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Abstract: Using a finite-element, full-wave modeling approach, we
present a flexible method of analyzing and simulating dielectric and plas-
monic waveguide structures as well as their mode coupling. This method
is applied to an integrated plasmonic circuit where a straight dielectric
waveguide couples through a straight hybrid long-range plasmon waveguide
to a uniformly bent hybrid one. The hybrid waveguide comprises a thin
metal core embedded in a two–dimensional dielectric waveguide. The
performance of such plasmonic circuits in terms of insertion losses is
discussed.
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1. Introduction

Over the past ten years, tremendous developments have occurred in the field of surface plasmon
polaritons (SPPs)-propagating electromagnetic waves at a dielectric–metal interface [1–7]. The
strong confinement and local field enhancement associated with SPPs enables them to resolve
spatial detail beyond the diffraction limit. For this reason, SPPs have become widely appreci-
ated for their potential to create extremely compact optical devices with highly confined electric
fields [8–12]. However, since at optical wavelengths metals are strongly absorbing, there is a
trade–off between the field confinement and the absorption losses [13, 14]. Hence, the long
propagation distances that can be achieved using so–called long–range SPP modes (LRSPPs)
on thin metal films or metal strips correlate with weak confinement, having similar properties
to dielectric waveguides. Hybrid SPPs can relax this constraint by combining LRSPPs with a
two–dimensional dielectric waveguide, increasing the field confinement further by total internal
reflection [15]. Similarly, curved hybrid LRSPP metal strips reach smaller radii than non hybrid
ones for the same total bending loss, even with only two–dimensional dielectric waveguides [7].
This might be desirable for integrated optical circuits [16–19].

Simulation techniques are essential for the design and practical implementation of such pho-
tonic circuits based on plasmonic waveguides. In this paper, we present a versatile numerical
simulation approach for straight and curved SPP waveguides, based on the commercial finite
element software Comsol. In the following, this powerful tool is first applied to the simulation
of coupling from an integrated dielectric waveguide to a straight LRSPP waveguide. In partic-
ular, the geometrical parameters are optimized for best transmission. Next, the coupling from
the latter straight SPP waveguide to a curved one is studied. The geometrical parameters of
the curved SPP waveguide are found such that different optimal bending radii are obtained. In
order to improve the coupling efficiency, the horizontal and vertical offsets of the waveguides
are analyzed. Conclusions are drawn on the complete structure including bends and coupling
from conventional waveguides to plasmonic ones, as illustrated in Fig. 1.

2. Simulation method

The structure of interest is shown in Fig. 1; the metal strips have thicknesses of t = 10 . . .35nm,
widths in the range w = 1 . . .10µm and are several millimeters long; they are embedded in an
isotropic dielectric material. The straight and uniformly bent rectangular waveguides consid-
ered here can be fully characterized by modeling their cross–section since their geometrical
parameters as well as their mode properties do not change along the direction of propagation.
Therefore, 2D calculations can be performed, significantly reducing the computational effort.
A variety of techniques have been used to compute the eigenmodes supported by plasmonic
waveguides [13, 20–25]. The results presented here are obtained with the Comsol implemen-
tation of the finite elements method [26]. This platform offers great flexibility and is widely
used in engineering. The eigenmodes associated with straight plasmonic waveguides can be
computed easily by simply defining the geometry of the cross-section and using the complex
permittivity of the metal. Typically, about 10′000 mesh points are used to discretize the geom-
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Fig. 1. Illustration of the considered dielectric and plasmonic waveguide structure. Modes
couple from a dielectric waveguide (BCB on SiO2) over a straight to a uniformly bent
hybrid plasmonic waveguide (Au core embedded in BCB on SiO2).

etry, with a higher refinement required within the metal and in the immediate vicinity to its
surfaces. This corresponds to typically 100 meshes per vacuum wavelength in the metal and
10 per vacuum wavelength in the dielectric. The size of the computation window is typically
60µm×10µm. A higher mesh density up to about 100′000 meshes was required for computa-
tion of the coupling efficiency.

The peculiarities of plasmonic waveguides require however to pay special attention to the
boundary conditions, which must be chosen carefully [27]. Note that this is not the case for
alternative techniques such as the Green’s tensor technique [25,28–30]. For the straight waveg-
uides, the fundamental LRSPP mode which is of interest in this study is non–radiative and
bound to the metal structure. In this case a variety of boundary conditions can be used, pro-
vided that they are placed far enough from the structure to leave the SPP modes unperturbed.
We chose a combination of perfect electric and perfect magnetic walls located 40µm away from
the structure. More complex boundary conditions would needlessly complicate the computation
in this case.

On the other hand, for bent plasmonic waveguides, all the modes are radiative as is the
case for curved dielectric waveguides [31]. This significantly complicates the calculation since
energy must now be allowed to escape from the computation window without being reflected
back. This is achieved by placing perfectly matched layers (PMLs) at the boundaries of the
computation window [32].

Bent geometries can either be modeled using a conformal transformation to obtain an equiv-
alent straight waveguide [27, 33], or the wave equations can be directly solved using a cylin-
drical coordinate system [34, 35]. In the equivalent straight waveguide formulation, the curved
waveguide is transformed into an equivalent straight one using a conformal mapping of the
index profile n �→ nt :

nt = nexp
u
r0

and u = r0 ln
r
r0
, (1)

where r0 is the radius of curvature and u is the transformed coordinate corresponding to r. Con-
ventional numerical techniques can then be used to simulate the equivalent straight waveguide.
A drawback of this approach lies in the increasing refractive index for large r, which compli-
cates the boundary conditions at this edge of the computation window, leading to unreliable
numerical results for small radii of curvature r0 [36, 37].

To avoid these difficulties, we chose to solve the wave equation directly in cylindrical coor-
dinates. However, since Comsol uses only Cartesian coordinates, we will keep in the following
the x, y, and z symbols to facilitate the replication of our work. Hence, for curved geometries,
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the x–coordinate represents the direction of the radius and z the angular direction θ (see Fig. 1).
Since Comsol does not support eigenmode analysis in cylindrical coordinates, the weak form

of the eigenmode solver in Cartesian coordinates must be modified to handle cylindrical coor-
dinates. This is achieved by multiplying the volume and surface elements of the integrals by r
and by replacing the definition of the curl operator with

∇×
⎛
⎝

Ex

Ey

−αez

⎞
⎠eαr0θ =

⎛
⎜⎜⎝

−α
(

r0
r Ey +

∂ez
∂y

)

α 1
r

(
ez + r ∂ez

∂x + r0Ex

)

∂Ey
∂x − ∂Ex

∂y

⎞
⎟⎟⎠eαr0θ , (2)

when solving for the electric field. In Equation (2) β =− jα is the propagation constant and α
the corresponding eigenvalue of the problem [26].

For the boundary conditions, the uniform PMLs provided by Comsol appeared to be insuf-
ficient and produced noticeable reflections at the edges of the computation window, thereby
influencing the simulation results. Hence anisotropic cylindrical PMLs with gradual absorption
have been implemented to obtain accurate results [32]. Accordingly, the material properties of a
PML adjoining a computational domain with given permittivity ε and permeability μ becomes

[ε]PML = ε [Λ] and [μ ]PML = μ [Λ] , (3)

with

[Λ] =

⎡
⎢⎣

sθ sy
sr

0 0
0 sysr

sθ
0

0 0 srsθ
sy

⎤
⎥⎦ . (4)

The complex values sr, sθ and sy introduce absorption analytically without creating reflections
at the interface between the computation domain and the PML. In order to minimize the re-
maining numerical reflections, a progressive absorption profile was used [32, 38–40]:

sr = 1+ j

(
r− rb

L

)2

δmax , (5)

where L is the thickness and rb the starting point of the PML. An optimal thickness was found
to be 1 to 2 transverse wavelengths of the corresponding mode. At the same time, it is important
to use in the order of 10 finite elements per wavelength — not only in the PML, but over the
entire radiation region — to prevent distortion of the modes. The maximal absorption reached
at the end of the PML was chosen as δmax = 2, in good agreement with the literature [40].

Since the PML is cylindrical, sθ and sy in Eq. (4) become:

{
sφ = r̃

r
sy = 1 ,

with r̃ = rb

r∫

rb

sr(r
′)dr′ , (6)

as explained in detail in Ref. [41].

2.1. Mode coupling

The aim of this paper is to simulate complex circuits that include several plasmonic waveguides,
hence the transmission from one waveguide to the next one must be calculated. This mode
coupling analysis relies on overlap integrals of the electric field distributions [42]. Since all the
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considered modes are transverse magnetic like, the x–component of the electric field can be
neglected. Therefore the coupling coefficient C can be written as

C =

∫∫

Ω

Ey1
E∗

y2
dΩ

√∫∫

Ω

Ey1
E∗

y1
dΩ

∫∫

Ω

Ey2
E∗

y2
dΩ

. (7)

The corresponding coupling loss is

αC =−20log |C| . (8)

Slightly different propagation constants as well as the partial overlap of the field distribution can
cause coupling losses by reflection. As long as those reflections are small, the approximation (7)
is good and the wave vector mismatch can be neglected [42]. Moreover, the normalization
applied in Eq. (7) is not rigorously correct due to the radiation. However, since the computation
domain is limited and the radiation small compared to the guided field, Eq. (7) remains a good
approximation for the system under study [43].

3. Results and discussion

All the results presented here are computed for the free space wavelength λ = 1.55µm. The
plasmonic waveguides are made of gold with permittivity εAu = −131.95+ 14.5 j [44]. Ben-
zocyclobutene (BCB, nBCB = 1.535 [45]) is used as dielectric material and SiO2 as substrate
(nSiO2 = 1.44).

The integration of plasmonic circuits requires the coupling from a conventional integrated
dielectric waveguide to a hybrid LRSPP waveguide. The considered dielectric waveguide is
made of a BCB strip in air on a SiO2 substrate. The hybrid LRSPP single mode waveguide is
a 20nm thin, 3µm wide Au strip embedded in a BCB layer. This BCB layer and the dielectric
waveguide have the same thickness of 1.6µm. In order to achieve efficient coupling, the dielec-
tric waveguide width has to be larger than 3µm because of the broad field distribution of the

0.4 0.5 0.6 0.7 0.8
1.4970

1.4975

1.4980

1.4985

1.4990

1.4995

1.5000

n e
ff

0.4 0.5 0.6 0.7 0.8
2

4

6

8

10

12

14

Au Strip Height y [μm]

A
bs

or
pt

io
n 
α 

[d
B

/m
m

]

(b)

y

(a)

y = 0.6 μmy = 0.4 μm y = 0.8 μm

0.4 0.5 0.6 0.7 0.8

0.95

0.96

0.97

0.98

C
ou

pl
in

g 
C

oe
ffi

ci
en

t C

Au Strip Height y [μm]

Fig. 2. Coupling from a 6.5µm wide and 1.6µm thick dielectric waveguide to a hybrid
plasmonic guide: (a) Coupling efficiency and (b) effective index and absorption of the
plasmonic waveguide as a function of the Au strip position within the two–dimensional
dielectric waveguide. The center is at y = 0.8µm. The dimensions of the Au strip are
3µm×20nm. The inset in (a) shows the electric field amplitude distribution for three dif-
ferent y–positions of the plasmonic waveguide.
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Fig. 3. Coupling from a 1.6µm thick dielectric waveguide to a hybrid plasmonic one: cou-
pling efficiency as a function of the dielectric waveguide width for a plasmonic waveguide
located at the optimal height. Two different Au strips are investigated, with dimensions
3µm×20nm and 6µm×20nm, respectively.

plasmonic waveguide. We consider a 6.5µm wide integrated dielectric waveguide for optimal
coupling (cf. Fig. 3). By means of a taper, this multimode dielectric waveguide can easily be
excited by a single mode integrated dielectric waveguide or a dielectric fiber.

Let us first consider the coupling from the dielectric waveguide to the straight plasmonic
waveguide, Fig. 2. The field distribution associated with the LRSPP mode strongly depends on
the position of the Au strip within the BCB background layer, as shown in the inset of panel
(a), where the field is computed for three different vertical positions of the Au strip. Hence,
the coupling efficiency between the fundamental mode of the dielectric waveguide and the
LRSPP mode in the BCB layer depends on the position of the Au strip within the structure. The
more symmetric the LRSPP mode, the better the coupling efficiency. Clearly, the best coupling
efficiency does not correspond to the center position (0.8µm), but is shifted towards the high
refractive index substrate, Fig. 2(a).

Changing the Au strip position within the BCB background also influences the propagation
characteristics of the LRSPP mode. Figure 2(b) shows the real part of the effective mode in-
dex and the propagation loss as a function of the Au strip position. Here it indicates that a
more symmetric field distribution decreases the propagation losses. In this regard, we point out
that the result is a general trend for asymmetric multilayer structures, as numerically predicted
by Berini in Ref. [46]. The optimum for coupling and propagation losses is found for a strip
position y � 0.6µm.

Using this Au strip position y = 0.6µm, one can find the optimal dielectric waveguide width
which provides the best coupling efficiency. Figure 3 indicates that a width of 6.5µm produces
the best coupling efficiency with very low losses of about 0.1dB.

Waveguide bends are essential for the design of integrated plasmonic circuits. As previously
investigated by Berini et al., an optimal radius ropt for a given plasmonic waveguide exists,
where the radiation and absorption losses are minimized [22]. Recently, it was shown that
hybrid plasmonic waveguides embedded in a dielectric layer allow to reduce ropt further [15].
This is illustrated in Fig. 4, which gives the optimal radii and the corresponding bending losses
as a function of the plasmonic waveguide geometry. Note that the minimum optimal radius is
barely less than half a millimeter for a 35nm thick waveguide. For a given thickness, the optimal
radius and the minimal bending losses can be reduced by increasing the metal strip width, up to
about 11µm. Figure 5 indicates the minimal bending losses for a waveguide width of 2. . . 11µm
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Fig. 4. Characteristics of bent hybrid plasmonic waveguides: (a) optimal radius and (b)
corresponding minimal bending loss as a function of the Au strip width w and thickness
(t = 15. . . 35nm).

at a specific bending radius. The radii correspond to the optimal radii of the respective strip
width and thickness as shown in Fig. 4. The bending loss decreases until about a width of
11µm, but it increases strongly for radii smaller than about 1mm. As long as the fabrication
permits a smooth Au strip surface, the thinner the waveguide the smaller the absorption; but
such a thin structure requires a large curvature radius. Accordingly, thin but wide Au strips of
≈ 10µm yield the lowest bending losses. However, it should be pointed out that such a wide
bend is a multimode structure and different modes are generally not orthogonal for the curved
geometry. In other words, even if only the fundamental mode is launched at the bend input,
higher order modes will inevitably be excited as the signal propagates along the bend.

Let us now consider the junction between a straight and a curved plasmonic waveguide. The
straight waveguide has the same dimensions as previously (3µm× 20nm), whereas the 3µm
wide curved waveguide has a thickness such that the desired radius is optimal. As proposed in
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Fig. 5. Minimal bending loss for a 2, 3, 4, 6 and 11µm wide Au strip as a function of the
bending radius. The radii correspond to the optimal radii of the respective strip width and
thickness as represented in Fig. 4.
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Fig. 6. Lateral and vertical offset between a straight and bent hybrid waveguide: Coupling
efficiency as a function (a) of the lateral offset and (b) of the vertical offset. The Au strips
of the straight and bent waveguide are 3µm×20nm and 3µm×10nm, respectively.

[22] and applied for dielectric waveguides, the coupling efficiency can be improved by laterally
offseting the curved waveguide towards the center. Figure 6(a) shows the coupling efficiency
as a function of the lateral offset. Here, the coupling between a 20nm thick straight waveguide
and a 10nm thick bend with a radius r0 = ropt = 8mm is considered. We acknowledge that even
if this configuration is favorable in terms of coupling losses, it would be technically difficult
to fabricate because the metal thickness varies between the straight and the bend waveguide.
In addition, achieving a smooth 10nm thick bend using standard metal deposition techniques
appears challenging because evaporated metallic films are typically not smooth for thicknesses
smaller than 20nm or so [47]. Since the straight and the curved waveguide do not have the
same thickness in this case, the coupling efficiency as a function of a vertical offset must also
be investigated. This is shown in Fig. 6(b), where the vertical offset is measured from the center
position at an optimal lateral shift. As long as one waveguide section lies within the other, an
optimal coupling is observed. Thus, there is no significant reduction of the coupling efficiency
when the bottom of both guides are aligned at the same height, which considerably simplifies
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Fig. 7. Straight and optimally bent waveguide coupling: (a) Au strip thickness and coupling
loss as a function of the optimal radius. (b) Optimal lateral offset as a function of the optimal
radius. The Au strip is 3µm wide.
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the fabrication process.
With all optimization elements at hand, the minimal coupling loss as a function of the bend-

ing radius can now be calculated for a portion of the circuit shown in Fig. 1. Both, the straight
and the curved waveguides are 3µm wide. The thickness is 20nm for the straight waveguide.
The thickness of the curved one is such that the bending radius is optimal. For a thick Au strip,
the corresponding optimal radius is small. This dependency can be seen in the solid line in
Fig. 7(a) (in this figure, the origin of the small bump in the coupling loss curve around 3µm is
not clear and does not appear to be caused by the mesh used for the calculation). The dashed
line in this figure corresponds to the coupling losses. The coupling losses reach their minimum
when the curved waveguide has about the same thickness as the straight one since the field
distributions are similar in that case. However, it should be noted that the coupling losses are
about ten times smaller than the bending losses (see Fig. 5). Figure 7(b) shows the lateral offset
for minimal coupling losses as a function of the bending radii. The larger the radius, the smaller
the required offset.

4. Conclusion

We presented a flexible and convenient approach for the simulation of complete plasmonic
circuits realized with different waveguide elements such as straight and bent waveguides. The
implementation using a commercial finite element solver of different waveguide geometries —
including bends — has been detailed, together with the required specific boundary conditions.
This method was successfully applied to design integrated plasmonic circuits. Waveguide cou-
pling and curvature have been optimized for minimal losses. Provided a low reflexion coupling,
the losses due to the coupling are about 10 times lower than those caused by ninety degree
bends. Therefore bending losses remain the most critical issue for the integration of long–range
plasmonic waveguides.
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