
ECC2K-130 on Cell CPUs

Joppe W. Bos1, Thorsten Kleinjung1, Ruben Niederhagen2,3, and Peter
Schwabe3 ⋆

1 Laboratory for Cryptologic Algorithms
EPFL, Station 14, CH-1015 Lausanne, Switzerland
{joppe.bos, thorsten.kleinjung}@epfl.ch

2 Department of Electrical Engineering
National Taiwan University, 1 Section 4 Roosevelt Road, Taipei 106-70, Taiwan

ruben@polycephaly.org
3 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
peter@cryptojedi.org

Abstract. This paper describes an implementation of Pollard’s rho al-
gorithm to compute the elliptic curve discrete logarithm for the Syn-
ergistic Processor Elements of the Cell Broadband Engine Architecture.
Our implementation targets the elliptic curve discrete logarithm problem
defined in the Certicom ECC2K-130 challenge. We compare a bitsliced
implementation to a non-bitsliced implementation and describe several
optimization techniques for both approaches. In particular, we address
the question whether normal-basis or polynomial-basis representation
of field elements leads to better performance. We show that using our
software the ECC2K-130 challenge can be solved in one year using the
Synergistic Processor Units of less than 2700 Sony Playstation 3 gaming
consoles.
Keywords: Cell Broadband Engine Architecture, elliptic curve discrete
logarithm problem, binary-field arithmetic, parallel Pollard rho

1 Introduction

How long does it take to solve the elliptic curve discrete logarithm problem
(ECDLP) on a given elliptic curve using given hardware? This question was ad-
dressed recently for the Koblitz curve defined in the Certicom challenge ECC2K-
130 for a variety of hardware platforms [2]. This paper zooms into Section 6 of [2]
and describes the implementation of the parallel Pollard rho algorithm [17] for
the Synergistic Processor Elements of the Cell Broadband Engine Architecture
(CBEA) in detail. We discuss our choice to use the technique of bitslicing [7]
to accelerate the underlying binary-field arithmetic operations by comparing a
bitsliced to a non-bitsliced implementation.

⋆ This work has been supported in part by the European Commission through the
ICT Programme under Contract ICT–2007–216499 CACE, and through the ICT
Programme under Contract ICT-2007-216646 ECRYPT II. Permanent ID of this
document: bad46a78a56fdc3a44fcf725175fd253. Date: February 28, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147977798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

Many optimization techniques for the non-bitsliced version do not require
independent parallel computations (batching) and are therefore not only relevant
in the context of cryptanalytical applications but can also be used to accelerate
cryptographic schemes in practice.

To the best of our knowledge this is the first work to describe an implemen-
tation of high-speed binary-field arithmetic for the CBEA. We plan to put all
code described in this paper into the public domain to maximize reusability of
our results.

Organization of the paper. In Section 2 we describe the features of the CBEA
which are relevant to this paper. To make this paper self contained we briefly
recall the parallel version of Pollard’s rho algorithm and summarize the choice
of the iteration function in Section 3. Section 4 discusses different approaches
to a high-speed implementation of the iteration function on the CBEA. In Sec-
tions 5 and 6 we describe the non-bitsliced and the bitsliced implementation,
respectively. We summarize the results and conclude the paper in Section 7.

2 A Brief Description of the Cell processor

The Cell Broadband Engine Architecture [12] was jointly developed by Sony,
Toshiba and IBM. Currently, there are two implementations of this architecture,
the Cell Broadband Engine (Cell/B.E.) and the PowerXCell 8i. The PowerX-
Cell 8i is a derivative of the Cell/B.E. and offers enhanced double-precision
floating-point capabilities and a different memory interface. Both implementa-
tions consist of a central Power Processor Element (PPE), based on the Power 5
architecture and 8 Synergistic Processor Elements (SPEs) which are optimized
for high-throughput vector instructions. All units are linked by a high-bandwidth
(204 GB/s) ring bus.

The Cell/B.E. can be found in the IBM blade servers of the QS20 and QS21
series, in the Sony Playstation 3, and several acceleration cards like the Cell
Accelerator Board from Mercury Computer Systems. The PowerXCell 8i can be
found in the IBM QS22 servers. Note that the Playstation 3 only makes 6 SPEs
available to the programmer.

The code described in this paper runs on the SPEs directly and does not
interact with the PPE or other SPEs during core computation. We do not take
advantage of the extended capabilities of the PowerXCell 8i. In the remainder
of this section we will describe only those features of the SPE which are of
interest for our implementation and are common to both the Cell/B.E. and the
PowerXCell 8i. Therefore we may address the Cell/B.E. and the PowerXCell 8i
jointly as the Cell processor or Cell CPU. Further information on the current
implementations of the Cell Broadband Engine Architecture can be found in
[14].

Each SPE consists of a Synergistic Processor Unit (SPU) as its computation
unit and a Memory Flow Controller (MFC) which grants access to the ring bus
and therefore in particular to main memory.

ECC2K-130 on Cell CPUs 3

2.1 SPU – architecture and instruction set

The SPU is composed of three parts: The Synergistic Execution Unit (SXU) is
the computational core of each SPE. It is fed with data either by the SPU Regis-

ter File Unit (RFU) or by the Local Storage (LS) that also feeds the instructions
into the SXU.

The RFU contains 128 general-purpose registers with a width of 128 bits
each. The SXU has fast and direct access to the LS but the LS is limited to
only 256 KB. The SXU does not have transparent access to main memory; all
data must be transferred from main memory to LS and vice versa explicitly by
instructing the DMA controller of the MFC. Due to the relatively small size
of the LS and the lack of transparent access to main memory, the programmer
has to ensure that instructions and the active data set fit into the LS and are
transferred between main memory and LS accordingly.

Dual-issuing. The SXU has a pure RISC-like SIMD instruction set encoded into
32-bit instruction words; instructions are issued strictly in order to two pipelines
called odd and even pipeline, which execute disjoint subsets of the instruction
set. The even pipeline handles floating-point operations, integer arithmetic, log-
ical instructions, and word SIMD shifts and rotates. The odd pipeline executes
byte-granularity shift, rotate-mask, and shuffle operations on quadwords, and
branches as well as loads and stores.

Up to two instructions can be issued each cycle, one in each pipeline, given
that alignment rules are respected (i.e., the instruction for the even pipeline is
aligned to a multiple of 8 bytes and the instruction for the odd pipeline is aligned
to a multiple of 8 bytes plus an offset of 4 bytes), that there are no interdepen-
dencies to pending previous instructions for either of the two instructions, and
that there are in fact at least two instructions available for execution. Therefore,
a careful scheduling and alignment of instructions is necessary to achieve peak
performance.

2.2 MFC – accessing main memory

As mentioned before, the MFC is the gate for the SPU to reach main memory as
well as other processor elements. Memory transfer is initiated by the SPU and
afterwards executed by the DMA controller of the MFC in parallel to ongoing
instruction execution by the SPU.

Since data transfers are executed in background by the DMA controller, the
SPU needs feedback about when a previously initiated transfer has finished.
Therefore, each transfer is tagged with one of 32 tags. Later on, the SPU can
probe either in a blocking or non-blocking way if a subset of tags has any out-
standing transactions. The programmer should avoid to read data buffers for
incoming data or to write to buffers for outgoing data before checking the state
of the corresponding tag to ensure deterministic program behaviour.

4 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

2.3 LS – accessing local storage

The LS is single ported and has a line interface of 128 bytes width for DMA
transfers and instruction fetch as well as a quadword interface of 16 bytes width
for SPU load and store. Since there is only one port, the access to the LS is
arbitrated using the following priorities:

1. DMA transfers (at most every 8 cycles),
2. SPU load/store,
3. instruction fetch.

Instructions are fetched in lines of 128 bytes, i.e., 32 instructions. In the case
that all instructions can be dual issued, new instructions need to be fetched
every 16 cycles. Since SPU loads/stores have precedence over instruction fetch,
in case of high memory access there should be an lnop instruction for the odd
pipeline every 16 cycles to avoid instruction starvation. If there are ongoing DMA
transfers an hbrp instruction should be used giving instruction fetch explicit
precedence over DMA transfers.

2.4 Determining performance

The CBEA offers two ways to determine performance of SPU code: performance
can either be statically analysed or measured during runtime.

Static analysis. Since all instructions are executed in order and dual-issue
rules only depend on latencies and alignment, it is possible to determine the
performance of code through static analysis. The “IBM SDK for Multicore Ac-
celeration” [13] contains the tool spu timing which performs this static analysis
and gives quite accurate cycle counts.

This tool has the disadvantage that it assumes fully linear execution and
does not model instruction fetch. Therefore the results reported by spu timing

are overly optimistic for code that contains loops or a high number of memory
accesses. Furthermore, spu timing can only be used inside a function. Function
calls—in particular calling overhead on the caller side—can not be analyzed.

Measurement during runtime. Another way to determine performance is
through an integrated decrementer (see [14, Sec. 13.3.3]). Measuring cycles while
running the code captures all effects on performance in contrast to static code
analysis.

The disadvantage of the decrementer is that it is updated with the frequency
of the so-called timebase of the processor. The timebase is usually much smaller
than the processor frequency. The Cell/B.E. in the Playstation 3 (rev. 5.1) for
example changes the decrementer only every 40 cycles, the Cell/B.E. in the
QS21 blades even only every 120 cycles. Small sections of code can thus only be
measured on average by running the code several times repeatedly.

For cycle counts we report in this paper we will always state whether the count
was obtained using spu timing, or measured by running the code.

ECC2K-130 on Cell CPUs 5

3 Preliminaries

The main task on solving the Certicom challenge ECC2K-130 is to compute
a specific discrete logarithm on a given elliptic curve. Up to now, the most
efficient algorithm known to solve this challenge is a parallel version of Pollard’s
rho algorithm running concurrently on a big number of machines.

In this section we give the mathematical and algorithmic background neces-
sary to understand the implementations described in this paper. We will briefly
explain the parallel version of Pollard’s rho algorithm, review the iteration func-
tion described in [2], and introduce the general structure of our implementation.

3.1 The ECDLP and parallel Pollard rho

The security of elliptic-curve cryptography relies on the believed hardness of the
elliptic curve discrete logarithm problem (ECDLP): Given an elliptic curve E
over a finite field Fq and two points P ∈ E(Fq) and Q ∈ 〈P 〉, find an integer k,
such that Q = [k]P . Here, [k] denotes scalar multiplication with k.

If the order of 〈P 〉 is prime, the best-known algorithm to solve this problem
(for most elliptic curves) is Pollard’s rho algorithm [17]. In the following we
describe the parallelized collision search as implemented in [2]. See [2] for credits
and further discussion.

The algorithm uses a pseudo-random iteration function f : 〈P 〉 → 〈P 〉 and
declares a subset of 〈P 〉 as distinguished points. The parallelization is imple-
mented in a client-server approach in which each client node generates an in-
put point with known linear combination in P and Q, i.e. R0 = [a0]P + [b0]Q
with a0 and b0 generated from a random seed s. It then iteratively computes
Ri+1 = f(Ri) until the iteration reaches a distinguished point Rd. The random
seed s and the distinguished point are then sent to a central server, the client
continues by generating a new random input point.

The server searches for a collision in all distinguished points sent by the
clients, i.e. two different input points reaching the same distinguished point Rd.
The iteration function is constructed in such a way that the server can compute
ad and bd such that Rd = adP + bdQ from a0 and b0 (which are derived from
s). If two different input points yield a collision at a distinguished point Rd, the
server computes the two (most probably different) linear combinations of the
point Rd in P and Q: Rd = [ad]P + [bd]Q and Rd = [cd]P + [dd]Q. The solution
to the discrete logarithm of Q to the base P is then

Q =

[
ad − cd

bd − dd

]
P.

The expected number of distinguished points required to find a collision depends
on the density of distinguished points in 〈P 〉. The expected amount of iterations

of f on all nodes in total is approximately
√

π|〈P 〉|
2

assuming the iteration func-

tion f is a random mapping of size |〈P 〉| (see [11]).

6 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

3.2 ECC2K-130 and our choice of the iteration function

The specific ECDLP addressed in this paper is given in the Certicom challenge
list [9] as challenge ECC2K-130. The given elliptic curve is a Koblitz curve
E : y2 + xy = x3 + 1 over the finite field F2131 ; the two given points P and Q
have order l, where l is a 129-bit prime. The challenge is to find an integer k
such that Q = [k]P . Here we will only give the definition of distinguished points
and the iteration function used in our implementation. For a detailed description
please refer to [2], for a discussion and comparison to other possible choices also
see [1]:

We define a point Ri as distinguished if the Hamming weight of the x-
coordinate in normal basis representation HW(xRi

) is smaller than or equal
to 34. Our iteration function is defined as

Ri+1 = f(Ri) = σj(Ri) + Ri,

where σ is the Frobenius endomorphism and

j = ((HW(xRi
)/2) (mod 8)) + 3.

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with some
scalar r. For an input Ri = aiP + biQ the output of f will be Ri+1 = (rjai +
ai)P+(rjbi+bi)Q. When a collision has been detected, it is possible to recompute
the two according iterations and update the coefficients ai and bi following this
rule. This gives the coefficients to compute the discrete logarithm.

3.3 Computing the iteration function

Computing the iteration function requires one application of σj and one elliptic-
curve addition. Furthermore we need to convert the x-coordinate of the resulting
point to normal basis, if a polynomial-basis representation is used, and check
whether it is a distinguished point.

Many applications use so-called inversion-free coordinate systems to repre-
sent points on elliptic curves (see, e.g., [10, Sec. 3.2]) to speed up the computation
of point multiplications. These coordinate systems use a redundant representa-
tion for points. Identifying distinguished points requires a unique representation,
this is why we use the affine Weierstrass representation to represent points on
the elliptic curve. Elliptic-curve addition in affine Weierstrass coordinates on the
given elliptic curve requires 2 multiplications, one squaring, 6 additions, and 1
inversion in F2131 (see, e.g. [6]). Application of σj means computing the 2j-th
powers of the x- and the y-coordinate. In total, one iteration takes 2 multi-
plications, 1 squaring, 2 computations of the form r2

m

, with 3 ≤ m ≤ 10, 1
inversion, 1 conversion to normal-basis, and one Hamming-weight computation.
In the following we will refer to computations of the form r2

m

as m-squaring.

A note on the inversion. To speed up the relatively costly inversion we can
batch several inversions and use Montgomery’s trick [16]: m batched inversions

ECC2K-130 on Cell CPUs 7

can be computed with 3(m− 1) multiplications and one inversion. For example,
m = 64 batched elliptic curve additions take 2 · 64 + 3 · (64− 1) = 317 multipli-
cations, 64 squarings and 1 inversion. This corresponds to 4.953 multiplications,
1 squaring and 0.016 inversions for a single elliptic-curve addition.

4 Approaches for implementing the iteration function

In the following we discuss the two main design decisions for the implementation
of the iteration function: 1.) Is it faster to use bitslicing or a standard approach
and 2.) is it better to use normal-basis or polynomial-basis representation for
elements of the finite field.

4.1 Bitsliced or not bitsliced?

Binary-field arithmetic was commonly believed to be more efficient than prime-
field arithmetic for hardware but less efficient for software implementations. This
is due to the fact that most common microprocessors spend high effort on ac-
celerating integer- and floating-point multiplications. Prime-field arithmetic can
benefit from those high-speed multiplication algorithms, binary-field arithmetic
cannot. However, Bernstein showed recently that for batched multiplications, bi-
nary fields can provide better performance than prime fields also in software [3].
In his implementation of batched Edwards-curve arithmetic the bitslicing tech-
nique [7] is used to compute (at least) 128 binary-field multiplications in parallel
on an Intel Core 2 processor.

Bitslicing is a matter of transposition: Instead of storing the coefficients of
an element of F2131 as sequence of 131 bits in 2 128-bit registers, we can use
131 registers to store the 131 coefficients of an element, one register per bit.
Algorithms are then implemented by simulating a hardware implementation –
gates become bit operations such as AND and XOR. For one element in 131 registers
this is highly inefficient, it may become efficient if all 128 bits of the registers
are used for 128 independent (batched) operations. The lack of registers—most
architectures including the SPU do not support 131 registers—can easily be
compensated for by spills, i.e. storing currently unused values on the stack and
loading them when they are required.

The results of [3] show that for batched binary-field arithmetic on the Intel
Core 2 processor bitsliced implementations are faster than non-bitsliced imple-
mentations. However, the question whether this is also the case on the SPU of
the Cell processor is hard to answer a priori for several reasons:

– The Intel Core 2 can issue up to 3 bit operations on 128-bit registers per
cycle, an obvious lower bound on the cycles per iteration is thus given as the
number of bit operations per cycle divided by 3. The SPU can issue only one
bit operation per cycle, the lower bound on the performance is thus three
times as high.

8 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

– Bernstein in [3, Sec. 3] describes that the critical bottleneck for batched
multiplications are in fact loads instead of bit operations. The Core 2 has
only 16 architectural 128-bit registers and can do only 1 load per cycle, i.e.
one load per 3 bit operations.

The SPUs have 128 architectural 128-bit registers and can do one load per
bit operation. However, unlike on the Core 2, the load operations have to
compete with store operations. Due to the higher number of registers and
the lower arithmetic/load ratio it seems easier to come close to the lower
bound of cycles imposed by the number of bit operations on the SPUs than
on the Core 2. How much easier and how close exactly was very hard to
foresee.

– Bitsliced operations rely heavily on parallelism and therefore require much
more storage for inputs, outputs and intermediate values. As described in
Section 2, all data of the active set of variables has to fit into 256 KB of
storage alongside the code. In order to make code run fast on the SPU
which executes all instructions in order, optimization techniques such as
loop unrolling and function inlining are crucial; these techniques increase
the code size and make it harder to fit all data into the local storage.

– Montgomery inversions require another level of parallelism, inverting for ex-
ample 64 values in parallel requires 64 ·128 field elements (131 KB) of inputs
when using bitsliced representation. This amount of data can only be han-
dled using DMA transfers between the main memory and the local storage.
In order to not suffer from performance penalties due to these transfers, they
have to be carefully interleaved with computations.

We decided to evaluate which approach is best by implementing both, the
bitsliced and the non-bitsliced version, independently by two groups in a friendly
competition.

4.2 Polynomial or normal basis?

Another choice to make for both bitsliced and non-bitsliced implementations
is the representation of elements of F2131 : Polynomial bases are of the form
(1, z, z2, z3, . . . , z130), so the basis elements are increasing powers of some element

z ∈ F2131 . Normal bases are of the form (α, α2, α4, . . . , α2
130

), so each basis
element is the square of the previous one.

Performing arithmetic in normal-basis representation has the advantage that
squaring elements is just a rotation of coefficients. Furthermore we do not need
any basis transformation before computing the Hamming weight in normal basis.
On the other hand, implementations of multiplications in normal basis are widely
believed to be much less efficient than those of multiplications in polynomial
basis.

In [19], von zur Gathen, Shokrollahi and Shokrollahi proposed an efficient
method to multiply elements in type-2 normal basis representation. Here we
review the multiplier shown in [2]; see [2] for further discussion and history:

ECC2K-130 on Cell CPUs 9

An element of F2131 in type-2 normal basis representation is of the form

f0(ζ + ζ−1) + f1(ζ
2 + ζ−2) + f2(ζ

4 + ζ−4) + · · ·+ f130(ζ
2
130

+ ζ−2
130

),

where ζ is a 263rd root of unity in F2131 . This representation is first permuted
to obtain coefficients of

ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ131 + ζ−131,

and then transformed to coefficients in polynomial basis

ζ + ζ−1, (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)131.

Applying this transform to both inputs allows us to use a fast polynomial-basis
multiplier to retrieve coefficients of

(ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)262.

Applying the inverse of the input transformation yields coefficients of

ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ262 + ζ−262.

Conversion to permuted normal basis just requires adding appropriate coeffi-
cients, for example ζ200 is the same as ζ−63 and thus ζ200 + ζ−200 is the same
as ζ63 + ζ−63. To obtain the normal-basis representation we only have to apply
the inverse of the input permutation.

This multiplication still incurs overhead compared to modular multiplication
in polynomial basis, but it needs careful analysis to understand whether this
overhead is compensated for by the above-described benefits of normal-basis
representation. Observe that all permutations involved in this method are free
for hardware and bitsliced implementations while they are quite expensive in
non-bitsliced software implementations.

5 The non-bitsliced implementation

For the non-bitsliced implementation, we decided not to implement arithmetic
in a normal-basis representation. The main reason is that the required permu-
tations, splitting and reversing of the bits, as required for the conversions in
the Shokrollahi multiplication algorithm (see Section 4.2) are too expensive to
outweigh the gain of having no basis change and faster m-squarings.

The non-bitsliced implementation uses a polynomial-basis representation of
elements in F2131

∼= F2[z]/(z131+z13+z2+z+1). Field elements in this basis can
be represented using 131 bits, on the SPE architecture this is achieved by using
two 128-bit registers, one containing the three most significant bits. As described
in Section 3 the functionality of addition, multiplication, squaring and inversion
are required to implement the iteration function. Since the distinguished-point
property is defined on points in normal basis, a basis change from polynomial

10 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

Algorithm 1 The reduction algorithm for the ECC2K-130 challenge used in the
non-bitsliced version. The algorithm is optimized for architectures with 128-bit
registers.

Input: C = A ·B = a+b ·z128 +c ·z256 , such that A, B ∈ F2[z]/(z131 +z13 +z2 +z+1)
and a, b, c are 128-bit strings representing polynomial values.

Output: D = C mod (z131 + z13 + z2 + z + 1).
1: c← (c≪ 109) + (b≫ 19)
2: b← b AND (219 − 1)
3: c← c + (c≪ 1) + (c≪ 2) + (c≪ 13)
4: a← a + (c≪ 16)
5: b← b + (c≫ 112)
6: x← (b≫ 3)
7: b← b AND 7
8: a← a + x + (x≪ 1) + (x≪ 2) + (x≪ 13)
9: return (D = a + b · z128)

to normal basis is required as well. In this section the various implementation
decisions for the different (field-arithmetic) operations are explained.

The implementation of an addition is trivial and requires two XOR instruc-
tions. These are instructions going to the even pipeline; each of them can be
dispatched together with one instruction going to the odd pipeline. The com-
putation of the Hamming weight is implemented using the CNTB instruction,
which counts the number of ones per byte for all 16 bytes of a 128-bit vector
concurrently, and the SUMB instruction, which sums the four bytes of each of the
four 32-bit parts of the 128-bit input. The computation of the Hamming weight
requires four cycles (measured).

In order to eliminate (or reduce) stalls due to data dependencies we interleave
different iterations. Our experiments show that interleaving a maximum of eight
iterations maximizes performance. We process 32 of such batches in parallel,
computing on 256 iterations in order to reduce the cost of the inversion (see
Section 3). All 256 points are converted to normal basis, we keep track of the
lowest Hamming weight of the x-coordinate among these points. This can be
done in a branch-free way eliminating the need for 256 expensive branches.
Then, before performing the simultaneous inversion, only one branch is used to
check if one of the points is distinguished. If one or more distinguished points
are found, we have to process all 256 points again to determine and output the
distinguished points. Note that this happens only very infrequently.

5.1 Multiplication

If two polynomials A, B ∈ F2[z]/(z131 + z13 + z2 + z + 1) are multiplied in
a straight-forward way using 4-bit lookup tables, the table entries would be
134-bit wide. Storing and accumulating these entries would require operations
(SHIFT and XOR) on two 128-bit limbs. In order to reduce the number of required

ECC2K-130 on Cell CPUs 11

operations we split A as

A = Al + Ah · z
128 = Ãl + Ãh · z

121.

This allows us to build a 4-bit lookup table from Ãl whose entries fit in 124 bits
(a single 128-bit limb). Furthermore, the product of Ãl and an 8-bit part of B
fits in a single 128-bit limb. While accumulating such intermediate results we
only need byte-shift instructions. In this way we calculate the product Ãl ·B.

For calculating Ãh · B we split B as

B = Bl + Bh · z
128 = B̃l + B̃h · z

15.

Then we calculate Ãh · B̃l and Ãh · B̃h using two 2-bit lookup tables from B̃l and
B̃h. We choose to split 15 bits from B in order to facilitate the accumulation of
partial products in

C = A ·B = Ãl · Bl + Ãl ·Bh · z
128 + Ãh · B̃l · z

121 + Ãh · B̃h · z
136

since 121 + 15 = 136 which is divisible by 8.
The reduction can be done efficiently by taking the form of the irreducible

polynomial into account. Given the result C from a multiplication or squar-
ing, C = A · B = CH · z

131 + CL, the reduction is calculated using the trivial
observation that

CH · z
131 + CL ≡ CL + (z13 + z2 + z1 + 1)CH mod (z131 + z13 + z2 + z + 1).

Algorithm 1 shows the reduction algorithm optimized for architectures which
can operate on 128-bit operands. This reduction requires 10 XOR, 11 SHIFT and
2 AND instructions. On the SPU architecture the actual number of required SHIFT

instructions is 15 since the bit-shifting instructions only support values up to 7.
Larger bit-shifts are implemented combining both a byte- and a bit-shift instruc-
tion. When interleaving two independent modular multiplication computations,
parts of the reduction and the multiplication of both calculations are interleaved
to reduce latencies, save some instructions and take full advantage of the avail-
able two pipelines.

When doing more than one multiplication containing the same operand, we
can save some operations. By doing the simultaneous inversion in a binary-tree
style we often have to compute the products A · B and A′ · B. In this case, we
can reuse the 2-bit lookup tables from B̃l and B̃h. We can also save operations
in the address generation of the products Ãl · Bl, Ãl · Bh, Ã′

l · Bl and Ã′
l · Bh.

Using these optimizations in the simultaneous inversion a single multiplication
takes 149 cycles (spu timing) averaged over the five multiplications required
per iteration.

5.2 Squaring

The squaring is implemented by inserting a zero bit between each two consecutive
bits of the binary representation of the input. This can be efficiently implemented
using the SHUFFLE and SHIFT instructions. The reduction is performed according
to Algorithm 1. Just as with the multiplication two squaring computations are
interleaved to reduce latencies. A single squaring takes 34 cycles (measured).

12 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

5.3 Basis conversion and m-squaring

The repeated Frobenius map σj requires at least 6 and at most 20 squarings,
both the x- and y-coordinate of the current point need at most 3 + 7 = 10
squarings each (see Section 3), when computed as a series of single squarings.
This can be computed in at most 20 × 34 = 680 cycles ignoring loop overhead
using our single squaring implementation.

To reduce this number a time-memory tradeoff technique is used. We pre-
compute all values

T [k][j][i0 + 2i1 + 4i2 + 8i3] = (i0 · z
4j + i1 · z

4j+1 + i2 · z
4j+2 + i3 · z

4j+3)2
3+k

for 0 ≤ k ≤ 7, 0 ≤ j ≤ 32, 0 ≤ i0, i1, i2, i3 ≤ 1. These precomputed values are
stored in two tables, for both limbs needed to represent the number, of 8×33×16
elements of 128-bit each. This table requires 132 KB which is more than half of
the available space of the local store.

Given a coordinate a of an elliptic-curve point and an integer 0 ≤ m ≤ 7 the
computation of the m-squaring a2

3+m

can be computed as

32∑

j=0

T [m][j][⌊(a/24j)⌋ mod 24].

This requires 2 × 33 LOAD and 2 × 32 XOR instructions, due to the use of two
tables, plus the calculation of the appropriate address to load from. Our assembly
implementation of the m-squaring function requires 96 cycles (measured), this is
1.06 and 3.54 times faster compared to performing 3 and 10 sequential squarings
respectively.

For the basis conversion we used a similar time-memory tradeoff technique.
We enlarged the two tables by adding 1 × 33 × 16 elements which enables us
to reuse the m-squaring implementation to compute the basis conversion. For
the computation of the basis conversion we proceed exactly the same as for
the m-squarings, only the initialization of the corresponding table elements is
different.

5.4 Modular inversion

From Fermat’s little theorem it follows that the modular inverse of a ∈ F2131

can be obtained by computing a2
131−2. This can be implemented using 8 multi-

plications, 6 m-squarings (using m ∈ {2, 4, 8, 16, 32, 65}) and 3 squarings. When
processing many iterations in parallel the inversion cost per iteration is small
compared to the other main operations such as multiplication. Considering this,
and due to code-size considerations, we calculate the inversion using the fast rou-
tines we already have at our disposal: multiplication, squaring and m-squaring,
for 3 ≤ m ≤ 10. In total the inversion is implemented using 8 multiplications, 14
m-squarings and 7 squarings. All these operations depend on each other; hence,
the interleaved (faster) implementations cannot be used. Our implementation of
the inversion requires 3784 cycles (measured).

ECC2K-130 on Cell CPUs 13

We also implemented the binary extended greatest common divisor [18] to
compute the inverse. This latter approach turned out to be roughly 2.1 times
slower.

6 The bitsliced implementation

This section describes implementation details for the speed-critical functions
of the iteration function using bitsliced representation for all computations. As
explained in Section 4, there is no overhead from permutations when using bit-
slicing and therefore the overhead for normal-basis multiplication is much lower
than for a non-bitsliced implementation. We implemented all finite-field oper-
ations in polynomial- and normal-basis representation and then compared the
performance. The polynomial-basis implementation uses F2131

∼= F2[z]/(z131 +
z13 + z2 + z + 1) just as the non-bitsliced implementation.

Due to the register width of 128, all operations in the bitsliced implementa-
tion processes 128 inputs in parallel. The cycle counts in this section are therefore
for 128 parallel computations.

6.1 Multiplication

Polynomial basis. The smallest known number of bit operations required to
multiply two degree-130 polynomials over F2 is 11961 [4]. However, converting
the sequence of bit operations in [4] to C syntax and feeding it to spu-gcc does
not compile because the size of the resulting function exceeds the size of the
local storage. After reducing the number of variables for intermediate results
and some more tweaks the compiler produced functioning code, which had a
code size of more than 100 KB and required more than 20000 cycles to compute
a multiplication.

We decided to sacrifice some bit operations for code size and better-scheduled
code and composed the degree-130 multiplication of 9 degree-32 multiplications
using two levels of the Karatsuba multiplication technique [15]. One of these
multiplications is actually only a degree-31 multiplication; in order to keep code
size small we use degree-32 multiplication with leading coefficient zero. We use
improvements to classical Karatsuba described in [3] to combine the results of
the 9 multiplications.

The smallest known number of bit operations for degree-32 binary polynomial
multiplication is 1286 [4]. A self-written scheduler for the bit operation sequence
from [4] generates code that takes 1303 cycles (spu timing) for a degree-32
binary polynomial multiplication. In total our degree-130 multiplication takes
14503 cycles (measured). This includes 11727 cycles for 9 degree-32 multiplica-
tions, cycles required for combination of the results, and function-call overhead.

Reduction modulo the pentanomial z131 + z13 + z2 + z + 1 takes 520 bit
operations, our fully unrolled reduction function takes 590 cycles (measured), so
multiplication in F2131 takes 14503 + 590 = 15093 cycles.

14 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

Normal basis. The normal-basis multiplication uses the conversion to poly-
nomial basis as described in Section 4.2. For both, conversion of inputs to
polynomial basis and conversion of the result to normal basis (including re-
duction) we use fully unrolled assembly functions. As for multiplication we im-
plemented scripts to schedule the code optimally. One input conversion takes
434 cycles (measured), output conversion including reduction takes 1288 cy-
cles (measured), one normal-basis multiplication including all conversions takes
16653 cycles (measured).

6.2 Squaring

Polynomial basis. In polynomial-basis representation, a squaring consists of
inserting zero-bits between all bits of the input and modular reduction. The
first part does not require any instructions in bitsliced representation because
we do not have to store the zeros anywhere, we only have to respect the zeros
during reduction. For squarings, the reduction is cheaper than for multiplications
because we know that every second bit is zero. In total it needs 190 bit operations,
hence, squaring is bottlenecked by loading 131 inputs and storing 131 outputs.
One call to the squaring function takes 400 cycles (measured).

Normal basis. In normal basis a squaring is a cyclic shift of bits, so we only
have to do 131 loads and 131 stores to cyclically shifted locations. A call to the
squaring function in normal-basis representation takes 328 cycles (measured).

6.3 m-Squaring

Polynomial basis. In polynomial basis we decided to implement m-squarings as
a sequence of squarings. A fully unrolled code can hide most of the 131 load and
131 store operations between the 190 bit operations of a squaring – implementing
dedicated m-squaring functions for different values of m would mostly remove
the overhead of m− 1 function calls but on the other hand significantly increase
the overall code size.

Normal basis. For the normal-basis implementation we implemented m-squarings
for all relevant values of m as separate fully unrolled functions. The only differ-
ence between these functions is the shifting distance of the store locations. Each
m-squaring therefore takes 328 cycles (measured), just like a single squaring.

Conditional m-Squaring. The computation of σj cannot just simply be re-
alized as a single m-squaring with m = j, because the value of j is most likely
different for the 128 bitsliced values in one batch. Therefore the computation of
r = σj(xRi

) is carried out using 3 conditional m-squarings as follows:

r ← x2
3

if xRi
[1] then r ← r2

if xRi
[2] then r ← r2

2

ECC2K-130 on Cell CPUs 15

if xRi
[3] then r ← r2

4

return r,

where xRi
[k] denotes the bit at position k of xRi

. The computation of σj(yRi
)

is carried out in the same way.

When using bitsliced representation, conditional statements have to be re-
placed by equivalent arithmetic computations. We can compute the k-th bit of
the result of a conditional m-squaring of r depending on a bit b as

r[k]← (r[k] AND ¬b) XOR (r2
m

[k] AND b).

The additional three bit operations per output bit can be interleaved with
loads and stores needed for squaring. In particular when using normal-basis
squaring (which does not involve any bit operations) this speeds up the compu-
tation: A conditional m-squaring in normal-basis representation takes 453 cycles
(measured).

For the polynomial-basis implementation we decided to first compute an m-
squaring and then a separate conditional move. This cmov function requires 262
loads, 131 stores and 393 bit operations and thus balances instructions on the
two pipelines. One call to the cmov function takes 518 cycles.

6.4 Addition

Addition is the same for normal-basis and polynomial-basis representation. It
requires loading 262 inputs, 131 XORs and storing of 131 outputs. Just as squar-
ing, the function is bottlenecked by loads and stores rather than bit operations.
One call to the addition function takes 492 cycles (measured).

6.5 Inversion

For both polynomial and normal basis the inversion is implemented using Fer-
mat’s little theorem. It involves 8 multiplications, 3 squarings and 6 m-squarings
(with m = 2, 4, 8, 16, 32, 65). It takes 173325 cycles using polynomial basis and
136132 cycles using normal basis (both measured). Observe that with a suffi-
ciently large batch size for Montgomery inversion this does not have big impact
on the cycle count of one iteration.

6.6 Conversion to normal basis

Polynomial basis. For the polynomial-basis implementation we have to convert
the x-coordinate to normal basis to check whether we found a distinguished
point. This basis conversion is generated using the techniques described in [5]
and uses 3380 bit operations. The carefully scheduled code takes 3748 cycles
(measured).

16 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

6.7 Hamming-weight computation

The bitsliced Hamming-weight computation of a 131-bit number represented in
normal basis can be done in a divide-and-conquer approach (producing bitsliced
results) using 625 bit operations. We unrolled this algorithm to obtain a function
that computes the Hamming weight using 844 cycles (measured).

6.8 Control flow overhead

For both, polynomial-basis and normal-basis representation there is additional
overhead from additions, loop control, and reading new input points after a
distinguished point has been found. This overhead accounts for only about 8
percent of the total computation time. Reading a new input point after a dis-
tinguished point has been found takes about 2,009,000 cycles. As an input point
takes on average 225.7 ≈ 40, 460, 197 iterations to reach a distinguished point,
these costs are negligible and are ignored in our overall cycle counts for the
iteration function.

6.9 Complete iteration

To make the computation of the iteration function as fast as possible we used
the largest batch size for Montgomery inversions that allows us to fit all data
into the local storage. Our polynomial-basis implementation uses a batch size of
12 and needs 113844 cycles (measured) to compute the iteration function. The
normal-basis implementation uses a batch size of 14 and requires 100944 cycles
(measured). Clearly, the overhead caused by the conversions for multiplications
in the normal-basis implementation is outweighed by the benefits in faster m-
squarings, conditional m-squarings, and the saved basis conversion.

6.10 Using DMA transfers to increase the batch size

To be able to use larger numbers for the batch size we modified the normal-basis
implementation to make use of main memory. The batches are stored in main
memory and are fetched into LS temporarily for computation.

Since the access pattern to the batches is totally deterministic, it is possible to
use multi-buffering to prefetch data while processing previously loaded data and
to write back data to main memory during ongoing computations. Even though 3
slots—one for outgoing data, one for computation, and one for incoming data—
are sufficient for the buffering logic, we use 8 slots in local memory as ringbuffer
to hide indeterministic delays on the memory bus. We assign one DMA tag to
each of these slots to monitor ongoing transactions.

Before computation, one slot is chosen for the first batch and the batch is
loaded to LS. During one step of the iteration function, the SPU iterates multiple
times over the batches. Each time, first the SPU checks whether the last write
back from the next slot has finished using a blocking call to the MFC on the
assigned tag. Then it initiates a prefetch for the next required batch into this

ECC2K-130 on Cell CPUs 17

next slot. Now—again in a blocking manner—it is checked whether the data for
the current batch already has arrived. If so, data is processed and finally the
SPU initiates a DMA transfer to write changed data back to main memory.

Due to this access pattern, all data transfers can be performed with min-
imal overhead and delay. Therefore it is possible to increase the batch size to
512 improving the runtime per iteration for the normal basis implementation
by about 5 percent to 95428 cycles (measured). Measurements on IBM blade
servers QS21 and QS22 showed that neither processor bus nor main memory
are a bottleneck even if 8 SPEs are doing independent computations and DMA
transfers in parallel.

7 Conclusions

To the best of our knowledge there were no previous attempts to implement
fast binary-field arithmetic on the Cell. The closest work that we are aware of
is [8], in which Bos, Kaihara and Montgomery solved an elliptic-curve discrete-
logarithm problem over a 112-bit prime field using a PlayStation 3 cluster of
200 nodes. Too many aspects of both the iteration function and the underlying
field arithmetic are different from the implementation in this paper to allow a
meaningful comparison.

From the two implementations described in this paper it is clear that on
the Cell processor bitsliced implementations of highly parallel binary-field arith-
metic are more efficient than standard implementations. Furthermore we show
that normal-basis representation of finite-field elements outperforms polynomial-
basis representation when using a bitsliced implementation. For applications that
do not process large batches of different independent computations the non-
bitsliced approach remains of interest. The cycle counts for all field operations
are summarized in Table 1 for both approaches.

Using the bitsliced normal-basis implementation—which uses DMA transfers
to main memory to support a batch size of 512 for Montgomery inversions—on
all 6 SPUs of a Sony Playstation 3 in parallel, we can compute 25.57 million
iterations per second. The expected total number of iterations required to solve
the ECDLP given in the ECC2K-130 challenge is 260.9 (see [2]). Using the soft-
ware described in this paper, this number of iterations can be computed in 2654
Playstation 3 years.

References

1. Daniel V. Bailey, Brian Baldwin, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Gauthier van Damme, Giacomo de Meulenaer, Junfeng Fan, Tim
Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens,
Christof Paar, Francesco Regazzoni, Peter Schwabe, and Leif Uhsadel. The Cer-
ticom challenges ECC2-X. Workshop Record of SHARCS 2009: Special-purpose
Hardware for Attacking Cryptographic Systems, pages 51–82, 2009. http://www.

hyperelliptic.org/tanja/SHARCS/record2.pdf.

18 J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe

Non-bitsliced, Bitsliced, Bitsliced,
polynomial basis polynomial basis normal basis

Squaring 34 3.164 2.563

m-squaring 96 m× 3.164 2.563

Conditional m-squaring — m× 3.164 + 4.047 3.539

Multiplication 149 117.914 130.102

Addition 2 3.844

Inversion 3784 1354.102 1063.531

Conversion to normal basis 96 29.281 —

Hamming-weight computation 4 6.594

Pollard’s rho iteration 1148 (B = 256) 889.406 (B = 12)
788.625 (B = 14)

745.531 (B = 512)

Table 1. Cycle counts per input for all operations on one SPE of a 3192 MHz Cell
Broadband Engine, rev. 5.1. For the bitsliced implementations, cycle counts for 128
inputs are divided by 128. The value B in the last row denotes the batch size for
Montgomery inversions.

2. Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos,
Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier Van Damme, Giacomo de Meule-
naer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gürkaynak,
Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof
Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege,
and Bo-Yin Yang. Breaking ECC2K-130, 2009. http://eprint.iacr.org/2009/

541.
3. Daniel J. Bernstein. Batch binary Edwards. In Advances in Cryptology – CRYPTO

2009, volume 5677 of LNCS, pages 317–336, 2009.
4. Daniel J. Bernstein. Minimum number of bit operations for multiplication, May

2009. http://binary.cr.yp.to/m.html (accessed 2009-12-07).
5. Daniel J. Bernstein. Optimizing linear maps modulo 2. Workshop Record of

SPEED-CC: Software Performance Enhancement for Encryption and Decryption
and Cryptographic Compilers, pages 3–18, 2009. http://www.hyperelliptic.

org/SPEED/record09.pdf.
6. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.

hyperelliptic.org/EFD/ (accessed 2010-01-05).
7. Eli Biham. A fast new DES implementation in software. In Fast Software Encryp-

tion: 4th International Workshop, FSE’97, volume 1267 of LNCS, pages 260–272,
1997.

8. Joppe W. Bos, Marcelo E. Kaihara, and Peter L. Montgomery. Pollard rho on
the PlayStation 3. Workshop Record of SHARCS 2009: Special-purpose Hard-
ware for Attacking Cryptographic Systems, pages 35–50, 2009. http://www.

hyperelliptic.org/tanja/SHARCS/record2.pdf.
9. Certicom. Certicom ECC Challenge, 1997. http://www.certicom.com/images/

pdfs/cert_ecc_challenge.pdf.
10. Darrel Hankerson, Alfred Menezes, and Scott A. Vanstone. Guide to Elliptic Curve

Cryptography. Springer, New York, 2004.
11. Bernard Harris. Probability distributions related to random mappings. The Annals

of Mathematical Statistics, 31:1045–1062, 1960.

ECC2K-130 on Cell CPUs 19

12. H. Peter Hofstee. Power efficient processor architecture and the Cell processor. In
HPCA 2005, pages 258–262. IEEE Computer Society, 2005.

13. IBM. IBM SDK for multicore acceleration (version 3.1). http://www.ibm.com/

developerworks/power/cell/downloads.html?S_TACT=105AGX16&S_CMP=LP.
14. IBM DeveloperWorks. Cell Broadband Engine programming handbook (ver-

sion 1.11), May 2008. https://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/1741C509C5F64B3300257460006FD68D.
15. Anatolii Karatsuba and Yuri Ofman. Multiplication of many-digital numbers by

automatic computers. Number 145 in Proceedings of the USSR Academy of Sci-
ence, pages 293–294, 1962.

16. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation, 48:243–264, 1987.

17. John M. Pollard. Monte Carlo methods for index computation (mod p). Mathe-

matics of Computation, 32:918–924, 1978.
18. Josef Stein. Computational problems associated with Racah algebra. Journal of

Computational Physics, 1(3):397–405, 1967.
19. Joachim von zur Gathen, Amin Shokrollahi, and Jamshid Shokrollahi. Efficient

multiplication using type 2 optimal normal bases. In Arithmetic of Finite Fields

– WAIFI 2007, volume 4547 of LNCS, pages 55–68, 2007.

