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Abstract. In this paper, we show that a better performance can be achieved by
training a keypoint detector to only find those points that are suitable to the needs
of the given task. We demonstrate our approach in an urban environment, where
the keypoint detector should focus on stable man-made structures and ignore ob-
jects that undergo natural changes such as vegetation and clouds. We use Wald-
Boost learning with task specific training samples in order to train a keypoint
detector with this capability. We show that our aproach generalizes to a broad
class of problems where the task is known beforehand.

1 Introduction

State of the art keypointdescriptors such as SIFT [1] or SURF [2] are designed to be
insensitive to both perspective distortion and illumination changes, which allows for
images obtained from different viewpoints and under different lighting conditions to
be successfully matched. This capability is hindered by thefact that general-purpose
keypointdetectors exhibit a performance which deteriorates with seasonal changes and
variations in lighting. A standard approach to coping with this difficulty is to set the
parameters of the detectors so that a far greater number of keypoints than necessary are
identified, in the hope that enough will be found consistently across multiple images.
This method, however, entails performing unnecessary computations and increases the
chances of mismatches.

In this paper, we show that when training data is available for a specific task , we can
do better by training a keypoint detector to only identify those points that are relevant
to the needs of the given task. We demonstrate our approach inan urban environment
where the detector should focus on stable man-made structures and ignore the surround-
ing vegetation, the sky and the various shadows, all of whichdisplay features that do not
persist with seasonal and lighting changes. We rely on WaldBoost learning [3], similar
in essence to the recent work [4] by the same authors, to learna classifier that responds
more frequently on stable structures.

Task-specific keypoint detection is known to play an important role in human per-
ception. Among the early seminal studies is that of Yarbus [5] where it was demon-
strated that a subject’s gaze is drawn to relevant aspects ofa scene and that eye move-
ments are highly influenced by the assigned task, for instance memorization. To the best
of our knowledge, these ideas have not yet made their mark forimage-matching pur-
poses. Our main contribution is to show that image matching algorithms benefit from
incorporating task-specific keypoint detection.
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We begin this paper with a brief review of related approaches. Next, we discuss in
more detail what constitutes a stable keypoint that an optimized detector should iden-
tify and introduce our approach to training such a detector.Experimental results are
then presented for the structure and motion problem, where our goal is to build a key-
point detector - called TaSK (Task Specific Keypoint) that focuses on stable man-made
structure. We also show a result of a keypoint detector, which was learned to focus on
face features. Finally, we conclude with a discussion.

2 Related work

State of the art keypoint detectors fall into two broad categories: those that are designed
to detect corners on one hand, and those that detect blob-like image structures on the
other. An extensive overview can be found in Tuytelaarset al. [6]. Corner like detectors
such as Harris, FAST [7], F̈orstner [8] [9, 10] are often used for the pose and image
localization problems. These detectors have a high spatialprecision in the image plane
but are not scale invariant and are therefore used for small baseline matching or track-
ing. The other category of keypoint detectors aim at detecting blob structures (SIFT [1],
MSER [11] or SURF [2]). They provide a scale estimate, which renders them suited
for wide-baseline matching [12, 13] or for the purpose of object detection and cate-
gorization. Both detector types can be seen as general-purpose hand crafted detectors,
which run for many application at a very high false positive rate to prevent failures from
missed keypoints.

Our approach is most related to the work ofŠochman and Matas [4]. These authors,
emulate the behavior of a keypoint detector using the boosting learning method. They
show that the emulated detector achieves equivalent performance with a substantial
speed improvement. Rosten and Drummond [7, 14] applied a similar idea to make fast
decisions about the presence of a keypoints in a image patch.There, learning techniques
are used to enhance the detection speed for general-purposekeypoint detection. Note,
that their work does not focus on task specific keypoint detection, which is the aim of
this paper. Similar in spirit is also the work of Kienzleet.al. [15] in which human eye
movement data is used to to train a saliency detector.

3 Task specific keypoints

Training data can be used in various ways to improve the keypoint detection. We will
describe two approaches in the following sections.

3.1 Detector verification

Suppose we are given a keypoint detectorK and a specific task for which training
data is available. The most natural way to enhance keypoint detection is based on a
post-filtering process: among all detections which are output by the detectorK, we are
interested only in the keypoints that are relevant given thetraining data. Our enhanced
keypoint detector would then output all low-level keypoints and an additional classifica-
tion stage is added which rejects unreliable keypoints based on the learned appearance.
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Fig. 1. Keypoint detections by DoG (top) and our proposed detector TaSK (bottom). Note that
TaSK is specialized to focus more on stable man-made structures and ignores vegetation and sky
features.

3.2 Detector learning

In order to learn the appearance of good keypoints we need to specify how they are
characterized. In particular we need to specify the conditions under which a pixel can
be regarded as a good keypoint. We will use the following two criteria:
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1. A good keypoint can be reliably matched over many images.
2. A good keypoint is well localized, meaning its descriptoris sufficiently different

from the descriptors of its neighboring pixels.

All pixels that obey these criteria will constitute the positive input class to our learning
while the negative training examples are random samples of the training images.

Our method is based on WaldBoost learning [3] similar in spirit to the work of
Šochman and Matas [4]. Using our aforementioned training examples, we learn a clas-
sifier that responds more frequently on stable structures such as buildings and ignores
unstable one such as vegetation or shadows. Our eventual goal is to only detect key-
points that can be reliably matched. The advantage is not only a better registration, but
also a speed up in the calibration.

For the WaldBoost training we used images taken by a panoramacamera. These
images are taken from the same view point every 10 minutes forthe past four years. This
massive training set captures light and seasonal changes but does not cover appearance
variations which are due to changes in view point.

3.3 Training samples

The generation of the training samples is an important preliminary step for the detector
learning since the boosting algorithm optimizes for the provided training samples. In
[3], the set of training samples fed into the boosting algorithm is the set ofall keypoints
identified by a specific detector. In so doing, the learned detector is naturally no more
than an emulation of the detector for the training samples.

Our research aims at generating a more narrow set of trainingsamples, which obey
the criteria proposed in section 3.2. In a first step, we used the F̈orstner [8] operator
to find keypoint candidates which are well localized in the images. In a second step,
keypoints which are estimated to have poor reliability for reconstruction purposes are
pruned.

The automated selection of keypoints is based on two features: the number of occur-
rences of a keypoint and the stability of a descriptor at a specific position over several
images of the sequences.

The number of occurrences is simply a count of how many times afixed pixel po-
sition has been detected as a keypoint in several images of the same scene. To illus-
trate our measure of stability, letpj

i denote the position of thei-th keypoint in the
j-th imagei = 1 . . . Nj , j = 1 . . . Nimages. The unionP =

⋃

p
j
i contains all the

positions which have been detected in at least one image. In all the images a SIFT
descriptorsj

k is calculated for every single positionpk ∈ P. For the stability of the
descriptor Euclidean distancesd

j1,j2
k = dist(sj1

k , s
j2
k ) are calculated and their median

dk = median(dj1,j2
k ), j1 6= j2 is determined. The more stable a keypoint is in time,

the smaller its median will be. A pixel position is then classified as a good keypoint
if its occurrence count is high and its descriptor median is low: two thresholds were
thus set so that a reasonable number of keypoints is obtainedfor our training set(couple
of thousands per image). These keypoints form the positive training set. The negative
training examples are randomly sampled from the same imagessuch that they are no
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closer than 5 pixels to any positive keypoint. Given these training examples we apply
WaldBoost learning, as described in the next section.

4 Keypoint boosting

Boosting works by sequentially applying a, usually, weak classification algorithm to
a re-weighted set of training examples [16, 17]. GivenN training examplesx1 . . . xN

together with their corresponding labelsy1 . . . yN , it is a greedy algorithm which leads
to a classifierH(x) of the form:

H(x) =

T
∑

t=1

ht(x) , (1)

whereht(x) ∈ H is a weak classifier from a poolH chosen to be simple and efficient to
compute.H(x) is obtained sequentially by finding at each iterationt the weak classifier
which minimizes the weightedDt(xi) training error:

Zt =

N
∑

xi=1

Dt(xi) exp(−yiht(xi)) . (2)

The weights of each training sample,Dt(xi), are initialized uniformly and updated ac-
cording to the classification performance. One possibilityto minimize eq. 2 uses domain
partitioning [17] as next explained.

4.1 Fuzzy weak learning by domain-partitioning

The minimization of eq. 2 includes the optimization over possible features with re-
sponse functionr(x) and over the partitioning of the feature response intok =1 . . .K,
non-uniformly distributed bins. If a sample pointx falls into thekth bin, its correspond-
ing weak classification result is approximated byck. This corresponds to the real version
of AdaBoost.1 By this partitioning model, eq. 2 can be written as (for the current state
of trainingt):

Z =

K
∑

k=1

∑

r(xi)∈k

D(xi) exp(−yick) . (3)

To compute the optimal weak classifier for a given distribution D(xi) many featuresr
are sampled and the best ,i.e. the one with minimalZ is kept.

The optimal partitioning is obtained by rewriting eq. 3 for positive (yi = 1) and
negative (yi =−1) training data:

Z =

K
∑

k=1

(

W+
k exp(−ck) + W−

k exp(ck)
)

,

1 For the discrete AdaBoost algorithm, a weak classifier estimates one threshold t0 and outputs
α = {−1, 1} depending of whether a data point is below or above this threshold.
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ALGORITHM: WaldBoost Keypoint learning
Input: h ∈ H, (x1, y1) . . . (x1, y1), θ

+, θ−

initialize weightsD(xi) = 1/N ; mark all training examples as undecided{y∗

i = 0}
For t = 1 . . . T , number weak learners in cascade

sample training examplesxi from undecided examples{y∗

i = 0}
compute weightsD(xi) w.r.t. Ht−i∀{y

∗

i = 0}
For s = 1 . . . S, number weak learner trials
-sample weak learnerht ∈ H
-compute responser(xi)
-compute domain partitioning and scoreZ [17]

End
-among theS weak learners keep the best and addht to the strong classifierHT =

P

t
ht

-sequential probability ratio test[3]
classify all current training examples intoy∗

i = {+1,−1, 0}
End

Fig. 2.WaldBoost Keypoint learning

where

W
+/−
k =

∑

r(xi)∈k

D
+/−
k (xi) (4)

is the sum of positive and negative weightsD
+/−
k that fall into a certain bink.

After finding the optimal weak learner, Wald’s decision criterion is used to classify
the training samples into{+1,−1, 0} while the next weak learner is obtained by only
using the undecided, zero labelled, training examples. Theentire algorithm is shown in
table 4.1. For more information we refer to the work of Schapire et.al. [17].

4.2 Weak classifier

The image features which are used for the weak classifiers arecomputed by using in-
tegral images and include color as well as gradient features. For the minimization of 4,
we first randomly sample a specific kind of weak classifier and than its parameters. The
weak classifiers include:

– ratio of the mean colors of two rectangles: compares two color components of two
rectangles at two different positions (2+4+4 parameters).

– mean color of a rectangles: measures the mean color components of a rectangles
(1+2 parameters).

– roundness and intensity: integral images are computed fromthe componnet of the
structure tensor, roundness and intensity as defined by Föstner and G̈ulch [8] are
further computed on a randomly sampled rectange size (2 parameters).

5 Detector evaluation

Repeatability is a main criterion for evaluating the performance of keypoint detectors.
In contrast to current studies by Mikolajczyket al. [18] where a good feature detection
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Fig. 3. Repeatability evaluation for seasonal changes. Repeatability scores formatching January
with all other months (all images are taken at the same time of the day).

was defined according to the percentage of overlap between the keypoint ellipses, we
evaluate repeatability more specifically for the task of image calibration. The Mikola-
jczyk criterion is in fact not well suited to evaluate multi-view image calibration, where
a successful calibration should result in a sub-pixel reprojection error. We are more
interested in a keypoint location which only deviates by a few pixels from the ideal
keypoint location. Our evaluation is performed as follows:given a reference image, we
calculate all keypoints obtained from a specific detector onall images for which the
transformation to the reference image is available.

Repeatability is now defined as the percentage of detectionsin another image that lie
within a radius ofn, n=1 . . . 6 pixels. Hence, for every keypoint in the reference image,
we perform a search in the target image to identify the closest detection with respect
to the ground truth localization. This event is placed in thenth bin of the repeatability,
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Fig. 4.Repeatability evaluation for daily changes in light. Time difference between the images is
1h (left), 4h (middle) and 12h (right).

while both keypoints are marked as already matched and not considered further. This
procedure is repeated until valid keypoints have been assigned to one of the bins.

5.1 Light and seasonal changes

To evaluate the performance with respect to light an seasonal changes we used65 im-
ages of a panorama camera. Images from different times of theday and from different
months of the year are used. The set of images thus covers a great variety of lighting
conditions such as different incident angles, intensity and inhomogeneity due to cloud
coverage. All images are perfectly aligned. The repeatability measures are shown in
fig. 3 and fig. 4. On the x-Axis is the accuracy, that is the distance between the closest
pair of keypoints from two different images. On the y-Axis isthe ratio of the amount of
pairs with a certain distance to the total number of keypoints.

The 12 subfigures in fig. 3 show seasonal comparisons. An imagefrom each month
has been compared to an image from January. The time difference in months is indicated
in the title of each subfigure. Depending on the appearance ofthe scene in the different
months the repeatability varies a lot. It is evident that thetime differences of zero and 1
month result in the best repeatability.

The 3 subfigures in fig. 4 show comparisons between images taken at different times
of the same day. The time difference in hours is indicated in the title of each subfigure.

From both figures it can be observed that repeatabilities arealmost always in the
same range. Only in the case of comparisons with different images of the day, the re-
peatabilities are significantly smaller. This is reasonable since the incident angle of the
sunlight changes a lot during the day but much less during theyear (recall, all images
in fig. 3 have been taken at noon).

In the cases of extreme light changes (fig. 4 middle and right)the TaSK detector
outperforms all the other detectors and provides the most reliable keypoint detections
under these very difficult conditions. In the less difficult seasonal changes the TaSK de-
tector performs roughly as 2nd best after MSER. The good performance of MSER can
be explained by the fact that the test images do not contain geometric transformations.

Additionally we measured how many detected keypoints lie inregions with stable
structures (buildings, streets, mountains, ...) and regions with unstable structures (sky,
vegetation, ...). Fig. 1 shows that the TaSK detector focuses its detections on stable
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Fig. 5.Keypoint detections by DoG (left) and our proposed detector TaSK (right). Note that TaSK
is in this case specialized to focus more on face features.

regions with 79% of the total number of keypoints lying in man-made structures, while
the DoG detector has less than 59 % of keypoints in those regions.

In fig. 5, we show the detection result of DoG and TaSK of faces.Not that in this
case we have trained the TaSK detector on a different set of positive examples. This was
selected by takeing keypoint detections on faces as a positive set. Random samples of
images which do not contain faces have been choosen to be the negative set.

6 Conclusions

This paper deals with the learning of task specific keypoint detectors (TaSK) by using
boosting. Given training examples of good keypoints, we trained a classifier to distin-
guish the latter from random image patches. This results in akeypoint detector, which
produces high repeatability scores on challenging scenes with strong light and seasonal
changes.

As an example we trained a keypoint detector to work with higher repeatability on
structure and motion applications. For this application, it is often a problem to match
images with strong light and seasonal changes. General purpose keypoint detectors usu-
ally produce many keypoints on vegetation, which are a-priori known to be ineffectual
for matching. Our trained keypoint detector (TaSK) has thisknowledge incorporated.

Often and in many applications such as pose estimation, structure from motion, ob-
ject detection and categorization, general purpose detectors are used. We argued here,
that task specific keypoint detectors can increase the performance when tuned to the
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specific task, which is often known beforehand. To show this we also included an ex-
ample on a keypoint detector for faces.

This research was supported by Nokia Reseach Center and Deutsche Telekom Lab-
oratories.
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4. Šochman, J., Matas, J.: Learning a fast emulator of a binary decisionprocess. In Yagi, Y.,
Kang, S.B., Kweon, I.S., Zha, H., eds.:Proc. Asian Conf. on Computer Vision . Volume II of
LNSC., Berlin Heidelberg, Springer (2007) 236–245

5. Yarbus, A.L.: Eye movements and vision. Plenum. New York (1967(Originally published
in Russian 1962))

6. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends.
Comput. Graph. Vis.3(3) (2008) 177–280

7. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:Proc.
European Conf. on Computer Vision . Volume 1. (May 2006) 430–443

8. Förstner, W., G̈ulch, E.: A fast operator for detection and precise location of distinct points,
corners and centers of circular features. In: Proceedings of the ISPRS Intercommission
Workshop on Fast Processing of Photogrammetric Data (1987) 281–305

9. Ouellet, J., H́ebert, P.: Asn: Image keypoint detection from adaptive shape neighborhood.
In: Proc. European Conf. on Computer Vision . (2008) 454–467

10. Agrawal, M., Konolige, K., Blas, M.: Censure: Center surroundextremas for realtime feature
detection and matching. In Forsyth, D.A., Torr, P.H.S., Zisserman,A., eds.:Proc. European
Conf. on Computer Vision . Volume 5305 of Lecture Notes in Computer Science., Springer
(2008) 102–115

11. Matas, J., Chum, O. Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally
stable extremal regions. In:Proc. British Machine Vision Conf. . (2002) 384–393

12. Vergauwen, M., Van Gool, L.: Web-based 3d reconstruction service. Mach. Vision Appl.
17(6) (2006) 411–426

13. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In:
SIGGRAPH ’06, New York, NY, USA, ACM Press (2006) 835–846

14. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to
corner detection.IEEE Transactions on Pattern Analysis and Machine Intelligence 99(1)
(5555)

15. Kienzle, W., Wichmann, F.A., Schlkopf, B., Franz, M.O.: Learning an interest operator from
human eye movements. In: 2006 Conference on Computer Vision and Pattern Recognition
Workshop, IEEE Computer Society (04 2006) 24

16. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences55(1) (1997) 119–139

17. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
In: Machine Learning. (1999) 80–91



11

18. Mikolajczyk, K., Tuytelaars.T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir,
T., Van Gool, L.: A comparison of affine region detectors.Int’l Journal of Computer Vision
65(1-2) (2005) 43–72


