
J. Cryptol. (2010) 23: 519–545
DOI: 10.1007/s00145-010-9071-0

An Analysis of the Blockcipher-Based
Hash Functions from PGV

J. Black
Department of Computer Science, University of Colorado, Boulder, CO 80309, USA

jrblack@cs.colorado.edu

P. Rogaway
Department of Computer Science, University of California, Davis, CA 95616, USA

rogaway@cs.ucdavis.edu

T. Shrimpton
Department of Computer Science, Portland State University, Portland, OR 97201, USA

teshrim@ucdavis.edu

M. Stam
LACAL, School of Computer and Communication Sciences, EPFL, Station 14, Lausanne 1015, Switzerland

martijn.stam@epfl.ch

Received 3 January 2005
Online publication 16 July 2010

Abstract. Preneel, Govaerts, and Vandewalle (1993) considered the 64 most ba-
sic ways to construct a hash function H : {0,1}∗ → {0,1}n from a blockcipher
E: {0,1}n×{0,1}n → {0,1}n. They regarded 12 of these 64 schemes as secure, though
no proofs or formal claims were given. Here we provide a proof-based treatment of the
PGV schemes. We show that, in the ideal-cipher model, the 12 schemes considered
secure by PGV really are secure: we give tight upper and lower bounds on their col-
lision resistance. Furthermore, by stepping outside of the Merkle–Damgård approach
to analysis, we show that an additional 8 of the PGV schemes are just as collision
resistant (up to a constant). Nonetheless, we are able to differentiate among the 20
collision-resistant schemes by considering their preimage resistance: only the 12 ini-
tial schemes enjoy optimal preimage resistance. Our work demonstrates that proving
ideal-cipher-model bounds is a feasible and useful step for understanding the security
of blockcipher-based hash-function constructions.

Key words. Blockcipher, Collision-resistant hash function, Cryptographic hash func-
tion, Ideal-cipher model, Modes of operation.

1. Introduction

Background The idea of building a cryptographic hash function from a blockcipher
goes back more than 30 years [31], when Michael Rabin suggested to hash a mes-
sage M = m1m2 · · ·m� by setting H(M) = DESm�

(DESm�−1(· · · (DESm1(h0)) · · ·)) for

© International Association for Cryptologic Research 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147977676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jrblack@cs.colorado.edu
mailto:rogaway@cs.ucdavis.edu
mailto:teshrim@ucdavis.edu
mailto:martijn.stam@epfl.ch


520 J. Black et al.

some constant h0. This can be viewed as the Merkle–Damgård construction [10,27]
with compression function f (hi−1,mi) = DESmi

(hi−1). Other blockcipher-based con-
structions soon followed, like those of Davies–Meyer [26], Matyas–Meyer–Oseas [24],
and Miyaguchi–Preneel [29]. When dedicated hash functions began to emerge and be-
come popular, beginning with MD4 [32], these too were built from (often implicit)
blockciphers.

Generalizing from many blockcipher-based hash-function constructions, Preneel,
Govaerts, and Vandewalle [30], henceforth “PGV”, systematically considered ways to
turn a blockcipher E: {0,1}n × {0,1}n → {0,1}n into a hash function H : ({0,1}n)∗ →
{0,1}n. The authors assume that E is first used to define a compression function
f : {0,1}n × {0,1}n → {0,1}n and that the hash function is then given by iterating f

with Merkle–Damgård chaining, meaning:

function H(m1 · · ·m�)

for i ← 1 to � do hi ← f (hi−1,mi)

return h�

Here the initial chaining value h0 is a fixed n-bit constant, and the message M =
m1 · · ·m�, where |mi | = n, is assumed to be a multiple of n bits. To make the compres-
sion function f (h,m) from the blockcipher E, the PGV paper considers all functions

f (h,m) = Ek(x)⊕ s where k, x, s ∈ {c, h, m, h⊕m}.
Here c is a fixed but arbitrary n-bit constant. Of the 64 such schemes, PGV regard 12 as
secure. Another 13 schemes they classify as backward-attackable, which means they are
subject to an identified (but not very severe) potential attack. The remaining 39 schemes
are subject to damaging attacks identified by PGV and others.

PGV focused on attacks, not on proofs. All the same, it seems to have been a com-
monly held belief that it should be possible to produce proofs for the schemes that PGV
regarded as secure. Indeed PGV go so far as to say that For each of these schemes, it is
possible to write a ‘security proof’ based on a black box model of the encryption algo-
rithm, as was done for the Davies–Meyer scheme in [43]. The latter paper shows that
the scheme we will later call H5 is preimage resistant in the following (rather weak)
sense. Consider an algorithm A with E and E−1 oracles, the first realizing a family
of uniform independent permutations and the second being the inverse of the first. As-
sume that A, given y ∈ {0,1}n, always outputs a preimage x for it under HE

5 . Then the
expected number of queries A must make is at least 2n−1.

The model above is called the ideal-cipher model (more on it shortly). It is the same
model later used by Merkle in his own investigation of the security of hash func-
tions [27]. Still, prior to the proceedings version of the current paper [6], there had
been no detailed analysis in the literature for the collision resistance or preimage resis-
tance of any blockcipher-based hash function—neither in the ideal-cipher model nor any
other.

Our Results This paper takes a proof-centric look at the construction of blockcipher-
based hash functions. We again consider the 64 hash functions of PGV, but we do so
from the point of view of security upper and lower bounds—proofs and attacks—in a



An Analysis of the Blockcipher-Based Hash Functions from PGV 521

PGV category our category collisions preimages

�or FP (12 schemes) group-1: H1, . . . ,H12 (12 schemes) Θ(q2/2n) Θ(q/2n)

group-2: H13, . . . ,H20 (8 schemes) Θ(q2/2n) Θ(q2/2n)B (13 schemes)

group-3: H21, . . . ,H64 (44 schemes) Θ(1) —F, P, or D (39 schemes)

Fig. 1. Summary of our results. In the ideal-cipher model, the 64 schemes analyzed by PGV fall into
three natural categories, based on their collision resistance and their preimage resistance. The rightmost two
columns entail both upper and lower bounds on the schemes’ security.

formally specified model. What falls out is a taxonomy somewhat different from that
provided by PGV. Twelve of the PGV hash functions, the group-1 schemes H1, . . . ,H12,
are shown to have essentially optimal collision resistance and optimal preimage re-
sistance (optimal, up to a constant, with respect to just these two properties). Eight
more PGV hash functions, the group-2 schemes H13, . . . ,H20, are shown to have op-
timal collision-resistance but highly suboptimal preimage resistance. The remaining
44 = 64 − 12 − 8 PGV hash functions have terrible collision resistance and are there-
fore lumped together into a third, group-3 set of functions. PGV had already provided
constant-query collision-finding attacks on 39 of these 44 functions; in Sect. 9 we pro-
vide constant-query collision-finding attacks on the five remaining group-3 schemes.
Our taxonomy is summarized in Fig. 1, where it is also compared to the taxonomy of
PGV. The precise model, including the meaning of q , will momentarily be described.

The definition of the 20 group-1 and group-2 schemes is given in Fig. 2, which also
contains a forward pointer to our main results. No attempt has been made to optimize
the constants, though none are excessively large. Figures 3 and 4 provide a pictor-
ial view of the compression functions of H1, . . . ,H20. We comment that several of
the PGV hash functions have well-known inventors or names: H1 (Matyas–Meyer–
Oseas), H2 (Miyaguchi–Preneel), H5 (Davies–Meyer), H13 (Rabin), and H17 (Bitzer);
see [26,30].

The Ideal-Cipher Model Our results are in the model dating to Shannon [36] and
used for works like [14,20,43]. An adversary A is given access to oracles E and E−1,
where E is a random blockcipher E: {0,1}n × {0,1}n → {0,1}n, and E−1 is its inverse
(we are restricting our attention to blockciphers with both key-length and block-length
equal to some integer n ≥ 1). Thus each key k ∈ {0,1}n names a uniformly selected
permutation Ek = E(k, ·) on {0,1}n, and the adversary is given oracles for E and E−1.
The latter, on input (k, y), returns the point x such that Ek(x) = y.

For a hash function H that depends on E, the adversary’s job in attacking the colli-
sion resistance of H is to find distinct M,M ′ such that H(M) = H(M ′). One measures
the optimal adversary’s chance of doing this as a function of the number of E or E−1

queries it makes. Similarly, the adversary’s job in inverting H is to find an inverse un-
der H for a random range point Y ∈ {0,1}n. (See Sect. 10 for a justification of this
definition.) Again one measures the optimal adversary’s chance of doing this as a func-
tion of the total number of E or E−1 queries it makes. This model has variously been
called the Shannon model or the ideal-cipher model.



522 J. Black et al.

s
r

f
(h

,
m

)
f

′ (h
,
m

)
f

′′ (
h
,
m

,
y
)

f
∗ (

k
,
x
,
y
)

co
ll

at
k

co
ll

se
c

pr
e

at
k

pr
e

se
c

1
3

E
h
(m

)
⊕

m
(h

,
m

)
m

⊕
y

x
⊕

y

2
10

E
h
(m

)
⊕

w
(h

,
m

)
h

⊕
m

⊕
y

k
⊕

x
⊕

y

3
30

E
h
(w

)
⊕

m
(h

,
h

⊕
m

)
m

⊕
y

k
⊕

x
⊕

y

4
38

E
h
(w

)
⊕

w
(h

,
h

⊕
m

)
h

⊕
m

⊕
y

x
⊕

y
at

le
as

t
at

m
os

t
at

le
as

t
at

m
os

t
5

19
E

m
(h

)
⊕

h
(m

,
h
)

h
⊕

y
x

⊕
y

1 4e
q

2
/
2n

q
2
/
2n

q
/
2n

2
q
/
2n

6
21

E
m
(h

)
⊕

w
(m

,
h
)

h
⊕

m
⊕

y
k
⊕

x
⊕

y
by

by
by

by
7

33
E

m
(w

)
⊕

h
(m

,
h

⊕
m

)
h

⊕
y

k
⊕

x
⊕

y
T

h.
15

T
h.

7
T

h.
16

T
h.

11
8

37
E

m
(w

)
⊕

w
(m

,
h

⊕
m

)
h

⊕
m

⊕
y

x
⊕

y

9
20

E
w
(h

)
⊕

h
(h

⊕
m

,
h
)

h
⊕

y
x

⊕
y

10
17

E
w
(h

)
⊕

m
(h

⊕
m

,
h
)

m
⊕

y
k
⊕

x
⊕

y

11
7

E
w
(m

)
⊕

h
(h

⊕
m

,
m

)
h

⊕
y

k
⊕

x
⊕

y

12
4

E
w
(m

)
⊕

m
(h

⊕
m

,
m

)
m

⊕
y

x
⊕

y

13
13

E
m
(h

)
⊕

c
(m

,
h
)

c
⊕

y
c
⊕

y

14
15

E
m
(h

)
⊕

m
(m

,
h
)

m
⊕

y
k
⊕

y

15
25

E
m
(w

)
⊕

c
(m

,
h

⊕
m

)
c
⊕

y
c
⊕

y
at

le
as

t
at

m
os

t
at

le
as

t
at

m
os

t
16

29
E

m
(w

)
⊕

m
(m

,
h

⊕
m

)
m

⊕
y

k
⊕

y
1 4e

q
2
/
2n

q
2
/
2n

1 2e
q

2
/
2n

q
2
/
2n

17
14

E
w
(h

)
⊕

c
(h

⊕
m

,
h
)

c
⊕

y
c
⊕

y
by

by
by

by
18

23
E

w
(h

)
⊕

w
(h

⊕
m

,
h
)

h
⊕

m
⊕

y
k
⊕

y
T

h.
15

T
h.

10
T

h.
18

T
h.

14
19

2
E

w
(m

)
⊕

c
(h

⊕
m

,
m

)
c
⊕

y
c
⊕

y

20
11

E
w
(m

)
⊕

w
(h

⊕
m

,
m

)
h

⊕
m

⊕
y

k
⊕

y

F
ig

.
2.

D
efi

ni
tio

ns
of

gr
ou

p-
1

an
d

gr
ou

p-
2

sc
he

m
es

,
an

d
re

su
lts

on
th

em
.

C
ol

um
n

1
is

ou
r

in
de

x
s

(w
e

w
ri

te
f
s

fo
r

th
e

co
m

pr
es

si
on

fu
nc

tio
n

an
d

H
s

fo
r

th
e

ite
ra

te
d

co
ns

tr
uc

tio
n)

.C
ol

um
n

2
is

th
e

in
de

x
us

ed
by

PG
V

[3
0]

.C
ol

um
n

3
de

fin
es

th
e

co
m

pr
es

si
on

fu
nc

tio
ns

w
he

re
,f

or
co

m
pa

ct
ne

ss
,w

=
h

⊕
m

.C
ol

um
ns

4–
6

ar
e

th
e

f
′ ,f

′′ ,
f

∗
fu

nc
tio

ns
de

sc
ri

be
d

in
Se

ct
.

3.
C

ol
um

ns
7–

10
su

m
m

ar
iz

e
ou

r
co

lli
si

on
-r

es
is

ta
nc

e
an

d
pr

ei
m

ag
e-

re
si

st
an

ce
bo

un
ds

an
d

w
he

re
th

ey
ca

n
be

fo
un

d.
W

e
om

it
m

en
tio

n
of

th
e

do
m

ai
n

of
va

lid
ity

fo
r

th
e

bo
un

ds
as

w
el

la
s
±1

or
±2

ad
de

nd
s

on
q

.



An Analysis of the Blockcipher-Based Hash Functions from PGV 523

Fig. 3. Compression functions f1, . . . , f12 for the group-1 hash functions H1, . . . ,H12. The blockcipher’s
key k comes in at the darkened side of the box, and the plaintext block x comes in at the other edge with an
incoming arc. Both are n bits. The incoming chaining value h = hi−1 enters on the left, and the incoming
message block m = mi enters from the top. The outgoing chaining value h′ = hi exits out the right.

Fig. 4. Compression functions f13, . . . , f20 for the group-2 hash functions H13, . . . ,H20. Notation is as in
Fig. 3. The slanted hatch mark in compression functions 13, 15, 17, and 19 represents an arbitrary constant c.

It is important not to read too much or too little into ideal-cipher-model proofs. On
one hand, attacks on (explicitly) blockcipher-based hash functions have traditionally
treated the blockcipher as a black box: they do not exploit the structure of the block-
cipher at all. Such attacks are doomed when one has strong results in the ideal-cipher
model. On the other hand, the only structural aspect of a blockcipher captured by the
model is its invertibility, so one must be skeptical about what an ideal-cipher-model
proof means as soon as one employs a blockcipher with significant structural prop-
erties: perhaps there is a way for the adversary to exploit these properties. Properties
like the existence of “weak keys” are problematic in this setting. Still, the ideal-cipher
model is considerably sharper than modeling the blockcipher as a random function
E: {0,1}2n → {0,1}n, and such a model should be avoided because many attacks on



524 J. Black et al.

blockcipher-based hash functions do use the adversary’s ability to compute E−1
k . Over-

all, we see the ideal-cipher model as an appropriate first step in understanding the secu-
rity of blockcipher-based hash functions.

Message Padding As with PGV [30], we do not concern ourselves with messages that
are not multiples of the block length n; one can always deal with such messages by
padding techniques. One common method, known as MD-strengthening [10,27], is to
0-pad the message to a multiple of the block length n and then to add in one more
block that specifies the length of the original message (modulo 2n, say). Simple results
establish the security for such techniques in defining a hash function H ∗ with domain
{0,1}∗ given a hash function H with domain ({0,1}n)∗. All of our attacks likewise work
in the presence of MD-strengthening.

Publication History The proceedings version of this paper appeared in CRYPTO
2002 [6]. Many of the proofs in the current version have been simplified or otherwise
cleaned up. In particular, one of the deficiencies in the proceedings version was that, in
proofs, we would take an example function from a class of hash functions, prove a claim
for it, and then say that the other functions worked the same way. Such claims were hard
to verify. The current version instead describes proofs in terms of basic properties of the
hash functions, an approach employed by Stam [40]. We have imported the coauthor as
well as the approach.

Subsequent Work There has been considerable follow-on work since the proceedings
version of this paper [6], some of which we sketch in Sect. 11.

2. Preliminaries

Basic Notions Given a finite set S, we write x
$← S for the experiment of uniformly

selecting a random element from S and calling it x. An adversary is an algorithm with
access to one or more oracles. We write these as superscripts.

We restrict attention to blockciphers whose key-length and block-length are the same
number n ≥ 1. A blockcipher is then a map E: {0,1}n × {0,1}n → {0,1}n, where, for
each k ∈ {0,1}n, the function Ek(·) = E(k, ·) is a permutation on {0,1}n. If E is a
blockcipher, then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y.
Let Bloc(n) be the set of all blockciphers E: {0,1}n × {0,1}n → {0,1}n. Choosing a
random element of Bloc(n) means that, for each k ∈ {0,1}n, one chooses a uniformly
random permutation Ek(·).

A (blockcipher-based) hash function is a map H : Bloc(n) × D → R where n ≥ 1,
D ⊆ {0,1}∗, and R = {0,1}n. We stress that a hash function is not allowed to depend
arbitrarily on its first argument; access to the specified element E ∈ Bloc(n) is black-
box. In particular the function H must be given by a program that, given M , computes
HE(M) = H(E,M) using an E-oracle. When hash function f : Bloc(n) × D → R

has D = {0,1}n × {0,1}n, we call it a compression function. (We do not distinguish
between elements in {0,1}n × {0,1}n and those in {0,1}2n, assuming some canoni-
cal way such as concatenation to shift between representations. In this way we con-
sider {0,1}n × {0,1}n a subset of {0,1}∗.) Fix h0 ∈ {0,1}n. The iterated hash of



An Analysis of the Blockcipher-Based Hash Functions from PGV 525

compression function f : Bloc(n) × ({0,1}n × {0,1}n) → {0,1}n is the hash func-
tion H : Bloc(n) × ({0,1}n)∗ → {0,1}n defined by HE(m1 · · ·m�) = h�, where hi =
f E(hi−1,mi). Set HE(ε) = h0, where ε denotes the empty string. If the program for f

uses a single query E(k, x) to compute f E(h,m), then f (and its iterated hash H ) is
said to be rate-1. We often omit the superscript E to f and H . Sometimes we wish to
stress the parameter n (the block-length), and then we write f n or Hn.

Definition 1 (Group-1 and group-2 PGV hash functions). Fix n ≥ 1. For any s ∈
[1..20] (our numbering convention), Fig. 2 serves to define the group-1 (s ∈ [1..12])
respectively group-2 (s ∈ [13..20]) compression functions

f n
s : Bloc(n) × ({0,1}n × {0,1}n) → {0,1}n.

Given a fixed h0 ∈ {0,1}n, the compression functions above induce iterated hash func-
tions Hn

s by way of Hn
s (ε) = h0 and Hn

s (m1 . . .m�) = f n
s (Hn

s (m1 . . .m�−1),m�).

Often we omit writing the subscript s or superscript n from a hash function or com-
pression function. Sometimes we will talk of the iterated hash function without explic-
itly fixing h0 first; suffice it to say our results hold for all fixed h0 ∈ {0,1}n.

Security Notions A systematic exploration of different notions of hash-function secu-
rity is beyond the scope of this paper; see [33] for some work in this direction. In the
sequel, we specify the notions for collision resistance and preimage resistance that we
will use.

To quantify the collision resistance of a blockcipher-based hash function H , we in-
stantiate the blockcipher E by uniformly sampling it from Bloc(n). An adversary A

is given oracles for E(·, ·) and E−1(·, ·) and wants to find a collision for HE—that
is, M,M ′ where M 
= M ′ but HE(M) = HE(M ′). We look at the number of queries
that the adversary makes and compare this to the probability that the adversary finds a
collision.

Definition 2 (Collision resistance of a hash function). Let H be a blockcipher-based
hash function, H : Bloc(n) × D → R, and let A be an adversary. Then the advantage
of A in finding collisions in H is the real number

Advcoll
H (A) = Pr

[
E

$← Bloc(n); (M,M ′) $← AE,E−1 : M 
= M ′ and HE(M) = HE(M ′)
]
.

For q ≥ 1, we write Advcoll
H (q) for maxA{Advcoll

H (A)}, where the maximum is taken
over all adversaries that ask at most q oracle queries (E-queries plus E−1-queries).
Other advantage measures are silently extended in the same way.

We also define the advantage of an adversary in finding collisions in a compression
function f : Bloc(n)×{0,1}n ×{0,1}n → {0,1}n. Naturally (h,m) and (h′,m′) collide
under f if they are distinct and f E(h,m) = f E(h′,m′), but we also give credit for
finding an (h,m) such that f E(h,m) = h0 for a fixed h0 ∈ {0,1}n. If one treats the hash
of the empty string as the constant h0, then f E(h,m) = h0 amounts to having found a
collision between (h,m) and the empty string.



526 J. Black et al.

Definition 3 (Collision resistance of a compression function). Let f be a blockcipher-
based compression function, f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n. Fix a constant
h0 ∈ {0,1}n and an adversary A. Then the advantage of A in finding collisions in f is
the real number

Advcomp
f (A) = Pr

[
E

$← Bloc(n); (
(h,m), (h′,m′)

) $← AE,E−1 :
(
(h,m) 
= (h′,m′) ∧ f E(h,m) = f E(h′,m′)

) ∨ f E(h,m) = h0
]
.

Though we focus on collision resistance, we are also interested in preimage resis-
tance. We consider defining this in two natural ways.

Definition 4 (Preimage resistance). Let H : Bloc(n)×D → R be a blockcipher-based
hash function, and let A be an adversary. Let λ be a number such that Dλ = D ∩ {0,1}λ
is nonempty. Then the advantage of A in finding preimages for H is measured by the
real numbers

Advpre1
H (A) = Pr

[
E

$← Bloc(n); σ
$← R; M ← AE,E−1

(σ ) : HE(M) = σ
]

and

Advpre2
H (A,λ) = Pr

[
E

$← Bloc(n); M
$← Dλ; σ ← HE(M); M

$← AE,E−1
(σ ):

HE(M) = σ
]
.

The first formalization speaks to the difficulty of finding a preimage for a random
range point, while the second speaks to the difficulty of finding a preimage for the im-
age of a random domain point. The latter is better aligned with the traditional notion
of a one-way function, but it is more cumbersome to work with because one must in-
troduce an extra parameter (the value λ) and use it to split the domain into finite sets.
We therefore almost always prefer to use the “pre1” notion. We will justify this choice
for our particular context in Sect. 10, showing that, for the 20 PGV hash functions we
consider, the two measures almost coincide.

Conventions For the remainder of this paper, we assume the following significant con-
ventions. First, an adversary does not ask any oracle query in which the response is
already known; namely, if A asks a query Ek(x) and this returns y, then A does not
ask a subsequent query of Ek(x) or E−1

k (y); and if A asks E−1
k (y) and this returns x,

then A does not ask a subsequent query of E−1
k (y) or Ek(x). Second, when a (collision-

finding) adversary A for H outputs M and M ′, adversary A must have already computed
HE(M) and HE(M ′), in the sense that A has made the necessary E or E−1 queries to
compute HE(M) and HE(M ′) according to the program that defines H . Similarly, we
assume that a (collision-finding) adversary A for the compression function f computes
f E(h,m) and f E(h′,m′) prior to outputting (h,m) and (h′,m′). Similarly, when a
(preimage-finding) adversary A for H outputs a message M , we assume that A has al-
ready computed HE(M), in the sense that A has made the necessary E or E−1 queries
to compute this value. These assumptions are all without loss of generality, in that an
adversary A not obeying these conventions can easily be modified to give an adver-
sary A′ having similar computational complexity that obeys these conventions and has
the same advantage as A.



An Analysis of the Blockcipher-Based Hash Functions from PGV 527

3. Properties of Group-1 and Group-2 Compression Functions

To simplify proving collision-resistance and preimage-resistance for the twelve group-1
hash functions and the eight group-2 hash functions—conceptually, 40 different
theorems—it is convenient to define a combinatorial property shared by each hash-
function member in the group. This allows one to simultaneously prove security prop-
erties enjoyed by every group-1 hash function—and any other function satisfying the
stated combinatorial property—and similarly for the group-2 schemes. This section
defines the needed property.

Functions Associated to a Compression Function We begin by defining some func-
tions that are naturally associated to a rate-1 compression function. If f : Bloc(n) ×
{0,1}n × {0,1}n → {0,1}n is a rate-1 compression function, then it can be “factored”
into functions f ′ and f ′′, where f ′ : {0,1}n × {0,1}n → {0,1}n × {0,1}n is the pre-
processing function that prepares the input to be fed to the blockcipher, and where
f ′′ : {0,1}n × {0,1}n × {0,1}n → {0,1}n is the postprocessing function that determines
the final output by way of z = f E(h,m) = f ′′(h,m,y) for (k, x) = f ′(h,m) and
y = Ek(x). See the inset figure. If f ′ is bijective, we further define f ∗ : {0,1}n ×
{0,1}n × {0,1}n → {0,1}n by f ∗(k, x, y) = f ′′(h,m,y), where (h,m) = f ′−1

(k, x).
This function maps the input and output of the blockcipher, (k, x, y), to the correspond-
ing output of the compression function, z = f (h,m).

Compression-Function Properties Let f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n be
the compression function of a rate-1 hash function. Then we define the following four
properties that may or may not hold on f :

P1 The function f ′ is bijective. Recall that this function maps (h,m) ∈ {0,1}n ×
{0,1}n to (k, x) ∈ {0,1}n × {0,1}n.

P2 The function f ′′(h,m, ·) is bijective for all (h,m) ∈ {0,1}n × {0,1}n. Note that
the specified function maps y ∈ {0,1}n to z ∈ {0,1}n.

P3 The function f ∗(k, ·, y) is bijective for all (k, y) ∈ {0,1}n ×{0,1}n. Note that the
function maps x ∈ {0,1}n to z ∈ {0,1}n and that mention of f ∗ already assumes
property P1.

P4 The function f ′(h, ·)|1, the projection of f ′ to its first component of output, is
bijective for all h ∈ {0,1}n. Note that the specified projection maps m ∈ {0,1}n
to k ∈ {0,1}n.



528 J. Black et al.

We also name the following two properties, which are just collections of the properties
of above: we say that f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n has property:

T1 The function f has properties P1, P2, and P3.
T2 The function f has properties P1, P2, and P4, but not property P3.

Let us take a moment to build some intuition for these definitions. Property P1 en-
sures that blockcipher inputs (k, x) are in one-to-one correspondence with compression-
function inputs (h,m). Property P2 ensures that there is a one-to-one correspondence
between blockcipher outputs and compression-function outputs for any compression-
function inputs. In particular, this ensures that every bit of the blockcipher output affects
the output of the compression function. Property P3 ensures that every bit of the inverse
blockcipher output affects the output of the compression function. Finally, assuming
that property P1 holds, property P4 ensures that every bit of the inverse blockcipher
output affects the part of the input of the compression function that serves as chain-
ing variable in the iterated construction. This last interpretation relies on an alternative
formulation of property P4 in the case property P1 holds.

P4′ The function f ′−1
(k, ·)|1, the projection of f ′−1 to its first component of output,

is bijective for all k ∈ {0,1}n. Note that the specified projection maps x ∈ {0,1}n
to h ∈ {0,1}n.

Lemma 5. Let f ′ be given having property P1. Then it has property P4 iff it has
property P4′.

Proof. We prove only that having property P4 implies having P4′ (by contradiction),
the other implication follows by a symmetrical argument. Suppose that property P4′
does not hold; then f ′−1

(k, ·)|1 is not injective for some k ∈ {0,1}n, and there exist
x, x′ ∈ {0,1}n, x 
= x′ such that f ′−1

(k, x)|1 = f ′−1
(k, x′)|1. Let h,m,h′,m′ ∈ {0,1}n

be such that (h,m) = f ′−1
(k, x) and (h′,m′) = f ′−1

(k, x′). Then in particular h =
h′,m 
= m′, yet f ′(h,m)|1 = k = f ′(h,m′)|1, violating property P4. �

Properties of the Group-1 and Group-2 Hash Functions The table of Fig. 2 not only
defines the compression function f for each group-1 and group-2 scheme, but, in ad-
dition, it specifies the corresponding functions f ′ (column 4) and f ′′ (column 5) and,
since all f ′ are bijective, function f ∗ (column 6). From this information it is immediate
to verify that properties P1 and P2 hold for functions f1, . . . , f20, property P3 holds for
f1, . . . , f12 but not for f13, . . . , f20, and property P4 holds for f5, . . . , f20. In particular
then, group-1 compression functions have the property we named T1, while group-2
compression functions have the property we named T2. We note this below.

Proposition 6. The group-1 compression functions each have property T1, while the
group-2 compression functions have property T2.

It will follow from results of this paper that the above statement is actually an if and
only if: the remaining 44 PGV compression functions have neither property T1 nor T2.



An Analysis of the Blockcipher-Based Hash Functions from PGV 529

The group-1 compression functions could be further subdivided into those that ad-
ditionally have property P4 (namely f5, . . . , f12) and those that do not (f1, . . . , f4).
In the context of preimage and collision resistance we will not consider this subdivi-
sion, but when other security properties are considered, it can surface. For instance,
the eight schemes for which PGV found fixed-point attacks are precisely those having
property P4.

4. Collision Resistance of the Group-1 Schemes

The group-1 hash functions can all be analyzed using the Merkle–Damgård paradigm.
Our security bound is identical for all of these schemes.

Theorem 7 (Collision resistance of the group-1 hash functions). Fix n ≥ 1 and let H

be a group-1 hash function. Then Advcoll
Hn (q) ≤ q(q + 1)/2n for any q ≥ 1.

The proof combines a lemma showing the collision resistance of a group-1 com-
pression-function with the classical result, stated for the ideal-cipher model, showing
that a hash function is collision resistant if its compression function is.

Lemma 8 (Merkle–Damgård [10,27] in the ideal-cipher model). Let f be a com-
pression-function f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n, and let H be the iterated
hash of f . Then Advcoll

H (q) ≤ Advcomp
f (q) for all q ≥ 1.

Proof. Let E be the blockcipher upon which f is based. Let A be a collision-finding
adversary for H that takes two oracles, E,E−1. We construct from A a collision-finding
adversary B for f . Adversary B also takes oracles E,E−1. Let B run A. When A makes
an E (resp., E−1) query, adversary B forwards it to E (resp., E−1) and returns the result
to A. For i ∈ [1..q], we say that the ith triple is (xi, ki, yi) if A’s ith oracle query was an
E-query of (ki, xi) and this returned yi , or else A’s ith oracle query was an E−1-query
(ki, yi) and this returned xi . Algorithm B records the list of triples. Eventually A halts
with an output (M,M ′) = (m1 · · ·m�,m

′
1 · · ·m′

�′).
Have B compute H(M) and H(M ′). According to our conventions, all of the nec-

essary queries for B to use in this computation are already recorded in B’s list of
triples, so no new oracle calls are needed to compute H(M) and H(M ′). We want
to show that whenever A is successful in finding a collision (in the hash function), B

will be successful in finding a collision in the compression function. Hence, suppose
M 
= M ′ and H(M) = H(M ′), and, by symmetry, we can assume without loss of gen-
erality that � ≥ �′. If �′ = 0 (and necessarily � > 0), it holds that f (h�−1,m�) = h0
and B can claim success by outputting (h�−1,m�). Otherwise, if �′ > 0, we can write
h� = f (h�−1,m�) = f (h′

�′−1,m
′
�′) = h′

�′ . (Primed variables are understood to be asso-
ciated to H(M ′).) If h�−1 
= h′

�′−1 or m� 
= m′
�′ , then B returns (h�−1,m�), (h

′
�′−1,m

′
�′).

Otherwise, h�−1 = f (h�−2,m�−1) = f (h′
�′−2,m

′
�′−1) = h′

�′−1. Again, if h�−2 
= h′
�′−2

or m�−1 
= m�′−1, then B wins by returning (h�−2,m�−1), (h
′
�′−2,m

′
�′−1). Proceeding in

this way, we find values α ∈ [1..�] and β ∈ [1..�′] such that either hα = f (hα−1,mα) =
f (h′

β−1,m
′
β) = h′

β (yet (hα−1,mα) 
= h′
β−1,m

′
β)) or f (hα−1,mα) = h0, so B will be

able to output a collision for f . �



530 J. Black et al.

Lemma 9 (Collision resistance of the group-1 compression functions). Fix n ≥ 1
and a constant h0 ∈ {0,1}n, and let f be a group-1 compression function. Then
Advcomp

f n (q) ≤ q(q + 1)/2n for any q ≥ 1.

Proof. Let E be the blockcipher upon which f is based. Let A be an adversary with
oracle access to E,E−1 that attacks the compression function f . Assume that A asks its
oracles a total of q queries. A collision consists either of two pairs (h,m) and (h′,m′)
satisfying f E(h,m) = f E(h′,m′) yet (h,m) 
= (h′,m′) or of a single pair (h,m) satis-
fying f E(h,m) = h0. We will maintain a list of triples (h,m, z) such that z = f E(h,m)

and the adversary has made the relevant queries to E and/or E−1. Since we require the
adversary to have made all relevant queries when outputting a collision, we can upper-
bound the success probability of the adversary by bounding the probability of a collision
occurring in this list. We show that any query, be it to E or E−1, will add at most one
triple (h,m, z) to this list of computable compression function evaluations; moreover
the value z is almost completely out of the adversary’s control.

Consider a forward query (k, x). By bijectivity of f ′ (property P1), there is a unique
pair (h,m) corresponding to this query. Thus, each forward query will add one triple
(h,m, z) to the adversary’s list of computable values. Since f ′′(h,m, ·) is bijective for
all h,m, the distribution of compression function output z is closely related to that of
blockcipher output y, which is close to being uniform. More precisely, suppose that so
far t queries to E (and E−1) have been made involving key k, resulting in t plaintext–
ciphertext pairs (xi, yi) with yi = Ek(xi) for i = 1, . . . , t . The answer to a fresh query
to Ek will therefore be y∗ 
= yi, i = 1, . . . , t . Moreover, each of the 2n − t answers is
equally likely if E is an ideal cipher. Each possible answer y∗ will combine under f ′′
with the pair (h,m) consistent with the (k, x) query being made, leading to a possible
compression function outcome h∗. Because f ′′ is bijective when (h,m) are fixed (prop-
erty P2), distinct y∗ lead to distinct z∗, so there are 2n − t possible outcomes z∗, all
equally likely.

Similarly, consider an inverse query (k, y). This yields a unique x, and hence by bijec-
tivity of f ′ (property P1), there is a unique pair (h,m) corresponding to this query once
answered. Thus, each inverse query will add one triple (h,m, z) to the adversary’s list
of computable values. This time bijectivity of f ∗(k, ·, y) implies that the distribution of
z is closely related to the (almost uniform) output distribution of E−1. Indeed, suppose
that so far t queries to E have been made involving key k, resulting in t plaintext–
ciphertext pairs (xi, yi) with yi = Ek(xi) for i = 1, . . . , t . The answer to a fresh query
to E−1

k will therefore be x∗ 
= xi, i = 1, . . . , t . Moreover, each of the 2n − t answers is
equally likely if E is an ideal cipher. Each possible answer x∗ will combine under f ′−1

and f ′′ with k and y to a triple (h,m, z). Because for all k and y, the mapping from x

to z is bijective (property P3), distinct x∗ lead to distinct z∗, so there are 2n − t possible
outcomes z∗, all equally likely.

As a result, after i − 1 queries the list of computable values contains i − 1 triples
(h,m, z). The ith query will add one triple with z uniform over a set of size at least
2n − (i − 1). Thus the probability that the ith query causes a collision with any of
these triples or h0 is at most i/(2n − (i − 1)). Using a union bound, the probability
of a collision after q queries can then be upper bounded by

∑q

i=1 i/(2n − (i − 1)) ≤
1
2q(q + 1)/(2n − q).



An Analysis of the Blockcipher-Based Hash Functions from PGV 531

If q ≤ 2n−1, our expression is at most 1
2n−1

q(q+1)
2 = q(q+1)

2n . Since the bound is

vacuous when q > 2n−1 we can drop the assumption that q ≤ 2n−1 and conclude
Advcomp

f n (q) ≤ q(q + 1)/2n. �

5. Collision Resistance of the Group-2 Schemes

We cannot use the Merkle–Damgård paradigm for proving the security of group-2
schemes because their compression functions are not collision-resistant. Indeed,
compression functions that belong to group-2 are easily invertible thus also allowing
quick collision finding. For example, one can break f14(h,m) = Em(h)⊕m as a com-
pression function by choosing any two distinct m,m′ ∈ {0,1}n, computing h = E−1

m (m)

and h′ = E−1
m′ (m′), and outputting (h,m) and (h′,m′). All the same, group-2 hash func-

tions enjoy almost the same upper bound on collision resistance as group-1 schemes.
The proof we give differs significantly from the original given in [6]. In particular,

the original proof was based upon coloring a directed graph. The 3n vertices represent
queries with all possible answers and have outdegree 2n where the arcs are drawn ac-
cording to whether the input to one query is consistent with the output of the former,
given the compression function under consideration. Coloring is added dynamically
depending on the actual query responses. This leads to unwieldy graphs with a compli-
cated notion of what constitutes a collision.

Here we consider an undirected graph where vertices correspond to chaining values
and edges are dynamically added whenever a query (to E or E−1) has been made that
would allow one to move from one chaining value to the next. This simplification, origi-
nally by Duo and Li [13], leads to a tighter bound than was originally presented, mainly
because we no longer need to distinguish several cases whose success probabilities are
subsequently added.

A similar approach was taken by Lucks [23], who considers a directed graph where
vertices correspond to chaining values and arcs are drawn (or colored) whenever a query
has been made that would allow one to move from one chaining value to the next.
However, the fact that Lucks’s graph is directed complicates his proof forcing some
extra case analysis. Dispensing with the direction of the arcs (that thus become edges)
leads to simpler proofs, despite seemingly aiding the adversary (certain patterns in the
graph will be deemed a success even when the underlying event on the hash function is
not).

Theorem 10 (Collision resistance of the group-2 hash functions). Fix n ≥ 1 and let H

be a group-2 hash function. Then Advcoll
Hn (q) ≤ q(q + 1)/2n for all q ≥ 1.

Proof. Let h0 = H(ε) ∈ {0,1}n be the initial value of H . Consider an undirected
graph G = (VG,EG) with vertex set VG = {0,1}n, corresponding to all 2n possible
chaining values, and where the edge set EG is initially empty. We will dynamically
add edges based on the queries to E and E−1. In particular, an edge (h, z) labeled
by m is added if there is a message m such that z = f E(h,m) (or h = f E(z,m)) for
which relevant query to either E or E−1 has been made. We claim that to find a col-
lision would require constructing a “ρ-shape” in the graph that contains the (fixed)



532 J. Black et al.

initial value h0. Suppose that H(M) = H(M ′) with M 
= M ′. Write M = (m1, . . . ,m�)

and M ′ = (m′
1, . . . ,m

′
�′) and correspondingly h0, . . . , h� respectively h′

0, . . . , h
′
�′ for the

chaining values of the iterated hash. Note that h′
0 = h0 and h� = h′

�′ . Assume without
loss of generality that � ≥ �′. Because M 
= M ′, there exists a t such that mi = m′

i for
all 0 ≤ i < t but mt 
= m′

t (or possibly � ≥ t > �′). As a result, the paths (h0, . . . , ht )

and (h′
0, . . . , h

′
t ) are identical, but the edges (ht , ht+1) and (h′

t , h
′
t+1) are distinct, even

when ht+1 happens to equal h′
t+1 (in particular, the edges are labeled differently). Since

h� = h′
�′ at some point the paths need to come together again, completing the ρ-shape.

Note that due to our use of an undirected graph, not every ρ-shape will actually lead to
a collision, but for analysis it will be sufficient to allow the adversary this extra credit.

Since we are dynamically adding edges to the graph, components in the graph will
also grow dynamically. Let T be the set of all nodes that are in a component containing
either a cycle or the initial value h0. The first claim is that after i oracle queries, the
set T has cardinality at most i + 1. Indeed, the component containing h0 has at most
i′ + 1 nodes when it has i′ edges. A component with i′ edges that contains a cycle has
at most i′ nodes. Thus the component of G that contains h0 is the only one that causes
the number of nodes (in T ) to be larger than the number of edges (in G), and this by
at most one. Bijectivity of f ′ (property P1) implies that an oracle query (either forward
or inverse) will add at most one edge to the graph, so after i queries, there are at most i

edges in the entire graph, and hence at most i + 1 nodes in the set T . This justifies our
first claim.

Our second claim is that to complete a ρ-shape, either (1) a cycle has to be completed
within the h0-component, or (2) the h0-component needs to become connected with a
cycle. Either way, an edge has to be found of which both nodes are already part of T .
The probability that on the ith query a collision is found by a forward query is at most
i/(2n − i): bijectivity of f ′′(h,m, ·) (property P2) ensures that z is uniformly distributed
over a set of size at least 2n − i, so hitting a set of size i occurs at most with said
probability. Similarly, for an inverse query, the probability of finding a collision on the
ith query using an inverse query is at most i/(2n − i): this time bijectivity of f ∗(k, ·, y)

(property P4′) ensures that h is uniformly distributed over a set of size at least 2n − i.
We can now conclude that the probability of finding a collision on the ith query is

at most i/(2n − i) and the probability after q queries is at most
∑q

i=1 i/(2n − i) ≤
1
2q(q + 1)/(2n − q). If q ≤ 2n−1, this expression is at most 1

2n−1
q(q+1)

2 = q(q+1)
2n . Since

the bound is vacuous when q > 2n−1, we can drop the assumption that q ≤ 2n−1 and
conclude that Advcoll

Hn (q) ≤ q(q + 1)/2n. �

6. Preimage Resistance of the Group-1 Schemes

From the perspective of collision resistance there is no reason to favor any particular
scheme, be it group-1 or just group-2. However, the schemes can be separated based on
their preimage resistance. In particular, for an n-bit blockcipher, an adversary attack-
ing a group-1 hash function requires nearly 2n oracle queries to do well at finding a
preimage for a random range point. In contrast, an adversary attacking a group-2 hash
function—with invertible compression function—requires roughly 2n/2 oracle queries
to do the same job. This renders the group-2 schemes H13..20 less secure than their
group-1 siblings H1..12.



An Analysis of the Blockcipher-Based Hash Functions from PGV 533

In Sects. 7 and 8 we will address the preimage resistance of the group-2 schemes
(Theorems 14 and 18), but we begin with the theorem establishing good preimage-
resistance for the group-1 schemes. The theorem is immediate from the two lemmas
that follow it. The first lemma is analogous to Lemma 8, and the second shows that
group-1 compression functions have good preimage resistance.

Theorem 11 (Preimage resistance of the group-1 hash functions). Fix n ≥ 1 and let
H be a group-1 hash function. Then Advpre1

Hn (q) ≤ q/2n−1 for any q ≥ 1.

Lemma 12 (Merkle–Damgård for pre1-security). Let f : Bloc(n)×{0,1}n ×{0,1}n→
{0,1}n be a compression function, and H be its iterated hash. Then Advpre1

H (q) ≤
Advpre1

f (q) + 2−n for all q ≥ 1.

Proof. Let A be an adversary for H : adversary A takes oracles E,E−1 and an input σ ,
and, when successful, it outputs M such that HE(M) = σ . We construct an adversary B

for f : adversary B takes oracles E,E−1 and an input σ , and, when successful, it out-
puts (h,m) such that f E(h,m) = σ . Adversary B works as follows. It runs A on σ .
When A makes an E (resp., E−1) query, adversary B forwards the query to its E (resp.,
E−1) oracle and returns to A the result. During this process, for each i ∈ [1..q], we
say that the ith triple is (xi, ki, yi) if A’s ith oracle query was an E-query of (ki, xi)

and this returned yi , or else A’s ith oracle query was an E−1-query (ki, yi) and this
returned xi . Adversary B records the list of triples. Eventually A halts with an output
M = m1 · · ·m�. Assume for the moment that M is indeed a preimage of σ and that
� ≥ 1. Let B compute HE(M), i.e., for i ← 1 to �, it sets hi ← f E(hi−1,mi). Accord-
ing to our conventions, all of the Ek(x) values that B requires for this computation are
already in its list of triples, so no new oracle calls are required. Since we assume that A’s
output M is a preimage of σ , it must be that h� = f E(h�−1,m�) = σ , and so we have B

output (h�−1,m�) as its (valid) preimage. Now if A fails to return a preimage for σ or
� = 0, we have B abort its execution thereby failing to return a preimage itself. We see
then that B succeeds to find a preimage for σ whenever A does, unless A’s preimage
is the empty string. Since H(ε) = h0, this would require h0 = σ , which happens with
probability 2−n over the random choice of σ .

The statement Advpre1
H (q) ≤ Advpre1

f (q) + 2−n follows by conditioning on aborting
(or not) and by observing that (for the pre1-advantage notion) the distribution of the
challenge σ is the same for the experiments over H and f . �

Lemma 13 (Preimage resistance of the group-1 compression functions). Fix n ≥ 1
and let f be a group-1 compression function. Then Advpre1

f n (q) ≤ q/2n−1 − 2−n for any
q ≥ 1.

Proof. Let A be an adversary with oracles E,E−1 and input σ . Assume that A asks
its oracles a total of q queries. We are interested in A’s behavior when its left oracle is

instantiated by E
$← Bloc(n) and its right oracle is instantiated by E−1.



534 J. Black et al.

We recall the proof of Theorem 9, where we show that after i − 1 queries (to E or
E−1) the list of computable values z = f (h,m) contains i − 1 triples (h,m, z). The ith
query will add one triple with z uniform over a set of size at least 2n − (i − 1). Thus the
probability that the ith query hits σ is at most 1/(2n − (i − 1)). Using a union bound,
the probability of finding a preimage for σ after q queries can then be upper bounded by∑q

i=1 1/(2n − (i − 1)) ≤ q/(2n − q). This is smaller than q/2n−1 − 2−n for q < 2n−1

and vacuous for q ≥ 2n−1. �

7. Preimage Resistance of the Group-2 Schemes

We cannot use Lemma 12 to prove the security of the group-2 schemes because the
associated compression functions are not preimage-resistant. For example, consider
f19(h,m) = E(h⊕m,m)⊕ c. For any point σ , the adversary fixes k = 0, computes
m = E−1

0 (σ ⊕ c), and returns (m,m), which is always a correct inverse to σ . Still, de-
spite these compression functions being invertible with a single oracle query, there is a
reasonable security bound for the group-2 schemes.

Theorem 14 (Preimage resistance of the group-2 hash functions). Fix n ≥ 1 and let
H be a group-2 hash function. Then Advpre1

Hn (q) ≤ q(q + 1)/2n for any q > 1.

Proof. Let h0 = H(ε) ∈ {0,1}n. Let A be an adversary with oracles E,E−1 and input
σ . Assume that A asks its oracles q queries in total. We are interested in A’s behavior

when its left oracle is instantiated by E
$← Bloc(n) and its right oracle is instantiated

by E−1.
As in the proof of Theorem 10, we define an undirected graph G = (VG,EG) with

vertex set VG = {0,1}n—corresponding to all 2n possible chaining values—and initially
an empty edge set EG = ∅. We will dynamically add edges based on the queries to E

and E−1. In particular, we add an edge (h, z), labeled by m, if we know a message
m such that z = f E(h,m) (or h = f E(z,m)) and the relevant query to either E or
E−1 has been made. We claim that to find a preimage would require finding a path
between the (fixed) initial vector and the (random) target σ : suppose that H(M) = σ ,
where M = (m1, . . . ,m�) and correspondingly h1, . . . , h� for the chaining values of the
iterated hash. Noting that h� = σ , we see that h0..� is a (possibly empty) path from
initial vector to target.

Since we are dynamically adding edges to the graph, components in the graph will
also grow dynamically. Let T0 be the set of all nodes that are in the component con-
taining h0, and similarly let Tσ be the set of all nodes connected to σ . Unless h0 = σ ,
which happens with probability 2−n, T0 and Tσ are initially disjoint. However, when a
path between h0 and σ is present, we have T0 = Tσ .

The first claim is that after i queries, the sets T0 and Tσ have combined cardinality at
most i + 2. Indeed, either component has at most i′ + 1 nodes when i′ edges are used.
Bijectivity of f ′ (property P1) implies that a query (either forward or inverse) will add
at most one edge to the graph, so after i queries, there are at most i edges in the entire
graph and at most i + 2 nodes in T0 plus Tσ .



An Analysis of the Blockcipher-Based Hash Functions from PGV 535

The second claim is that to complete the path between h0 and σ , an edge needs to be
added with one end (node) in T0 and the other in Tσ . Writing T = T0 ∪ Tσ , we need to
find an edge with both nodes already part of T (cf. the proof of Theorem 10). Consider
the ith query. For a forward query, bijectivity of f ′′(h,m, ·) (property P2) ensures that
the distribution of z is uniform over a set of size at least 2n − i. For an inverse query,
bijectivity of f ∗(k, ·, y) (property P4′) ensures that the distribution of h is uniform
over a set of size at least 2n − i. Consequently, the probability that on the ith query a
preimage is found is upper bounded by i/(2n − i). (The set T contains i + 1 elements
before the ith query, the query itself also needs to specify a node in T , but a self-loop
cannot possibly connect T0 and Tσ .)

With a union bound we can bound the probability of finding a preimage within q

or fewer queries: Advpre1
Hn (q) ≤ 1/2n + ∑q

i=1 i/(2n − i) leading to the stated upper
bound. �

8. Matching Collision-Finding and Preimage-Finding Attacks

Matching Attacks on Collision Resistance In this section we show that the security
bounds given in Sects. 4 and 5 are tight. We show a very general result for any rate-1
compression function. For concreteness sake, we only consider the scenario with block
lengths corresponding to the previous section. In this case a standard 2-block birth-
day attack achieves advantage within a constant factor to the earlier upper bounds. The
adversary’s advantage below is bounded for any fixed blockcipher taking only random-
ization over the adversary’s coins into account. We note that for specific constructions,
the constant we get can be improved upon.

Theorem 15 (Finding collisions). Let H be a rate-1 hash function based on
compression function f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n. Then Advcoll

Hn (q) ≥
1
4e

q(q−2)
2n for any even number of queries q ∈ [0..2(n+3)/2].

Proof. Given the hash function H , consider that hash function restricted to domain
{0,1}2n, that is, 2-block messages. For each message M , evaluation of H(M) takes
2 calls to the underlying compression function f and hence 2 calls to blockcipher E.
Thus, for q calls to E, we can evaluate H for q ′ = q/2 2-block messages (assuming
q even). If we pick the messages at random, the probability of finding a collision is
governed by the birthday bound, in particular,

Advcoll
Hn (q) ≥ (1/e)q ′(q ′ − 1)/2n = (1/4e)q(q − 2)/2n ,

provided that q ′ ≤ 2(n+1)/2 or, equivalently, that q ≤ 2(n+3)/2. �

Matching Attacks on Preimage Resistance Finally, we prove that the security bounds
given in Theorems 11 and 14 are tight, by describing adversaries that achieve advantage
very close to the upper bounds. We begin with a general bound on the preimage resis-
tance of rate-1 hash functions; thus it applies to both the group-1 and group-2 schemes.
For this result, we find the pre2 notion most natural, but by virtue of Lemma 19 one also
has a corresponding result for the pre1 notion.



536 J. Black et al.

Theorem 16 (Attacking the preimage-resistance of a general rate-1 hash function).
Let n ≥ 1, and let H : Bloc(n) × ({0,1}n)∗ → {0,1}n be the iterated hash function
based on a rate-1 compression function f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n. Then
Advpre2

Hn (q,n) ≥ q/2n for any q ≤ 2n.

Proof. We describe an adversary A asking at most q ≥ 0 queries and achieving the
claimed advantage. Since {0,1}n ⊂ ({0,1}n)∗, by the definition of pre2-advantage the
challenge digest σ ∈ {0,1}n for A is created by randomly selecting m∗ ∈ {0,1}n and
setting σ = Hn(m∗) = f (h0,m

∗), where h0 is the initial value for Hn.
Now on input σ , adversary A arbitrarily picks q distinct points m1, . . . ,mq

from {0,1}n (hence q ≤ 2n). Since f is rate-1, at most one query to E is required in
order to evaluate yi = f (h0,mi) = Hn(mi) for each i ∈ [1..q]; thus at most q queries
are asked. If yi = σ , we have A output (h0,mi) as valid preimage. As m∗ was uniformly
selected, the probability that m∗ = mi for some i is q/2n, and so the advantage of A is
at least this. (Note that the advantage may be larger if σ has multiple preimages.) �

For the group-2 schemes, we begin with a lemma that lowerbounds the probability of
finding a collision between two equal-sized multisets consisting of uniformly random
samples from {0,1}n. This lemma will allow us to likewise lowerbound the success of
meet-in-the-middle preimage-finding attacks on the group-2 schemes.

Lemma 17. Fix n ≥ 1 and even q ∈ [2..2n/2]. Let L1 and L2 be multisets of uniform
random samples from {0,1}n, where |L1| = |L2| = q/2. Then the probability that there

exists an x such that x ∈ L1 and x ∈ L2 is at least 1
2e

q2

2n .

Proof. We consider the elements of L1 as being selected by throwing q/2 red balls
uniformly into 2n bins, these bins corresponding to the elements of {0,1}n in some
understood way. Similarly, the elements of L2 are selected by uniformly throwing q/2
blue balls. Let C denote the event that after throwing all q balls we have a bin containing
at least two balls (regardless of color). Let CM denote the event that there are only
monochromatic collisions after throwing q balls (in other words, CM denotes the event
that C has occurred but for any pair of balls sharing a bin, they are either both blue or
both red). Finally, let CB denote a bichromatic collision (i.e., the event that there is some
red ball and some blue ball sharing the same bin). So C is the disjoint union of CM and
CB, or Pr[C] = Pr[CM] + Pr[CB].

Next we claim that, for any even q > 1, we have Pr[CB] > Pr[CM]. This claim is
justified by a straightforward combinatorial argument: consider any configuration of q

uncolored balls lying in 2n bins where two balls share a bin. If we color these two balls
blue, then there are

(
q−2

q/2−2

)
ways to color the remaining balls. However, if we color one

ball red and the other blue, there are
(

q−2
q/2−1

)
ways to color the remaining balls. The

latter number is larger than the former since (q/2 − 2)!(q/2)! > (q/2 − 1)!(q/2 − 1)!.
This immediately implies our claim.

Since q ≤ 2n/2, we know that Pr[C] ≥ (1/e) q2/2n (for a proof see, for example,
Appendix A of [2]). Therefore Pr[CB] > Pr[CM] implies Pr[CB] > (1/2e) q2/2n, com-
pleting the proof. �



An Analysis of the Blockcipher-Based Hash Functions from PGV 537

With this lemma in hand, we proceed to the matching preimage-finding attacks on
the group-2 schemes.

Theorem 18 (Attacking the preimage resistance of group-2 schemes). Let n ≥ 1, and
let H : Bloc(n) × ({0,1}∗)n → {0,1}n be the iterated hash function based on a group-2
compression function f : Bloc(n) × {0,1}n × {0,1}n → {0,1}n. Then Advpre1

Hn
s

(q) ≥
1
2e

q2

2n for any even q ∈ [0..2n/2].

Proof. We construct an adversary A with two oracles E,E−1 that, on input σ ∈
{0,1}n, will mount a meet-in-the-middle attack on H and return (with high probability)
a two-block message M = (m1,m2) for which H(M) = σ .

To begin, we observe that properties P1 and P4 together imply a bijection between
pairs (h, k) and pairs (x,m) (where {h,m,k, x} are the inputs to f and the inputs to E,
respectively). Thus h0 = Hn(ε) ∈ {0,1}n and arbitrary k ∈ {0,1}n uniquely determine
the corresponding x and m. The first stage of the adversary’s attack builds a set S1
of size q/2 as follows: for i ∈ [1..q/2], it sets k(i) = 〈i〉 (where 〈i〉 means to repre-
sent i as an n-bit string in some canonical way), determines x(i) and m(i) from h0 and

k(i), queries y(i) $← Ek(i) (x(i)), computes h(i) = f ′′(h0,m
(i), y(i)), and adds (m(i), h(i))

to S1. Since each E-query uses a distinct key, the strings y(i) are uniformly and inde-
pendently distributed; as f ′′(h0,m

(i), ·) is a bijection (property P1), the h(i) are likewise
distributed.

For the second stage, we observe from Fig. 4 that for any group-2 compression func-
tion, fixing any σ ′ in the range of f and any blockcipher key k uniquely determines
an E−1-query (k, y) (essentially because for PGV schemes, having properties P1 and
P2 yet not P3 implies that f ∗(k, ·, y) is a constant function). Additionally, it is easy to

see from Figs. 2 and 4 that for any particular key k, the distribution of x
$← E−1

k (y) is
imparted to h (and possibly to m); this is by property P4′. Thus adversary A builds a
set S2 of size q/2 as follows: for i ∈ [q/2+1..q], it sets k(i) = 〈i〉, determines y(i) from

k(i) and σ , queries x(i) $← E−1
k(i) (y

(i)), determines m(i) and h(i) from k(i) and x(i), and

adds (m(i), h(i)) to S2. Since each E−1 query uses a distinct key (and distinct from those
used in the first stage), the strings x(i) are uniformly and independently distributed. By
our observation above, the h(i) are likewise distributed.

Now we let L1 be the multiset consisting of the second components of the entries
in S1 (i.e., the h(i)), and let L2 be the multiset consisting of the second components of
S2 (again, the h(i)). Then by Lemma 17 there exists an h such that h ∈ L1 and h ∈ L2
with probability at least (1/2e) q2/2n, and if such an h exists, then adversary A outputs
preimage M = (m1,m2) for z where (m1, h) ∈ S1 and (m2, h) ∈ S2. If no such h exists,
adversary A outputs M = m1 (or simply aborts). The bound claimed in the theorem
statement follows. �

9. Fatal Attacks on Five of PGV’s B-Labeled Schemes

In [30] there are a total of 13 schemes labeled as “backward attackable.” We have al-
ready shown that eight of these, H13, . . . ,H20, are collision resistant. But the remaining



538 J. Black et al.

r f (h,m) = Mc

39 Ew(w)⊕m h0 ⊕ c ‖ Ec(c)⊕h0
40 Ec(w)⊕m h0 ⊕ c ‖ Ec(c)⊕h0
43 Ew(w)⊕h h0 ⊕ c ‖ Ec(c)⊕h0 ⊕ c

55 Ew(c)⊕m h0 ⊕ c ‖ Ec(c)⊕h0
59 Ew(c)⊕h h0 ⊕ c ‖ Ec(c)⊕h0 ⊕ c

Fig. 5. Messages that collide under the five weak “backward attackable” schemes in [30]. For any
c ∈ {0,1}n , Ĥr (Mc) = h0 for all five schemes listed.

five schemes are completely insecure; each can be broken with two queries. Consider,
for example, H = Ĥ39, constructed by iterating the compression function f = f̂39 de-
fined by f E(hi−1,mi) = Emi ⊕hi−1(mi ⊕hi−1)⊕mi . For any c ∈ {0,1}n, the strings
(h0 ⊕ c) ‖ (Ec(c)⊕h0) hashes to h0, and so it takes only two queries to produce a col-
lision. Variants of this attack break the schemes Ĥ40, Ĥ43, Ĥ55, and Ĥ59. See Fig. 5 for
the definition of these schemes and the corresponding collision-finding attacks.

10. Relating the Two Notions of Preimage Resistance

In general, the Advpre1
H and Advpre2

H measures can be far apart; it is easy to construct
an example hash function to separate them. But for a “reasonable” hash function H ,
like those in group-1 and group-2, one might expect the two notions to be close, if
not identical. In particular, it is natural to suspect that the random variable HE(M) is

uniformly distributed in {0,1}n if M
$← {0,1}n� and E

$← Bloc(n). Interestingly, this

is not true. For example, a computer-aided experiment shows that when E
$← Bloc(2)

and M
$← {0,1}4, the string HE

1 (M) takes on the value 00 more than a quarter of the
time (in fact, 31.25% of the time), while each of the remaining three possible outputs
(01, 10, 11) occur less than a quarter of the time (each occurs 22.916% of the time).
Still, for group-1 and group-2 schemes, the two notions are close enough that Advpre1

H

makes a good surrogate for Advpre2
H . We note that the result is proved only in the ideal

cipher setting. If one would consider the adversary’s advantage for arbitrary E, the two
notions can be far apart. For example, f1 = f (h,m) = Eh(m)⊕m instantiated with
the (disastrous) Ek(x) = x for all k has Advpre1

Hn (q) = 2−n yet Advpre2
Hn (q, �n) = 1 for

q > 1.

Lemma 19 (The “pre1” and “pre2” notions are close for group-1 and group-2 schemes).
Fix n ≥ 1, let H be a rate-1 hash function whose corresponding compression func-
tion has properties P1 and P2, and let A be a preimage-finding adversary. Then
|Advpre1

Hn (A) − Advpre2
Hn (A, �n)| ≤ �/2n−1.

Proof. The proof is a code-based game-playing argument [1,20]. Given that f ′′(h,m, ·)
is bijective for all (h,m) ∈ {0,1}2n (property P2), we write y = f ′′−1(h,m, z) to denote
the (partial) inverse of f ′′, i.e., the unique y for which z = f ′′(h,m,y). Let h0 ∈ {0,1}n



An Analysis of the Blockcipher-Based Hash Functions from PGV 539

pr
oc

ed
ur

e
IN

IT
IA

L
IZ

E
G

am
e

D
:a

s
w

ri
tte

n
(i

nc
lu

de
ev

er
yt

hi
ng

)
01

h
←

h
0

G
am

e
R

:o
m

it
th

e
fr

am
ed

st
at

em
en

ts
at

lin
es

09
an

d
11

02
fo

r
i
←

1
to

�
do

03
m

$ ←
{0,

1}n
,

(k
,
x
)
←

f
′ (h

,
m

)

04
if

i
=

�
th

en
co

nt
in

ue

05
if

π
(k

,
x
)
=

un
de

fin
ed

th
en

π
(k

,
x
)

$ ←
R

an
ge

(π
(k

,
·))

06
y

←
π

(k
,
x
),

h
←

f
′′ (

h
,
m

,
y
)

07
z

$ ←
{0,

1}n
,

y
←

f
′′−

1
(h

,
m

,
z
),

h
←

z

08
if

π
(k

,
x
)

=

un
de

fin
ed

th
en

09
ba

d
←

tr
ue

,
y

←
π

(k
,
x
),

h
←

f
′′ (

h
,
m

,
y
)

10
el

se
if

th
er

e
is

an
x
′ s

uc
h

th
at

π
(k

,
x
′ )

=
y

th
en

11
ba

d
←

tr
ue

,
y

$ ←
R

an
ge

(π
(x

,
·))

,
h

←
f

′′ (
h
,
m

,
y
)

12
π

(k
,
x
)
←

y

13
re

tu
rn

σ
←

h

pr
oc

ed
ur

e
E

(k
,
x
)

20
if

π
(k

,
x
)

=

un
de

fin
ed

th
en

y
←

π
(k

,
x
)

el
se

y
$ ←

R
an

ge
(π

(k
,
·))

,
π

(k
,
x
)
←

y

21
re

tu
rn

y

pr
oc

ed
ur

e
E

−1
(k

,
y
)

30
if

∃x
′ s

uc
h

th
at

π
(k

,
x
′ )

=
y

th
en

x
←

x
′ e

ls
e
x

$ ←
D

om
ai

n(
π

(k
,
·))

,
π

(k
,
x
)
←

y
;

31
re

tu
rn

x

pr
oc

ed
ur

e
F

IN
A

L
IZ

E
(m

1
m

2
···

m
�
′ )

40
h

←
h

0
41

fo
r

i
←

1
to

�
′ d

o
42

m
←

m
i
,

(k
,
x
)
←

f
′ (h

,
m

),
y

←
π

(k
,
x
),

h
←

f
′′ (

h
,
m

,
y
)

43
if

h
=

σ
th

en
re

tu
rn

1
el

se
re

tu
rn

0 F
ig

.6
.

G
am

es
us

ed
in

th
e

pr
oo

f
of

L
em

m
a

19
.



540 J. Black et al.

be the initial chaining vector associated with H . Consider Games D and R (for “do-
main” and “range”) defined in Fig. 6. (Also see [1] for an explanation of the semantics.)
Note first that the probability that adversary A outputs 1 in game R is Advpre1

H (A), as
the value h sampled at line 07 is always returned at line 13 (in addition, the permuta-
tion π is grown in the manner of a uniform random permutation, and the test in Finalize
conforms with the notion of success associated to Advpre1

H ). Similarly, the probability

that A outputs 1 in game D is exactly Advpre2
H (A,�n). Furthermore, Games D and R

are identical-until-bad, meaning that they are syntactically identical until the sequels to
lines that set the flag bad to true. Thus |Advpre1

H (A) − Advpre2
H (A,�n)| is at most the

probability that bad gets set to true in Game R. We now upperbound this quantity.
The value of (k, x) at line 08 is defined (line 03) by applying f ′ to a given h and

a uniformly selected (line 03) value of m. Since f ′ is bijective (property P1), each h

defines a set of 2n possible pairs (k, x). The uniform selection of m implies a pair is
chosen uniformly among these, and this is independent of the set of points at which π

has already been defined. As a consequence, the flag bad will get set at line 09 with
probability at most the number of points at which π is already defined, divided by 2n.
This is upper bounded by (� − 1)/2n.

We must similarly bound the probability that bad gets set at line 11. At line 10 the
value of y, which was defined at line 07, is uniform, due to z being uniform at line 07
and f ′′(h,m, ·) being bijective for fixed (h,m) (property P2), and it is independent of
the values that are currently in the range of π . So the probability that bad gets set at
line 11 is again upper bounded by (� − 1)/2n. Summing, the probability that bad gets
set in the game is at most (2� − 2)/2n < 2�/2n. The result for H follows. �

11. Subsequent Work

Following the publication of the proceedings version of this paper in 2002 [6], the ideal-
cipher model has been employed in a multitude of papers that explore security properties
of blockcipher-based hash functions. Most directly related is work by Stam [40], which
considers generalizations of PGV functions [40]. The paper shows, for example, that all
20 group-1 and -2 schemes can be generalized, preserving security, to the setting where
the blockcipher has a key length unequal to the block length. Moreover, it shows that
chopping the output provides the expected preimage and collision resistance given the
new output length. Some of Stam’s work [40] is now included here.

Most of the other related work is in one of the following directions: (1) looking at
“double-length” constructions (for better security bounds); (2) exploiting the possibility
of an iterated hash function being more secure than its underlying compression function;
(3) considering the security of hash functions built from non-compressing primitives,
such as an ideal cipher with a fixed key; (4) exploring properties beyond collision resis-
tance and preimage resistance; and (5) investigating the foundations of the ideal-cipher
model used here. We now describe each of these lines.

1. Double-length constructions. For double-length constructions, the hash function
returns a value whose length is twice the block length of the underlying block-
cipher, thus enabling collision resistance up to the block length of the blockcipher



An Analysis of the Blockcipher-Based Hash Functions from PGV 541

(meaning that, asymptotically, for an n-bit blockcipher, some Ω(2n) queries are
needed to gain significant advantage). The first good bounds were shown by Hi-
rose [18]. Using a blockcipher with key length twice the block length, he ex-
hibits a rate-1/2 compression function (two blockcipher calls per block of mes-
sage digested) that achieves essentially optimal collision resistance. Fleischmann
et al. [15,16] likewise address the collision resistance of two double-length con-
structions by Lai and Massey [21] known as Abreast Davies–Meyer and Tandem
Davies–Meyer. These constructions also have keys whose length is twice that of
the blocks. Özen and Stam [28] address the security of a large class of double-
length constructions with similarly long keys. Stam [40] gives a rate-1 compres-
sion function that is optimally collision resistant up to a logarithmic factor.

2. Security through iteration. The theme of building collision-resistant hash func-
tions by iterating a weak compression function has surfaced a number of times
in the recent literature. As we do in this work, the Özen–Stam paper establishes
a class of constructions whose security can be proven only in the iteration. In a
result of particular importance for practice, Steinberger [41] proves a strong se-
curity bound for the double-length construction known as MDC-2 [19]. A trivial
bound on collision resistance (to 2n/2 queries) follows by the analyses given here.
But by arguing about the iterated hash function directly, rather than indirectly via
the compression function, Steinberger proves collision resistance to about 23n/5

queries; concretely, when n = 128, he shows that about 275 queries are necessary
until the adversary has a good chance to find a collision.

3. Noncompressing primitives. Hash functions can be designed from fixed-key block-
ciphers (random permutations). The first systematic work in this direction is by
Black, Cochran, and Shrimpton [7,8], who consider the general case of a 2n-bit
to n-bit compression function that makes a single call to an n-bit random per-
mutation. They show that such a scheme cannot be collision resistant, even in the
iteration. That said, permutation-based compression functions (slower than rate-1)
were later provided by Rogaway and Steinberger [34], Shrimpton and Stam [37],
and Stam [39]. For some of these constructions, Dodis and Steinberger [11] and
then Lee and Steinberger [22] establish security results beyond collision resis-
tance. Lowerbounds on what is achievable by permutation-based constructions
of specified efficiency—that is, generic attacks—are provided by Rogaway and
Steinberger [35], Stam [39], and Steinberger [42].

4. Beyond collision/preimage resistance. Useful security properties for hash func-
tions go far beyond collision and preimage resistance. The original PGV pa-
per [30] distinguished among our twelve group-1 schemes, regarding four of them
(our H1, . . . ,H4) as better than the other eight (our H5, . . . ,H12) based on there
being easily-found preimages in the compression functions associated to the lat-
ter group. While this is not by itself a defect, Duo and Li [13] consider second-
preimage resistance and show that, in fact, the same eight schemes are worse in
this regard.

To capture these properties, and much more, one would like to show that a
particular hash function delivers the functionalities of a random oracle. Towards
this goal, Coron et al. [9] adapt the indifferentiability framework by Maurer, Ren-
ner, and Holenstein [25] to the setting of hash functions. This allows one to for-
mally quantify the extent to which a hash function (based on some underlying



542 J. Black et al.

ideal primitive) behaves like a random oracle. Within this framework, they present
compression function modes-of-operation that provably turn an ideal compression
function (i.e., a fixed-input-length random oracle) into a hash function that is indif-
ferentiable from a (variable-input-length) random oracle. Said another way, these
modes are good domain extenders for fixed-input-length random oracles. This is
in contrast to the Merkle–Damgård iteration, which is a good domain extender
for collision-resistant compression functions but fails to turn a fixed-input-length
random oracle into a variable-input-length one. (The well-known length-extension
attack makes this failure obvious.) Coron et al. also show that their modes of oper-
ation retain indifferentiability when Davies–Meyers (based on an ideal cipher) is
used in place of an ideal compression function. This holds despite the fact that the
Davies–Meyer construction is not itself indifferentiable from an ideal compression
function. (For example, it has fixed points.)

Even though Davies–Meyer fails to be indifferentiable from an ideal compres-
sion function, Dodis, Ristenpart, and Shrimpton [12] show that all group-1 PGV
schemes (including Davies–Meyer) are preimage-aware in the ideal-cipher model.
This is a property stronger than collision resistance. They also show that the
group-2 schemes yield preimage-aware hash functions when MD-iterated.

5. Investigating the ideal-cipher model. Finally, some of the related work has di-
rectly addressed the use of the ideal-cipher model. Black [5] gave an (admittedly
pathological) blockcipher-based hash function that is provably secure in the ideal-
cipher model, and yet collisions can be efficiently found for any standard-model
instantiation of the blockcipher. Hirose [17] shows that for each group-1 or -2
scheme, it is possible to construct a secure pseudorandom permutation (PRP) for
which the scheme admits easy attacks. Simon had earlier provided a result point-
ing to the insufficiency of one-way functions for proving collision resistance [38].
Biryukov, Khovratovich, and Nikolić [4] attack the Davies–Meyer construction
(scheme H5) when instantiated with AES, thereby concretizing the gap between
the ideal-cipher model and real-world instantiations.

We conclude by noting that many of the recent NIST SHA-3 competition entrants
are blockcipher or permutation-based and that the authors routinely provide a security
analysis in the ideal-cipher model, either for the compression function or in the itera-
tion. A good example here is the sponge construction [3], which is permutation-based
and achieves its security properties only in the iteration (collisions can be found in the
compression function in a constant number of queries). The approach presented in this
paper has, in short, become routine.

Acknowledgements

The authors gratefully acknowledge the helpful and insightful comments of the anony-
mous referees.

John Black received support from NSF CAREER award CCR-0240000; Phil
Rogaway and Tom Shrimpton received support from NSF award CCR-0085961
and a gift from CISCO Systems. For the journal revision, Phil received addi-
tional support from NSF award CNS-0904380 and Tom from CNS-0627752 and



An Analysis of the Blockcipher-Based Hash Functions from PGV 543

NSF CAREER award CNS-845610. The work described in this paper has been further
supported by the European Commission through the ICT programme under contract
ICT-2007-216676 ECRYPT II.

References

[1] M. Bellare, P. Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs, in Advances in Cryptology—Proceedings of EUROCRYPT 2006. Lecture Notes in Computer
Science, vol. 4004 (Springer, Berlin, 2006), pp. 409–426

[2] M. Bellare, J. Kilian, P. Rogaway, The security of cipher block chaining message authentication code.
J. Comput. Syst. Sci. 61(3), 362–399 (2000)

[3] G. Bertoni, J. Daemen, M. Peeters, G. Assche, On the indifferentiability of the sponge construction, in
Advances in Cryptology—Proceedings of EUROCRYPT 2008. Lecture Notes in Computer Science, vol.
4965 (Springer, Berlin, 2008), pp. 181–197

[4] A. Biryukov, D. Khovratovich, I. Nikolić, Distinguisher and related-key attack on the full AES-256,
in Advances in Cryptology—Proceedings of CRYPTO 2009. Lecture Notes in Computer Science, vol.
5677 (Springer, Berlin, 2009), pp. 229–247

[5] J. Black, The ideal-cipher model, revisited: an uninstantiable blockcipher-based hash function, in Fast
Software Encryption, 13th International Workshop, FSE 2006. Lecture Notes in Computer Science, vol.
4047 (Springer, Berlin, 2006), pp. 328–340

[6] J. Black, P. Rogaway, T. Shrimpton, Black-box analysis of the block-cipher-based hash-function con-
structions from PGV, in Advances in Cryptology—CRYPTO 2002. Lecture Notes in Computer Science,
vol. 2442 (Springer, Berlin, 2002), pp. 320–335. Proceedings version of this paper

[7] J. Black, M. Cochran, T. Shrimpton, On the impossibility of highly efficient blockcipher-based hash
functions, in Advances in Cryptology—EUROCRYPT 2005. Lecture Notes in Computer Science, vol.
3494 (Springer, Berlin, 2005), pp. 526–541

[8] J. Black, M. Cochran, T. Shrimpton, On the impossibility of highly-efficient blockcipher-based hash
functions. J. Cryptol. 22(3), 311–329 (2009)

[9] J. Coron, Y. Dodis, C. Malinaud, P. Puniya, Merkle-Damgård revisited: how to construct a hash function,
in Advances in Cryptology—CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621 (Springer,
Berlin, 2005), pp. 430–448

[10] I. Damgård, A design principle for hash functions, in Advances in Cryptology—CRYPTO 1989. Lecture
Notes in Computer Science, vol. 435 (Springer, Berlin, 1990), pp. 416–427

[11] Y. Dodis, J. Steinberger, Message authentication codes from unpredictable block ciphers, in Advances in
Cryptology—Proceedings of CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677 (Springer,
Berlin, 2009), pp. 267–285

[12] Y. Dodis, T. Ristenpart, T. Shrimpton, Salvaging Merkle–Damgård for practical applications, in Ad-
vances in Cryptology—Proceedings of EUROCRYPT 2009. Lecture Notes in Computer Science, vol.
5479 (Springer, Berlin, 2009), pp. 371–388

[13] L. Duo, C. Li, Improved collision and preimage resistance bounds on PGV schemes. Technical Report
2006/462, IACR’s ePrint Archive, 2006

[14] S. Even, Y. Mansour, A construction of a cipher from a single pseudorandom permutation, in Advances
in Cryptology—ASIACRYPT 1991. Lecture Notes in Computer Science, vol. 739 (Springer, Berlin,
1992), pp. 210–224

[15] E. Fleischmann, M. Gorski, S. Lucks, On the security of tandem-DM, in Fast Software Encryption, 16th
International Workshop, FSE 2009. Lecture Notes in Computer Science, vol. 5665 (Springer, Berlin,
2009), pp. 84–103

[16] E. Fleischmann, M. Gorski, S. Lucks, Security of cyclic double block length hash functions, in Cryptog-
raphy and Coding, 12th IMA International Conference, Cryptography and Coding 2009. Lecture Notes
in Computer Science, vol. 5921 (Springer, Berlin, 2009), pp. 153–175

[17] S. Hirose, Secure block ciphers are not sufficient for one-way hash functions in the Preneel-Govaerts-
Vandewalle model, in Selected Areas in Cryptography 2002. Lecture Notes in Computer Science, vol.
2595 (Springer, Berlin, 2003), pp. 339–352



544 J. Black et al.

[18] S. Hirose, Provably secure double-block-length hash functions in a black-box model, in Information
Security and Cryptology—ICISC 2004. Lecture Notes in Computer Science, vol. 3506 (Springer, Berlin,
2005), pp. 330–342

[19] ISO/IEC 10118-2. Information technology—Security techniques—Hash functions—Hash functions us-
ing an n-bit block cipher algorithm. International Organization for Standardization, Geneva, Switzer-
land, 1994

[20] J. Kilian, P. Rogaway, How to protect DES against exhaustive key search. J. Cryptol. 14(1), 17–35
(2001). Earlier version in CRYPTO 1996

[21] X. Lai, J. Massey, Hash function based on block ciphers, in Advances in Cryptology—Proceedings of
EUROCRYPT 1992. Lecture Notes in Computer Science, vol. 658 (Springer, Berlin, 1992), pp. 55–70

[22] J. Lee, J. Steinberger, Multi-property-preserving domain extension using polynomial-based modes of
operation, in Advances in Cryptology—Proceedings of EUROCRYPT 2010. Lecture Notes in Computer
Science (Springer, Berlin, 2010)

[23] S. Lucks, A collision-resistant rate-1 double-block-length hash function, in Symmetric Cryptography,
Dagstuhl Seminar Proceedings, no. 07021, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany

[24] S. Matyas, C. Meyer, J. Oseas, Generating strong one-way functions with cryptographic algorithms.
IBM Tech. Dis. Bull. 27(10a), 5658–5659 (1985)

[25] U. Maurer, R. Renner, C. Holenstein, Indifferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology, in Theory of Cryptography Conference (TCC ’04). Lecture
Notes in Computer Science, vol. 2951 (Springer, Berlin, 2004), pp. 21–39

[26] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca Ra-
ton, 1996)

[27] R. Merkle, One way hash functions and DES, in Advances in Cryptology—CRYPTO 1989. Lecture
Notes in Computer Science, vol. 435 (Springer, Berlin, 1990), pp. 428–446

[28] O. Özen, M. Stam, Another glance at double-length hashing, in Cryptography and Coding, 12th IMA
International Conference, Cryptography and Coding 2009. Lecture Notes in Computer Science, vol.
5921 (Springer, Berlin, 2009), pp. 176–201

[29] B. Preneel, Analysis and design of hash functions. PhD thesis, Katholike Universiteit Leuven (Belgium),
1993. Available from Preneel’s homepage

[30] B. Preneel, R. Govaerts, J. Vandewalle, Hash functions based on block ciphers: a synthetic approach, in
Advances in Cryptology—Proceedings of CRYPTO 1993. Lecture Notes in Computer Science, vol. 773
(Springer, Berlin, 1994), pp. 368–378

[31] M. Rabin, Digitalized signatures, in Foundations of Secure Computation (Academic Press, New York,
1978), pp. 155–168

[32] R. Rivest, The MD4 message digest algorithm, in Advances in Cryptology—Proceedings of CRYPTO
1900. Lecture Notes in Computer Science, vol. 2442 (Springer, Berlin, 1991), pp. 303–311

[33] P. Rogaway, T. Shrimpton, Cryptographic hash-function basics: definitions, implications and separations
for preimage resistance, second-preimage resistance, and collision resistance, in Fast Software Encryp-
tion, 11th International Workshop, FSE 2004. Lecture Notes in Computer Science (Springer, Berlin,
2004), pp. 371–388

[34] P. Rogaway, J. Steinberger, Constructing cryptographic hash functions from fixed-key blockciphers, in
Advances in Cryptology—Proceedings of CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157
(Springer, Berlin, 2008), pp. 433–450

[35] P. Rogaway, J. Steinberger, Security/efficiency tradeoffs for permutation-based hashing, in Advances
in Cryptology—Proceedings of EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965
(Springer, Berlin, 2008), pp. 220–236

[36] C. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
[37] T. Shrimpton, M. Stam, Building a collision-resistant compression function from non-compressing

primitives, in ICALP 2008, Part II, vol. 5126 (Springer, Berlin, 2008), pp. 643–654
[38] D. Simon, Finding collisions on a one-way street: can secure hash functions be based on general as-

sumptions? in Advances in Cryptology—Proceedings of EUROCRYPT 1998, vol. 1403. Lecture Notes
in Computer Science (Springer, Berlin, 1998), pp. 334–345

[39] M. Stam, Beyond uniformity: better security/efficiency tradeoffs for compression functions, in Advances
in Cryptology—Proceedings of CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157 (Springer,
Berlin, 2008), pp. 397–412



An Analysis of the Blockcipher-Based Hash Functions from PGV 545

[40] M. Stam, Block cipher based hashing revisited, in Fast Software Encryption 2009. Lecture Notes in
Computer Science, vol. 5665 (Springer, Berlin, 2009), pp. 67–83

[41] J. Steinberger, The collision intractability of MDC-2 in the ideal-cipher model, in Advances in
Cryptology—Proceedings of EUROCRYPT 2007. Lecture Notes in Computer Science, vol. 4515
(Springer, Berlin, 2007), pp. 34–51

[42] J. Steinberger, Stam’s collision resistance conjecture, in Advances in Cryptology—Proceedings of EU-
ROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110 (Springer, Berlin, 2010), pp. 597–615

[43] R. Winternitz, A secure one-way hash function built from DES, in Proceedings of the IEEE Symposium
on Information Security and Privacy (IEEE Press, New York, 1984), pp. 88–90


	An Analysis of the Blockcipher-Based Hash Functions from PGV
	Abstract
	Introduction
	Background
	Our Results
	The Ideal-Cipher Model
	Message Padding
	Publication History
	Subsequent Work

	Preliminaries
	Basic Notions
	Security Notions
	Conventions

	Properties of Group-1 and Group-2 Compression Functions
	Functions Associated to a Compression Function
	Compression-Function Properties
	Properties of the Group-1 and Group-2 Hash Functions

	Collision Resistance of the Group-1 Schemes
	Collision Resistance of the Group-2 Schemes
	Preimage Resistance of the Group-1 Schemes
	Preimage Resistance of the Group-2 Schemes
	Matching Collision-Finding and Preimage-Finding Attacks
	Matching Attacks on Collision Resistance
	Matching Attacks on Preimage Resistance

	Fatal Attacks on Five of PGV's B-Labeled Schemes
	Relating the Two Notions of Preimage Resistance
	Subsequent Work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


