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Abstract. In this paper, we show that a better performance can be achieved by
training a keypoint detector to only find those points that are suitable to this nee
of the given task. We demonstrate our approach in an urban envirinwigere

the keypoint detector should focus on stable man-made structuresraomd -

jects that undergo natural changes such as vegetation and cloudseW¢ald-
Boost learning with task specific training samples in order to train a keypoint
detector with this capability. We show that our aproach generalizes to d broa
class of problems where the task is known beforehand.

1 Introduction

State of the art keypoirdescriptors such as SIFT [1] or SURF [2] are designed to be
insensitive to both perspective distortion and illumioatchanges, which allows for
images obtained from different viewpoints and under déferlighting conditions to
be successfully matched. This capability is hindered byfalee that general-purpose
keypointdetectors exhibit a performance which deteriorates with seasonaigbsand
variations in lighting. A standard approach to coping whistdifficulty is to set the
parameters of the detectors so that a far greater numbeypbkes than necessary are
identified, in the hope that enough will be found consisteatiross multiple images.
This method, however, entails performing unnecessary atetipns and increases the
chances of mismatches.

In this paper, we show that when training data is availalil@a &pecific task , we can
do better by training a keypoint detector to only identifpdlk points that are relevant
to the needs of the given task. We demonstrate our approaa imban environment
where the detector should focus on stable man-made stescnd ignore the surround-
ing vegetation, the sky and the various shadows, all of wtlisplay features that do not
persist with seasonal and lighting changes. We rely on WaddBlearning [3], similar
in essence to the recent work [4] by the same authors, to &eelassifier that responds
more frequently on stable structures.

Task-specific keypoint detection is known to play an impatrtale in human per-
ception. Among the early seminal studies is that of Yarbdsmbere it was demon-
strated that a subject’s gaze is drawn to relevant aspeetsoéne and that eye move-
ments are highly influenced by the assigned task, for instam@morization. To the best
of our knowledge, these ideas have not yet made their marknage-matching pur-
poses. Our main contribution is to show that image matchiggrithms benefit from
incorporating task-specific keypoint detection.
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We begin this paper with a brief review of related approachest, we discuss in
more detail what constitutes a stable keypoint that an éptidhdetector should iden-
tify and introduce our approach to training such a dete&gperimental results are
then presented for the structure and motion problem, whergaal is to build a key-
point detector - called TaSK (Task Specific Keypoint) thatufges on stable man-made
structure. We also show a result of a keypoint detector, kvhias learned to focus on
face features. Finally, we conclude with a discussion.

2 Related work

State of the art keypoint detectors fall into two broad catis: those that are designed
to detect corners on one hand, and those that detect blehatiige structures on the
other. An extensive overview can be found in Tuytelahis. [6]. Corner like detectors
such as Harris, FAST [7], &fstner [8] [9, 10] are often used for the pose and image
localization problems. These detectors have a high sgatalsion in the image plane
but are not scale invariant and are therefore used for sraadllime matching or track-
ing. The other category of keypoint detectors aim at detgdilob structures (SIFT [1],
MSER [11] or SURF [2]). They provide a scale estimate, whiehders them suited
for wide-baseline matching [12, 13] or for the purpose ofegbjdetection and cate-
gorization. Both detector types can be seen as generabgaitpand crafted detectors,
which run for many application at a very high false positiagerto prevent failures from
missed keypoints.

Our approach is most related to the worl&afchman and Matas [4]. These authors,
emulate the behavior of a keypoint detector using the bogdtiarning method. They
show that the emulated detector achieves equivalent peafuce with a substantial
speed improvement. Rosten and Drummond [7, 14] applied #asiidea to make fast
decisions about the presence of a keypoints in aimage pétehe, learning techniques
are used to enhance the detection speed for general-putpggeint detection. Note,
that their work does not focus on task specific keypoint detecwhich is the aim of
this paper. Similar in spirit is also the work of Kienaeal. [15] in which human eye
movement data is used to to train a saliency detector.

3 Task specific keypoints

Training data can be used in various ways to improve the kaypetection. We will
describe two approaches in the following sections.

3.1 Detector verification

Suppose we are given a keypoint detedtbrand a specific task for which training
data is available. The most natural way to enhance keypeitgction is based on a
post-filtering process: among all detections which are wiLthy the detectoiC, we are

interested only in the keypoints that are relevant givertiti@ing data. Our enhanced
keypoint detector would then output all low-level keypsianhd an additional classifica-
tion stage is added which rejects unreliable keypointsdasdhe learned appearance.



Fig. 1. Keypoint detections by DoG (top) and our proposed detector TaSK (bpttdote that
TaSK is specialized to focus more on stable man-made structures amdsgegetation and sky
features.

3.2 Detector learning

In order to learn the appearance of good keypoints we neegettifg how they are
characterized. In particular we need to specify the camastiunder which a pixel can
be regarded as a good keypoint. We will use the following tviteiGa:



1. A good keypoint can be reliably matched over many images.
2. A good keypoint is well localized, meaning its descripgsufficiently different
from the descriptors of its neighboring pixels.

All pixels that obey these criteria will constitute the gos input class to our learning
while the negative training examples are random samplésedfaining images.

_ Our method is based on WaldBoost learning [3] similar inispa the work of
Sochman and Matas [4]. Using our aforementioned trainirzgrgtes, we learn a clas-
sifier that responds more frequently on stable structurels as buildings and ignores
unstable one such as vegetation or shadows. Our eventuakgoaonly detect key-
points that can be reliably matched. The advantage is ngtahetter registration, but
also a speed up in the calibration.

For the WaldBoost training we used images taken by a panocamera. These
images are taken from the same view point every 10 minutebéquast four years. This
massive training set captures light and seasonal changes&sinot cover appearance
variations which are due to changes in view point.

3.3 Training samples

The generation of the training samples is an importantmiehry step for the detector
learning since the boosting algorithm optimizes for thevjated training samples. In
[3], the set of training samples fed into the boosting akhoniis the set oéll keypoints
identified by a specific detector. In so doing, the learnedalet is naturally no more
than an emulation of the detector for the training samples.

Our research aims at generating a more narrow set of tragamgples, which obey
the criteria proposed in section 3.2. In a first step, we ubedrrstner [8] operator
to find keypoint candidates which are well localized in thagmes. In a second step,
keypoints which are estimated to have poor reliability fecanstruction purposes are
pruned.

The automated selection of keypoints is based on two fesittire number of occur-
rences of a keypoint and the stability of a descriptor at @ifipgosition over several
images of the sequences.

The number of occurrences is simply a count of how many timiesed pixel po-
sition has been detected as a keypoint in several imagesafaime scene. To illus-
trate our measure of stability, lgf denote the position of théth keypoint in the
j-thimagei = 1...N;,5 = 1... Nipmages- The unionP = Up{ contains all the
positions which have been detected in at least one imagel theaimages a SIFT
descriptors;, is calculated for every single positign, € P. For the stability of the
descriptor Euclidean distanceéd 7> = dist(s]', s*) are calculated and their median
dy = median(d)}7?), 51 # j» is determined. The more stable a keypoint is in time,
the smaller its median will be. A pixel position is then ciéissl as a good keypoint
if its occurrence count is high and its descriptor mediarovs: ltwo thresholds were
thus set so that a reasonable number of keypoints is obtéonedr training set(couple
of thousands per image). These keypoints form the posiaiihg set. The negative
training examples are randomly sampled from the same imsges that they are no



closer than 5 pixels to any positive keypoint. Given theaming examples we apply
WaldBoost learning, as described in the next section.

4 Keypoint boosting

Boosting works by sequentially applying a, usually, weadsslfication algorithm to
a re-weighted set of training examples [16, 17]. Givérraining exampleg:; ...z
together with their corresponding labels. . . yy, it is a greedy algorithm which leads
to a classifietd (x) of the form:

T
t=1

whereh,(x) € H is a weak classifier from a podl chosen to be simple and efficient to
compute.H (x) is obtained sequentially by finding at each iteratidine weak classifier
which minimizes the weightef), (z;) training error:

N
Zy = Z Dy(x;) exp(—yihi(i)) - (2)

x;=1

The weights of each training sample;(z;), are initialized uniformly and updated ac-
cording to the classification performance. One possiliiityinimize eq. 2 uses domain
partitioning [17] as next explained.

4.1 Fuzzy weak learning by domain-partitioning

The minimization of eq. 2 includes the optimization over gibke features with re-
sponse functiom(z) and over the partitioning of the feature response into 1 .. . K,
non-uniformly distributed bins. If a sample poinfalls into thek*" bin, its correspond-
ing weak classification result is approximatedpyThis corresponds to the real version
of AdaBoost! By this partitioning model, eq. 2 can be written as (for therent state
of trainingt):

K
Z:Z Z D(x;) exp(—yick) - 3)

To compute the optimal weak classifier for a given distrimtD (x;) many features
are sampled and the beste the one with minimal? is kept.

The optimal partitioning is obtained by rewriting eq. 3 faystive ; = 1) and
negative {; =—1) training data:

K
Z :Z (W exp(—ci) + W, exp(cx)) ,

! For the discrete AdaBoost algorithm, a weak classifier estimates onadltes and outputs
a = {—1,1} depending of whether a data point is below or above this threshold.



ALGORITHM: WaldBoost Keypoint learning
Input: h € H, (z1,91) ... (z1,91), 9+, 0~
initialize weightsD(z;) = 1/N; mark all training examples as undecidgg = 0}
Fort =1...T, number weak learners in cascade
sample training examples from undecided exampldg;; = 0}
compute weights (x;) w.r.t. H,—;V{y; = 0}
For s =1...S, number weak learner trials
-sample weak learnér; € H
-compute response(z;)
-compute domain partitioning and scaotg17]
End
-among theS weak learners keep the best and addo the strong classifiellr = >~, h;
-sequential probability ratio test[3]
classify all current training examples ing¢ = {+1, —1,0}

End
Fig. 2. WaldBoost Keypoint learning
where
WilT =y D () (4)
r(zi)€k

is the sum of positive and negative Weiglmg/’ that fall into a certain birk.

After finding the optimal weak learner, Wald's decision eribn is used to classify
the training samples intg+1, —1, 0} while the next weak learner is obtained by only
using the undecided, zero labelled, training examples .€fttiee algorithm is shown in
table 4.1. For more information we refer to the work of Schagi.al. [17].

4.2 Weak classifier

The image features which are used for the weak classifierscan@uted by using in-
tegral images and include color as well as gradient featéi@sthe minimization of 4,
we first randomly sample a specific kind of weak classifier &iadh its parameters. The
weak classifiers include:

— ratio of the mean colors of two rectangles: compares twor@@mponents of two
rectangles at two different positiord{ 444 parameters).

— mean color of a rectangles: measures the mean color comisoofea rectangles
(1+2 parameters).

— roundness and intensity: integral images are computed thencomponnet of the
structure tensor, roundness and intensity as defineddbtner and @lch [8] are
further computed on a randomly sampled rectange gipafameters).

5 Detector evaluation

Repeatability is a main criterion for evaluating the pariance of keypoint detectors.
In contrast to current studies by Mikolajczgkal. [18] where a good feature detection
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Fig. 3. Repeatability evaluation for seasonal changes. Repeatability scomafcining January
with all other months (all images are taken at the same time of the day).

was defined according to the percentage of overlap betweeketypoint ellipses, we
evaluate repeatability more specifically for the task ofgmaalibration. The Mikola-
jczyk criterion is in fact not well suited to evaluate multew image calibration, where
a successful calibration should result in a sub-pixel rgoton error. We are more
interested in a keypoint location which only deviates by faéxels from the ideal
keypoint location. Our evaluation is performed as follogisen a reference image, we
calculate all keypoints obtained from a specific detectoalbimages for which the
transformation to the reference image is available.

Repeatability is now defined as the percentage of detedti@mother image that lie
within aradius ofr,n=1... 6 pixels. Hence, for every keypoint in the reference image,
we perform a search in the target image to identify the clodetection with respect
to the ground truth localization. This event is placed insthe bin of the repeatability,
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Fig. 4. Repeatability evaluation for daily changes in light. Time difference betweemtages is
1h (left), 4h (middle) and 12h (right).

while both keypoints are marked as already matched and maidered further. This
procedure is repeated until valid keypoints have been aaditp one of the bins.

5.1 Light and seasonal changes

To evaluate the performance with respect to light an sehsbaages we use@b im-
ages of a panorama camera. Images from different times afahend from different
months of the year are used. The set of images thus coveratvairéety of lighting
conditions such as different incident angles, intensity mmomogeneity due to cloud
coverage. All images are perfectly aligned. The repeatabileasures are shown in
fig. 3 and fig. 4. On the x-Axis is the accuracy, that is the distabetween the closest
pair of keypoints from two different images. On the y-Axighig ratio of the amount of
pairs with a certain distance to the total number of keyoint

The 12 subfigures in fig. 3 show seasonal comparisons. An ifnagreeach month
has been compared to an image from January. The time diffeiamonths is indicated
in the title of each subfigure. Depending on the appearantteeafcene in the different
months the repeatability varies a lot. It is evident thattitme differences of zero and 1
month result in the best repeatability.

The 3 subfigures in fig. 4 show comparisons between images &dkkfferent times
of the same day. The time difference in hours is indicatet@iértitle of each subfigure.

From both figures it can be observed that repeatabilitiesbmest always in the
same range. Only in the case of comparisons with differeagas of the day, the re-
peatabilities are significantly smaller. This is reasoeaihce the incident angle of the
sunlight changes a lot during the day but much less duringéhe (recall, all images
in fig. 3 have been taken at noon).

In the cases of extreme light changes (fig. 4 middle and ritji®)TaSK detector
outperforms all the other detectors and provides the mdabte keypoint detections
under these very difficult conditions. In the less difficiaisonal changes the TaSK de-
tector performs roughly as 2nd best after MSER. The goodpmdnce of MSER can
be explained by the fact that the test images do not conta@imggic transformations.

Additionally we measured how many detected keypoints lieegions with stable
structures (buildings, streets, mountains, ...) and regieith unstable structures (sky,
vegetation, ...). Fig. 1 shows that the TaSK detector fogltsedetections on stable



Fig. 5. Keypoint detections by DoG (left) and our proposed detector TaSKijrilybte that TaSK
is in this case specialized to focus more on face features.

regions with 79% of the total number of keypoints lying in rraade structures, while
the DoG detector has less than 59 % of keypoints in thosensgio

In fig. 5, we show the detection result of DoG and TaSK of fab&st.that in this
case we have trained the TaSK detector on a different setsitiyexamples. This was
selected by takeing keypoint detections on faces as amsitt. Random samples of
images which do not contain faces have been choosen to begagive set.

6 Conclusions

This paper deals with the learning of task specific keypoatédtors (TaSK) by using
boosting. Given training examples of good keypoints, wané@ a classifier to distin-
guish the latter from random image patches. This resultskieypoint detector, which
produces high repeatability scores on challenging sceitastrong light and seasonal
changes.

As an example we trained a keypoint detector to work with éiglepeatability on
structure and motion applications. For this applicatitms bften a problem to match
images with strong light and seasonal changes. Generabgeikgypoint detectors usu-
ally produce many keypoints on vegetation, which are arpkimown to be ineffectual
for matching. Our trained keypoint detector (TaSK) has khiswledge incorporated.

Often and in many applications such as pose estimatiorgtateifrom motion, ob-
ject detection and categorization, general purpose deteate used. We argued here,
that task specific keypoint detectors can increase the noesface when tuned to the
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specific task, which is often known beforehand. To show thésalgo included an ex-
ample on a keypoint detector for faces.

This research was supported by Nokia Reseach Center anddbeutelekom Lab-
oratories.
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