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Abstract. We provide a concrete security treatment of several “prov-
ably secure” hash functions. Interpreting arguments behind MQ-HASH,
FSB, SWIFFTX and VSH we identify similar lines of reasoning. We aim
to formulate the main security claims in a language closer to that of
attacks. We evaluate designers’ claims of provable security and quantify
them more precisely, deriving “second order” bounds on bounds. While
the authors of FSB, MQ-HASH and SWIFFT(X) prove existence of non-
trivial lower bounds on security, we show that the quantification of the
bounds limits the practical significance of the proofs.
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1 Introduction

A hash function is a mapping that on input a string of arbitrary length outputs
a digest of fixed size. Such functions are among the most basic building blocks
used in cryptographic schemes. Several traditional hash functions are now con-
sidered broken [44, 43, 39] and for a few years there has been an urgent need
for new ideas. The NIST search for a new standard attracted over sixty sub-
missions [29]. As the competition entered Round 2 in July 2009, the number
of participants was reduced to fifteen.

Confidence in the security of hash functions relies traditionally on cryptanal-
ysis. As an alternative, one may try to prove security properties. With a valid
security proof at our disposal, we would not need to consider attacks any more.

Several “provably secure” hash functions appeared recently [8, 12, 31, 11, 26,
1, 16, 15]. The language of the proofs is often incompatible with the view of
a practitioner. Cryptanalysts normally speak of rather precise time estimates
for programs running on real-world hardware. Security proofs should use similar
language to provide lower bounds on the effort needed to break a function. We
choose to speak of proofs in “real life” and require security to be quantified. We
do not view security as a property, but rather as a measure.

A security proof is a conditional statement relying on a hardness assump-
tion. Confidence is “transferred” from the (hopefully more basic) hard problem
to the hash function. There needs to be some level of confidence to begin with,
such assumptions need to be selected very carefully. Examples of “provably se-
cure” functions based on false assumptions include the Zémor-Tillich, LPS and

? Supported by a grant of the Swiss National Science Foundation, 200021-116712.

c© Springer-Verlag. The original publication is available at www.springerlink.com.
http://www.springerlink.com/content/p8463p22108r1r64/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147977302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Morgenstern hash functions proposed in [40, 11, 31, 33] and broken in [41, 32, 20].
This paper only deals with functions believed not to be completely broken. In
addition we treat assumptions literally as assumptions, i.e. we look at what is
implied by them without considering their validity in detail. We concentrate on
the structure of proofs and their use in security assessment.

We interpret “provable security” arguments behind MQ-HASH [8], FSB [15],
SWIFFTX [1] and VSH [12]. Where possible, we take a concrete viewpoint and
carefully follow any comparisons between provable bounds and cost of attacks
done by the designers. It turns out that the security is sometimes bounded in
a rather complex way, failing to provide a proof.

In case of MQ-HASH and FSB we point out gaps in reasoning. No inconsis-
tencies are discovered in the arguments supporting SWIFFT. We observe that
although the improved design of SWIFFTX prevents known attacks, the prede-
cessor is as good in terms of proofs.1 Very Smooth Hash does provide a concrete
lower bound on collision resistance. This is only true of some variants.

Related Work The general limitations of security proofs in cryptology were
discussed by Koblitz and Menezes [22, 21]. A concrete analysis of “provable”
claims about a particular stream cipher appeared in [45]. This paper also ques-
tions security proofs, looking at hash functions that have not been considered
from this perspective.

Block cipher based hash functions enjoy well established provable security
properties [34, 9, 38]. Such constructions assume access to an ideal cryptographic
primitive, e.g. an ideal cipher. The hardness assumptions and security claims
are thus of a different nature compared to the cases considered in this paper. In
addition, the framework normally considers adversaries with oracle access to the
idealized building block, hence a straightforward comparison to practical attacks
is not possible.

All functions considered in this paper were previously cryptanalyzed. This
includes work on FSB [13, 7], MQ-HASH [4], SWIFFT [10] and VSH [36]. Inter-
estingly, the papers do not relate attacks to the original security proofs.

2 Preliminaries

The functions considered in this paper follow the Merkle-Damg̊ard construction,
or a variant thereof [14]. We limit ourselves to pre-images and collisions. In
our analysis we can therefore stick to fixed-length compression functions. Let
{Hk}k∈K be a finite family of compression functions Hk : {0, 1}m → {0, 1}n.
Most basic security properties are tied to the hardness of the following two
tasks:

Find a pre-image Given a random k ∈ K and an element y in the range of
Hk compute x such that Hk(x) = y.

1 This observation was implicit in [1].



Find a collision Given a random k ∈ K compute x 6= x′ such that Hk(x) =
Hk(x′).

Instead of a single fixed function we work with a family of functions para-
metrized by k, following the designers of all four functions analyzed in Section
3. This is a standard way towards arguments on collision resistance.2 Prove the
security for random members of the function family, then pick a single member
at random. Such proofs are believed to provide some confidence in security,
although efficient algorithms breaking the fixed function do exist.

“Classical” definitions prescribe ideal measures of hardness for the two prob-
lems. Due to a generic attack, a pre-image can be found after approximately 2n

evaluations of Hk. By the birthday paradox, collisions can be found after about
2n/2 evaluations of Hk. Hence the usual requirement is “n bit” pre-image resis-
tance and “n/2 bit” collision resistance. Rather than following this ambitious
goal, let us look for any measure of hardness.

Cost of Attacks Fix a hash function family {Hk}k∈K . Let elements of a set
S represent computational cost. The precise nature of S will vary between fam-
ilies of functions. There are several ways to measure cost of attacks on a cryp-
tographic primitive. Practical examples include hardware cost, processor cycle
count, memory. On the more theoretical side, one can measure advantage as
a function of runtime, expected runtime, circuit size, etc. For the functions we
examine, choices of S are implicit in the statements of theorems on security. In
order to allow different approaches to cost, we only require S to be a partially
ordered set, i.e. equipped with a reflexive, antisymmetric and transitive relation
’≤’. This captures the minimal assumption that complexities can be compared
and allows a lot of freedom in formalization of cost. While it might appear nat-
ural to require the ordering on S to be linear as well, it is not necessary for our
purposes.3 Let S contain a least element and a greatest element. The former
corresponds to zero cost, the latter to cost that is considered too high to be
relevant. In most cases, the elements of S will turn out to be numbers counting
some basic operation, such as a bit operation or evaluation of Hk.

Let APr be the set of all probabilistic algorithms that take as input a random
k ∈ K, random n-bit y and with non-zero probability output an m-bit string x,
such that Hk(x) = y.

Similarly, let ACol be the set of all probabilistic algorithms that take as input
a random k ∈ K and with non-zero probability output two different m-bit strings
x, x′, such that Hk(x) = Hk(x′). For A ∈ APr ∪ ACol define c(A) ∈ S to be the
expected cost of A solving the respective challenge.

The sets APr and ACol contain all the possible attacks on the security of
{Hk}k∈K , in particular the respective generic attacks.

2 For comments and a different approach to the “foundations-of-hashing” dilemma see
[35].

3 This extra freedom can even be desirable.



Bounding Security Let A represent either of APr or ACol. Define the following
two main types of bounds on security:

– p ∈ S is a bound of type L if for all A ∈ A the cost c(A) is at least p.
– q ∈ S is a bound of type U if for every p ∈ S of type L it holds that p ≤ q.

This captures the fact that every attack leads to an upper bound on security.
If p is of type L and q of type U, then p ≤ q. Note that we chose to define type U
bounds with respect to L bounds, rather than relating them to attacks directly.
It is immediate that c(A) is of type U for any A ∈ A. Yet our definitions allow
q ∈ S to be a U bound even if there is no A ∈ A such that q = c(A). Similarly,
it is possible that p ∈ S is of type L and there is no A ∈ A such that p = c(A).

We say {Hk}k∈K is provably secure if we possess a proof that p ∈ S is of
type L. The p is a lower bound on security against A. A U type bound q is an
upper bound on provable security.

While type U bounds are quite common, as will be shown in Section 3,
designers do not often establish bounds of type L. To interpret certain results,
we shall need the two following auxiliary bound types:

– r ∈ S is a bound of type lU, if r ≤ t for t of type U. This means r is a lower
bound on some upper bound on security.

– s ∈ S is a bound of type uL, if s ≥ t for t of type L, i. e. s is an upper bound
on some lower bound on security.

Every L bound is an lU bound and every U bound is an uL bound. Such
implications are trivial, as any element of S is of type lU and uL simultaneously.
The “weak” types uL and lU hence provide no direct useful information on
provable security. Both are related to a bound t of one of the “useful” types U
and L. Still the types uL and lU can carry partial information about the bound
t if it is not quantified otherwise. For example, an uL bound tied to a particular
reduction limits how good the reduction is and an lU bound tied to a particular
attack algorithm limits how much damage the attack causes.

3 Results on Some Hash Functions

In this section we examine security proofs for hash functions and classify the
bounds derived by their designers. To illustrate the proofs we follow a single
concrete parameter choice from the original proposals. We follow original cost
estimates and comparisons, i.e. adopt the implicit S and c(·).

The hardness assumption necessarily has the form of a lower bound. Ideally,
security proofs would transform any attack on the function to an attack on the
underlying hard problem, thereby establishing an L bound on security.

Criteria on Proofs We evaluate security proofs using two simple conditions:

– Is an L bound on security established and quantified?
– Does the security level claimed by designers match the proved L bound?



3.1 MQ-HASH

The MQ-HASH is a hash function built on the hardness of solving systems of
multivariate quadratic equations over Z/2Z. It was introduced in [8].

Definition The compression function maps m + n bit input to n bits. Let
r ≥ m+n, and f be an r-tuple of quadratic polynomials in m+n variables over
Z/2Z. Let g be an n-tuple of quadratic polynomials in r variables over the same
field. The precise values proposed are m = 32, n = 160 and r = 464. This means
f maps 192 bits to 464 bits and g maps 464 bits to 160 bits. Both f and g are
to be selected uniformly at random. The compression function of MQ-HASH is
the composition of f and g mapping 192 bits to 160 bits.

Hardness Assumption The designers assume that inverting random systems
(of the type of) f and g is hard. For f , the hardness is quantified at lf = 2103.88

binary operations. By assumption, lf is of type L. Because it is a complexity
of an actual attack, it has type U as well. The implicitly present type L bound
tied to g is not quantified. Denote it by lg.

Security Claims The designers claim the function pre-image resistant proving
the following:

Theorem 1. Let Tf and Tg denote the time required to evaluate f , resp. g. Let
A be an algorithm inverting (a random) g ◦ f in time T with probability ε. Then
A can be either converted to an algorithm inverting g in time T + Tf + Tg with
probability ε or to an algorithm that can invert randomly chosen tuples of 464
quadratic polynomials in 192 variables that runs in time

T ′ =
128× 1922

ε2

(
T + Tf + 3Tg + log

(
128× 192

ε2

)
+ 464× 192 + 2

)
and succeeds with probability ε/2.

The theorem coupled with the hardness assumption(s) does indeed establish
a lower bound on cost of any algorithm inverting g ◦ f . If A inverts g, then
T + Tf + Tg ≥ lg. This implies a lower bound l1 = lg − Tf − Tg on T . If A leads
to an algorithm inverting f , then T ′ ≥ lf and T ≥ l2 for some l2. This leads
to a provable L bound l = min{l1, l2} on T . Because lg is not known, conclude
l ≤ l2 and examine l2. Clearly T ′ ≥ 128 × 1922 × T , hence the lower bound l2
implied by lf is at most

lf
128× 1922

.

Because the value of lf is known, we obtain l2 ≤ 282. The theorem thus estab-
lishes that 282 is a bound of type uL. The authors aim at “80-bit security” and
claim the level is consistent with what the theorem implies. While 280 ≤ 282, the
latter quantity is merely an upper bound on l2. The original proof does not lead



to a lower bound on l2. More information on lg would have to be known and the
connection of T and T ′ would need to be cleaned up.

The quantity 282 counts bit operations. If we want to translate this to the
equivalent of hash function computations, divide by the cost of such an evalua-
tion, estimated to be 224 bit operations.4 The uL bound on pre-image resistance
then becomes 258 evaluations of the compression function. Existence of a pre-
image finding attack with such cost would not contradict the theorem.

Collision resistance There is no proof of collision resistance in [8]. The authors
do however sketch an argument in favor of it. Because f is an injection, collisions
can only occur in g. Collisions in g are actually easy to find,5 but in order to lead
to collisions in the complete construction, the colliding inputs would have to be
in the range of f and that is unlikely. Even if they were, the f is hard to invert.
The argument only considers one particular attack on collision resistance, hence
would only lead to an U type bound. Cost of inverting f is equivalent to around
280 evaluations of the compression function, close to the cost of generic collision
search, hence the attack is not a serious threat to collision resistance. A proof,
however, would require considering all attacks, not only a single one.

Because collisions are no harder than pre-images, we might want to make
use of the uL bound 258 derived there. A U bound tied to pre-images would
translate to a U bound on the cost of collisions. Type L bounds need not be
preserved. The uL bound 258 on pre-images does transfer to the cost of collisions,
but carries little useful information. Such a bound needs to be interpreted in the
context of the corresponding security proof. In this case it means that Theorem 1
cannot imply a L bound on collision resistance that would exceed 258.

Conclusion The lower bound implied by Theorem 1 is not quantified due to
unspecified lg and looseness of the reduction. The “80-bit” security claimed by
the designers is not supported by an L bound. We have derived an uL bound
tied to the proof at 258 evaluations of the function. Improved proofs may be
possible.

3.2 FSB

The hash function based on problems in coding theory has a rather long history of
provably secure variants (several of them broken) [2, 3, 16, 17]. The most recent
variant of FSB was submitted to the NIST SHA-3 competition, but did not
advance to Round 2 [15].

Definition The FSB consists of an iterated compression function and a final
transformation, that compresses the output further. The compression function

4 The authors do not comment on how the compression function is to be computed,
but their 3 MB memory requirement per evaluation is consistent with our estimate.

5 This is why a cascade of two systems is used.



is defined as follows: Let H be a r × n binary matrix, let s = w × lg n
w be the

input length. Encode the input in a word of length n and weight w, denoted
by e. Output the r bits HeT . Denote the compression function by f .

Out of the five FSB variants in [15] we pick FSB256 as an example with
n = 221, w = 128, r = 1024 and s = 1792. Analogous arguments are possible for
the other four variants as well.

Hardness Assumption Security of the compression function is related to two
problems from coding theory:

Computational Syndrome Decoding (CSD) Given an r×n matrix H, an
r-bit s and integer w ≤ n, find x ∈ {0, 1}n such that x has Hamming weight
at most w and HxT = s.

Codeword Finding (CF) Given an r×n matrix H and integer w ≤ n/2, find
x ∈ {0, 1}n such that x has Hamming weight at most 2w and HxT = 0.

Security Claims The function is proved pre-image resistant reducing to CSD
and collision resistant reducing to CF. Both proofs are immediate. There are no
explicit lower bounds tied to the assumptions, hence no lower bounds on security
are derived. Security is further assessed looking at attacks only. For FSB256, the
instances of CSD can be solved in 2261.6 operations and instances of CF in 2153

operations.6 Both these bounds are due to attacks. Yet the algorithms are not
shown to break the actual function, but the more general underlying problems.
The reduction goes only one way. A solution to CF or CSD does not imply
a collision or a pre-image, respectively. The bounds are therefore of type uL.

A more detailed analysis of attacks is performed in [18], estimating cost of
two specific algorithms from below, leading to bounds 2245.6 on CSD and 2153

on CF. Again, the problem considered is more general. Extending our notation,
their type would be luL (i.e. lower bound on a particular uL bound). It is
suggested these be adopted as L bounds [18].

Security is evaluated making use of the uL bounds 2261.6 and 2153. Output
of f is 1024 bits long and the security is deep below the trivial bounds, being
21024 and 2512. A final compression is introduced to “fix” this. The 1024 bits are
compressed to yield a 256-bit result using another hash function g, instantiated
by Whirlpool [5]. The authors remark that ”the complexities of the attacks on
the FSB compression function . . . can thus be transposed directly to the whole
hash function and are all above the complexities of generic attacks on the whole
FSB . . . ” Collisions in g ◦ f are no harder to find than collisions in f . The uL
bound 2261.6 thus transfers to g ◦ f . This is above the trivial U bound due to
a generic attack. Hence we are left with an U bound 2256 (that is trivially also
an uL bound). Such a bound is independent of the hardness assumption.

It might seem that the problem is that the g compresses too much. What if
the cost of generic attacks on g ◦ f is above the cost of attacks on f? Can the
1024 bits be compressed a little less to maintain some of the provable security?

6 Counting evaluations of f .



With an output of 320 bits, attacking f might be faster. Still this would only
yield an U bound, because a collision in g ◦ f does not imply a collision in f .

Could lower bounds be preserved? Consider collision resistance. A collision
in g ◦ f implies a collision in one of the two components. If there were L bounds
lf and lg tied to f and g respectively, the smaller of the two would then be
a lower bound on security of the composition. Such proof would be possible if
g could be assumed collision resistant in the first place.7 Although composing
the FSB compression function with a provably collision resistant final transfor-
mation can preserve the lower bound(s), it would resemble a circular argument
where a provably collision resistant function is designed given a provably colli-
sion resistant function. This trivial observation only appears in [17] and is left
out of the submission to NIST [15].

The authors of FSB consider collision resistance of Whirlpool too strong an
assumption [15]. For eventual collisions in Whirlpool to extend to the complete
FSB256 one needs to invert the FSB primitive. However, saying that collisions
for Whirlpool do not easily extend to the complete FSB is an argument from
the attack perspective and not a proof. Just as in the case of MQ-HASH earlier,
this looks at particular attacks and thus does not establish L bounds.

Conclusion One claim of the designers in [15] reads as follows:

The most decisive advantage of FSB is that it comes with a proof of
reduction to hard algorithmic problems. An algorithm able to find colli-
sions on FSB or to invert FSB is also able to solve hard problems from
coding theory.

No such statement is proved in any of the proposals. The security level
claimed by designers is not supported by an L bound. This is due to the fi-
nal compression using Whirlpool. If the step were omitted, L bounds on the
coding problems would transfer to the compression function. Such bounds were
not explicitly provided.

3.3 SWIFFT(X)

SWIFFTX is a SHA-3 proposal based on the simpler primitive SWIFFT [24, 26],
not making it to Round 2. It is an example of a generalized knapsack function
[27] with security based on hardness of lattice problems.

Definition8 The SWIFFT compression function takes as input r 64-bit words
x1, . . . , xr and outputs 64 elements z′0, . . . , z

′
63 ∈ Z257. The function is indexed by

64r fixed elements a1,0, . . . , ar,63 ∈ Z257 taken to be uniformly random integers
modulo 257. Let

rev : {0, . . . , 63} → {0, . . . , 63}
7 If g is fixed, the assumption is trivially false.
8 Copied almost verbatim from [1].



be the “bit-reversal” function on 6-bit binary numbers. Output of SWIFFT can
be expressed as follows:

z′i =

r∑
j=1

aj,i

63∑
k=0

xj,rev(k) · ω(2i+1)k

where ω = 42, xj,i is the i-th bit of xj and arithmetic is performed modulo 257.
Within SWIFFTX, r equals either 32 or 25.

Hardness Assumption Finding short vectors in lattices isomorphic to ideals
of Z[α]/

(
αd + 1

)
is hard in the worst case as d increases.9 The assumption is

asymptotic and the L bound unquantified. In the light of the results in [19] it
was pointed out that for the choice d = 64 used in SWIFFT variants as above,
the lattice problems are actually easy and the lower bound “insignificant” [10].

Security Claims The SWIFFT function family is proved collision and pre-
image resistant [30, 25, 27]. The proof establishes the security properties as the
output length increases to infinity.10 Although asymptotic, the proof does link
security of the function for any particular value of d to hardness of a precise
lattice problem. We will therefore consider SWIFFT equipped with an L bound,
yet unknown.

According to the designers in [1]:

To quantify the exact security of our functions, it is still crucially im-
portant to cryptanalyze our specific parameter choices and particular
instances of the function.

Instead of finding an L bound tied to a proof, the approach chosen is to con-
centrate on upper bounds due to attacks. While such analysis only establishes
bounds of type U or lU, it does reveal limits of the security proofs provided by
the designers of SWIFFT.

The proposal mentions actual attacks on SWIFFT applying the generalized
birthday algorithm by Wagner [42]. For r = 32, collisions can be found in 2106

operations and pre-images in 2128 operations. Although the complexities are
described as lU bounds and estimate the cost of attacks from below, they can
be considered good approximations to the actual cost,11 i.e. bounds of type U.
Both the bounds are used as such in the proposal to quantify security of the
function. Furthermore, the bounds were derived for SWIFFT with r = 16 [26].
With r = 32 the actual complexities would be lower. While the provable lower
bound is not quantified, the two attacks provide uL bounds limiting what can
be drawn from the proofs available.

9 Precise statements in [30, 27].
10 Such arguments have become commonplace in provable security.
11 Our analysis of the runtime leads to the complexities 2106.4 and 2131.



For r = 25 the authors mention a pre-image finding attack that requires 2100

operations. This is an U bound, hence also an uL bound. Because collisions can
be found in at most the same time as pre-images, the same uL bound applies to
provable collision resistance.

SWIFFTX Existence of the attacks motivated design of the compression func-
tion SWIFFTX. It maps 2048 bits to 520 bits combining four calls to SWIFFT
with some extra operations in a way that is believed to make the known attacks
inefficient. The precise details of the construction can be found in [1]. Care is
taken to preserve the provable collision and pre-image resistance. First the input
is compressed using three “parallel” instances of SWIFFT with r = 32 to yield
1560 bits. A fixed (easily invertible) injection extends this to 1600 bits. Then
a single SWIFFT instance with r = 25 is applied and 520 bits are output.

The known attacks do not easily extend to SWIFFTX. More precisely, the
extended attacks are shown to be more expensive than generic attacks. The
construction thus “wipes out” the non-trivial U bounds. According to an argu-
ment sketched in [1], the construction maintains provable security. A collision
in SWIFFTX implies a collision in (at least) one of the four SWIFFT com-
ponents.12 Effectively, the least of the lower bounds that applied to SWIFFT
building blocks is valid for SWIFFTX. We obtain an uL bound 2100 on provable
security for both security properties.

Conclusion The authors of SWIFFTX rely on attacks and claim pre-image
resistance 2512 and collision resistance 2256. These are not justified by L bounds.
While the security proofs would lead to L bounds, they are not quantified.
The improved function SWIFFTX is no more secure than the original SWIFFT
primitive in terms of proofs. The L bounds implied by the proof provided cannot
exceed 2100. As this is an uL bound, improved proofs may be possible.

3.4 VSH

The function VSH was introduced in [12] along with a few variants. Some more
appeared in [23]. Security of the hash function is linked to hardness of factoring
or discrete logarithms.

Definition Let M be an n-bit hard to factor modulus,13 denote the i-th prime
number by pi. Let k be the largest integer such that

∏k
i=1 pi < M . Let m be

a l-bit message to be hashed, consisting of bits m1, . . . ,ml and assume l < 2k.
The algorithm runs as follows:

1. Let x0 = 1.

2. Let L = d lk e. Let mi = 0 for l < i ≤ Lk.

12 An analogous argument is possible for pre-image resistance.
13 Typically a product of two large primes.



3. Let l =
∑k

i=1 li2
i−1 with li ∈ {0, 1} be the binary representation of l and

define mLk+i = li for 1 ≤ i ≤ k.

4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2j ×
k∏

i=1

p
mj·k+i

i mod M

5. Return xL.

The function iteratively processes blocks of k bits and outputs an n-bit hash.
Effectively, it computes a modular k-fold multiexponentiation. The function op-
erates in a variant of the Merkle-Damg̊ard mode processing k bits per iteration.
The compression function is not collision resistant, yet the iterated construction
is.14

Hardness Assumption Given a random M it is hard to find x ∈ Z∗M such that

x2 ≡
∏k

i=1 pi
ei mod M with at least one ei is odd. The problem is assumed to

be k-times easier than the problem of factoring M .

Security Claims The only security property claimed by the designers is colli-
sion resistance. Define the function L′[M ] to approximate heuristic running time
of the Number Field Sieve algorithm factoring the integer M . Assuming this is
an L bound on hardness of factoring, finding a collision in VSH takes time at
least

L′[M ]

k

This L bound is used as the basis for security assessment. As an example, colli-
sions in VSH with n = 1234 and k = 152 are at least as hard to find as it is to
factor a 1024 bit (hard to factor) number [12].

No attack is known that would achieve the lower bound. There is an attack
and a (non-trivial) U bound on security, though. With the knowledge of ϕ(M),
collisions can be created easily. Computing ϕ(M) from M is as hard as factoring
the modulus. Factorization of M is essentially a trapdoor in the function.

There is an algorithm that finds collisions in VSH factoring the modulus in
time approximately L′[M ]. This is the least U bound known. The security of
VSH is somewhere between the L bound and the U bound. So far, no result has
appeared that would get the (provable) lower bound closer to the complexity of
factoring the modulus M .

Discrete Logarithm Variant of VSH If the modulus chosen to be a prime
number of the form 2p+1 for p a large prime and length of input is limited below
k(n− 2) bits a VSH-DL compression function is obtained. It is computed in the
same way as the basic VSH described above. The function is proved collision

14 Details in [12].



resistant under a new assumption related to hardness of discrete logarithms in
Z∗M . The assumption is not quantified, hence no lower bound on security of VSH-
DL is obtained. Yet an U bound is easy to derive, because finding collisions in
VSH-DL is no harder than computing discrete logarithms.

Conclusion Collision resistance of basic VSH is supported by an L bound and
the designers claim precisely the security that is proved. While the DL variant
admits a proof, no measure is associated with its hardness assumption. A proof
that does not exceed the known U bound may be possible.

4 Summary

While several hash function designs claim provable security, only a few actually
link security to the complexity associated with the proof.

We gave examples of uL bounds that provide partial information on un-
known lower bounds. In this way we limit provable security of MQ-HASH and
SWIFFT(X) from above. Such arguments are not due to attacks that would
actually break the functions. We can view them as partial attacks on proofs.
We have demonstrated that such incomplete attacks can provide very concrete
and useful information on security levels one can prove. Our bounds speak of
particular proofs, therefore proofs with higher security levels remain possible.

Three of the functions had the structure of compositions. MQ-HASH com-
posed two functions equipped with L bounds on pre-image resistance in a way
that leads to an unknown L bound on security of the composition. FSB com-
posed a function admitting an L bound15 and a function without such a bound.
As a result, the proof disappears, while the complexity of attacks is preserved.
Finally, the composition within SWIFFTX preserves the proofs and invalidates
(some) attacks. While the approaches appear similar, the outcomes differ sig-
nificantly. Although some general conclusions could be made, bounds in any
provable design need to be carefully examined.

We do advocate the use of proofs (i.e. L bounds) in design & analysis of
hash functions. We hope to have clarified some very basic features of attacks
and proofs in hash function security assessment. If there is both an L bound and
an U bound, the former should be pronounced the security level. We believe
the function cannot be considered provably secure otherwise. If more security
is claimed, this is based on attacks rather than on proofs, rendering the proofs
somewhat useless. If it is believed that security is greater than what the proofs
suggest, attempts should be made to raise the L bound.

Our results should not be viewed as recommendations against or in favor of
any of the functions but rather as suggestions where to look for improvements.
A tighter reduction within MQ-HASH and quantified hardness of g might well
lead to an L bound that exceeds 258. The FSB may as well have a decent L
bound if the final transformation is omitted. More conditions on the last step g

15 The assumption is not explicitly stated in the proposals.



might even allow an L bound to be established for the complete construction.
Quantified hardness assumptions behind SWIFFT and VSH-DL would also lead
to precise L bounds.
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