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Abstract�—We develop new algebraic algorithms for scalar and
vector network coding. In vector network coding, the source
multicasts information by transmitting vectors of length L,
while intermediate nodes process and combine their incoming
packets by multiplying them with L × L coding matrices that
play a similar role as coding coef cients in scalar coding. Our
algorithms for scalar network jointly optimize the employed eld
size while selecting the coding coef cients. Similarly, for vector
coding, our algorithms optimize the length L while designing
the coding matrices. These algorithms apply both for regular
network graphs as well as linear deterministic networks.

I. INTRODUCTION

In this paper we consider the problem of network code
design for multicasting common information at rate h to N
receivers using vector communication. The source transmits
h vectors of length L, where the elements of the vectors
are over a xed nite eld Fq , for example, the binary eld
F2. Intermediate network nodes perform coding operations
over vectors, namely, multiply their incoming vectors with
L × L coding matrices and then add them to create the new
vectors that they propagate towards the destinations. That is,
intermediate nodes linearly combine their incoming vectors
using coding matrices, where these matrices play the same
role as scalar coding coef cients in traditional network coding
[1], [6], [7]. The code design consists in selecting the length
L and the L×L coding matrices so that each receiver receives
information at rate h. Scalar network coding over a eld of
size Fq can be viewed as a special case of vector network
coding with L = 1.

Vector network coding offers a natural generalization of
network coding, and thus offers a larger space of choices
for optimizing cost parameters, such as the operational com-
plexity, or the communication block length. For example, the
authors in [13] propose probabilistic designs that employ per-
mutation matrices for the coding matrices. Our work provides
a unifying framework for deterministic designs. Additionally,
we have shown in [11] that vector coding can be directly
deployed in linear deterministic networks that have proposed
as approximate characterizations for wireless networks [8]�–
[10].

In [11], we have extended the algebraic framework devel-
oped for multicasting over graphs in [1] in two ways: (i)
to include operations over matrices and (ii) to accept both
graphs and linear deterministic networks as special cases.
Independently from our work, the framework in [1] was also
extended over deterministic networks in [14].

In this paper, we build on this algebraic framework to
develop new algorithms for vector and scalar coding, that can

be employed both over graphs and deterministic networks. Our
contributions in this paper include:
• We provide a polynomial time algorithm for the design of
the L × L coding matrices used in vector network coding
when multicasting to N receivers. Our algorithm reduces the
problem of nding a small size L to the problem of nding
a small degree co-prime factor of an algebraic polynomial,
and leads to solutions not possible with using scalar network
coding, as illustrated through examples in Section IV.
• We show that L ! log(N(log N−1)hΛ) is always suf cient,
where Λ is a network parameter, and we can nd such matrices
in polynomial time. We also provide probabilistic guarantees,
and show for example that in a fraction 1023

1024 of polynomials,
we will be able to nd in polynomial time binary coding
matrices of size at most 3 × 3 that lead to a valid code.
• Our approach provides a new algorithm for scalar network
code design, that operates in polynomial time. This new
algorithm jointly minimizes the employed eld size while se-
lecting the coding coef cients. In contrast, existing algorithms
[1]�–[4] rst select a xed nite eld and then proceed to
design the network codes over this predetermined eld. As
a consequence, these algorithms would operate over a eld of
size N , i.e., the worst case guarantee. However, our algorithm,
due to jointly optimizing the employed eld size as well as
the coef cients, can result in a much smaller eld while still
being a polynomial time algorithm. A theoretical side-result
of our work is establishing a connection between the problem
of identifying the minimum eld size required for network
coding and nding the smallest co-prime factor of algebraic
polynomials.

The paper is organized as follows. Section II provides our
notation and the algebraic framework generalization; Sec-
tion III develops our code design algorithms; Section IV
compares scalar and vector network coding; and Section V
concludes the paper.

II. ALGEBRAIC FRAMEWORK

We here review the algebraic framework in [1], [11].
In vector coding, the source simultaneously conveys h

vectors of length L to the destination, where L is a design
parameter. We will denote these vectors as {u1, . . . ,uh}.
These vectors take values over a predetermined eld Fq.
For example, in most of this paper we will focus on binary
vector coding, where Fq = F2. The intermediate network
nodes collect vectors of length L, linearly process them by
multiplying them with coding matrices with values in the eld
Fq, and then further propagate them. We will denote the L×L



coding matrices as {Xk}. Note that to convey a binary vector
of length L from an input x to an output y over the binary
deterministic network, we need to use the input h times, each
time conveying a single bit, and accordingly, collect h bits
from the output y.

Exactly as in the case of scalar coding [1], we can associate
a state variable with every edge of the network, where now
each state variable is a vector of length L, and write the state-
space equations for receiver j as

sk+1 = Ask + Buk

yk = Cjsk + DB
j uk.

(1)

If the network has m = |E| edges, in the above equations,
uk is the Lh × 1 input vector that contains the h vectors
{u1, . . . ,uh}, sk is the Lm × 1 vector that contains the m
state vectors, and yk is a Lh × 1 output vector. Matrices A,
B, Cj , and Dj are block matrices of appropriate dimension,
that contain blocks of size L × L. Without loss of generality,
we can assume that Dj is the all zero matrix. Matrices B
and Cj are xed block matrices, that have as elements either
the L × L identity matrix I or the L × L all zero matrix 0.
Matrix A is common for all receivers and re ects the network
topology, that is, the way the edges (memory elements) are
connected. The entries of this matrix are either constant, or
the unknown coding matrices {Xk}, and we assume we have
ν such unknowns.

The hL×hL transfer matrix for receiver j can be calculated
as

Mj = Cj(I − A)−1B. (2)

Also, let
M ! M1 ·M2 · . . . ·MN (3)

We observe that the dimensions of matrices Mj depend
upon the size parameter L. The multicasting code design
problem is to select the size parameter L and the L×L coding
matrices {Xk} so that all matrices Mj for j = 1 . . .N are
simultaneously full rank. We will denote the set of L × L
matrices with elements over a eld Fq as ML(Fq).

The algebraic formulation for vector network coding is
exactly the same as that for scalar network coding up to this
point; the only difference is that for scalar network coding
{Xk} take values in Fq, while for vector network coding in
ML(Fq).

Scalar Formulations: For scalar network coding, let

f(X1, . . . , Xν) = det(M) (4)

be the determinant of matrix M. The following two formula-
tions are equivalent.

Scalar Algebraic Formulations [1]:
(1) Select a nite eld Fq and values for the variables
{Xk} from the eld Fq so that all matrices Mj become
simultaneously full rank.
(2) Select a nite eld Fq and values for the vari-

ables {Xk} from the eld Fq so that the polynomial
f(X1, . . . , Xν) evaluates to a nonzero value.

From the sparse zero lemma [4], [19], we can assign to
the variables Xk values in a nite eld Fq of size larger
than N so that all transfer matrices Mj are simultaneously
invertible. Provided that q > N , we can nd such values
deterministically in polynomial time, for example using the
methods [1]�–[4]. The algorithms for scalar coding we will
develop in this paper differ in that they jointly optimize for
the nite eld of operation and the speci c values for the
coding parameters.

Vector Formulations: The following theorem helps relate
the problem of vector code design to the problem of a
polynomial evaluation (for a proof see [17]).

Theorem II.1. Let M be an hL × hL matrix over a eld.
Suppose M is subdivided into h2 blocks Mi,j , 1 ≤ i, j ≤ h
each of which is an L × L matrix. Moreover, suppose that
for all numbers 1 ≤ i, i′, j, j′ ≤ n we have Mi,j · Mi′,j′ =
Mi′,j′ ·Mi,j . Then det(M) = det(f(M1,1,M1,2, . . . ,Mn,n))
where f(x1,1, x1,2, . . . xn,n) = det([xi,j ]).

Thus, if the matrices we chose for the variables {Xi} are
pairwise commuting, then, from Theorem II.1, det(Mj) =
det(fj(X1, . . . , Xν)), det(M) = det(f(X1, . . . , Xν)). We will
call, in this case, the polynomial fj(X1, . . . , Xν) : ML(F2)×
. . . × ML(F2) → ML(F2) a matrix polynomial, to indicate
that its evaluation results in an L × L matrix. The vector
code design problem can be cast as selecting the length L
and the commutative L×L matrices {Xk} so that the matrix
polynomial f(X1, . . . , Xν) evaluates to an invertible matrix,
as summarized in the following table.

Vector Algebraic Formulations:
(1) Select length L and L×L matrices {Xk} in ML(Fq)
so that all matrices Mj become simultaneously full rank.
(2) Select length L and L × L commutative matrices
{Xk} in ML(Fq) so that the the matrix polynomial
f(X1, . . . , Xν) evaluates to an invertible matrix.

Note that formulation (2) leads only to a subset of the
possible solutions, since it requires the use of commutative
matrices. Formulation (1) does not impose this assumption
and leads to solutions not possible with (2), as we will also
see through examples in Section IV.

III. CODE DESIGN ALGORITHM

In this section we develop our algorithms. Both for vector
and scalar network coding, we start from the algebraic formu-
lation described in Section II. That is, we construct the transfer
matrices Mj , 1 ≤ j ≤ N , and M. As we are interested
in polynomial time algorithms, we do not explicitly calculate
the multivariate polynomials f(X1, . . . , Xν). The code design
consists of two basic steps:



- Step 1: we express each variable Xi as a polynomials
of a single variable X , and we carefully select these
polynomials in a manner that ensures the polynomial
f(X1, . . . , Xν) does not become identically zero;

- Step 2: for scalar network coding we select a scalar value
for the variable X from a nite eld of size q as small
as possible, and for vector network coding we select a
L × L matrix in ML(F2) for the variable X of size L
as small as possible, so that the polynomials evaluate to
a nonzero value for scalar coding, and to an invertible
matrix for vector coding.

The second step is what distinguishes our algorithms from the
algebraic code designs in the literature: our algorithms are the
rst, as far as we know, that jointly attempt to minimize the
eld size while identifying valid solutions.

A. Code design for vector coding

We start by describing our algorithm, and then analyze its
performance.

Step 1: Assignment of polynomials to {Xi}

1) Assume that the variables {Xi} take scalar values.
Using the matrix completion methods in [3], we can nd an
assignment of values to the variables {Xi = αi}, with {αi}
in a nite eld Fq of size q > 2#log N$, so that all matrices
Mj become invertible, i.e., det(Mj) %= 0, for j = 1 . . .N ,
and det(M) %= 0. That is,

f(X1 = α1, . . . , Xν = αν) %= 0. (5)

2) Assume that the eld Fq , where the values {αi} belong,
has size q = 2k with k = &log N' + 1. Using a standard
representation of extension elds [16], we can express each
value αi ∈ F2k , identi ed in the previous step, as a binary
polynomial pi(X) of degree at most k−1 in an indeterminate
X . We substitute these polynomials in place of the variables
{Xi} in the transfer matrices Mj and the transfer matrix M.

3) We calculate the determinant of the transfer matrix M.
Note that the entries of M are polynomials in a single variable
X , and thus the determinant can be calculated ef ciently. We
then get a single variable polynomial f(X), that equals

f(X) ! f(X1 = p1(X), . . . , Xν = pν(X)). (6)

We know from (5) that the polynomial f(X) in (6) is not
identically zero. Moreover, it is easy to see that it has degree
at most N(k−1)hΛ in the variable X , where Λ is the longest
path length from the source to a receiver [1], [11], [12].

Now consider the variables {Xi} as L × L matrices, and
assume we express each such matrix as the polynomial pi(X)
we have previously identi ed, of an L × L matrix X . This
assignment ensures that the resulting matrix polynomial f(X)
in (6) is not identically zero. Our code design problem is now
reduced to selecting the size parameter L and a single matrix
X = A so that the matrix f(A) is invertible.

Step 2: Assignment of value to X

1) Find a polynomial g(X) that is co-prime with f(X), of
degree m as small as possible. We will prove in the analysis of
our algorithm (Theorem III.3) that we can always nd such a
g(X) of degree m ≤ log(NhΛ log(N)) in polynomial time.1

2) If g(X) has degree m, create an m×m matrix A so that
g(A) = 0, using for example the well known construction in
Lemma III.2.

3) Select L = m and X = A. The following Lemma III.1
proves that for this selection, f(A) is an invertible m × m
matrix. Thus, each coding matrix Xi is assigned the L × L
matrix pi(A).

Lemma III.1. Let f(x), g(x) be two relatively co-prime
polynomials in Fq[x] for some eld Fq . If A is a matrix in
ML(Fq) and g(A) = 0, then f(A) is an invertible matrix.

Proof: Since gcd(f(x), g(x)) = 1, there exist polyno-
mials h1(x), h2(x) so that f(x)h1(x) + g(x)h2(x) = 1. If
we set x = A we get f(A)h1(A) + g(A)h2(A) = I. Since
g(A) = 0, f(A)h1(A) = I.

Lemma III.2. [18] The m × m matrix

A =





0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2
...

...
...

. . .
...

...
0 0 0 . . . 1 am−1




(7)

has the characteristic polynomial g(x) = am−1xm−1+. . .+a0

and thus satis es g(A) = 0.

Algorithm Analysis

Our algorithm attempts to minimize the size L of the
employed coding matrices, which is equal to the smallest
degree polynomial g(X) co-prime to f(X) that we can nd
in polynomial time. In Theorem III.3 we provide an upper
bound on the degree m of g(X) that we will need to employ
(hard guarantees). In Lemma III.4 we show that the fraction of
polynomials that have a co-prime factor of degree at most m,
converges doubly exponentially (with m) to one. This strongly
indicates that our algorithm will in the majority of cases result
in a size much smaller than the upper bound in Theorem III.3.

Theorem III.3. If f(x) is a nonzero binary polynomial of
degree n, then there exists a co-prime polynomial g(x) of
degree at most log(n + 1) − 1, and we can identify it in
polynomial time.

Proof: As candidates for the polynomials g(x), we are
going to consider irreducible polynomials. Given that f(x) has
a nite degree, it cannot have as factors an arbitrary number of
irreducible polynomials. In particular, let g1, g2, . . . gK be all

1 In fact, we can always use the polynomial h(X) that generates the eld
2k over which we made the assignment in step 1, which guarantees there
exists a choice of degree log N . However, we also independently prove our
alternative upper bound, as it is independent of the employed technique to
identify the polynomials pi(X).



the irreducible binary polynomials of degree at most m then
ΠK

j+1gj(x) divides f(x), otherwise at least one of the gi�’s is
co-prime with f . In [12], we prove that the summation of the
degrees of all the irreducible binary polynomials of degree at
most m is (1 − 2ε)2m+1 for some small ε. Then f(x) must
have degree larger than this summation, i.e., 2m+1 ≤ n, and
the result follows. It is also easy to see that we can nd such
a co-prime g(x) in polynomial time, since the total number of
such polynomials is at most n+1, and thus exhaustive search
would suf ce.

In the previous theorem, we argued that given a polynomial
f(x) of degree n, we can always nd a co-prime polynomial
g(x) of degree m = O(log n). We next show that, although
m = O(log n) is always suf cient, our algorithm will in many
cases nd a co-prime polynomial of much smaller degree.

Lemma III.4. The fraction of polynomials that have a co-
prime factor of degree at most m, converges doubly exponen-
tially (with m) to one. In particular, this fraction is at least
as large as

1 −
m∏

i=1

1
2iζ(i)

,

where ζ(i) is the number of irreducible binary polynomials of
degree i and can be approximated by 2i

i .

Proof: For a xed polynomial g(x) not identically zero
g(x) is a factor of f(x) for a fraction of 1

2m of all polynomials
f(x) of degree n. This follows by observing that the remainder
after dividing f(x) with g(x), can be any of the 2m binary
polynomials of degree smaller or equal to m − 1. Moreover,
we can divide the polynomials of degree n to 2m mutually-
exclusively and equally-sized sets, one corresponding to each
possible remainder. Let g1(x), g2(x), . . . gk(x) be pairwise co-
prime polynomials. Thus f(x) is divisible by all of them if and
only if it is divisible by their product. Therefore, the fraction
of non-zero polynomials f that have none of the gi�’s as a
factor is at least 1 −

∏k
i=1

1
2mi , where mi is the degree of

gi(x).
For example, if we take g1(x) = x and g2(x) = x+1, then

3
4 of all polynomials will be co-prime with either g1 and/or
g2. For the case of g1(x) = x, g2(x) = x + 1, g3(x) =
x2 +x+1, the fraction increases to 15

16 , and if we consider all
the irreducible polynomials of degree at most 3, the fraction
becomes 1023

1024 . That is, a fraction of 1023
1024 of polynomials have

a co-prime polynomial of degree m ≤ 3, and thus a binary
matrix of size 3 × 3 would lead to valid code.

The proof of the following lemma can also be found in [12].

Lemma III.5. The complexity of the algorithm is

O(N(ν + h)3 log(ν + h) + ν(ν + h)2 + (N log NhΛ)3).

B. Code design for scalar coding

Step 1: Assignment of polynomials to {Xi}

Same as in Step 1 in Section III-A, we create the not-
identically zero polynomial f(X). We thus reduce the code

design problem to the problem of nding a value X = α so
that f(α) %= 0.

Step 2: Assignment of value to X

1) Similar to Step 2 in Section III-A, we nd an irreducible
polynomial g(X) that is co-prime with f(X) of degree at most
m = log n.

2) We consider the nite eld of size F2m generated by
the polynomial g(X). We make the assignment Xi = pi(X)
mod g(X). Thus, each Xi is assigned a value in the eld
F2m . The polynomial f(X) evaluates to the nonzero value
f(X) mod g(X).

That is, we assign to X the value α in the nite eld
generated by g(X), corresponding to the indeterminate X .

Analysis: The analysis is the same as in Section III-A. For
example, for 75% of polynomials, employing a binary alphabet
for scalar network coding is suf cient.

Alphabet Size in Network Coding: It is interesting to note
that our algorithm reduces the problem of minimizing the
alphabet size ( nite eld of operation) in scalar network
coding, to the problem of nding a reduction of the polynomial
f(X1, . . . , Xν) to a single variable polynomial f(X) that
has a co-prime factor of degree as small as possible. The
challenge in this formulation is the manner the reduction to
a single variable polynomial is performed. This reduction can
be performed in multiple ways, and what is the optimal way
is not clear. For example, a polynomial f1(X) can have larger
degree than a polynomial f2(X), however, f1(X) may have
a smaller degree co-prime factor than f2(X), leading to a
smaller eld of operation. Our algorithm does not guarantee
to nd the optimal alphabet size, but still, provides a method
to reduce the employed alphabet in a large fraction of cases.

IV. SCALAR VS. VECTOR OPERATION: A COMPARISON

It is clear that, if our proposed algorithm for vector network
coding identi es a solution of size L = m, then the algorithm
for scalar network coding will identify a solution over a nite
eld of size F2m . Thus these algorithms lead to equivalent

solutions. The next two theorems make this equivalence more
general, and up to some degree independent of the method
employed to identify the vector or scalar solution.

The rst Theorem IV.1 implies that, if we can solve the
scalar network coding problem for a network over a eld
F2m , then we are able to solve the vector network coding
problem using binary matrices of dimension m×m. Therefore,
it guarantees that binary matrices are at least as useful as nite
elds. This is a well known result in algebraic coding [16].

Theorem IV.1. For a non-zero polynomial f(x1, x2, . . . , xn),
assume that there are values α1, α2, . . . , αn ∈ F2m with
f(α1, α2, . . . , αn) %= 0. Then there are pairwise com-
muting matrices A1, A2, . . . , An ∈ Mm(F2) such that
f(A1, A2, . . . , An) is an invertible matrix.

For example, we can always nd a vector coding solution
of size m = log N , by using any of the polynomial time
network code design algorithms in the literature, and translate



this solution to vectors. This would lead to always operating
using the worst case size log N .

The second Theorem IV.2, shows that, for the vector alge-
braic formulations (2) and (3), if for vector coding we nd
a matrix A of size m × m such that f(A) is invertible, and
thus can solve the vector coding problem using size m, we
can translate this to a scalar solution over a eld of size F2m .

Theorem IV.2. Consider a polynomial f(x) with binary
coef cients, and assume that there exists an m × m matrix
A so that f(A) is invertible. Then, there exists a scalar value
α in a nite eld of size at most 2m so that f(α) %= 0.

Proof: If f(A) is invertible for some A ∈ Mm(F2), then
any eigenvalue a of A also satis es f(a) %= 0. On the other
hand, since the characteristic polynomial of A has degree m,
the degree of the characteristic polynomial h(x) of a over F2

is at most m [16]. If we take the eld generated by α, it is of
size at most 2m and it contains α.

We underline that Theorem IV.2 holds under two basic
assumptions: (i) the variables {Xk} are pairwise commuting,
in order to be able to write the matrix polynomial, and (ii)
the multivariate polynomial is reduced to a single variable
polynomial. However, if we do not impose these assumptions,
searching over the set of matrices offers a larger set of choices
than restricting the search to nite elds, as the following
examples illustrate.

Example IV.3. We here present an example of a binary
polynomial f(x) that has as roots all elements of the eld
F32, while there exists a matrix A in M5(F2) so that g(A)
is invertible. Let f(x) = x32 − x. Clearly f(α) = 0 for
every α ∈ F32. It can be shown that f(x) has 8 irreducible
factors over the binary eld, namely x, x − 1 and 6 more
factors each of which is of degree 5. Thus the polynomial
g(x) = (x2 + x + 1)(x3 + x + 1) is a polynomial of degree
5 and is co-prime with f(x). Now, take any binary matrix
with characteristic polynomial g(x) and use Lemma III.1 to
construct the vector coding solution.

In the next example, we describe a polynomial that is zero
for all the assignments to its variables of scalar values from the
eld F2i for i = 1, 2, . . . , 10 while there exists an assignment

to the variable of 10 × 10 binary matrices which makes the
polynomial evaluate to an invertible matrix.

Example IV.4. De ne fi(x) to be the product of all the
binary irreducible polynomials of degree i. Let h(x, y) =
F (x, y)G(x, y) with F (x, y) = f4(x) · f6(x) · f7(x) · f8(x) ·
f9(x) · f10(x) and G(x, y) = ((x4 + x)(x8 + x) + (y4 +
y)(y8 + y))(x32 + x + y32 + y). It is not dif cult to see that
h is zero over the elds F2, F4, . . . , F1024. Now we construct
two matrices X1 and X2 so that h(x = X1, y = X2) is an
invertible matrix. For example the following matrices can be
used:

X1 =




A1 0 0
0 A2 0
0 0 A3



 , and X2 =




A3 0 0
0 A1 0
0 0 A2





where A1 = I2, A2 = I3 and

A3 =





0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0




.

V. CONCLUSIONS

In this paper, we developed new algebraic algorithms for
the problem of vector and scalar network code design. The
main idea in our approach is to reduce the problem of code
design to an algebraic problem of nding co-prime factors of
a given polynomial. Based on this, we provided algorithms for
scalar coding that attempt to minimize the alphabet size and
show a doubly exponential convergence to a solution. We also
provided algorithms for vector coding that allow to use nite
lengths and systematically design vector coding solutions.
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