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Spatio-time-resolved cathodoluminescence (STRCL) spectroscopy is implemented to assess the local carrier dynamics in a 70-nm-thick, very low

threading dislocation (TD) density, pseudomorphic m-plane In0:05Ga0:95N epilayer grown on a freestanding GaN substrate by metalorganic vapor

phase epitaxy. Although TDs or stacking faults are absent, sub-micrometer-wide zonary patterns parallel to the c-axis and 2-�m-long-axis figure-

of-8 patterns parallel to the a-axis are clearly visualized in the monochromatic cathodoluminescence intensity images. Because the STRCL

measurement reveals very little spatial variation of low-temperature radiative lifetime, the considerable peak energy variation is interpreted to

originate from nonidentical In-incorporation efficiency for the growing surfaces exhibiting various miscut angles. The figure-of-8 patterns are

ascribed to originate from the anisotropic, severem-plane tilt mosaic along the a-axis of the GaN substrate, and the zonary patterns may originate

from the m-plane tilt mosaic along the c-axis. # 2011 The Japan Society of Applied Physics

1. Introduction

Wurtzite group-III nitride semiconductors grown in nonpolar
and semipolar orientations1) are a promising candidate for
realizing high performance ultimate optoelectronic devices.
This is because the quantum wells (QWs) fabricated on
off-polar planes suffer from less-pronounced unwanted
quantum-confined Stark effects (QCSEs) caused by the
immobile interfacial charges induced by the polarization
discontinuity along the c-axis.2–4) To date, InGaN/GaN
high brightness light emitting diodes5) and laser diodes6–9)

have been demonstrated using low threading dislocation
(TD) density, low basal-plane stacking fault (BSF) density
m-5–7) and (20�21)-plane8,9) freestanding GaN substrates
(FS-GaN) that were sliced from a thick c-plane FS-GaN
boule grown by halide vapor phase epitaxy.10)

One of the drawbacks of nonpolar and semipolar growths
is that BSFs propagate throughout the epilayer once they
are formed. In addition, unintentional miscut of the sub-
strate surface gives rise to the evolution of inclined planes,
resulting in undulated surface morphology of GaN.11) Also,
because the state-of-the-art m-plane FS-GaN10) is usually
sliced from certainly bowed c-plane FS-GaN, the tilt and
twist mosaics of the initial c-plane substrate are transferred
to in-plane twist plus m-plane tilt mosaic along the c-axis
and anisotropic greater m-plane tilt mosaic along the a-axis,
respectively, as shown in Figs. 1(a) and 1(b). Accordingly,
there remain concerns if such structural imperfections would
cause inhomogeneous incorporation of In during the InGaN
growths,12–14) because the In-incorporation efficiency differs
depending on the crystallographic orientation of the growth
front. As a matter of fact, the full-width at half-maximum
(FWHM) values for the near-band-edge (NBE) photolumi-
nescence (PL) peak of the m-plane InxGa1�xN epilayers5,15)

grown by metalorganic vapor phase epitaxy (MOVPE)
on FS-GaN were larger than those for c-plane InxGa1�xN
epilayers16) of the same InN mole fractions (x).

In order to assess local carrier dynamics in a semicon-
ductor, Merano et al.17) have recently developed a pico-

second spatio-time-resolved cathodoluminescence (STRCL)
technique to probe InGaAs/AlGaAs pyramidal nanostruc-
tures. As well as the scanning near-field optical microscopy,
this technique is quite attractive in understanding diffusion
and recombination processes of carriers and excitons in
complex nanostructures, because of its high spatial and
temporal resolutions. One of the advantages of using STRCL
is that electron beam (e-beam) can excite carriers at the
desired position of very high bandgap semiconductors.
Using the same system, Corfdir et al.18) have investigated
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Fig. 1. (Color online) (a) Schematic cross-sectional representation of a

c-plane FS-GaN boule detached from a sapphire substrate grown by halide

vapor phase epitaxy. The shaded rectangle represents an m-plane FS-GaN

substrate sliced from the c-plane FS-GaN. (b) XRCs for the (10�10)

diffraction of the m-plane FS-GaN substrate. �!mc and �!ma represent the

FWHM values for the (10�10) XRCs taken along the c-axis and a-axis,

respectively.
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the relaxation and recombination dynamics of excitons
bound to the I1-type BSFs19) in a-plane GaN epilayers
grown using the lateral epitaxial overgrowth technique.
However, local carrier dynamics in m-plane InGaN epilayers
grown on the state-of-the-art m-plane FS-GaN has not been
investigated yet.

In this article, the results of STRCL measurements on
the very low TD and BSF density m-plane In0:05Ga0:95N
epilayer15) grown on the high-quality FS-GaN substrate10) are
displayed. Local variation of the cathodoluminescence (CL)
peak energy is attributed to a considerable difference in the
local InN mole fraction caused by the residual structural
imperfections. The bowing and tilt and twist mosaics of
FS-GaN are shown to generate considerable overlayer
structural imperfections, namely inclined and heavily tilted
surface planes.

2. Experimental Procedure

A 70-nm-thick m-plane In0:05Ga0:95N epilayer15) was grown
by MOVPE on a 325-�m-thick m-plane FS-GaN,10) after
growing an 1.5-�m-thick GaN underlayer.20) The InGaN
epilayer was confirmed by the X-ray reciprocal space
mapping method to grow coherently15) on the base GaN. As
expected from the crystallographic orientation, so-called V-
defects often observed in c-plane InGaN films21) were absent.
The FWHM values for the X-ray rocking curves (XRCs)
of the InGaN epilayer were �!mc ¼ 163 and �!ma ¼ 232

arcsec for the (10�10) diffraction along the h0001i and h11�20i
azimuths, respectively, and �!r ¼ 43 arcsec for the (10�12)
diffraction. The result means that m-plane tilt mosaic,
especially along the a-axis, is noticeable. These results are
consistent with the fact that the m-plane FS-GaN substrate
exhibted larger �!ma value.

10,20) As shown in the plan-view
and cross-sectional transmission electron microscopy (TEM)
images in Figs. 2(a) and 2(b), respectively, distinct TDs or
BSFs are not found in the In0:05Ga0:95N layer.

Steady-state PL was excited using the 325.0 nm line of a
cw He–Cd laser (125W/cm2). Spot-excitation (local) time-
resolved CL measurement, namely STRCL measurement,
was carried out using a picosecond pulsed electron gun
equipped on a scanning electron microscope (SEM).17,18) The
pulsed e-beam was generated by irradiating the femtosecond
pulses of a frequency-tripled mode-locked Al2O3:Ti laser
(266 nm, 200 fs, 80.7MHz) on the Au photocathode.17) The
acceleration voltage and probe current at the sample surface
were 8 kV and 100 pA, respectively. The luminescence was
dispersed by a grating monochromator and detected using a
streak camera. The temporal resolution was approximately
10 ps. All the CL measurements were carried out at 32K.

3. Results and Discussion

Macroscopic PL spectrum of the m-plane In0:05Ga0:95N
epilayer at 9K exhibits a predominant NBE emission peak
at 3.21 eV, as shown in the topmost trace in Fig. 3(a). It
also exhibits a sharp peak at 3.458 eV and spectrally broad
luminescence bands at around 2.8 and 2.2 eV. The latter
three emissions are assigned, respectively, as being due to
an unabsorbed bound excitonic emission, so-called blue
luminescence band and yellow luminescence band originat-
ing from the GaN underlayer. The peak energy compared
with that at 300K and the FWHM value for the NBE
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Fig. 2. (a) Plan-view and (b) cross-sectional TEM images for a 70-nm-

thick m-plane In0:05Ga0:95N epilayer grown on an m-plane FS-GaN. The

e-beam incidence for (b) was parallel to the h11�20i axis.
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Fig. 3. (Color online) (a) Macroscopic PL spectra for the m-plane
In0:05Ga0:95N epilayer. Three vertical arrows indicate the energies at which

the spatially-resolved CL intensity images in Figs. 4(b)–4(d) were taken.

(b) The peak energy compared with that at 300K and the FWHM value for

the NBE emission peak of the In0:05Ga0:95N epilayer plotted as a function of

temperature.
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emission peak are plotted as a function of temperature in
Fig. 3(b). The PL peak energy first shifts to the lower energy
by 21meV between 40 and 150K, followed by a consider-
able blueshift and the second moderate redshift with tem-
perature rise. The gross shift being 34meV is approximately
a half of the bandgap energy change of GaN between 10 and
300K (�65meV).22) The result implies the presence of
certain bound-type band-tail states. The FWHM value for
the NBE peak increases from 143meV at 9K to 170meV at
180K, indicating the thermal redistribution of excitons.
Apparently, the FWHM values are larger than those for
conventional c-plane In0:05Ga0:95N film,16) indicating that
m-plane InGaN tends to have severer compositional
inhomogeneity.

Although majority of the wafer exhibit flat surface
morphology with monolayer or bilayer atomic step lines,
approximately 5-�m-long inclined planes forming the
striations along the a-axis (parallel to the c-plane) are often
observed, as shown in the bird’s-eye view atomic force
microscopy (AFM) image in Fig. 4(a). Steady-state mono-
chromatic CL intensity images taken at 3.315, 3.263, and
3.212 eV in the area close to Fig. 4(a) are shown in
Figs. 4(b), 4(c), and 4(d), respectively. The monitored
photon energies are shown by the arrows in Fig. 3(a). The

image taken at 3.315 eV [Fig. 4(b)] exhibits striated dark
zones (belts) almost parallel to the c-axis. However, the
zonary pattern loses the contrast when the monitoring
photon energy is lower than 3.263 eV, as shown in Figs. 4(c)
and 4(d). Another distinct feature in Figs. 4(b)–4(d) is the
presence of approximately 2-�m-long-axis, figure-of-8
patterns aligned parallel to the a-axis. The bright area
within the figure-of-8 patterns is completely reversed in the
monochromatic CL images taken at 3.328 and 3.179 eV, as
shown in Figs. 4(e) and 4(f), respectively. Here we mention
that the SEM image taken at the corresponding area is seen
as featureless.

In order to explore the origin for the spatial and spec-
troscopic emission inhomogeneity shown above, STRCL
spectroscopy was implemented. The time-integrated spot-
excitation local CL spectra measured at 32K for the posi-
tions marked by (1)–(3) in Fig. 4(c) are shown in Fig. 5(a).
The monitored positions are within the (1) striated, dark
CL-image zone at 3.315 eV, (2) higher CL peak energy area
in the figure-of-8 pattern, and (3) featureless CL-image area.
The peak energy and FWHM value for the CL peak in spot
(1) are 3.17 eV and 137meV, respectively. Because the NBE
CL spectra for spots (2) and (3) contain higher energy emis-
sion components, the FWHM values of them are larger than
that for (1). The result means that the bandgap inhomo-
geneity is severer in portions (2) and (3): i.e., they contain
the areas of low InN mole fraction. Much severer com-
positional inhomogeneity has been found12–14) in nonpolar
InxGa1�xN films grown on heteroepitaxial or defective sub-
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Fig. 4. (Color online) (a) The AFM image of the m-plane In0:05Ga0:95N

epilayer grown on the defective N-polar edge area of the wafer. Spatially-

resolved monochromatic CL intensity images taken at (b) 3.315, (c) 3.263,

and (d) 3.212 eV. Magnified CL intensity images taken around the figure-

of-8 pattern at (e) 3.328 and (f) 3.179 eV. (g) Magnified AFM image for the

area in the vicinity of the figure-of-8 pattern. All of the CL images were

taken at 32K with the 8 kV acceleration voltage. The markers (1)–(3) in

(c) represent the positions where the STRCL signals shown in Fig. 5(b)

were measured.
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Fig. 5. (Color online) (a) Spot-excitation time-integrated CL spectra

taken at the positions (1)–(3) in Fig. 4(c). (b) STRCL signals measured at

the positions (1)–(3) in Fig. 4(c) at 32K. The �CL,eff values are also shown.
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strates. In those cases, the primary reason for the inhomo-
geneity is the presence of high density TDs and BSFs: they
generate various inclined planes and facets having different
surface bond configurations that have different In-incorpora-
tion efficiencies. Because the present m-plane In0:05Ga0:95N
film does not contain distinct TDs or BSFs, as shown in
Fig. 2, the spectral inhomogeneity observed in Fig. 5(a) is
probably due to considerable but non-negligible variation
in the In-incorporation efficiency in the spots (1)–(3).

To verify this simple consideration, spectrally-integrated
STRCL signals measured at the corresponding spots are
shown in Fig. 5(b). As all the signals do not exhibit an ideal
exponential decay shape, the effective CL lifetime (�CL,eff ) is
defined4) as the time after excitation when

R �CL,eff
0

IðtÞ dt=R tlim
0

IðtÞ dt becomes 1� 1=e, where IðtÞ is the intensity at
time t and tlim is the time when IðtlimÞ becomes 0:01Ið0Þ. The
�CL,eff values are nearly constant irrespective to the position
or photon energy: 360 ps for (1), 378 ps for (2), and 379 ps
for (3). Here we note that the local CL spectra and local
TRCL signal for the lower CL peak energy area within the
figure-of-8 patterns are similar to those for the spot (1),
indicating that InN mole fractions for both the areas are
similar.

In a reasonable quality semiconductor, measured lifetime
at 32K is principally dominated by the radiative lifetime,
because most of nonradiative processes are frozen. Then, the
nearly identical and reasonably short �CL,eff value also
excludes the possibility that BSFs limit �CL,eff values in the
areas (1)–(3), because the radiative lifetime of excitons
trapped in the I1-type BSFs19) or in the type-II quantum
wells23) formed within BSFs is much longer than the
classical free or bound excitons in the case of GaN.18) From
the considerable CL peak energy variation being as small as
up to 60meV, as shown in Fig. 5(a), the InN mole fraction
variation is estimated to be as small as �1%. This is the
reason why remarkable change cannot be clearly found in
the �CL,eff value in this study.

Because the morphological striation and m-plane tilt
mosaic along the a-axis are severer than along the c-axis, the
zonary pattern along the c-axis in the CL image [Fig. 4(b)]
may not originate from the m-plane tilt mosaic along the
a-axis. One of the possibilities for the higher and more
homogeneous InN mole fraction in the zonary areas (1) is
that the region may have h000�1i-oriented N-polar (�c)
vicinal m-plane surface, due to the considerable tilt along the
c-axis,11) as In-incorporation efficiency for N-polar growth is
higher than the Ga-polar growth according to the different
atomic configurations.24–26) The areas corresponding to spots
(2) and (3) may contain flatter m-plane regions where In-
incorporation efficiency is lower than that of other inclined
vicinal planes.14,15)

Finally, the reversed CL intensity image in the figure-of-8
patterns shown in Figs. 4(e) and 4(f) is attributed to the
different In-incorporation efficiencies for different growth
fronts. As shown in the AFM image in Figs. 4(a) and 4(g),
the figure-of-8 patterns seem to exist at the positions where
two vicinal planes inclined to opposite directions along the
a-axis appear. Then, one of the growth fronts has an inclined
Ga-polarity (þc) plane edge and the other has the N-polarity
(�c) one. In this case, because In-incorporation efficiency
for N-polar growth is higher than the Ga-polar growth,

as described,24–26) all the figure-of-8 patterns within the
domain structure should have the same directional shapes.
This is indeed the case, as confirmed by Figs. 4(b) and 4(d).

4. Conclusions

The STRCL spectroscopy was implemented for studying
local carrier dynamics in the very low defect density, 70-nm-
thick m-plane In0:05Ga0:95N epilayer grown on an m-plane
FS-GaN by MOVPE. In the spatially-resolved monochro-
matic CL intensity images, zonary patterns parallel to the
c-axis and figure-of-8 reversal patterns aligned parallel to
the a-axis were visualized. However, the low-temperature
effective radiative lifetime quantified by STRCL did not
show noticeable spatial variation. As TD or BSF was not
found in the TEM images, the considerable CL peak energy
variation is attributed to the local variation in the In-
incorporation efficiency. For example, the appearance of
opposite polarity (þc and �c) growth fronts would generate
the figure-of-8 patterns parallel to the a-axis, because the In-
incorporation efficiency for the N-polar vicinal m-plane is
higher than that for the Ga-polar and a-axis-inclined vicinal
m-planes.
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