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T cell acute lymphoblastic leukemia (T-ALL) is an aggres-
sive hematopoietic malignancy of thymocytes affecting
preferentially children and adolescents. The disease is
heterogeneous and characterized by a large set of chro-
mosomal and genetic alterations that deregulate the
growth of maturing thymocytes. The identification of
activating point mutations in NOTCH1 in more then 50%
of all T-ALL cases highlights the NOTCH1 cascade as a
central player of T-ALL pathogenesis. In this review, we
summarize and update more recent findings on the
molecular mechanisms of T-ALL with a particular em-
phasis on the oncogenic properties of aberrant NOTCH1
signaling.

Notch signaling finds its place in T-ALL
T cell acute lymphoblastic leukemia (T-ALL) is an aggres-
sive malignancy of developing thymocytes. The disease
represents 15% of pediatric and 25% of adult acute lym-
phoblastic leukemia (ALL) cases. It is characterized clini-
cally by high white blood cell counts, increased numbers of
blast cells and enlarged mediastinal lymph nodes. Al-
though the disease develops mostly in the thymus, it tends
to spread throughout the body, including the central ner-
vous system, complicating the therapeutic treatment of the
disease. Historically, T-ALL was associated with a poor
outcome; however, today’s more aggressive multi-agent
chemotherapy results in an overall survival rate of 70%
for children and 30–40% for adults below 60 years of age,
and 10% above this age [1]. Relapse patients often develop
resistance to chemotherapy, and are associated with very
poor prognosis. It is therefore important to understand the
molecular mechanisms that cause and drive T-ALL to
identify novel molecular targets and design more specific
therapies.

Over the last two decades, cytogenetic analysis, com-
bined with cloning and sequencing of chromosomal trans-
location break points, revealed that aberrant expression of
numerous transcriptional regulators in T-ALL often
involves incorrect rearrangement processes of the T cell
receptor (TCR) genes. This results in the juxtaposition of
genes coding for transcriptional regulators close to strong
TCR gene enhancers and promoters that drive their ex-
pression [2]. Examples include a number of basic helix-
loop-helix (bHLH) transcription factors such as TAL1,
TAL2, LYL1, bHLHB1 and MYC, or homeobox transcrip-
tion factors (Table 1). Although some of the transcriptional
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regulators (e.g. MYC) are expressed in normal thymocytes
where they govern T cell differentiation and development,
others are not of lymphoid origin (e.g. TAL1 or TAL2).

Additional chromosomal translocations, which do not
implicate the TCR rearrangement machinery with their
strong promoters and enhancers, have also been identified
in T-ALL patients. These non-TCR associated transloca-
tions lead to the generation of fusion genes and chimeric
proteins with novel functions, gene deletions, or gene
inactivation as a consequence of promoter hypermethyla-
tion, as well as gene duplications (Table 2).

Although it is inmany instances unclear how all of these
different genetic defects mechanistically transform thymo-
cytes, this incomplete list shows the large variety of genetic
aberrations that contribute to the transformation of T cells.
T-ALL does not represent a single disease entity. Gene
expression profiling, as well as microarray based competi-
tive genomic hybridization (array-CGH), which detects
genomic copy number variations such as deletions and/
or duplications, helped to classify T-ALL patients into
multiple subgroups. Some of these subgroups exhibit
unique aberrations, whereas others are shared by multiple
patient subgroups [3,4]. More than 50% of T-ALL patients
have mutations leading to the hyperactivation of the
Notch1 pathway, suggesting that this signaling cascade
plays an important role in T-ALL pathogenesis. Box 1

Notch1 is one of four single transmembrane bound
Notch receptors, which are composed of an extracellular
and an intracellular subunit that are non-covalently linked
through the heterodimerization domain (HD) (Figure 1).
Notch signaling is initiated by receptor-ligand interaction
between two neighboring cells, leading to successive pro-
teolytic cleavages, which result in the liberation of the
intracellular domain of the receptors (NICD). NICD then
translocate to the nucleus and heterodimerizes with the
transcription factor CSL/RBPJk to regulate gene expres-
sion [5]. This signaling cascade is evolutionarily conserved
and regulates many cellular processes, including prolifer-
ation, differentiation and survival. Here we summarize
recent findings on the differences between human and
murine oncogenic Notch1 mutations in T-ALL, and discuss
Notch targets and downstream signaling pathways.

Notch1 – key player in T-ALL
Notch signaling through the Notch1 receptor has long been
shown to be essential for T cell lineage development,
thymocyte survival, as well as the proliferation of commit-
ted T cell progenitors. Historically, the first evidence of
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Table 1. TCR-mediated translocations in T-ALL.

Genes Function Rearrangements Frequency Outcome References

TAL1 bHLH transcription factor

HSC survival

Megakaryocyte/erythrocyte differentiation

TCR a/d

t(1;14)(p32;q11)

15–20% Good [49,50]

TAL2 bHLH transcription factor

Neural development

TCR b

t(7;9)(q35;q34)

< 2% Unknown [50,51]

LYL1 bHLH transcription factor

HSCs, B cell development, vasculogenesis

TCR b

t(7;19)(q35;p13)

< 2% Unknown [51]

HBHL1/OLIG2 bHLH transcription factor

Neural development

Oligodendrocyte differentiation

TCR a

t(14;21)(q11;q22)

Rare Unknown [52]

C-MYC bHLH/ZIP transcription factor, cell growth,

apoptosis, stem cell self-renewal and

differentiation

TCR a

t(8;14)(q24;q11)

2% Poor [53–55]

LMO1 LIM-domain containing transcriptional regulators

Megakaryocyte/Erythrocyte differentiation

TCR a/d

t(11;14)(p15;q11)

<1% Unknown [56,57]

LMO2 LIM-domain containing transcriptional regulators

Megakaryocyte/Erythrocyte differentiation

TCR a/d

t(11;14)(p13;q11)

TCR b

t(7;11)(q35;p13)

7%

3%

Unknown

Unknown

[58,59]

Hox11/TLX1 Homeodomain transcription factor

Spleen development

TCR a/d

t(10;14)(q24;q11)

TCR b

t(7;10)(q34;q24)

5–10% Good [60–62]

Hox11L2/TLX3 Homeodomain transcription factor

Neural development

TCR a/d

(t(5;7)(q35;q21)

24% Poor

No impact

[60,63]

C-MYB Transcription factor, hematopoiesis TCR b

t(6;7)(q23;q34)

3% Unknown [64]

NOTCH1 Type I receptor, T cell commitment and

thymocyte maturation

TCR b

t(7;9)(q34;q34.3)

< 1% Good [6]

Table 2. Non-TCR-mediated translocations and mutations in T-ALL.

Genes Function Rearrangements Frequency Outcome References

STIL/TAL1 bHLH transcription factor

HSC survival, Megakaryocyte/Erythrocyte differentiation

1p32 deletion 4% Good [50]

CDKN2A/2B Cell cycle regulator 9p21 deletions or

hypermethylation

70% Poor [65,66]

Hox A cluster Regulation of axial patterning during development inv(7)(p15q34) 3% Unknown [67,3]

Hox11L2 Homeodomain transcription factor

Neural development

BCL11B

t(5;14)(q35;q32)

CDK6

(t(5;7)(q35;q21)

24% No impact [60,63]

C-MYB Transcription factor, hematopoiesis Gene duplication 8-15% Unknown [64,68]

EML1-ABL1 EML1-Cytoskeleton

ABL-Nuclear tyrosine kinase, regulating cell

differentiation and division

Gene fusion <1% Unknown [69]

ETV6-ABL1 ETV6-Ets-family transcription factor, hematopoiesis

ABL-Nuclear tyrosine kinase, regulating cell

differentiation and division

Gene fusion <1% Unknown [70]

NUP214-ABL1 NUP214- part of the nulear pore complex, transport

ABL-Nuclear tyrosine kinase, regulating

cell differentiation and division

Gene fusion 6% Poor

No impact

[71,72]

MLL-ENL MLL–homologue of Drosophila

Trithorax involved in homeotic gene regulation,

histone methyl transferase; ENL-transcription factor

Gene fusion <1% Unknown [73]

NOTCH1 Type I receptor, T cell commitment

and thymocyte maturation

Mutations >50% Good [11]

FBXW7 Ubiquitin ligase, regulating protein degradation Mutations or deletions 8-15% Poor [74,75]

PTEN Phosphatase, negative regulator of PI3K-Akt signaling Mutations

Deletions

27%

9%

Poor or no impact [76,77,22]
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Box 1. Therapeutic targeting of the Notch pathway

The best-documented causative role of activated Notch signaling in

human carcinogenesis is certainly T cell acute lymphoblastic

leukemia (T-ALL). In recent years aberrant Notch signaling has also

been linked to various forms of solid human tumors, and thus, has

gained increasing attention as a potential therapeutic target. Initial

strategies to block Notch signaling that were also explored in clinical

trials, were to use small molecule inhibitors of the g-secretase

complex [78]. These chemical compounds block the proteolytic

cleavage that liberates the intracellular Notch domain (NICD).

However, g-secretase inhibitors are not selective for individual Notch

receptors, but they block signaling of all receptors. The most

frequently observed side-effect of these compounds is that they

cause a dose dependent goblet cell metaplasia in the intestine [79],

since inhibition of Notch1 and Notch2 in intestinal crypt progenitors

and/or stem cells induces premature differentiation into goblet cells

[80]. However, the gut toxicity can be circumvented when these g-

secretase inhibitors are used in combinatorial therapy with gluco-

corticoids such as dexamethasone [81]. Alternative strategies em-

ploying blocking antibodies for specific Notch receptors and/or

ligands are being developed currently [81–85]. The advantage of

inhibiting selectively individual Notch receptors or ligands is the

minimization of potential side effects. Preclinical cell culture and

xeno-transplantation studies indeed indicate that antibody-mediated

inhibition of Notch signaling is a promising avenue [83]. Never-

theless, this approach has its limitations. The activity of certain

antibodies to block the growth of human T-ALL cell lines bearing

Notch1 mutations appears to be less efficient compared to g-secretase

inhibitors [86], possibly owing to lower binding affinity to the mutated

receptor. Moreover, tumor cells harboring chromosomal transloca-

tions or genetic aberrations, which lead to the expression of Notch

receptors lacking their extracellular domain, are not treatable with an

antibody-mediated approach. Therefore, alternative approaches must

be considered, and were recently pioneered successfully. Stabilized

small a-helical peptides derived from the mastermind-like protein

were employed to inhibit the Notch transcription complex. These

peptides bind to the groove formed by the CSL-NICD complex, and

thereby prevent the recruitment of necessary transcriptional co-

activators [87]. Treatment of leukemic cells with such peptides

inhibited the proliferation of leukemic cells in vitro as well as in a

Notch1-driven T-ALL mouse model without causing gut toxicity.

Whether any of these or other strategies will be developed success-

fully into a clinical drug, or will be used in combined drug therapies,

remains to be assessed in the future.
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Figure 1. Schematic representation of the human Notch1 receptor. The

extracellular domain of Notch1 consists of 36 epidermal growth factor (EGF)-like

repeats (EGFR) followed by three cysteine-rich lin12/Notch repeats (LNR) and the

heterodimerization domain (HD). Notch1 contains a single transmembrane domain

(T) followed by a RBPJk-associated module (R) domain and 6 ankyrin repeats

(ANK) flanked by two nuclear localization signals, a transactivating domain (TAD),

and a PEST sequence (P) involved in regulating protein turnover.

Review Trends in Immunology September 2011, Vol. 32, No. 9
Notch1 being involved in T-ALL was provided when
NOTCH1 was identified through the analysis of a chromo-
somal translocation [t(7;9)(q34;q34.3)] detected in a small
number of T-ALL patients. This revealed that a portion of
the humanNOTCH1 gene had translocated into the TCRB
locus [6,7]. The oncogenic potential of NOTCH1 was dem-
onstrated in murine bone marrow (BM) reconstitution
experiments. Mice reconstituted with BM cells expressing
a truncated human form of NOTCH1 developed hemato-
logical malignancies characterized as T-ALL [8,9]. Howev-
er, the role of NOTCH1 in human T-ALL seemed to be
limited because of the rare number of patient cases identi-
fied with the t(7;9) translocation (less than 1%; [10]). A
landmark study published in 2004 changed the situation
dramatically by showing that more than 50% of T-ALL
cases carry Notch1-activating mutations [11]. This finding
implicated that Notch1 has a very prominent role in the
pathogenesis of T-ALL. Sequence analysis of primary hu-
man T-ALL samples and human T-ALL cell lines revealed
that the majority of these mutations cluster in 2 general
regions either at the PEST or the HD domain of Notch1.
The mutations clustering at the C-terminus of the Notch1
436
receptor consist of nonsense or frameshift mutations
resulting in the deletion of the PEST domain normally
regulating NICD degradation [12]. These mutations in-
crease Notch activity through the stabilization of NICD
and are present in approximately 20-30% of tumors. The
most common NOTCH1 mutations (40-45% of T-ALL
patients) fall into exon 26 or 27, which encode the N-
and C-terminal HD subunits. Mutations within that region
consist of single amino acid changes, short insertions or
deletions that maintain the reading frame. These muta-
tions destabilize the interaction between the two subunits,
and induce or facilitate ligand-independent Notch1 signal-
ing [13]. Most Notch-dependent human cell lines and
approximately 10-20% of primary human T-ALL reveal
mutations in both the HD and PEST domains (Figure 2a).

In retrospect it is not surprising that the frequently
occurring mutations in the human NOTCH1 receptor
have been associated with human T-ALL given that
Notch has been shown to be a potent oncogene in mouse
models. Retroviral or transgenic overexpression of NICD
in hematopoietic or T cell progenitors is widely used to
induce T-ALL in mice [9,14,15]. However, sporadic muta-
tions in murine and human T-ALL have only been found
so far in Notch1 suggesting that Notch1, and not other
Notch receptors, can be a major driver in human T-ALL.
Although many T-ALL tumors harbor mutations within
theNOTCH1 gene, they contain in addition chromosomal
translocations or rearrangements that activate oncogenes
or create oncogenic fusion genes (see Tables 1 and 2).
Thus, the question remained whether aberrant Notch
signaling is the driver or only a cooperating passenger
in human T-ALL.

Although NICD1 is a potent inducer of T-ALL in retro-
viral and transgenic mouse models, this form of Notch is
rarely present in human T-ALL. In mouse models of T-
ALL, such as TAL1/SCL, OLIG2 and LMO1/2 transgenic
mice (see Table 1 and [16] for review), spontaneous acti-
vating Notch1 mutations occur at a high frequency. There-
fore, the more commonly mutated Notch1 alleles in the
retroviral mouse model have been analyzed. HD, PEST,
and HD/PEST mutations more frequently found in human
T-ALL samples were weak inducers of Notch activity in
vitro, induced only ectopic T cell development, and failed to
induce leukemia when tested in the retroviral mouse
model [17]. Once these constructs were assayed in an
oncogenic background that predisposes to T-ALL, using
the LSL-K-rasG12D mouse strain, these weakly leukemo-
genic alleles shortened disease latency and gave rise to cell
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Figure 2. Activating mutations and deletions leading to aberrant Notch1 signaling differ between human and mouse T-ALL (a) A low number of human T-ALL patients

carry a t(7;9) translocation, which was mapped to intron 24 and results in the generation of a truncated dominant active Notch1 receptor lacking most of its extracellular

domain. Most of the NOTCH1 mutations in humans localize either to the HD domain or to the PEST domain, whereas some T-ALL patients reveal mutations in both

domains. In the schematic of NOTCH1, bars and numbers indicate exons and grey boxes indicate reported human mutations. (b) Murine T-ALLs harbor one of two classes

of deletions within the 50 region of the Notch1 gene: (1) D1 - deletion of the proximal promoter including the ATG containing exon1 allows the transcription of truncated

Notch1 mRNAs driven by a cryptic 30 promoter located near exon 25. Normally, Ikaros and/or E2A repress the cryptic 30 promoter. Loss of Ikaros results in chromatin

remodeling and permits facilitated transcription from the 30 promoter; (2) D2 - deletion of the sequences between exon 1 and exon 26-27 in which transcription is initiated

through the endogenous Notch1 promoter. Red lines indicate the transcripts produced by the class D1 and D2 deletions. Both classes of mRNA transcripts initiate protein

synthesis at a conserved methionine residue (M1727), giving rise to a truncated dominant Notch1 receptor.
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lines that were Notch-dependent. These data suggest that
the common Notch1 mutations found in human T-ALL are
likely to be secondary events that contribute to primary
oncogenic hits to accelerate tumor progression. However,
the tumors arising are still Notch-dependent, because
treatment with pharmacological (g-secretase) inhibitors
reduced tumor growth. In addition, the growth dependence
of T-ALL expressing weak gain-of-function Notch1 alleles,
and the strong selective pressure to acquire Notch1 muta-
tions, implied that even weak Notch signals have addition-
al oncogenic roles in development, progression and or
maintenance of the disease. Primary among these onco-
genic effects are upregulation of Myc (c-Myc) [18–20],
activation of mTOR [21], and increased PI(3)-kinase/Akt
signaling [22], all of which have been implicated in the
sustained growth of T-ALL cells by Notch1 (Figure 3).

Mechanistic differences in oncogenic Notch1 activation
in mice and humans
Notch receptors comprise a large extracellular domain
consisting of EGFR and a negative regulatory region
(LNR) that prevents Notch proteolytic cleavage and acti-
vation in the absence of ligands (Figure 1). Thus, it is not
surprising that during human T-ALL progression, there is
a strong selection for ligand-independent NOTCH1 mu-
tant alleles. The most common NOTCH1 mutations in
human T-ALL are clustered within the hydrophobic core
of the HD, allowing for ligand-independent cleavage. By
contrast, themost commonmutations inmurine T-ALL are
truncations of the PEST domain that enhance the stability
of the truncated protein, but mutations in the HD domain
are rare [16]. The mutations found in the PEST domain of
murine T-ALLs usually arise in leukemogenic back-
grounds, such as deficiencies of E2A [23], p53 [24], or
Ikaros [25], as well as Tal1 misexpression [24] or constitu-
tive K-ras signaling [17,26]. Because PEST deletions alone
are not oncogenic and most of the murine T-ALLs do not
carry mutations in the HD domain, the question how
ligand-independent Notch1 activation is initiated in these
tumors remained to be clarified. Three recent publications
shed new light on this question, and defined deletion-based
mechanisms, as well as alternative promoter usage, to
support ligand-independent signaling in Notch1 induced
T-ALL [27–29]. Historically, the first clues came from
studies characterizing radiation-induced and Atm�/� T-
ALLs, which carried deletion breakpoints at the 50 end
of the Notch1 gene, and the observation that some tumors
generated abnormal, short Notch1 transcripts through
illegitimate V(D)J recombination [30–32]. Therefore, a
panel of murine T-ALL cell lines was examined, revealing
that most of them harbor deletions within the 50 region of
the Notch1 gene. These deletions can be divided into two
classes: (a) deletions that remove exon 1 and the proximal
promoter, and that are RAG-mediated, and (b) deletions
that remove sequences between exon 1 and 26 to 28, and
that are RAG-independent (Figure 2b). The RAG-mediated
deletions activate an internal promoter that lies within or
adjacent to exon 25, and drives the expression of 50 deleted
437
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Figure 3. Downstream signaling pathways and molecules implicated in Notch1-mediated T-ALL. The signaling pathways of activated Notch1 in T-ALL are shown. Indicated

are positive (arrows) and negative (blocking bars) regulatory interactions contributing to the development and/or maintenance of T-ALL. Growth promoting signaling

pathways and molecules are highlighted in blue, whereas growth inhibitory molecules are shown in red. The function of growth inhibitory molecules is often lost in T-ALL,

and molecules regulating growth and proliferation are augmented and upregulated. Skip2, S-phase kinase interacting protein 2; NFAT, nuclear factor-activated T cells; miR-

451, micro RNA-451, miR-709, micro RNA-709; Ras-GFR1, Ras protein-specific guanine nucleotide-releasing factor 1; CYLD – Cylindromatosis susceptibility gene; NF-kB,

nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells; PTEN, phosphatase and tensin homolog; PI3K, phosphoinositol 3-kinase; mTOR, mammalian target of

rapamycin; IL-7Ra, Interleukin-7 receptor alpha.
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Notch1 transcripts. ChIP-Seq data-mining analysis
revealed that RAG2 associates with the 50 end of Notch1
in normal thymocytes [28]. Presumably, once RAG2 binds
the Notch1 promoter it can recruit RAG1, forming a func-
tional recombinase that mediates illegitimate recombina-
tion events because of the presence of ectopic RAG signal
sequences. The second type of deletions that remove the
region from exon 2 to exon 26-28 occur less frequently,
leading to expression of aberrant splice variants from the 50

proximal promoter. Although the mechanism for the ac-
quisition of these deletions is not clear, they can arise
through random DNA breaks and non-homologous end-
joining reactions. Nevertheless, the aberrant transcripts of
both classes of deletions initiate translation at a conserved
methionine residue (M1727) in the N-terminal region of
the transmembrane domain of Notch1 just upstream of the
g-secretase cleavage site (Figure 2b). This results in the
generation of a truncated, dominant, active Notch1 protein
that is still transported to the cell surface, and therefore
requires g-secretase cleavage. This is in line with findings
that murine T-ALLs are highly sensitive to g-secretase
inhibition [28].

Two parallel studies demonstrate that loss of Ikaros also
potentiates strongly the transcription of Notch1 alleles
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harboring 50 deletions [27,29]. Ikaros can bind to the same
DNA-binding sequence as RBPJk, and thereby represses
Notch target genes [33]. Although inactivating Ikaros
mutations are rare in human T-ALL, they occur frequently
in mice [34]. Loss-of-function Ikaros mutations cooperate
with activating Notch mutations to promote murine T-
ALL, suggesting that Ikaros deficiency leads to enhanced
Notch target gene expression [25,35]. Supporting this idea
are data generated by conditional inactivation of RBPJk

that delayed markedly the onset of T-ALL in Ikaros-defi-
cient mice expressing hypomorphic Ikaros. Thus, T-ALL
induced by loss of Ikaros requires canonical Notch signal-
ing. Surprisingly, the onset of T-ALL was enhanced
markedly when Ikaros-deficient mice were intercrossed
with conditional gene targeted mice for Notch1, in which
the 50end of theNotch1 gene was deleted by the expression
of a T cell-specific Cre recombinase [27,29]. This deletion
also activates the same cryptic promoter in exon 25 of
Notch1 that was responsible for generating aberrant tran-
scripts in tumors with RAG-mediated deletions [28]. These
mice expressed high levels of an abnormal short Notch1
transcript encoding a highly active, truncated Notch1 pro-
tein, which frequently accumulated mutations within the
PEST domain [27]. Epigenetic studies of the Notch1 locus
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revealed that loss of Ikaros leads to a permissive chromatin
configuration and, thus, to the derepression of cryptic
promoters present between exon 25 and 27. This results
in the generation of aberrant short Notch1 transcripts,
which initiate protein translation at the conserved methi-
onine residue M1727 [27,29]. Therefore, the presence of
Ikaros at binding sites within the Notch1 gene locus is
required to restrict chromatin accessibility and allows
proper gene regulation. Sequence analysis of these cryptic
promoter regions within the Notch1 gene revealed the
presence of multiple E2A binding sites within or near
the Ikaros binding sites. This would suggest that loss of
E2A and Ikaros could participate in a common mechanism
of transformation generating aberrant Notch1 transcripts
in T-ALL that carry deletions of the 50 region of theNotch1
gene. Indeed, Notch1 promoter usage in E2A-deficient
leukemic cells resulted predominantly in alternative
Notch1 transcripts [29]. As a result, these studies indicate
that Ikaros, E2A and possibly other proteins restrict chro-
matin accessibility, thereby suppressing transcriptional
initiation from the 30 end of Notch1, and thus act as tumor
suppressors under physiological conditions.

Affected signaling pathways by aberrant Notch
signaling
It has long been known that Notch1 signaling is essential
for normal T cell fate specification, as well as thymocyte
maturation and progression through and beyond the b-
selection checkpoint. Thus, it is not surprising that genes
and signaling pathways identified downstream of Notch1
in T-ALL cell lines and in vivo mouse models are linked to
their physiological role in normal T cell development. The
function of aberrant Notch1 signaling in T-ALL can there-
fore be inferred from its normal purpose. In the context of T
cell transformation, signaling through the Notch1 receptor
elicits a program of gene expression that supports cell
survival and growth, and represses cell cycle arrest and
apoptosis. Novel and controversial insights for some of the
key players will be discussed below and are highlighted in
Figure 2.

The best-characterized direct target genes include the
bHLH transcriptional repressor Hes1 [18,20,36–38] and
the transcription factor c-Myc [18–20,39]. Important path-
ways activated throughNotch1 signaling include the PI(3)-
kinase/Akt [22,40,41] and mTOR [21,42] signaling cas-
cades. Recently, Hes1 was shown to be a key regulator
in the induction andmaintenance of T-ALL [37,38,43]. The
use of conditional loss-of-function studies revealed that the
transcriptional repressor Hes1 is required for efficient T
cell development, and in parallel, Hes1 is also crucial for
the development and maintenance of Notch1-induced mu-
rine T-ALL [38]. T-ALL cells seem to require persistent
Hes1 expression, sinceHes1-deficient cells disappear out of
the tumor cell population. T-ALL dependence on Hes1 was
not only limited to the mouse model, because lentivirus-
mediated knockdown of Hes1 in human T-ALL cell lines
resulted in a severe block in proliferation followed by
increased cell death. These studies indicated that
Notch1-induced T-ALL are Hes1 dependent, and that
Hes1 might have a conserved function in human and
mouse T-ALL [38]. Several suggestions for how Hes1
exerts mechanistically its function in T-ALL have been
made; nevertheless this issue seems to be unresolved and
needs further investigation. Using fly and human T-ALL
cell lines, one study implicated Hes 1 in the transcriptional
repression of PTEN expression [22]. PTEN is an important
tumor suppressor that counteracts the PI(3)-kinase activi-
ty, and thereby negatively regulates the Akt/mTOR path-
way (Figure 3). However, in a T-ALL mouse model with
conditional Hes1 deficiency, PTEN expression and phos-
pho-Akt levels were unchanged, suggesting that other
Notch target genes might be able to compensate for the
loss of Hes1 [21]. Thus, the negative effect of Hes1 defi-
ciency on T-ALL development and maintenance must be
mediated through other target proteins. Recently, another
study implied that Hes1 might repress the deubiquitinase
CYLD, which is a negative IKK complex regulator, and
thereby sustains NF-kB activation in T-ALL [37,43]
(Figure 3). CYLD was shown originally to be a tumor
suppressor in the skin, and mutations have been identified
in familial cylindromatosis [44]. The fact that cylindroma-
tosis patients do not have an increased risk to develop T-
ALL, and that CYLDmutations have not been identified in
T-ALL patients, indicate that Notch signaling, at least in
part, must be able to maintain high NF-kB signaling
through alternative pathways.

In normal thymocytes, expression of the proto-oncogene
c-myc directly correlates with Notch receptor expression,
and thus peaks during b-selection. c-Myc is also a consis-
tently expressed downstream target of NICD in human
and mouse T-ALL cell lines (Figure 3). Inhibition of Notch
signaling in these cell lines downregulates rapidly c-Myc,
and someT-ALL cell lines can be rescued from loss of Notch
signaling by enforced overexpression of c-Myc alone [18–

21,45]. However,murine T-ALL cell lines that depend upon
ectopic c-Myc overexpression can be rescued from Myc
withdrawal through NICD1 expression, which induces
sufficient levels of endogenous c-Myc [18]. Moreover, a
model for a feed-forward loop, through which Notch and
c-Myc reinforce the expression of genes required for growth
of leukemic cells, has been established recently [20]. These
results suggest that Notch-mediated c-Myc expression is
crucial for the maintenance of T-ALL. This view was
recently challenged by a study employing a tetracycline
inducible mouse model for T-ALL, in which c-Myc expres-
sion can be turned off in the presence of constitutive NICD
or vice versa. In this experimental setting, continuous
expression of NICD, but not c-Myc was required for the
maintenance of T-ALL, indicating that c-Myc is incapable
of maintaining the murine T-ALL tumors in the absence of
NICD [46]. These results contrast most of the data
obtained with T-ALL cell lines. It is possible that this
controversy might be caused by differences in c-Myc ex-
pression levels used in both experimental systems. It is
conceivable that T-ALL maintenance requires a certain
threshold of c-Myc expression, which might have been
reached in one but not the other experimental setting.

Although the complex crosstalk between Notch, the
signaling pathways and the molecules discussed above,
and the additional interactions outlined in Figure 2 are
only understood incompletely, it emphasizes the pleiotro-
pic functions of Notch1 signaling. These functions are, to a
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large extent, reflected as well in its physiological role
during T cell development.

Tumor-promoting and suppressive miRNA in Notch-
induced T-ALL
Micro RNAs (miRNAs), small noncoding RNAs of 19-22
nucleotides, play crucial roles in the translational regula-
tion of protein expression by posttranscriptional silencing.
miRNAs are fundamental regulators of physiologically
significant cellular processes, and thus, it is not surprising
that the deregulation of miRNAs seems to play an impor-
tant role in human cancers. It has become obvious that
miRNAs act as crucial regulators during tumorigenesis,
either as oncogenes, as tumor suppressors or even as both,
depending on the phase of tumor progression. A role for
miRNAs was attributed to affect the normal developmen-
tal transitions in T cells through the modulation of TCR
signaling strength [44]; however, the involvement of miR-
NAs in T-ALL has only been shown recently. A novel
translocation targeting themiR-17-19 cluster was reported
to coincide with a rearrangement, which in turn activates
Notch1 [47], thereby identifying the interaction between
NOTCH1 andmiR-19 as a relevant pathogenic mechanism
in T-ALL. Coexistence of two translocations activating the
NOTCH1 gene (t(9;14)(q34;q11)) and targeting the 17–19
cluster (t(13;14)(q32;q11)) was found in the same leukemic
clone. Mechanistically, miR-19 acts on several negative
regulators of the PI(3)-kinase pathway, which regulate cell
survival in lymphocytes and thus contribute to leukemic
progression.

By contrast, miRNAs can also act as tumor suppressors,
and recent studies associate tumor suppressive functions
during tumor maintenance and metastasis. Examples of
miRNAs with tumor suppressing activities include miR-
15a, miR-16-1 and let7 (reviewed in [43]). In a very recent
publication, two novel miRNAs, miR-451 and miR-709,
were identified in NICD1-overexpressing CD4+CD8+ T
cells through miRNA expression profiling [48]. Both miR-
NAs are transcriptional targets of the bHLH E2A tumor
suppressor, which itself is degraded uponNICD1 induction
in murine T-ALL cells [39,45]. The c-Myc oncogene is a
target of both miRNAs in mouse T-ALL and human T-ALL
cell lines, whereas the miR-709, which has no human
homologue, also represses efficiently the oncogenes Akt
and Ras-GRF1 in murine T-ALL cells. The concomitant
expression of both miRNAs – miR-451 andmiR-709 – could
block efficiently tumor induction in a retroviral NICD-
induced T-ALL mouse model. However, once the NICD1
tumor was established in the mouse, reexpression of miR-
451 and miR-709 at physiological levels could only slow
tumor progression slightly, because of a counter-selection
against cells that expressed increased amounts of two
miRNAs. It was suggested that increased Notch activity
facilitates the degradation of E2A that would lead to the
transcriptional downregulation of miR-451 and miR-709.
This, in turn, would lead to the derepression of c-myc and
Akt and possibly increased Ras signaling (Figure 3), and
thus promote T-ALL progression. The expression of miR-
451 alone in human T-ALL cell lines had no effect on the
growth of these cells, and could only inhibit the cell growth
in combination with a g-secretase inhibitor (MRK-003).
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This implies that miR-451 alone is not able to exert enough
tumor suppressive activity, and will most probably work in
concert with other regulatory mechanisms to control cell
growth and proliferation.

Taken together, the two publications discussed above
reveal another facet of control mechanisms in human T-
ALL bearing NOTCH1 mutations. However, the mecha-
nistic role of these miRNAs, and possibly others, awaits
further clarification.

Concluding remarks
Although T-ALL is a heterogeneous disease in which mul-
tiple genetic aberrations cooperate to deregulate prolifer-
ation, differentiation and survival of immature
thymocytes, more than half of the patients carry activating
mutations within the NOTCH1 gene, highlighting its cen-
tral role in the disease. The oncogenic role of Notch1 is a
reflection of its physiological function during normal T cell
development. Notch1 is a master regulator for T cell line-
age commitment and maturation. However, if Notch1 sig-
naling is not appropriately regulated and shut off at a
precise stage during thymocyte development, it exerts
oncogenic functions. This will lead to sustained activation
of proto-oncogenes and repression of tumor suppressors, in
part also by regulating microRNA expression. Recent find-
ings reveal substantial differences in the acquisition of
activating Notch1 mutations between murine and human
T-ALL. These probably reflect differences in the Notch1
promoter, which favor deletions within the 50 region of the
Notch1 gene in mouse T-ALL. Despite those differences,
Notch1 itself, as well some of its downstream molecules,
represent prime targets for developing novel anticancer
therapies to fight T-ALL.
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