and b{

globin in reticulocytes.
cValue chosen to be equal to the mRNA size used.
dAll dimensional elongation rate constants, kEj , j~1,2, . . . ,N{1, chosen to be
equal to their characteristic value, kEc . Thus, bj~Nc as the dimensionless
elongation rates are defined as bj:NckEj=kEc.
doi:10.1371/journal.pcbi.1000726.t003
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in terms of ribosome organization [28]. However, for our present

computational studies we make the simplifying assumption of

uniform elongation rate constants. The agreement obtained

between the mechanistic and time-delay models under this

simplifying assumption will still hold in the case of variable

elongation rates as long as the ribosomal distribution (i) has a low

local density and (ii) is nearly uniform along the chain (Texts S2

and S3). These conditions will generally hold if initiation is limiting

and if the elongation rates vary slowly enough along the chain and

have big enough values to avoid ribosomal queuing.

The initiation and termination pairs with c§340 give

maximum ribosome flux and those with cƒ10 are said to give

minimum flux. In terms of the ribosome distribution, parameters

that yield maximum flux correspond to steady state distributions

that are essentially uniform; as c is lowered protein translation

becomes increasingly termination limited and considerable

ribosome packing results on the last codon.

Transient protein induction. We studied the performance

of the time-delay model in capturing the dynamics of protein

induction, during which protein synthesis is initiated from a newly

synthesized mRNA molecule which is not occupied initially by

ribosomes. We first compared the number of ribosomes per codon

at different time points predicted by the two models: the

mechanistic model and the time-delay model (Figure 3). We

used characteristic values of the initiation, elongation, and

termination rate constants which yield a ribosome density

r~0:4. This value is close to the average ribosome density in E.

coli [67]. The time-delay model captures very well the dynamics of

the ribosome distribution along the mRNA, and it is in excellent

agreement with the mechanistic model at steady state. It captures

the density drop over the last ribosome length on the chain,

resulting from the absence of interference between ribosomes over

this last segment, see Figs. 3(C) and 3(D). However, the time-delay

model develops a sharp front for the ribosome distribution,

whereas the mechanistic model predicts a ribosome distribution

that spreads out over time. This disagreement is expected because

in the derivation of the time-delay model from the PDE model, we

omitted the second and higher order diffusive terms (Text S2). The

inclusion of these terms improves the agreement in the ribosome

distribution between the two models (results not shown), however,

including them impedes us from obtaining a practical time-delay

model. Moreover, we find it unnecessary to introduce further

corrections to our approximation, since the level of agreement of

the two models is already very good in the physiological regime.

While the distribution of ribosomes along an mRNA molecule is

an important property of translation, the rate of protein synthesis,

the protein levels, and the concentration of ribosomes are the

quantities that couple different genes and hence represent the most

important outputs of genetic networks. For this reason, we

performed two comparisons of these quantities: (i) in a dynamic

situation and (ii) at steady state. We compared the dynamics

through simulations of the two models at high flux (c~340), using

different initiation rate constants, a, which correspond to steady

state ribosome densities of 0.1, 0.4 and 0.7, and uniform ribosome

distribution along the mRNA (Figure 4). The time-delay model

presents discontinuities for both _rr(t) and _pp(t) when the sharp front

in the ribosome distribution reaches the end of the chain (Figure 3)

and the first protein molecule is produced. This time is equal to the

elongation time delay for the corresponding kinetic parameters. As

expected, the mechanistic model predicts a smooth increase in the

protein synthesis rate and protein levels due to the ribosome

distribution spreading out; this leads to the production of proteins

at times slightly shorter than the theoretical delay. The steady state

density, protein levels, and protein synthesis rates predicted by the

time-delay model are compared with those from the mechanistic

model (Figure 5).

Based on the theory of the derivation of the time-delay model

(Text S2), we expect good agreement between the time-delay and

the mechanistic model, when the ribosomal density is low (r&0:1),

and the ribosomes are uniformly distributed along the mRNA

(arT=Nc%1 and bj , c*Nc). The computational studies presented

suggest that excellent agreement between the two models is possible

for ribosome densities as high as r~0:7, as long as the ribosomes

are uniformly distributed (Figure 4 and left panels of Figure 5).

The nonuniform distribution of the ribosomes results in higher

delay times, lower ribosome flux, and lower rates of protein

Figure 2. Ribosome density for given kinetic rate constants and ribosome flux as a function of density. (A) The loci of dimensionless
termination (c) and initiation (a) rate constants that yield a steady state solution with a given density, r. (B) Ribosome flux (V ) for steady state
solutions as a function of ribosome density. For the two curves shown, c~10, 340, the initiation rate constant is approximately in the ranges
1vav11 and 1vav27, respectively. The remaining parameter values are N~Nc~144, L~12, m~0:01, r

T
~1 and bj~144 for j~1,2, . . . N{1.

doi:10.1371/journal.pcbi.1000726.g002
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synthesis. Under these conditions the accuracy of the time delay

model decreases, even for ribosome densities r*0.1, 0.2, as

nonlinear terms neglected in the approximation become more

significant (right panels of Figure 5). Under these conditions the

interaction between a ribosome and the one preceding it become

significant as ribosomes concentrate at the end of the chain due to

slower termination rate constants, and the time required to reach

steady state becomes vastly different between the models. Even at

low ribosome densities, the mechanistic model requires one order

of magnitude more time to reach the steady state, whereas the

time-delay model reaches the steady approximately after a time

equal to one elongation time delay (Eq. 19b, results not shown).

Nevertheless, this is not a physiological condition since experi-

mental results suggest that translation occurs with a nearly uniform

ribosome distribution [19].

Protein production under time varying conditions. One

of the objectives for the development of the time-delay model is to

use it for the analysis of genetic networks that display complex

dynamic behavior, such as oscillations [7–9]. In these networks, the

expression of genes is regulated by the levels of regulatory proteins

in the system. When the levels of the regulatory proteins oscillate,

the protein synthesis experiences a time-dependent forcing. In

addition, fast dynamics are expected in genetic circuits when

stochastic factors are taken into account, and when bursts in

expression occur [81,82]. During these periods, the copy number of

a protein may change rapidly in a time-scale of a few minutes and

the network coupling may propagate perturbations on the same

time-scale along the network. This leads us to study the time-delay

model under time variable conditions. In our model reduction we

allow the kinetic parameters to vary slowly in time around some

mean value that is consistent with the conditions of nearly uniform

and low density. We perform a simulation with an initiation rate

constant that varies in time according to a(t)~a0(1z0:5 sin (8pt)),
where the values chosen for a0 and c correspond to a steady state

ribosome density of r~0:4 and the forcing period is about a quarter

of the elongation time. Although the choice of frequency appears to

be high relative to burst time-scales, it was chosen to test our

approximations under extreme conditions, since it is expected that

the discrepancies between the mechanistic and our time-delay

model increase with increasing frequency.

The forcing of the initiation rate causes a periodic loading of the

mRNA which appears as a wave of the ribosome distribution. The

evolution and dynamics of the ribosome distribution predicted by

the time-delay and the mechanistic model are in good agreement

near the initiation site (Figure 6(A)). In an experiment with

uniform elongation rates, one expects some ribosomes to elongate

at slightly different rates, due to stochastic effects, with the

resulting ribosome distribution wave spreading out. This effect is

captured by the mechanistic model, whereas the time-delay model

predicts a wave with a constant period and amplitude along the

template. The periods of oscillation for both the mechanistic and

the time-delay models are, of course, approximately equal to the

period of the initiation rate constant.

Despite these differences the time-averaged performance of the

two models is very similar (Figure 6(C,D)). This similarity is

manifest in the excellent agreement of the dynamics of the

ribosome density, the protein synthesis rate and the protein levels

between the two models (Figure 7). The spreading of the ribosome

distribution is again responsible for a small phase shift in the time-

dependent ribosome density between the two models (Figure 7(A)),

and the earlier onset of protein synthesis in the mechanistic model

(Figure 7(B)). These discrepancies appear during the earlier times

because the forcing starts with an empty mRNA molecule, but

they are reduced significantly at longer time scales.

Oscillatory behavior in a self-repressing gene. We next

test the ability of our time-delay model to capture behavior around

a bifurcation point, where the qualitative behavior of the system

changes dramatically as a parameter is varied. We choose for this

test a gene with negative feedback transcription regulation, i.e. a

self-repressing gene. As the protein expression time delay

increases, this system is able to transition from a stable fixed

point to self-sustained oscillations [7–9]. We here show that purely

translational time-delays can also drive this type of behavior and

that it is well captured by our time-delay model.

Figure 3. Ribosome distribution as a function of time. The ribosome distributions along the mRNA chain during induction, as predicted by the
mechanistic model (Eqs. 10, dots), and the time delay model (Eqs. 21, open circles) at times (A) t~0:1, (B) t~0:50, (C) t~1:50 and (D) t~3:00.
Parameter values are a~8, c~340, m~0:01, r

T
~1, N~Nc~144, L~12 and bj~144 for j~1,2 . . . N{1. Distance along the chain is measured in

ribosome lengths and the scale for the y-axis is different in each panel.
doi:10.1371/journal.pcbi.1000726.g003
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We combine our proposed framework (Texts S2 and S3) with a

commonly used heuristic model [7–9] to describe the self-

repressing gene by the following time-delay model:

dm(t)

dt
~

vm

1z
p

p0

� �h
{kmm ð22aÞ

dp(t)

dt
~g(t{tE){kpp ð22bÞ

g(t)~a m{

ðt

t{tI

g(t’)dt’

 !
: rT{

ðt

t{t
E

g(t’)dt’

 !
: ð22cÞ

The negative feedback in the circuit is modeled by a Hill function

with parameters vm, p0 and h that are greater than zero. The

mRNA and protein degradation rates are km and kp, respectively.

Although it can be shown that this model overestimates the protein

synthesis rate with respect to models that consider mRNA

degradation more carefully, we nevertheless adopt it as an

approximation and focus on a regime where this will not alter

our conclusions. This model may be transformed into a delay

differential equation as was done in Eq. 21.

Our time-delay model is particularly well suited to study the

system’s temporal asymptotic behavior as a function of the

translation time delay, tE , since this quantity appears as an explicit

parameter in the model. We use a numerical bifurcation package

[66] to study the effect of increasing the translational time delay by

increasing the codon number of the mRNA templates. For the

smaller codon numbers considered, the model has a stable fixed

point, while at a codon number of about N~370, a Hopf

Figure 4. Ribosome density and protein concentration as functions of time. Numerical simulations, at high ribosome flux, of the ribosome
density (r) and protein concentration (p) as functions of time; mechanistic model (Eqs. 10, dashed line), time-delay model (Eqs. 21, solid line). The
initiation rates constants used are (A) a~1:4, (B) a~8 and (C) a~28, respectively. The remaining parameter values are c~340, m~0:01, r

T
~1,

N~Nc~144, L~12 and bj~144 for j~1,2 . . . N{1.
doi:10.1371/journal.pcbi.1000726.g004

Time-Delay in Template Biopolymerization Models

PLoS Computational Biology | www.ploscompbiol.org 10 April 2010 | Volume 6 | Issue 4 | e1000726



bifurcation occurs and the system undergoes sustained oscillation

for larger codon numbers.

We now test the agreement of our time-delay model for the self-

repressing gene with the following mechanistic model for the same

system:

dm(t)

dt
~

vm

1z
p

p0

� �h
{kmm ð23Þ

with the protein synthesis dynamics described by the following

equations

dp(t)

dt
~cmxN{kpp ð24aÞ

d

dt
(m(t)x1(t))~vI{v1: ð24bÞ

d

dt
(m(t)xj(t))~vj{1{vj , j~2, . . . ,N{1 ð24cÞ

d

dt
(m(t)xN (t))~vN{1{vT , ð24dÞ

with vI , vj , for j~1,2, . . . N{1 and vT given in Eq. 11.

It is not possible to use the codon number as a bifurcation

parameter of the model in Eqs. 23 and 24, since N is not an

explicit parameter. However, we simulate both models for values

Figure 5. Steady state comparisons of the models. Steady state density (top), protein concentration (middle) and protein production rate
(bottom) as functions of the steady state density of the mechanistic model, rmech . Mechanistic model (Eqs. 10) shown with the broken line,
continuous line corresponds to results from delay model (Eqs. 21). Left panels: maximum flux (c~340) and 1 *v a *v 28. Right panels: minimum flux
(c~10) and 1 *v a *v 12. For the abscissas, the initiation rate constant grows in the direction of increasing density. Protein concentration (middle
panels) and protein production rate (bottom panels) shown at the representative time of t~3. Other parameters: N~Nc~144, L~12, r

T
~1,

m~0:01 and bj~144 for j~1,2 . . . N{1.
doi:10.1371/journal.pcbi.1000726.g005
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of the chain size between N~200 and 600 and we monitor the

maxima and minima of the mRNA concentration after the decay

of transients. The results show the Hopf bifurcation at a codon

number of about N~370 that was seen (Figure 8). The time-delay

model captures with great precision the codon number at which

the Hopf bifurcation occurs. Furthermore, our model also agrees

with the full mechanistic model on the precise values of the mRNA

concentration extrema. The oscillations of this system are driven

by the translational time-delay and have a period between 5–10

times the time delay (results not shown).

This shows the ability of our time-delay model to capture the

behavior of the mechanistic model during a bifurcation. Our

formulation provides conceptual advantages by stressing the

importance of the elongation time-delay as the driving force

behind the oscillations. In contrast with the mechanistic model, in

our time-delay model the mRNA codon number is a parameter

that may be used for bifurcation studies. The time-delay model

allows performing novel studies without the need of additional

parameter fitting.

This analysis allows us to identify two future areas of study.

First, the mechanistic model of Heinrich and Rapoport must be

extended to include a detailed description of mRNA degradation,

from which we could formulate a time-delay model, derived from

the mechanistic model. Then, the extended model must be

Figure 6. Ribosome distribution as a function of time with a time-varying initiation rate. Numerical simulation showing xj (dots) and
Ð

zj

(open circles) starting from an empty mRNA chain at times (A) t~0:1, (B) t~0:50, (C) t~1:50 and (D) t~3:00. Parameters are a~8:(1z0:5 sin (8pt)),
c~340, m~0:01, r

T
~1, N~Nc~144, L~12 and bj~144 for j~1,2 . . . N{1. Note the change in the vertical scale in each panel. Distance along the

chain is measured in ribosome lengths.
doi:10.1371/journal.pcbi.1000726.g006

Figure 7. Protein concentration and ribosome density as functions of time with a time-varying initiation rate. (A) Ribosome density
and (B) protein concentration as functions of time, mechanistic model shown with the dashed curve, approximate delay model shown with the
continuous one. Parameters as in Figure 6.
doi:10.1371/journal.pcbi.1000726.g007
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analyzed in detail, using methods from nonlinear dynamics such as

bifurcation analysis, to identify the regions of parameter space with

different behaviors. Our preliminary analysis has shown that it is

possible for a single gene to display oscillatory dynamics driven by

time-delays, without the need of additional regulatory components

[16]. For oscillations to be feasible, we require mRNA and protein

half-lives comparable to each other and to the time-delay, as has

been noted by other authors [9,16]. The extended studies will

provide more thorough design criteria for gene regulatory

networks to display complex dynamic behavior such as bi-stability

and limit cycles.

Discussion

We developed a rigorous methodology that allows the

formulation of a reduced, time-delay model of protein synthesis

based on a detailed mechanistic model. The systematic reduction

of the mechanistic model allows the exact mapping between its

parameters into the parameters of the time-delay model, and it

provides analytical evaluation of the differences between the two

models.

Theoretical and computational analysis suggests that the time-

delay model is an excellent approximation of the mechanistic

model under conditions that correspond to (i) a uniform

distribution of the ribosomes along the mRNA molecule and (ii)

a ribosome density below 0.5. It has been shown that these

conditions can be achieved under initiation limiting conditions

[27,28], and they are indeed the physiological conditions in E. coli

and yeast.

In our continuing studies we have used the time-delay model to

perform bifurcation analysis of genetic networks having feedback

mechanisms operating at the transcriptional level. Such analysis

would not be practical using the full mechanistic model and tests

the limits of performance of the reduced time-delay model under

complex dynamic behavior. In genetic networks, interactions and

feedback mechanisms operate through protein concentrations. In

turn, the mRNAs in the circuit compete for free ribosomes,

essential to produce protein for the interaction circuits. Hence, the

important quantities to consider are precisely the protein

concentration as well as the amount of free and bound ribosomes.

In this context, the good agreement obtained for the ribosome

density and protein concentration, r(t) and p(t), is quite

significant.

In the study of protein translation, we have identified three

main areas of future developments: (i) the modeling of the variable

elongation rate constant, (ii) the modeling of sequence specific

degradation of mRNA and (iii) the modeling of mRNA secondary

structure effects. It has been shown that these three elements are

important for the steady-state and dynamic properties of genetic

networks, therefore, a rigorous description of these processes in

time-delay models is challenging but very important.

Mathematical models of stochastic systems may be reduced to

models with time delays by lumping some of the intermediate

processes [53–56]. However, this reduction is usually done in a

heuristic way by assuming that the products of some reactions

appear in the mixture after a certain discrete time delay. In our

formulation the time-delays emerge through systematic approxi-

mations on a mechanistic model with no time delays. We could

build on previous work by Roussel and Zhu [54], where they

obtained the time delay distribution by explicitly modeling the

equivalent steps and quantifying the time they require. If the time

delay distribution is sharply peaked, then we could lump the series

of processes and substitute them by a fixed time delay. To properly

apply this procedure one should ensure that the system stays

within the approximation’s regime of validity. However, deter-

mining when one should use deterministic delay equations or non-

Markov stochastic models under general settings is a difficult

question that requires careful investigation. This represents an

area of interesting future research.

The method used here may be useful for developing reduced,

time-delay models of mRNA transcription, since the underlying

biophysical and biochemical phenomena are very similar. Both

processes involve molecular machines scanning a template in

order to build a polymer chain [83–85]. A great number of

modeling studies have contributed to our understanding of the

process of transcription. These investigations can be grouped in

two general classes. First, there are investigations that use an

approach based on chemical kinetics and thermodynamics to

obtain information about the process at a molecular level [86–88].

Alternatively, some studies use mathematical models that lump

certain molecular details and parameters together and are useful to

understanding the problem at a larger scale. These lumped models

of transcription are useful for describing various processes, such as:

mRNA degradation, the dynamics of simple genetic circuits, the

variability of transcription elongation times, the accuracy of

reduced vs. more detailed models, etc. [20,54,89,90]. However,

many lumped models have been constructed based on ad hoc

assumptions without a systematic model reduction.

Some differences do exist between the processes of transcription

and translation. One has to do with the existence of stall stages at

certain sequence positions, where RNA-polymerases may stop for

as long as several seconds and generate queueing of several

polymerases behind the stalled one [85,91]. However, except at

stall sites, steric hindrance is weaker than in translation (a density

of RNA-polymerases of 0.25 was measured experimentally in the

lacZ message of E. coli, [69]), though the possibility of multiple

polymerases transcribing the same gene should still be considered.

A mechanistic model similar to the one of Heinrich and Rapoport

[23] may be developed to study transcription, and it could capture

polymerase stalling by having small elongation rates at the stall

sites. In situations where stalling is not severe, a reduced, time-

delay model may be applied with confidence to this problem,

following our methodology.

Figure 8. Maxima and minima of the mRNA concentration for
different codon numbers. The maxima and minima of the mRNA
concentration are shown after transients have decayed. The result from
the mechanistic model is shown with crosses, the time-delay model is
shown with circles. The two models undergo a Hopf bifurcation near a
codon number of N~370, at this point the behavior changes from
steady-state decay to oscillatory. Parameters are a~8, c~340, r

T
~1,

L~12, bj~144 for j~1,2 . . . N{1, vm~0:0025, p0~0:025, h~5,
km~0:25 and kp~0:25.
doi:10.1371/journal.pcbi.1000726.g008
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In summary, given the complexity and the importance of

transcription and translation in biological processes, it is necessary

to develop methodologies to systematically reduce detailed

mechanistic models of these processes. To reach this objective,

the formulation of time-delayed models of coupled template

polymerization processes is one of the exciting future develop-

ments in the modeling of genetic networks.
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52. Schütz G, Domany E (1993) Phase transitions in and exactly soluble one-
dimensional exclusion process. J Stat Phys 72: 277–296.

Time-Delay in Template Biopolymerization Models

PLoS Computational Biology | www.ploscompbiol.org 14 April 2010 | Volume 6 | Issue 4 | e1000726



53. Bratsun D, Volfson D, Tsimring L, Hasty J (2005) Delay-induced stochastic

oscillations in gene regulation. Proc Natl Acad Sci USA 102: 14593–14598.
54. Roussel MR, Zhu R (2006) Stochastic kinetics description of a simple

transcription model. B Math Biol 68: 1681–1713.

55. Roussel M, Zhu R (2006) Validation of an algorithm for delay stochastic
simulation of transcription and translation in prokaryotic gene expression. Phys

Biol 3: 274–284.
56. Tian T, Burrage K, Burrage P, Carletti M (2007) Stochastic delay differential

equations for genetic regulatory networks. J Comput Appl Math 205: 696–707.

57. Gygi S, Rochon Y, Franza B, Aebersold R (1999) Correlation between protein
and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.

58. Ideker T, Thorsson V, Ranish J, Christmas R, Buhler J, et al. (2001) Integrated
genomic and proteomic analyses of a systematically perturbed metabolic

network. Science 292: 929–934.
59. Lee P, Shaw L, Choe L, Mehra A, Hatzimanikatis V, et al. (2003) Insights into

the relation between mRNA and protein expression patterns: Ii. experimental

observations in Escherichia coli. Biotechnol Bioeng 84: 834–841.
60. Mehra A, Lee K, Hatzimanikatis V (2003) Insights into the relation between

mRNA and protein expression patterns: I. theoretical considerations. Biotechnol
Bioeng 84: 822–833.

61. MacKay V, Li X, Flory M, Turcott E, Law G, et al. (2004) Gene expression

analyzed by high-resolution state array analysis and quantitative proteomics.
Mol Cell Proteomics 3: 478–489.

62. Vind J, Sørensen M, Rasmussen M, Pedersen S (1993) Synthesis of proteins in
Escherichia coli is limited by the concentration of free ribosomes. J Mol Biol 231:

678–688.
63. Sørensen M, Pedersen S (1991) Absolute in Vivo translation rates of individual

codons in Escherichia coli. J Mol Biol 222: 265–280.

64. Pavlov M, Ehrenberg M (1996) Rate of translation of natural mRNAs in an
optimized in Vitro system. Arch Biochem Biophys 328: 9–16.

65. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, et al. (2001) Cell-free
translation reconstituted with purified components. Nat Biotechnol 19: 751–755.

66. Engelborghs K (2000) DDE-BIFTOOL: A matlab package for bifurcation

analysis of delay differential equations. Technical Report TW-305, Department
of Computer Science, K. U. Leuven, Belgium. URL http://www.cs.kuleuven.

ac.be/,twr/research/software/delay/ddebiftool.shtml.
67. Lewin B (2004) Genes VIII. Upper Saddle River: Prentice Hall, first edition.

68. Neidhart F, ed. (1996) Escherichia coli and Salmonella typhimurium: Cellular and
Molecular Biology, Washington, DC.: American Society for Microbiology,

chapter 97 Modulation of Chemical Composition and Other Parameters of the

Cell by Growth Rate. pp 1553–1569.
69. Kennell D, Riezman H (1977) Transcription and translation initiation

frequencies of the Escherichia coli lac operon. J Mol Biol 114: 1–21.
70. Eyink G, Lebowitz J, Spohn H (1991) Lattice gas models in contact with

stochastic reservoirs: Local equilibrium and relaxation to the steady state.

Commun Math Phys 140: 119–131.
71. Evans M, Juhász R, Santen L (2003) Shock formation in an exclusion process

with creation and annihilation. Phys Rev E 68: 026117.

72. Harris R, Stinchcombe R (2004) Disordered asymmetric simple exclusion

process: Mean-field treatment. Phys Rev E 70: 016108.
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