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Abstract
Growth of GaAs and Inx Ga1−x As nanowires by the group-III assisted molecular beam epitaxy
growth method on (001)GaAs/SiO2 substrates is studied in dependence on growth temperature,
with the objective of maximizing the indium incorporation. Nanowire growth was achieved for
growth temperatures as low as 550 ◦C. The incorporation of indium was studied by low
temperature micro-photoluminescence spectroscopy, Raman spectroscopy and electron energy
loss spectroscopy. The results show that the incorporation of indium achieved by lowering the
growth temperature does not have the effect of increasing the indium concentration in the bulk
of the nanowire, which is limited to 3–5%. For growth temperatures below 575 ◦C, indium rich
regions form at the surface of the nanowires as a consequence of the radial growth. This results
in the formation of quantum dots, which exhibit spectrally narrow luminescence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanowires are filamentary crystals with diameters of the order
of few nanometers. Thanks to their peculiar shape and
dimensions, they hold great promise for many technological
advances in this century in diverse areas such as biosensing,
energy harvesting and optoelectronics [1–5]. For the full
deployment of such technology, control over the nanowire
structure and composition at the nanometer scale is essential.
In this respect, nanowire based heterostructures have been
broadly studied [2, 3, 6, 7]. Among the various compound
semiconductors, InGaAs is considered to be one of the
materials suitable as a transistor channel due to its low electron
effective mass [8]. Additionally, InGaAs/GaAs based quantum
wells and dots constitute the ideal material system for infrared

detectors and single photon emitters. Moreover, the nanowire
geometry has turned out to be ideal for all these applications as
it enhances the functionality by allowing a better coupling with
the electromagnetic radiation [9].

Nanowires are commonly obtained through the vapor–
liquid–solid (VLS; or vapor–solid–solid, VSS) method, where
gold is used as a catalyst that preferentially gathers and
decomposes the precursors [10, 11]. As a result of
the concerns raised by gold in the area of semiconductor
technology, group III assisted growth has received increased
attention [12–15]. This method is also compatible
with the fabrication of heterostructures, for example by
combining InGaAs/GaAs [16, 17] or zinc-blende/wurtzite
crystal phases [18, 19].
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a) GaAs 590°C b) GaAs 575°C c) GaAs 560°C

e) InGaAs 575°C f) InGaAs 560°Cd) InGaAs 590°C g) InGaAs 550°C

Figure 1. Representative tilted view (30◦) SEM micrographs of GaAs and Inx Ga1−x As nanowire samples grown at substrate temperatures of
550–590 ◦C under otherwise identical conditions for the same growth times. The scale bar in each of the micrographs corresponds to 1 µm.

InGaAs and InAs quantum dots have been obtained in
GaAs nanowires grown by the VLS method (Au assisted) [20].
Investigations on the optical properties and interface sharpness
indicate that the InAs/GaAs system is more favorable than the
InGaAs/GaAs [11, 21, 22]. The synthesis of InGaAs nanowires
with the Au assisted method has been demonstrated by various
groups. Martelli et al varied the growth temperature down to
480 ◦C, and reached an indium content up to 22% [23, 24].
However, the concentration turned out not to be homogeneous
along the nanowire axis. Such inhomogeneities have been
attributed to the longer diffusion length of indium with respect
to GaAs and have also been observed by other groups [6, 25].
InGaAs nanowires have also been obtained by selective area
epitaxy. There, the difference in diffusion length between
gallium and indium results in a different indium incorporation
depending on the distance between the nanowires [26]. To
date, it is still controversial as to what extent homogeneous
InGaAs nanowires can be obtained and what is the maximum
indium concentration [27]. The synthesis of InGaAs nanowire
and InGaAs/GaAs nanowire heterostructures by the group-
III assisted method has been demonstrated recently [17]. In
this case, the nanowire growth was performed under growth
conditions optimized for the growth of GaAs nanowires. It
was argued that due to the high growth temperatures, the
incorporation of indium was limited to a few per cent. It
is expected that a higher incorporation of indium may be
reached by lowering the growth temperature. At the same
time, previous studies have shown that the sticking coefficient
of gallium on SiO2 increases as the substrate temperature
is decreased and becomes close to unity for temperatures
lower than 565 ◦C [28]. Unfortunately, the optimum growth
temperature range for the growth of Inx Ga1−x As compounds
corresponds to temperatures below 520 ◦C [29]. Indeed,
by lowering the growth temperature down to the range of

400–505 ◦C, pure InAs growth was obtained [30, 31]. The
challenge in catalyst-free growth is then to find conditions
where gallium still participates in the catalyst-free growth
and where the incorporation of indium is enhanced. The
first condition would normally require a growth temperature
between 600 and 630 ◦C. However, a larger incorporation
of indium is only expected at considerably lower growth
temperatures. In this work we study the influence of the
growth temperature on the growth of InGaAs nanowires in
the range between the optimum growth temperature windows
for pure GaAs and pure InAs nanowire growth. We discuss
the implications in terms of indium incorporation and optical
properties.

2. Experimental details

The nanowires were grown by the group-III assisted method
by molecular beam epitaxy as detailed elsewhere [14, 17, 32].
For this, (001) oriented GaAs substrates covered with a thin
layer of SiO2 were used. A systematic growth temperature
series, where only gallium or both gallium and indium were
supplied during the entire growth process, was realized. The
growth temperature series for pure GaAs nanowires grown
under the same conditions is used as a reference. The substrate
temperature was varied in the range of 550–590 ◦C. The
indium and gallium growth rates were fixed at 0.045 Å s−1

and 0.2 Å s−1, respectively. The As4 beam flux was set to
8.8 × 10−7 mbar at a constant growth time of 5400 s for
all samples. Further details on the growth procedure can be
found in [32]. The morphology of the nanowires was studied
by scanning electron microscopy (SEM). The composition
and crystal structure of the nanowires was studied by high
resolution electron microscopy (HRTEM), electron energy
loss spectroscopy (EELS) and Raman spectroscopy using the
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488 nm line of an Ar+Kr+-laser focused to a diffraction
limited spot (numerical aperture = 0.75, power density
50 kW cm−2). The optical properties of single nanowires were
studied by photoluminescence spectroscopy at 4.2 K with a
confocal microscope or at 10 K in a He flow cryostat. The
photoluminescence was excited with a 780 nm diode-laser or
a 633 nm HeNe-laser focused to a diffraction limited spot
(numerical aperture = 0.65). For this, the nanowires were
transferred from the original substrate to a silicon substrate
with a 50 nm SiO2 layer.

3. Effect of the growth temperature on the
morphology of GaAs and InxGa1−xAs nanowires

We start by discussing the morphology of the nanowires
grown under the different conditions. Representative SEM
micrographs are shown in figure 1. GaAs and InGaAs
nanowires could be obtained down to a temperature of 550 ◦C.
By lowering the growth temperature, we observe an increase
in the material deposited between the nanowires. These are
randomly oriented GaAs deposits that nucleate on the oxide
due to the decrease in the mobility of Ga on the surface
when the substrate temperature is reduced. Besides the GaAs
sample grown at 560 ◦C, neither the amount of surface deposits
or the length of the nanowires show significant deviations
compared to the pure GaAs samples grown under otherwise
identical conditions (figures 1(a)–(c)). This indicates that the
sticking coefficient is not significantly altered by the presence
of In:Ga with a beam flux ratio of 1:4 as compared to the
situation with a pure gallium supply. At 560 ◦C, almost
the entire surface between the nanowires is covered with
randomly oriented (In)GaAs deposits (see figures 1(c), (f)
and (g)). The typical size of these structures is up to 500 nm.
Concurrently, the length of the nanowires is reduced with
regard to figures 1(a)–(c). This is also consistent with a reduced
surface diffusion of gallium that is incorporating in the surface
deposits in the case of a low growth temperature. Generally,
the observed temperature dependence is in agreement with
previous studies for the sticking coefficient of gallium on such
SiO2 surfaces [28], which demonstrated a sticking coefficient
of unity for temperatures below 565 ◦C.

One should note that some of the samples did not show
an alignment of the nanowires toward the [11̄1]B or [111̄]B
directions of the GaAs(100) growth substrate.

4. Optical properties of the InxGa1−xAs nanowires

We expect that the lowering of the growth temperature should
have a direct influence on the indium content and therefore
on the optical properties. Upon homogeneous incorporation
of indium, the band gap Eg should decrease in the form [33]:

Eg(Inx Ga1−x As) = 1.5192 − 1.5837x + 0.475x2 (eV). (1)

Figure 2(a) summarizes the results of the micro-
photoluminescence experiments performed at 4.2 K on the
Inx Ga1−x As nanowires. For completion, we have added the
data point from a previous study of an InGaAs nanowire grown

Figure 2. (a) Typical 4.2 K micro-photoluminescence transitions for
Inx Ga1−x As nanowire samples grown at temperatures of 550–590 ◦C.

correspond to data from this work while � corresponds to data
from a previous study [17] using a higher In deposition rate of
0.088 Å s−1. The red dots (•) show for reference the 10 K
micro-photoluminescence transitions observed in single pure GaAs
nanowires grown at temperatures of 560–630 ◦C. The right axis of
the graph shows the indium concentration of an idealized
Inx Ga1−x As material with a band gap related to the transition energy.
(b) Typical 4.2 K photoluminescence spectra for Inx Ga1−x As
nanowire samples grown at temperatures of 550, 560 and 575 ◦C
under otherwise identical conditions. For reference the spectrum of a
pure GaAs nanowire synthesized at 630 ◦C under otherwise identical
conditions is shown.

at 630 ◦C using a higher In deposition rate of 0.088 Å s−1 [17].
Otherwise this sample was grown under identical conditions
for the same growth time [17]. Figure 2(a) shows the average
photoluminescence peak position obtained from various single
nanowires obtained on the same growth run. The error
bars indicate the standard deviation of peak positions of
the measurements on various nanowires. For comparison
figure 2(a) shows the 10 K photoluminescence transitions
for the pure GaAs nanowire samples synthesized under
otherwise identical conditions. The lower limit for the indium
concentration x in the Inx Ga1−x As nanowires estimated by
equation (1) is indicated on the right axis. One should note that
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Figure 3. (a) Normalized 4.2 K photoluminescence spectra of a
Inx Ga1−x As nanowire sample grown at 550 ◦C for several different
excitation power densities. (b) Excitation power dependence of the
three spectrally narrow emission lines marked by the colored arrows
in (a).

equation (1) does not consider quantum confinement effects
and could therefore underestimate the actual indium content
of the optically emitting structures. We observe a red shift
in the photoluminescence transitions with respect to pure
GaAs, which is a clear indication of the presence of indium
in the nanowires. Surprisingly, the peak position does not
change significantly for nanowires obtained at temperatures
from 630 ◦C down to 575 ◦C. In all these cases, the optical
properties of the nanowires correspond to those of an indium
concentration of only ≈3%. As a consequence, we can state
that the indium incorporation in the nanowire is not affected
by the growth temperature within a variation in this range of
temperature. This observation is in quantitative disagreement
with thermodynamic calculations of Shen and Chatillon [29].
However, these thermodynamic calculations [29] also show
that In0.01Ga0.99As is thermodynamically more stable under
vacuum than pure GaAs. This qualitatively explains the
remaining small indium incorporation for the high growth
temperature regime. The quantitative deviation could indicate

Figure 4. Raman spectra of single Inx Ga1−x As nanowires from the
samples grown at temperatures of 550–590 ◦C. The peak marked
with (∗) corresponds to a line of the laser.

that the incorporation of indium might not be exclusively
governed by the VLS mechanism through the droplet. For
growth temperatures below 575 ◦C a pronounced redshift of
the emission is observed. In principle, this gives an indication
that the incorporation of indium in the nanowire may be
significantly increased by reducing the growth temperature.
However, in order to have more precise information on the
incorporation of indium, we perform a more detailed analysis.

Typical spectra of the InGaAs nanowires obtained under
different temperatures are shown in figure 2(b). Interestingly,
the decrease in the growth temperature is accompanied with an
increase in the variations in photoluminescence characteristics
from nanowire to nanowire. At the same time, we also
observe that the shape of the photoluminescence spectra
changes for growth temperatures below 575 ◦C. This is
illustrated in figure 2(b). Nanowires grown between 630 and
575 ◦C typically exhibit a quite narrow single emission peak
around 1.46 eV. The nanowires grown at lower temperatures
present spectra with multiple peaks. Furthermore, the
photoluminescence emission of these nanowires is typically
inhomogeneous along the nanowire axis. The most extreme
example of this was observed in a sample grown at 550 ◦C.
A photoluminescence spectrum of this sample is shown in
figure 3(a). In this case, the emission under low excitation
powers consists mainly of a single spectrally narrow line.
At higher excitation powers two additional narrow lines and
several other peaks appear. The main emission line at
1.346 eV has a full width at half maximum of only 365 µeV.
This spectral width is at the limit of the resolution of our
spectrometer. In order to better understand the nature of these
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Figure 5. (a) Bright field STEM micrograph of a nanowire from the Inx Ga1−x As sample grown at 550 ◦C. (b) High resolution micrograph of a
nanowire, showing accumulations of material on the surface. (c) EELS profile perpendicular to the nanowire growth direction clearly showing
a higher concentration of indium on the NW side facets. (d) EELS profile along the growth direction at the tip of a nanowire. EELS spectrum
imaging mapping of the tip region, showing the indium rich tip of this nanowire. For the analysis the indium M4,5 (443 eV), the oxygen K
edge (532 eV), the gallium L2,3 edge and the arsenic L2,3 edge are used.

transitions, we measured the photoluminescence spectra as
a function of the excitation power. The integrated intensity
of the lines as a function of the excitation power is shown
in figure 3(b). The main emission line at 1.346 eV has a
linear excitation power dependence, while the emission peaks
at 1.344 and 1.342 eV have a nonlinear power dependence
∝ P1.46 as illustrated by the slope of the linear fit in the double
logarithmic plot of figure 3(b). Such behavior is typically
only observed in low-dimensional systems such as quantum
dots [34]. Interestingly, in order to achieve such a quantum dot
like zero-dimensional confinement, the related structures must
actually be of dimensions much smaller than the diameter of
the nanowires. The existence of quantum dots in the nanowire
structure may be related to inhomogeneities in the indium
concentration at lower temperatures. In order to understand
if this is the case, a more detailed analysis of the structure
and composition is essential. Therefore, we realized a detailed
study on the structure and indium distribution in the nanowires.
The results are shown in section 5.

5. Structural characteristics of InxGa1−xAs
nanowires

The frequency positions of the optical phonons in the ternary
compound Inx Ga1−x As strongly depend on the compositional
fraction x [35]. Therefore, measuring the Raman shift of the
optical phonons provides a convenient non-destructive method
for estimating the composition. In figure 4 Raman spectra of
the Inx Ga1−xAs nanowires grown at various temperatures are
shown. For the sample grown at 590 ◦C, the width and the
position of the transverse optical mode at 267.5 cm−1 shows
no observable deviations from the pure binary GaAs compound
within the experimental uncertainty. By decreasing the growth
temperature, we observe a continuous broadening and down
shift of the GaAs-like optical phonons. This is directly
related to an increase in the indium content in the nanowire.
Interestingly, for the nanowire grown at 560 ◦C we observe
two overlapping features in the spectra: a broad background
denoted by an arrow in figure 4 and a superimposed sharper
TO mode. This indicates a non-homogeneous distribution
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Figure 6. (a) ADF-STEM micrograph of a nanowire grown at
550 ◦C. (b) Indium content obtained from the averaged EELS line
scan profiles A–D marked in (a).

of In in the nanowire. We suggest that this is due to the
formation of a shell with higher In content around the core
GaAs nanowire. For the employed laser wavelength of 488 nm
the Raman information depth is in the order of 40 nm. For
the sample grown at 550 ◦C, a down shift of the TO mode of
6.9 cm−1 is observed. From this shift, in comparison with
literature data [36], we can estimate an indium concentration
up to 23% in these nanowires. The spatial resolution of the
Raman spectroscopy is not sufficient to obtain information on
the axial distribution of indium in these nanowires that are only
approximately 700 nm long.

In order to provide a more detailed analysis of spatial
inhomogeneities of indium incorporation and at the same time
the exact origin of the quantum dot like photoluminescence
features observed for the nanowires, the crystalline structure
and indium composition of the sample grown at 550 ◦C were
analyzed with transmission electron microscopy and EELS.
The results are presented in figure 5. Figure 5(a) shows the
bright field STEM micrograph of a typical nanowire of the
sample. The nanowires have a length in the order of 700 nm

and exhibit tapering. In figure 5(b) a high resolution STEM
micrograph is shown. The nanowires consist of a highly
twinned zinc-blende structure with the sporadic inclusion of
some wurtzite segments with thicknesses up to 10 nm. The
surface of the nanowire is oxidized, the oxide thickness being
of the order of 2 nm. Moreover, the side facets of the
nanowire are not perfectly flat as we have observed in the
past for pure GaAs nanowires [14, 16]. They present some
rounded structures (dome-like), which have a typical height
and length, respectively, of 5 nm and 50 nm. In order
to obtain more information on the nature of these domes,
we did EELS scans along the diameter of the nanowire at
several points. The result is shown in figure 5(c). The
core of the nanowire is composed of InGaAs with an indium
concentration of 3–5%. Interestingly, the indium concentration
increases up to approximately 20% at the surface, coinciding
with the formation of the nano-domes. We believe that the
nano-domes formed at the surface of the nanowire are most
likely the origin of the spectrally narrow emission lines in the
photoluminescence characteristics. We would like to point out
that the dimensions of the nano-domes are similar to those
observed in Stranski–Krastanov quantum dots [37].

Now we would like to discuss the growth mechanisms
of the indium rich nano-domes formed on the surface of the
nanowires. Figure 6(a) clearly shows that the nanowires grown
at 550 ◦C are tapered. This is a clear indication of radial
growth. If the formation of indium rich regions is related to
the radial growth, one should find a gradient in the indium
concentration at the surface. For this purpose, we have realized
EELS scans along the nanowire diameter at different points
shown in figure 6. We have found that indeed the formation
of indium rich regions is inhomogeneous along the nanowire
and the concentration is higher at the bottom of the nanowire.
Formation of InGaAs quantum dots on GaAs(110) surfaces has
been observed in the past for similar growth temperatures [38].
Indeed this could account for the spectrally narrow features
observed in the sample grown at 550 ◦C.

Finally, we have realized an EELS spectroscopy map of
the region close to the tip of a nanowire. This is illustrated
in figure 5(d). At the nanowire droplet at the tip, a peak
indium concentration as high as 80% is observed. This clearly
shows that the catalyst droplet is very rich in indium during
the growth. In the final 40 nm below the tip, the indium
concentration in the solid Inx Ga1−x As gradually increases to
a concentration of up to x ≈ 40%. We believe that the
increased incorporation is related to the final part of the growth,
when substrate heating is stopped. At that stage, there is
still some residual axial growth as the arsenic pressure is
maintained. This indicates that a higher indium incorporation
during the axial growth might be obtained by lowering the
growth temperature even further.

6. Conclusions

The formation of Inx Ga1−x As heterostructures in nanowires
by catalyst-free molecular beam epitaxy has been studied in
dependence on growth temperature. The incorporation of
indium in the nanowire core was shown to be limited to

6



Nanotechnology 22 (2011) 195601 M Heiss et al

3–5%. A growth temperature series showed that for
temperatures below 575 ◦C indium incorporation occurs
predominantly through radial growth, as demonstrated by
a detailed EELS analysis. The optical properties of such
structures resulted in spectrally narrow peaks and an excitation
power dependence typical of quantum dots.
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