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ABSTRACT 

Many important problems in cell biology emerge from the dense nonlinear interactions 

between functional modules. The importance of mathematical modeling and computer 

simulation in understanding cellular processes is now indisputable and widely 

appreciated, and genome-scale metabolic models have gained much popularity and utility 

in helping us to understand and test hypotheses about these complex networks. However, 

there are some caveat utilitor that come with the use and interpretation of different types 

of metabolic models that we aim to highlight here. We discuss and illustrate how the 

integration of thermodynamic and kinetic properties of the yeast metabolic networks in 

network analyses can help in understanding and utilizing this organism more successfully 

in the areas of metabolic engineering, synthetic biology, and disease treatment. 

 

INTRODUCTION  

Yeast has been used for the production of food, beverages and ingredients, fuels, 

chemicals, and pharmaceutical proteins. The long history of yeast in the development of 

diverse bioprocesses have led to the accumulation of a wealth of data about its 

physiology, biochemistry, and regulation (Walker, 1998). These studies have established 

yeast as a robust industrial organism (Petranovic & Vemuri, 2009) and with the current 

renaissance in pushing for the production of fuels and chemicals from renewable 

resources, the interest in yeast has exploded and we expect it will grow stronger. A 

deeper understanding of its cellular physiology and metabolism can help us to better 

engineer S. cerevisiae to improve the efficiency of production of heterologous products 

(Bro, et al., 2003, van Maris, et al., 2007, Wattanachaisaereekul, et al., 2007, Wisselink, 

et al., 2009, Zelle, et al., 2010).  



 

 

In addition, in the last 25 years, yeast has been used extensively as a model system for 

the study of cell cycle and its connection to cancer (Hartwell, 2004). The similarities of 

carbon, energy and lipid metabolism between yeast and humans have also made yeast an 

excellent model system of choice for the study of the role of metabolism in disease 

etiology and treatment (Petranovic & Nielsen, 2008, Nielsen, 2009, Bolotin-Fukuhara, et 

al., 2010). 

The emergence of functional genomics and systems biology has opened new 

perspectives for the analysis and the study of biological organisms, and yeast was one of 

the first organisms to be studied during the development of these technologies. Nielsen 

and colleagues have reviewed and discussed the development and uses of these 

technologies in yeast research and development (Jewett, et al., 2005, Nielsen & Jewett, 

2008). One of the key messages from these reviews is the importance of metabolic fluxes, 

as the final outcome of intricate interactions between the different networks; the networks 

of transcription, translation, post-translational modification, signal transduction and 

protein-protein interaction. 

Network analysis has been a major effort in the area of biological sciences (Albert & 

Barabasi, 2002, Newman, 2003, Barabasi & Oltvai, 2004, Papin, et al., 2004, Joyce & 

Palsson, 2006, Feist, et al., 2009). Technologies that emerged from the progress in 

genomics have allowed the experimental identification and verification of interactions 

between genes and their products, from proteins to metabolites to integrated phenotypes, 

and a wealth of computational methods has been developed, and is continuously 

developing, for the integration of this information into networks and their analysis. The 

ultimate goal of these methods is to synthesize the knowledge into predictive 



 

 

mathematical models that can be used in computational analyses to provide insight and 

accelerate discovery. 

Although it is acknowledged that it is difficult to classify mathematical models in 

systems biology, two main classes are mainly considered (Nielsen & Jewett, 2008): top-

down models, where new biological information is extracted from large-data sets and the 

analysis used there is mainly inductive (Kell, 2005, Joyce & Palsson, 2006, Ananiadou, et 

al., 2010), and bottom-up models, which are built on detailed mechanistic knowledge and 

the analysis is deductive but is limited to small networks (Rieger, et al., 2005). And 

herein lies the major challenge in systems biology, the ability to build models with the 

mechanistic quality of the bottom-up models and the scale (i.e., number of components 

and interactions) of the top-down models (Papin, et al., 2004, Mehra & Hatzimanikatis, 

2006).  

Nielsen and Jewett observed that although it is difficult to reconcile bottom-up and top-

down modeling, the efforts in curating and building metabolic network models has been 

close to achieving this (Nielsen & Jewett, 2008). The combined knowledge of 

physiology, biochemistry and metabolism allow the reconstruction of networks, which 

are further curated using flux balance analysis (FBA) to complete missing parts and 

derive a functional metabolic network. The continuing integration of knowledge about 

the networks that regulate the activity of the metabolic activities is the first successful 

demonstration of bridging the gaps between the functional regulatory networks (Papin, et 

al., 2004, Joyce & Palsson, 2006, Hyduke & Palsson, 2010, Schellenberger, et al., 2010, 

Hasunuma, et al., 2011). 



 

 

This remarkable progress in the area of metabolic modeling is very good news for those 

working in yeast metabolism, physiology, and bioprocessing. The systems-level, 

genome-scale understanding of carbon and energy metabolism is critical to enhance our 

metabolic toolbox for optimizing the production of industrial chemicals and fuels from 

yeast. Additionally, it can also help in the elucidation of the etiology of many metabolic 

diseases. Understanding carbon metabolism and energy management is also important for 

understanding and engineering stress tolerance, which is an unavoidable consequence 

from the bioprocess conditions (e.g., high titers and low pH) (Nicolaou, et al., 2010), and 

cellular stress has also been implicated in many diseases (Costa & Moradas-Ferreira, 

2001, Sorolla, et al., 2008). 

However, many important technological issues limit the full promise of useful 

applications of metabolic models in yeast. While we know very well the structure of the 

model, i.e., the biochemistry and many regulatory connections, we do not have enough 

global-scale data. Rather, we have partial data from proteomic, metabolomics, and 

physiology studies, and in many cases, uncritical analysis of partial data can lead to 

erroneous conclusions.  Another problem arises from the complexity of biological 

systems and the large-scale, high-throughput nature of the data, as there are also 

differences in results that arise from the “same” studies in different laboratories, an 

important issue that has been recently acknowledged and addressed in various studies 

(Lin, et al., 2009, Ukibe, et al., 2009, Hong, et al., 2010, Zhao, et al., 2010). 

In all the studies of networks in yeast, the information is mainly qualitative, i.e., 

network interactions are described as on/off properties, with very little information on the 

strength of these interactions. Hence, while these networks can be used to integrate and 

interpret quantitative observations, such as fluxes and expression data, they can only 



 

 

simulate and predict experiments that disrupt the network connectivity, such as gene 

knock-out, loss-of-function mutations, and mutations of gene regulatory elements. The 

ultimate objective would be to formulate models that can both describe the steady-state 

behavior and predict the dynamic responses of yeast metabolic networks in order to guide 

how the system would behave to knock-in or knock-out of genes. This would allow us to 

manipulate the metabolic network to achieve our desired objectives. We will discuss here 

some of the approaches towards this objective and how integration of thermodynamic and 

kinetic properties can bring us closer to that aim. 

 

SOME CONSIDERATIONS IN THE USE AND APPLICATIONS OF THE 

GENOME-SCALE METABOLIC MODEL OF YEAST 

Genome-scale metabolic models have gained significant popularity as versatile tools in 

many studies (Feist & Palsson, 2008, Oberhardt, et al., 2009) and they have proven to be 

valuable assets in guiding metabolic engineering decisions (Bro, et al., 2003, Patil, et al., 

2004). With the development of high-throughput and automated reconstruction methods 

(DeJongh, et al., 2007, Henry, et al., 2010, Radrich, et al., 2010), genome-scale 

metabolic reconstructions have been increasing with an accelerated pace, even though 

their number still lags behind that of number of genome sequences being completed. 

The first genome-scale metabolic model of the yeast Saccharomyces cerevisiae, named 

iFF708, was published in 2003 (Famili, et al., 2003, Forster, et al., 2003). This model 

was subsequently modified through the inclusion of additional biochemical reactions, 

genes, regulatory constraints and compartments (Duarte, et al., 2004, Kuepfer, et al., 

2005, Herrgard, et al., 2008, Nookaew, et al., 2008). Three laboratories, two of which 

have collaborated in the development of the original model, have led the main 



 

 

developments of these models. Recently, a “consensus” model has been developed 

through a collaborative approach of a community of yeast researchers to serve as a 

resource for collecting and summarizing the current and growing knowledge of yeast 

metabolism (Herrgard, et al., 2008). 

A main use of the genome-scale models is the study of the physiology of gene 

deletions. Snitkin et. al. (Snitkin, et al., 2008) compared model (iFF708) predictions 

against 465 gene deletion mutants under 16 conditions and found a high fraction of 

correct predictions (94%) that validated the high predictive capacity of the model and 

demonstrated how inconsistencies can also be used to drive further hypothesis testing. 

What is interesting in this study is that, Segre and colleagues used the disagreements 

between model predictions and experiments to guide experimental refinement, which also 

improved significantly the experimental data. After these refinements in experimental 

information, they repeated the computational analysis and comparisons with experiments 

to improve and refine the genome-scale metabolic model. 

 The first yeast genome-scale model has until now (September 2011), 365 citations, 

with 79 reviews and 263 research articles, suggesting an important impact in yeast 

research. However, a few observations can be made regarding the applications of the 

model. First, a very small number have used the model for discovery of genetic 

modifications and guidance for metabolic engineering towards the improved strain 

performance. In the first of the three most notable cases, the model was used to identify 

and rank a set of gene deletions and insertions for the manipulation of redox metabolism 

towards increased of ethanol yield (Bro, et al., 2006). Experimental implementation 

validated the predictions and demonstrated improved ethanol yields even on 

xylose/glucose mixtures. The second notable case involves the identification of five, 



 

 

nonobvious gene deletions for the engineering of C1 metabolism (Kennedy, et al., 2009). 

Finally, in the third case, the yeast genome-scale model was used for the identification of 

metabolic engineering targets for improving the production of sesquiterpenes 

(Asadollahi, et al., 2009). The complexity of the pathway and its distance from the 

central carbon pathway (there are 8 reactions in the mevalonate pathway from acetyl-

CoA to farnesyl-diphosphate which is the primary precursor of the various 

sesquiterpenes) made the use of the genome-scale model indispensible. The resulting 

metabolic engineering strategy, which involved multiple genetic modifications, 

demonstrated the value and the validity of the model. 

On the other hand, a large number of papers that cited the first yeast genome-scale 

model, focused on metabolomics analysis. However, they primarily use the model as a 

high-quality curated database of metabolites and reactions. While this two-dimensional 

annotation has been one of the objectives in genome-scale modeling (Palsson, 2004, 

Reed, et al., 2006), it does not contribute immediately into design of strategies for strain 

improvement of disease treatment.  

The work by Patil and Nielsen (Patil & Nielsen, 2005) has been an enabling 

breakthrough because it allowed the integration of gene expression and metabolomic data 

into the genome-scale metabolic model for the identification of network patterns that 

follow a common transcriptional response. The algorithm they developed identifies 

reporter metabolites and a set of connected genes with significant coordinated changes to 

genetic and environmental perturbations. This method allows now to use the genome-

scale model, together with other genomic technologies, such as transcription factor 

enrichment, for the identification of important regulatory proteins and their associated 



 

 

regulatory networks (Cakir, et al., 2006, Raghevendran, et al., 2006, Fazio, et al., 2008, 

Cimini, et al., 2009). 

Finally, the integration of proteomics information within the context of genome-scale 

modeling is a recent exciting development (Costenoble, et al., 2011). While this study 

focused in the study of metabolic adaptation to changes in nutritional conditions, it 

demonstrated the feasibility to use targeted proteomics for the quantification of almost all 

the enzymes in central carbon and amino-acid pathways. The synergistic application of 

these technologies and methodologies with genome-scale model analysis will be a major 

progress for metabolic engineering. 

 

APPROACHES TO ADDRESS SOME ISSUES IN THE FLUX BALANCE 

ANALYSIS OF METABOLIC MODELS 

The discussion above highlights a surprisingly limited use of genome scale models for 

metabolic engineering. It appears that the community working in this field has been more 

active with generating new and larger models and less so with actually using the models. 

As Uwe Sauer observed (personal communication), it is the latter that matters, but in 

every nascent field it is a bit like that because it is easier to develop tools than to reach 

new scientific discoveries by applying them, and metabolomics or fluxomics are no 

different in this respect. 

The limited uses of genome scale models are due to many challenges and issues, which 

make it hard for somebody without a good experience in modeling and computation to 

use them in a productive fashion. One of the key challenges in FBA of genome-scale 

models is the possibility of multiple solutions resulting from the underdetermined nature 

of the problem. The number of alternate solutions scale exponentially with the size of the 



 

 

network (Mahadevan & Schilling, 2003). Even though there are methods that aim to 

characterize the different flux modes in order to systematically analyze the possibilities, 

such as Elementary Flux Modes (EFM), Extreme Pathway (EPs) and other variants, most 

of these methods still do not perform well as the size of the model increases, and their 

applicability and usefulness are restricted. Therefore, given the limited amount of 

information about certain fluxes or enzyme activities, the main challenge is how we can 

derive a representative or characteristic flux distribution that can explain the observed 

phenotype at steady state. Such representative flux state(s) could also be a combination of 

more elementary flux states that should be further identified and characterized 

(Hoffmann, et al., 2006, Barrett, et al., 2009, Llaneras & Pico, 2010). 

Flux balance models of metabolism are routinely used in the fitting of labeling 

experiments for the quantification of metabolic fluxes. However, all of these studies, with 

one notable exception (Blank, et al., 2005), employ small scale, reduced models of yeast 

metabolism and they derive additional constraints for determining unique flux profiles. 

The concept of core models is not new; in fact historically genome-scale models have 

evolved from reduced “core” stoichiometric models by including increasingly details. 

The scale of these models made them more manageable and facilitated analysis. The 

issue of manageability is illustrated by the number of possible flux modes that the 

network can have, e.g. for a small yeast network comprising 53 reactions, there can be up 

to 6,741 EFMs depending on the carbon source (Dunn, et al., 1994) whereas for an E. 

coli model with 112 reactions, the number of EFMs calculated was 2,450,787 (Perko, 

1986). Hence, even though there are methods that can allow the almost complete 

enumeration and characterization of the EFMs/EPs, the scale of the resulting number of 



 

 

possibilities will remain a huge obstacle in analysis and we must make some drastic 

assumptions to reduce the possibilities.  

Another driver in the use of reduced models has been the objective to understand 

central metabolism well enough, before attempting to understand and make predictions at 

the genome-scale. Actually, in most of the problems in metabolic engineering the desired 

outcome has been the manipulation of central metabolism for redirecting the carbon flux 

towards desired pathways. 

However, reduced models that are used to perform analyses of experimental data are 

often incompatible with each other as the set of reactions, components and degree of 

detail (e.g. proton-balancing and balancing of cofactors, etc.) differ significantly. 

Moreover, there is not an explicit list of the assumptions that would allow consistency 

checks of the model. For example, the assumptions about the presence or absence of 

alternate pathways in the determination of flux ratios for labeling experiments will affect 

the variability of the flux distribution. This can lead to different conclusions arising from 

the same set of data and difficulty in cross-utilization of datasets across laboratories that 

could have helped to further the complete characterization of the network.  

Typically, reduced or core models in the past have been built in a bottom up approach. 

We believe that we need a top-down approach that can take advantage of all the 

knowledge in the genome-scale models. One of the main objectives of such approach will 

be to recover the simplicity and clarity of these earlier core models without losing the 

annotation details and the curated knowledge that has been amassed into the genome-

scale models. With the increasing addition of details in these genome-scale models, it is 

necessary and important to add new knowledge consistently and modularly in order to 

keep track of changes, for example, with different releases of the S. cerevisiae 



 

 

reconstructions. Moreover, a computational method will allow for a systematic and 

unambiguous model reduction, and it will facilitate consistency and communication 

between different laboratories. 

Thermodynamic analysis of metabolic networks has been also shown to be important in 

reducing the flux space and eliminating thermodynamically infeasible pathways (Henry, 

et al., 2007, Boghigian, et al., 2010, Soh & Hatzimanikatis, 2010). Thermodynamics can 

also help to eliminate the need for ad hoc assignment of reaction directionality that can 

unwittingly preclude possible flux distributions that might be of interest. An example is 

the phosphoenoylpyruvate carboxykinase (PEPCK) reaction that is often assumed to be 

operating in the ATP-utilization direction. However, as shown both experimentally and 

computationally, this reaction can operate in the reverse direction under certain 

conditions (Deok, et al., 2006, Gorsich, et al., 2006, Singh, et al., 2011). Hence by 

assuming certain fixed directionalities in the model, we might eliminate prematurely the 

true state of the network prior to analysis. Therefore, thermodynamics must be used to 

improve the curation of the models, as they provide additional control over the decision 

between the assumed, in literature or based on generalized arguments, reaction 

directionality vs. the possible reaction directionality, based on the estimated Gibbs free 

energy and the possible range of metabolite concentrations in the cell or metabolomics 

data. 

Besides reducing the flux space effectively, thermodynamics offer another approach for 

integrating and overlaying additional layers of information in the form of thermodynamic 

displacement and metabolite concentration information. It has been shown (Henry, et al., 

2007, Soh & Hatzimanikatis, 2010) that if we include additional information in the form 

of metabolomics and fluxomics data, we can reduce the possible flux ranges of the 



 

 

network to help us in better characterization of the flux distribution. Network 

thermodynamics can also be used to check for consistency of the metabolomics data with 

flux data, since we would expect that the directionality of the reactions, as determined by 

the full set of metabolites measured in an experiment, is not in conflict with the 

directionality of the reactions as determined from the labeling data. 

As FBA models are only snapshots of the network at a point in time and they do not 

allow us to extrapolate the dynamic response of the network. Although approaches based 

on FBA (Mahadevan, et al., 2002) attempt to overcome this limitation, these methods 

often use a highly reduced model, and they cannot simulate or predict the response of the 

metabolite levels since they do not integrate kinetic information. The biggest limitation of 

FBA methods is their inability to predict response to changes in enzyme activities. In 

most case in metabolic engineering we are interested to identify enzymes as targets for 

overexpression and/or downregulation, since gene knock out can have a detrimental 

effect on the physiology of the strain. A recent, very interesting study investigated the 

effects of single nucleotide polymorphisms (SNPs) on the phenotypic differences 

between two different yeast strains (Canelas, et al., 2010). The investigators found SNPs 

in 20% of the metabolic genes and based on these differences they hypothesized 

physiological differences, which they confirmed experimentally. Based on further 

transcriptomic analysis, the authors hypothesized that SNPs can be responsible for 

change in enzyme concentration and/or function, such as kinetic properties. Such 

hypotheses, as well as identification of targets for gene overexpression and protein 

engineering, cannot be analyzed without the use of kinetic models of metabolic networks. 

 



 

 

SOME CONSIDERATIONS ON THE DEVELOPMENT OF KINETIC MODELS 

OF YEAST METABOLISM 

One of the more widely used yeast kinetic models (Teusink, et al., 2000) for analysis 

and also further model development has about 257 citations to date (September 2011). 

However, very little has been done in the original development of large-scale kinetic 

models in yeast. With the exception of one case (Wang & Hatzimanikatis, 2006), almost 

all models of yeast central carbon catabolism do not distinguish the mitochondrial 

reactions from the cytosolic reactions. The main issue in the development of kinetic 

models of metabolic networks is the limited available information and the uncertainty 

associated with this information. We have previously studied and classified the 

uncertainty in the study of metabolic pathways in two types: structural and quantitative 

(Miskovic & Hatzimanikatis, 2010). Structural uncertainty concerns the limited 

knowledge in the stoichiometry and in the kinetic laws of the enzymes in the pathways. 

While the stoichiometry of the pathways in yeast is well characterized, there still exist 

gaps in some pathways and the kinetics of their enzymes are completely unknown 

(DeJongh, et al., 2007, Feist, et al., 2009, Henry, et al., 2009, Kumar & Maranas, 2009, 

Stanley, et al., 2010). Also the kinetic parameters of most of enzymes are not available 

and when they are available they are usually known as “apparent Km’s” but not as 

parameters in detailed kinetic mechanisms. There is also an important concern on how 

the parameters of the enzymes quantified in vitro will change in the crowded intracellular 

environment (Savageau, 1995, Schnell & Turner, 2004).  

Flux distributions, thermodynamic information, metabolite concentration and kinetic 

parameters are subject to quantitative uncertainty. Despite the advances of methods for 

the quantification of metabolic fluxes, they still carry some error. The thermodynamic 



 

 

properties of most of the reactions are estimated using group contribution methods, and 

therefore they contain estimation errors and the error of the experiments used in the 

estimation process (Jankowski, et al., 2008). The highest uncertainty is in the metabolite 

measurements, and in addition only a relatively small number of metabolites can be 

measured compared to the entire metabolome of the organism. 

The uncertainty in building mathematical models is very large even for systems that are 

well studied, such as E. coli and S. cerevisiae. Therefore, when we consider the analysis 

and engineering of novel pathways, we should expect much higher qualitative and 

quantitative uncertainty in the information about these systems (Tyo, et al., 2007, Alper 

& Stephanopoulos, 2009). 

Uncertainty is a problem common in many areas of physical and chemical sciences and 

engineering. Within these fields there exist a large number of methods and approaches 

that allow for the modeling and quantification of uncertainty. These methods have been 

used in the analysis of metabolic networks and they have provided some insight into the 

properties of the networks, and guidance for metabolic engineering (Wang, et al., 2004, 

Wang & Hatzimanikatis, 2006, Wang & Hatzimanikatis, 2006, Kiparissides, et al., 2009). 

However, any significant effort in this area faces challenges in the modeling and 

simulation of uncertainty. When we consider uncertainty modeling and analysis of kinetic 

models of chemical and biochemical systems, we must ensure sufficiency in the sampling 

of the kinetic parameters, calculate the properties of a population of the system, solve 

large systems of nonlinear equations, and perform a statistical analysis to characterize the 

properties of the population of the system. This leads to many computational challenges: 

(i) the ranges of the parameter values are not known or they are very large; (ii) the size 

and nonlinearities introduce computational difficulties; and (iii) reliable statistics can 



 

 

require a computationally prohibiting number of samples. We have recently developed an 

uncertainty analysis framework, tailored to metabolic systems, and we have made 

significant progress in addressing these issues (Miskovic & Hatzimanikatis, 2010). 

 

PREDICTING NETWORK RESPONSES WITH LIMITED INFORMATION 

Optimization and Risk Analysis of Complex Living Entities (ORACLE) is a modeling 

and computational framework we have recently introduced for the study of metabolic 

networks under uncertainty (Wang, et al., 2004, Wang & Hatzimanikatis, 2006, Wang & 

Hatzimanikatis, 2006, Miskovic & Hatzimanikatis, 2010). It uses uncertainty and risk 

analysis methods, and it circumvents most of the limitations mentioned above. In its 

current stage ORACLE is used for Metabolic Control Analysis (MCA) and it allows the 

quantification of the flux control coefficients and concentration control coefficients. 

These coefficients quantify the fold-change in metabolic fluxes and metabolite 

concentrations for a fold change in enzyme activities or in any environmental parameter. 

There are other similar algorithms for analysis of kinetic metabolic models (Steuer, et al., 

2006, Tran, et al., 2008) and a recent paper (Miskovic & Hatzimanikatis, 2011) explains 

the differences between ORACLE and these approaches. Main advantages of the 

ORACLE framework are: (i) the capability to consistently integrate thermodynamics and 

physico-chemical constraints into kinetic models, (ii) the capability to integrate omics 

information (transcriptomics, proteomics, metabolomics, and fluxomics) and (iii) its 

scalability that enables to predict kinetic responses of metabolism even for genome-scale 

metabolic models, which is not feasible with any of the other approaches. 



 

 

The pivotal point in the development of ORACLE is the recognition that control 

coefficients depend on the degree of enzyme saturation, also known as enzyme 

elasticities, which in turn can be estimated through the distribution of the enzyme 

between the different mechanistic enzyme states. This observation led us to the 

reconsideration of the uncertainties in the enzyme state space instead of the kinetic 

parameter space. This reformulation gives the major advantage that we can derive the 

degree of saturation, or elasticities, by sampling the enzyme state space, which, unlike the 

parameter space, is very well bounded between 0 and 1. These bounds can be further 

constrained if the kinetic parameters of an enzyme are approximately known. 

The ORACLE framework involves a set of computational procedures, which integrate 

the available information into a mathematical structure, and through Monte Carlo 

sampling for retrofitting missing information they generate the population of all possible 

control coefficients. Conceptually, ORACLE involves the following steps (Figure 1): 

 

Step 1. Integration of available information. We start by defining the stoichiometry, 

based on the information from the genome scale model. We proceed further by 

integrating the estimated flux profiles based on information from fluxomics analysis 

or on hypotheses about desirable flux distributions in an engineered pathway. Finally, 

we estimate the standard free energy of reactions based on the available experimental 

information, or using group contribution methods. 



 

 

Step 2. Exploring the space of metabolite concentrations. The levels of concentrations 

for some of the metabolites in the system might be available, or can be estimated 

from experiments under similar physiological conditions. For the metabolites whose 

levels are missing, we can use sampling under thermodynamic constraints in order to 

preserve the observed flux directionality. 

Step 3. Exploring the space of the kinetic properties (elasticities). Sampling of either 

the enzyme states (Miskovic & Hatzimanikatis, 2011) or the degree of saturation of 

the enzymes active site (Wang, et al., 2004) is very efficient and it can also integrate 

partial knowledge of the enzyme kinetic parameters. 

Step 4. Consistency checks and pruning. Partial knowledge of experimentally observed 

response of a metabolic flux to the changes in the activity of an enzyme is used to 

reject inconsistent samples. 

Step 5. Calculation and statistical analysis, data mining, and visualization of control 

coefficients.  The populations of control coefficients are subsequently analyzed using 

non-parametric statistics and data mining in order to asses and rank the importance of 

the enzymes with respect to their impact on the specified objectives (Silverman, 1986, 

Conover, 1998, Chen & Lonardi, 2009). 

Ultimately, the results from ORACLE are not predictions but statistical expectations of 

success of the metabolic engineering targets they identify. ORACLE provides a set of 

alternative solutions, evaluated with respect to their uncertainty, which can be given back 

to the experts for evaluation. This ‘expert opinion’ is the ultimate integration of 

information that is almost impossible to take into account during the formulation of the 

model. Overall, ORACLE employs modeling and analysis in a new way, which have 

been successfully used in other disciplines. 



 

 

 

THERMODYNAMIC AND KINETIC ANALYSIS OF A REDUCED, CORE 

METABOLIC MODEL OF YEAST 

In this section, we will discuss some of our recent unpublished work to illustrate how we 

can approach some of the problems discussed earlier in the paper. Our work is based on a 

core yeast metabolic model. We have developed a computational algorithm that allows 

the reduction of genome scale models into core metabolic models. This method allows 

the unambiguous reduction of genome scale models and it is also “reversible”, in the 

sense that the results from the analysis of the core model can be compared exactly with 

the genome scale model. The reduction was based on the iMM904 model (Mo, et al., 

2009) and this is the first such core model for yeast and it consists of 89 reactions and 88 

metabolites across 2 compartments (cytosol and mitochondrial) as shown in Figure 2. All 

the reactions are proton-balanced as it has been shown to be important in affecting the 

overall solution (Fox, et al., 2007). Modeling the reactions around, across, and inside 

compartments is very important for understanding the in vivo redox and energy balance 

(Karbowicz & Smith, 1984), but unfortunately is often neglected in most reduced models. 

In addition, we performed thermodynamic curation and we have been able to include 

thermodynamic constraints in our reduced model. 

We first used this model to perform some basic flux balance analysis, and we used 

reference experimental data from recent work from the Sauer Lab to compare our results. 

Initially we used only information about the carbon source uptake rate and product fluxes 

(Wang, et al., 2011) and without assuming any reaction directionalities a priori, we 

performed FBA and flux variability analysis without any thermodynamic constraints. As 

expected, we found that the system is under-constrained and it is able to generate biomass 



 

 

from CO2 recycling reactions and ATP recycling. However, after adding thermodynamic 

constraints, we observe that the maximum biomass flux drops to close to the measured 

value as many of the CO2 recycling reactions are automatically constrained in the proper 

direction under normal physiological concentration ranges predicted by the 

thermodynamic constraints (Figure 3). On the other hand, when we fix the reaction 

directionalities in the direction most commonly assumed in genome scale models, we 

find that the flux variability is significantly reduced (Figure 4). By specifying the reaction 

directionality a priori, we can overly constraint the model in two ways. First, as 

discussed earlier, reactions that can be reversible under certain conditions, e.g. in the case 

of PEPCK which was found to be able to operate in the ATP-generating direction in E. 

coli (Deok, et al., 2006, Singh, et al., 2011) and in S. cerevisiae (Gorsich, et al., 2006) 

under high CO2 concentrations. Hence by setting the reaction directionality a priori we 

would have eliminated this possibility and we could not explain the observed physiology 

using the model. Second, by assigning a priori directionalities, we introduce in the 

system ad hoc inflexibility and tight constraints, as we observe that, even with 

thermodynamic constraints, the flux ranges are quite large as compared to those with 

specified reaction directionalities. Although in metabolomics and fluxomics studies, we 

would like the model to have few degrees of freedom, in order to have smaller 

uncertainties in the estimation of the flux values, we should not contaminate our analysis 

with artifacts from arbitrary assumptions about reaction directionality. 

All these results and conclusions from FBA of the core model have been found to hold 

when we used the corresponding genome scale model used to derive the core model. 

Therefore, researchers who are familiar with FBA on small stoichiometric models, but 

they are not experienced working with genome scale models, can use and analyze this 



 

 

reduced core model much easier, and their results and conclusions can then be used for 

genome-scale analysis.  

After obtaining a representative flux profile from the thermodynamics-based flux 

balance analysis (TFBA), we sampled feasible metabolite concentrations and computed 

the corresponding reaction displacement from thermodynamic equilibrium. We observed 

(Figure 2) that the displacement of approximately half of the reactions could be either 

near or far from equilibrium, whereas the other reactions could assume a wider range of 

displacements (Table 1). 

We also used ORACLE to investigate how changes in the activities of the enzymes in 

the network would affect the flux distribution and the levels of the metabolites. We 

investigated the response of the splitting ratio of the glycolytic fluxes, quantified by the 

ratio of the flux through fructose-biphosphate aldolase (FBA), over the flux through 

glucose-6-phosphate-1-dehydrogenase (ZWF). We found that the primary positive 

control over this ratio lies in ATP maintenance and pyruvate decarboxylase (PDC), 

whereas the negative control lies in ammonia (NH4t) and oxaloacetate (OAt) transport 

(Figure 5). Interestingly, even though an enhancement of hexose transporters (HXT) or 

hexokinase (HXK) activity has, in average, negative impact on this ratio error bars 

suggest that there exist physiological states where its effect could be positive. 

The ATP/ADP ratio and the redox potential (NADH/NAD) are important factors in 

metabolic engineering as adenylate cofactors and pyridine nucleotides are involved in 

many reactions. Our analysis suggests that the control over these quantities is distributed 

differently depending on the compartment of the cell. More specifically, we observe that 

a group of enzymes, i.e. HXT, PDC, external NADH dehydrogenase (NDH), ATP 

synthase (ASN) and CO2 transport, have positive control, and ATPM, ADP/ATP carrier 



 

 

protein (AAC) have negative control over ATP/ADP ratio in the mitochondria, (Figure 

6A). On the other hand, in the cytosol the positive control over ATP/ADP ratio is 

primarily from HXT, whereas the negative control is shifted to PDC, pyruvate 

dehydrogenase (PDA) and NH4t (Figure 6B). Similarly, we observe that the major 

positive control over redox potential in mitochondria (Figure 6C) is in glucose-6-

phosphate isomerase (PGI), and the negative control is distributed between ZWF, CO2 

and 6-Phospho-D-glucono-1,5-lactone lactonohydrolase (GND1). In contrast, in the 

cytosol the biggest positive control coefficients of energy charge are those with respect to 

PGI nad ATPM, whereas HXT and HXK appear to have the most important negative 

control. This interesting connection of the redox potential in the mitochondria and the 

activities in the upper glycolysis and pentose phosphate can be identified and explained 

only through the application and use of ORACLE. 

We also have analyzed how the control is distributed over the ethanol yield (with ethanol 

being as one of most important industrial products) from glucose. Though ATPM and 

HXT have major positive and negative effect respectively (Figure 7), we observe that the 

control coefficients are very small in magnitude, and even for the most significant 

enzymes the mean value is not bigger than 0.1 suggesting that activities of multiple 

enzymes should be altered to effectively increase ethanol yield. 

Table 1: Distribution of reactions’ displacement from thermodynamic equilibrium 

in the network 

 NE (I) Between (II) FA(III) I+II II+III I+II+III 
Number of rxns 9 0 27 11 6 22 
Percentage 12% 0 36% 15% 8% 29% 

 



 

 

CONCLUSIONS 

The integration of regulatory constraints will be the next major advancement in the area 

of metabolic modeling in yeast. Past and ongoing work in the Palsson and Nielsen labs is 

advancing rapidly developments in this area. An interesting approach could come from 

the combination of concepts from the work of Patil and Nielsen (Patil & Nielsen, 2005) 

and the work by Price (Hasunuma, et al., 2011). Such approach will provide important 

missing links for the development of kinetic models. 

Ultimately a kinetic, nonlinear model is the goal. While there exist a number of 

publications, which claim such models, they all face a lot of limitations, which has not 

been adequately addressed. We should always keep in mind the proverbial quote from 

Manfred Eigen: “A theory has only the alternative of being right or wrong. A model has a 

third possibility: it may be right, but irrelevant.” The relevance of the mathematical 

models in yeast will be evaluated from their contribution to the advancement in our 

understanding of disease and to the accelerated development of industrial strains. While 

there is a lot of evidence from the research fronts in these areas, successful resolution of 

some of the issues discussed in this article will enhance and broaden the impact of 

mathematical modeling in yeast research. 
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Figure captions 

Figure 1. Flowchart of computational procedures for uncertainty analysis of metabolic 
networks within the ORACLE framework. Available information from different sources 
is integrated in the model through the successive application of the ORACLE procedures. 
The resulting models are consistent with the thermodynamics and experimentally 
observed data, while preserving all physical and chemical constraints of the underlying 
metabolic network.  

Figure 2. Core metabolic network of S. cerevisiae showing the thermodynamic 
displacement of reactions in the network. The abbreviations for the pathway steps and enzymes can be found in the Appendix. 
Figure 3. Effect of thermodynamic constraints on biomass flux 

Figure 4. Flux Variability Analysis of central metabolic network of S. cerevisiae without 
and with thermodynamic constraints 

Figure 5. Distribution of the control coefficients of the splitting ratio between the fluxes 
through fructose-biphosphate aldolase (FBA) and glucose-6-phosphate-1-dehydrogenase 
(ZWF) with respect to enzymes having the most of control over this ratio. The bars 
represent the mean values of the control coefficients, while the errorbars correspond to 
the 25 and 75 percentiles of the control coefficients with respect to their mean values. 
The abbreviations for the enzymes are given in Fig. 1. 

Figure 6. Distribution of the control coefficients of: (A) ATP/ADP ratio in mitochondria 
(ATPm/ADPm), (B) ATP/ADP ratio in cytosol (ATPc/ADPc), (C) redox potential in 
mitochondria (NADHm/NADm) and (D) redox potential in cytosol (NADHc/NADc), with 
respect to enzymes having the most of control over these quantities. 

Figure 7. Distribution of the control coefficients of ethanol yield from glucose with 
respect to enzymes having the most of control over the yield.  

 

 

 



 

 

APPENDIX 

Names of metabolites and reactions of network in Figure 2: 

HXT, hexose transporters for glucose; HXK, hexokinase; PGI, glucose-6-phosphate isomerase; PFK, phosphofructokinase; FBA, fructose-biphosphate aldolase; TPI, triose phosphate isomerase; TDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; GPM, phosphoglycerate mutase; ENO, enolase; PYK, pyruvate kinase; ZWF, glucose-6-phosphate-1-dehydrogenase; RKI, ribose-5-phosphate isomerase; RPE, ribulose-5-phosphate 3-epimerase; TKL1, transketolase; 
TKL2, transketolase; TAL, transaldolase; PDC, pyruvate decarboxylase; ALD, aldehyde dehydrogenase; ACS, Acetyl-CoA synthase; CAT, carnitine o-acetyltransferase; ACARtrans, acetylcarnitine diffusion; YAT, carnitine o-acetyltransferase; CARtrans, carnitine diffusion; PYRtrans, pyruvate carrier; PDA, pyruvate dehydrogenase; PYC, pyruvate carboxylase; PCK, phosphoenolpyruvate carboxylkinase; OAtrans, oxaloacetate carrier; MAE, malic enzyme; CIT, citrate synthase; ACO, aconitase; IDH, isocitrate dehydrogenase; KGD, a-ketoglutarate dehydrogenase; LSC, succinate-CoA ligase; SDH, succinate dehydrogenase; FUM, fumaratase; MDH, malate dehydrogenase; NDH, external NADH dehydrogenase; NDI, NADH dehydrogenase; NDR, NADPH reductase; QCR, ubiquinol cytochrome C reductase; COX, cytochrome C oxidase; ASN, ATP synthase; AAC, ADP/ATP carrier protein; ADK, adenylates kinase; ATPmt, ATP maintenance; ADH, cytosolic alcohol dehydrogenase; SCD, succinate dehydrogenase (ubiquinone-6), mitochondrial; ACET, acetate diffusion; COH, carbonic acid hydro-lyase; PPP, Pyrophosphate phosphohydrolase; MLPIT, malate transport, mitochondrial; ICL, Isocitrate 



 

 

glyoxylate-lyase; MLS, L-Malate glyoxylate-lyase (CoA-acetylating); MDHc, (S)-malate:NAD+ oxidoreductase; CITc, Citrate oxaloacetate-lyase  cytosolic; ACOc, citrate hydro-lyase cytosolic; LACm2r, D-lactate transport, mitochondrial; CITt2m, citrate transport, mitochondrial; LDH, (R)-Lactate:ferricytochrome-c 2-oxidoreductase; O2m, O2 transport (diffusion); CO2m, CO2 transport (diffusion), mitochondrial; PIm, phosphate transporter, mitochondrial; CO2t, CO2 transport via diffusion; GLYCt, glycerol transport in/out via diffusion reversible; PYRst, Pyruvate transport via proton symport; SO4t, sulfate transport via proton symport; Pit, phosphate transport via proton symport; O2t, O2 transport via diffusion; NH4t, Ammonia transport via diffusion; LACt2r, D-lactate transport via proton symport; 
SUCCt2r, succinate transporter in/out via proton symport; MALt2r, L-malate transport in via proton symport; GND1, 6-Phospho-D-glucono-1,5-lactone lactonohydrolase; GND2, 6-Phospho-D-gluconate:NADP+ 2-oxidoreductase (decarboxylating); GPD1, Glycerol-3-phosphate:NAD+ 2-oxidoreductase; GPD2, Glycerol-3-phosphate phosphohydrolase. The abbreviations for the chemical species: XL, xylose; XLT, xylitol; XYLL, xylulose; GLC, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose 1,6-diphosphate; T3P, glyceraldehydes-3-phosphate; DHAP, glycerone phosphate; DPG, bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; 6PGL, glucono-1,5-lactone 6-phosphate; RL5P, ribulose 5-phosphate; R5P, ribose 5-phosphate; X5P, xylose-5-phosphate; E4P, erythrose 4-phosphate; S7P, sedoheptulose 7-phosphate; AALD, acetaldehyde; ACET, acetate; ACCOA, acetyl-CoA; CAR, carnitine; ACAR, acetylcarnitine; OAA, 



 

 

oxaloacetate; CIT, citrate; ICIT, isocitrate; AKG, 2-oxoglutarate; SUCCOA, succinyl-CoA; SUCC, succinate; FUM, fumarate; MAL, malate; GL, glycerol; ETH, ethanol; CO2; HCO3-; O2; PPi, Pyrophosphate; Pi, Phosphate; NH4; SO4; 6PGC, 6-Phospho-D-gluconate; GLYC3P, glycerol-3-phosphate; ACET, acetate; LAC, D-lactate; GLYX, glyoxylate. 



 

 

 



 

 

 



 

 

Sp
ec

ifi
c 

gr
ow

th
 ra

te
 (h

r-
1)

After imposing reaction 
directionalities

All reactions reversible Incorporating metabolite 
concentrations

 



 

 

100 80 60 40 20 0 20 40 60 80 100

PEPCK

FUM

LSC

CAT

COX

PDC

ENO

ZWF

PGI

BIO

mmol/gDW-hr

FBA w all rxns reversible
TFBA w all rxns rev. and metabolite conc
FBA w specified rxn direc�onali�es
TFBA w specified rxn direc�onali�es
TFBA w specified rxn direc�onali�es & met. conc
Experimental

 



 

 

HXT

HXK

PDC

ATPM

OAt

CO2t

NH4t

PEPCK

−0.4 −0.2 0 0.2 0.4

C
*
FBA ZWF/

 



 

 

HXT

PDC

ATPM

NDH

ASN

AAC

CO2t

NH4t

−1.5 −1 −0.5 0 0.5 1

C
*
ATPm ADPm/

HXT

TDH

PDC

ATPM

PDA

NDH

CO2t

NH4t

−1.5 −1 −0.5 0 0.5 1 1.5

C
*
ATPc ADPc/

HXT

PGI

ZWF

GND1

ATPM

NDH

CO2t

NH4t

−2 −1 0 1 2 3 4

C
*
NADHm NADm

HXT

HXK

PGI

PFK

PDC

ATPM

OAt

CO2t

−4 −2 0 2 4

C
*
NADHc NADc/ /

(A) (B)

(C) (D)  



 

 

HXT

HXK

PGI

PFK

FBA

TDH

PDC

ATPM

NDH

0.2 0.1 0 0.1 0.2

C
*
Yield

 


