
The VLDB Journal
DOI 10.1007/s00778-011-0260-8

SPECIAL ISSUE PAPER

Scalability of write-ahead logging on multicore
and multisocket hardware

Ryan Johnson · Ippokratis Pandis · Radu Stoica ·
Manos Athanassoulis · Anastasia Ailamaki

Received: 23 February 2011 / Revised: 7 August 2011 / Accepted: 25 October 2011
© Springer-Verlag 2011

Abstract The shift to multi-core and multi-socket hardware
brings new challenges to database systems, as the software
parallelism determines performance. Even though database
systems traditionally accommodate simultaneous requests,
a multitude of synchronization barriers serialize execution.
Write-ahead logging is a fundamental, omnipresent com-
ponent in ARIES-style concurrency and recovery, and one
of the most important yet-to-be addressed potential bottle-
necks, especially in OLTP workloads making frequent small
changes to data. In this paper, we identify four logging-
related impediments to database system scalability. Each
issue challenges different level in the software architecture:
(a) the high volume of small-sized I/O requests may saturate
the disk, (b) transactions hold locks while waiting for the
log flush, (c) extensive context switching overwhelms the OS
scheduler with threads executing log I/Os, and (d) contention
appears as transactions serialize accesses to in-memory log
data structures. We demonstrate these problems and address

R. Johnson (B)
Department of Computer Science, University of Toronto,
Toronto, ON, Canada
e-mail: ryan.johnson@cs.utoronto.ca

I. Pandis
IBM Almaden Research Center, San Jose, CA, USA
e-mail: ipandis@us.ibm.com

R. Stoica · M. Athanassoulis · A. Ailamaki
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne, Lausanne,
Vaud, Switzerland
e-mail: radu.stoica@epfl.ch

M. Athanassoulis
e-mail: manos.athanassoulis@epfl.ch

A. Ailamaki
e-mail: anastasia.ailamaki@epfl.ch

them with techniques that, when combined, comprise a holis-
tic, scalable approach to logging. Our solution achieves a
20–69% speedup over a modern database system when run-
ning log-intensive workloads, such as the TPC-B and TATP
benchmarks, in a single-socket multiprocessor server. More-
over, it achieves log insert throughput over 2.2 GB/s for small
log records on the single-socket server, roughly 20 times
higher than the traditional way of accessing the log using
a single mutex. Furthermore, we investigate techniques on
scaling the performance of logging to multi-socket servers.
We present a set of optimizations which partly ameliorate the
latency penalty that comes with multi-socket hardware, and
then we investigate the feasibility of applying a distributed
log buffer design at the socket level.

Keywords Log manager · Early lock release · Flush
pipelining · Log buffer contention · Consolidation array ·
Scaling to multisockets

1 Introduction

Recent changes in computer microarchitecture have led to
multicore systems, which in turn have several implications
in database management systems (DBMS) software design
[10]. DBMS software was designed in an era during which
most computers were uniprocessors with high latency I/O
subsystems. Database engines therefore excel at exploiting
concurrency—support for multiple in-progress operations—
to interleave the execution of a large number of transactions,
most of which are idle at any given moment. However, as
the number of cores per chip increases in step with Moore’s
law, software must exploit parallelism—support for con-
current operations to proceed simultaneously—in order to
benefit from new hardware. Although database workloads

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

R. Johnson et al.

Fig. 1 A time line of two transactions illustrating four kinds of
log-imposed delay: I/O-related delays (a), increased lock contention
(b), scheduler overload (c), and log buffer contention (d)

exhibit high concurrency, internal bottlenecks often mean
that database engines cannot extract enough parallelism to
meet multicore hardware demands [15].

The log manager is a key service of modern DBMSs, espe-
cially prone to bottlenecks due to its centralized design and
dependence on I/O. Long flush times, log-induced lock con-
tention, and contention for log buffers in main memory all
impact scalability, and no single bottleneck is solely responsi-
ble for suboptimal performance. Modern systems can achieve
transaction rates of 100 ktps or higher, exacerbating the log
bottleneck.1 Research to date offers piecewise or partial solu-
tions to the various bottlenecks, which do not lead to a fully
scalable log manager for today’s multicore hardware.

1.1 Write-ahead logging and log bottlenecks

Nearly all database systems use centralized write-ahead log-
ging (WAL) [23] to protect against data corruption and lost
committed work after crashes. WAL allows transactions to
execute and commit without requiring that all the data pages
they update to be written to persistent storage first. However,
as Fig. 1 illustrates, there are four main types of delays which
logging can impose on transactions:

I/O-related delays (A). The system must ensure that a trans-
action’s log records reach non-volatile storage before com-
mitting. With access times in the order of milliseconds, a
log flush to magnetic media can easily become the longest
part of a transaction. Further, log flush delays become serial
if the log device is overloaded by multiple small requests.
Fortunately, log flush I/O times become less important as
fast solid-state drives gain popularity [1,19], and when using
techniques such as group commit [12].

Log-induced lock contention (B). Under traditional WAL,
each transaction which requests a commit must first flush its

1 See, e.g., top published TPC-C results or performance figures reported
by main-memory databases like H-Store [35].

log records to disk, retaining all write locks until the operation
completes. Holding locks during this final (and often only)
I/O may significantly increase lock contention in the system
and create an artificial bottleneck in many workloads. For
example, the left-most bar in Fig. 2 shows CPU utilization as
60 clients run the TPC-B [37] benchmark in a modern storage
manager [15] on a Sun Niagara II chip with 64 hardware con-
texts (see Sect. 6 for the detailed experimental setup). Due
to the increased lock contention, the system is idle 75% of
the time. Section 3 shows that even though reduced I/O times
help, the problem remains even when logging to a ram-disk
with minimal latency.

Excessive context switching (C). Log flushes incur additional
costs beyond I/O latency because the transaction cannot
continue and must be descheduled until the I/O completes.
Unlike I/O latency, context switching and scheduling deci-
sions consume CPU time and thus cannot overlap with other
work. In addition, the abundance of hardware contexts in
multicore hardware can make scheduling a bottleneck in its
own right if newly runnable threads accumulate faster than
the OS can dispatch them. The second bar in Fig. 2 shows
for the same workload the processing time of a system which
suffers from the problem of OS scheduler overload. The sys-
tem remains 40% idle even though transactions are ready
and waiting to run. We analyze excessive context switching
problem in Sect. 4.

Log buffer contention (D). Another log bottleneck arises
as the multicore trend continues to demand exponential
increases in parallelism; where current hardware trends gen-
erally reduce the other bottlenecks (e.g., solid-state drives
reduce I/O latencies), each successive processor generation
aggravates contention. The third bar in Fig. 2 shows that if we
remove the problems of logical lock contention and exces-
sive context switching, the system utilizes fully the avail-
able hardware. But, as a large number of threads attempt

Fig. 2 Breakdown of CPU time showing work and contention due to
the log versus other parts of the system, when 60 clients run the TPC-B
benchmark, as we remove log-related bottlenecks. Ideally, useful work
would make up close to 100% of the total

123

Multicore and multisocket hardware

simultaneous log inserts, the contention for the centralized
log buffer becomes a significant (and growing) fraction of
total execution time. We therefore consider this bottleneck
as the most dangerous to future scalability, in spite of its
modest performance impact on today’s hardware. Section 5
focuses on this problem.

In summary, log bottlenecks arise for several reasons, and
no single approach addresses them all. A technique known as
asynchronous commit is perhaps the clearest indicator of the
continuing log bottleneck. Available in most DBMSs (includ-
ing Oracle [26] and PostgreSQL [30]) asynchronous commit
allows transactions to complete and return results without
waiting for their log entries to become durable. Skipping the
log flush step sidesteps problems A–C listed above, but at
the cost of unsafe operation: the system can lose committed
work after a crash. To date, no existing proposal addresses
all the bottlenecks associated with log flush and the looming
problem of log buffer contention.

1.2 A holistic approach to scalable logging

This paper extends Aether [16] a complete approach toward
log scalability and demonstrates how the proposed solutions
address all log bottlenecks on modern hardware, even for the
most demanding workloads. Aether combines new and exist-
ing solutions to minimize or eliminate the log bottleneck. We
highlight its contributions below.

First, we evaluate Early Lock Release (ELR), a tech-
nique for eliminating log-induced lock contention. ELR has
been proposed in the past but, to our knowledge, has never
been evaluated in the literature and is not used today by
any mainstream database engine. We show that, particu-
larly for skewed accesses common to real workloads, ELR
increases throughput by 15–164% even when log disk latency
is minimal.

Second, we propose and evaluate Flush Pipelining, a tech-
nique which allows most transactions to commit without trig-
gering context switches. In synergy with ELR, it achieves the
same performance as asynchronous commit without sacrific-
ing durability.

Third, we propose and evaluate three improvements to log
buffer design, including a new consolidation-based backoff
scheme which allows threads to aggregate their requests to
the log when they encounter contention. As a result, max-
imum log contention is decoupled from thread counts and
log record sizes. Our evaluation shows that contention is
minimized and identifies memory bandwidth as the most
likely bottleneck to arise next.

1.3 Scaling to multisocket systems

Even though the design, as proposed, achieves excellent
performance for single-socket multicore systems, multi-

socket systems pose additional challenges. In particular, in
multisocket multicores the communication cost across cores
varies from very cheap (few tenths of cycles, if communica-
tion takes place between cores within the same chip) to very
expensive (up to thousands of cycles, if communication takes
place between cores of different chips in a big machine).
The non-uniformity in communication complicates further
the design of an efficient logging subsystem. We therefore
extend our previous work to consider the effects of non-
uniform access times imposed by multi-socket hardware.

In Sect. 7 we study the additional performance prob-
lems on multisocket systems. First, we propose optimiza-
tions which make Aether perform better in such hardware.
However, this is not enough to overcome the high communi-
cation costs between sockets. We therefore argue that if the
system is designed with a single centralized log buffer, a per-
formance hit is unavoidable. We then explore the feasibility
of a distributed log buffer design. In microbenchmarks the
final design, AetherSMP, achieves near-linear performance
on multisocket machines, and in macrobenchmarks it elim-
inates the log bottleneck from database workloads, leaving
other bottlenecks as the primary barrier to scalability.

The rest of the document is organized as follows. Section 2
presents related work. Sections 3, 4, and 5 discuss and pro-
vide solutions to the three main logging-related bottlenecks,
respectively. Combined they provide a scalable logging solu-
tion for single-socket multicore machines. Section 7 touches
upon the problem of scaling logging on multisocket multi-
core machines, and Sect. 8 concludes. Finally, for the prac-
titioner interested in a concrete implementation, Sect. A of
the appendix gives detailed descriptions and pseudocode for
the algorithms discussed in Sect. 5.

2 Related work

As a core database service, logging has been the focus of
extensive research. Within a node, the log is typically imple-
mented as a single global structure shared by every trans-
action, making it a potential bottleneck in highly parallel
systems. In Sect. 2.1 we present a representative sampling
of the related work on addressing logging-related problems,
while Sect. 2.2 discusses work related to distributed logging.

2.1 Handling logging-related problems

Logging is one of the most important components of a data-
base system, but also is one of the most complicated. Even
in a single-threaded database engine the overhead of logging
is significant. Harizopoulos et al. [11] report that in a sin-
gle-threaded storage manager, logging accounts for roughly
12% of the total time in a typical OLTP workload.

Virtually all database engines employ some variant of
ARIES [23], a sophisticated write-ahead logging system

123

R. Johnson et al.

which integrates concurrency control with transaction roll-
back and disaster recovery, and allows the system to recover
fully even if recovery is interrupted repeatedly by new
crashes. To achieve its high robustness with good perfor-
mance, ARIES couples tightly with the rest of the system,
particularly the lock and buffer pool managers, and has a
strong influence on the design of access methods such as
B + Tree indexes [22].

DeWitt et al. [7] observe that a transaction can safely
release its locks before flushing its log records to disk pro-
vided that certain conditions are met. IMS/VS [8] imple-
mented this optimization but its correctness was only proven
more recently [34]. We refer to this technique as ELR and
evaluate it further in Sect. 3.

Several recent studies, such as [4,19], evaluate solid-state
flash drives in the context of logging. Those studies demon-
strate significant speedups due to both better response times
and also better handling of the small I/O sizes common to
logging. However, even the fastest flash drives do not elimi-
nate all overhead because synchronous log flush requests still
block and therefore cause OS scheduling.

Log group commit strategies [12,31] reduce the pressure
on (magnetic- or flash-based) log disks by aggregating mul-
tiple requests for log flush into a single I/O operation; fewer
and larger disk accesses translate into significantly better disk
performance by avoiding unnecessary head seeks. Unfortu-
nately, group commit does not eliminate unwanted context
switches because transactions merely block pending notifica-
tion from the log rather than blocking on I/O requests directly.
To significantly reduce the number of context switches due
to logging, we present a technique called FlushPipeling and
evaluate it further in Sect. 4.

Asynchronous commit [26,30] extends group commit by
not only aggregating I/O requests together, but also allowing
transactions to complete without waiting for those requests
to complete. This optimization moves log flush times com-
pletely off the critical path but at the expense of durability.
That is, committed work can be lost if a crash prevents the
corresponding log records from becoming durable. Despite
being unsafe, asynchronous commit is used widely in com-
mercial and open-source database systems because it pro-
vides such a large performance boost. In contrast, Aether
gives the same performance boost without sacrificing dura-
bility. Furthermore, neither faster I/O devices, such as solid-
state flash drives, nor techniques such as log group commit or
asynchronous commit handle the problem of contention for
inserting records in the log buffer, a main memory resident
data structure.

Main-memory database engines impose a special chal-
lenge for log implementations because the log is the only
I/O operation of a given transaction. Not only is the I/O
time responsible for a large fraction of total response time,
but short transactions also lead to high concurrency and

contention for the log buffer. Some proposals go so far as
to eliminate the log (and its overheads) altogether [35], rep-
licating each transaction to multiple database instances and
relying on hot fail-over to maintain durability. However, rep-
lication has its own very large set of challenges [9], and it is a
field of active research [36]. Aether is well suited for using in-
memory databases because it addresses both log flush delays
and contention at the log buffer.

2.2 Distributed logging

In Sect. 7 we investigate the possibility of scaling the per-
formance of log buffer insertions using a distributed log-
ging mechanism. To our knowledge this is the first attempt at
improving log buffer insertion performance within a single
node (even though multi-socket) using a distributed logging
mechanism. To date, the only uses of distributed logging arise
in the context of multi-node systems, often for fault tolerance
purposes (e.g., [5,20]). Distributed systems must either write
back dirty pages when they migrate between logs [17] or else
flush the log at every page migration to preclude holes in the
event of a crash [21]. Some systems [6] simply maintain a
single shared log to avoid the additional complexity of dis-
tributed logging.

Traditional log implementations enforce an explicit total
ordering of log entries. The order is important for recreat-
ing a consistent state of the database during recovery. In
reality, however, there are more than one correct orders and
often a partial order should be enough. Lomet [20] describes
a redo logging method in a distributed environment where
each node maintains a private log. The author differentiates
between crash recovery and media recovery. When a crash
occurs, the system can recover using just one log. On the
other hand, when a storage medium crashes, the contents of
the medium are recovered by merging the existing logs. Dur-
ing the merging, multiple acceptable orderings of log records
are possible. Indeed, only the order between log records of the
same private log should be maintained making the merging
straight-forward. To ensure that each crash can be recovered
using one log, dirty pages must be written back to persistent
storage before they can migrate to other nodes. We find that
migrations occur far too often for this approach to be feasible
in a multi-socket multicore system.

In the following several sections we focus on three log-
ging-related problems, while in Sect. 7 we shift our attention
to machines with multiple sockets.

3 Moving log I/O latency off the critical path

During its lifecycle, a transaction acquires database locks to
ensure consistency and logs all actions before performing
them. At completion time (i.e., after writing a commit record

123

Multicore and multisocket hardware

to non-volatile storage), the transaction finally releases the
locks it has accumulated. Releasing the locks only after the
commit record has reached disk (or been flushed) ensures
that other transactions do not encounter uncommitted data,
but also increases lock hold time significantly, especially for
in-memory workloads where the log commit is the longest
part of many transactions.

3.1 Early lock release

DeWitt et al. [7] observe that a transaction’s locks can be
released before its commit record is written to disk, as long
as it does not return results to the client before becoming
durable. Other transactions which read data updated by a pre-
committed transaction become dependant on it and must not
be allowed to return results to the user until both their own
and their predecessor’s log records have reached the disk.
Serial log implementations preserve this property naturally,
because the dependant transaction’s log records must always
reach the log later than those of the pre-committed transac-
tion and will therefore become durable later also. Formally,
as shown in [34], the system must meet two conditions for
early lock release to preserve recoverability:

1. Every dependant transaction’s commit log record is writ-
ten to the disk after the corresponding log record of pre-
committed transaction.

2. When a pre-committed transaction is aborted, all depen-
dant transactions must also be aborted. Most systems
meet this condition trivially; they do no work after
inserting the commit record, except to release locks, and
therefore can only abort during recovery when all uncom-
mitted transactions roll back.

ELR removes log flush latency from the critical path by
ensuring that only the committing transaction must wait for
its commit operation to complete; having released all held
database locks, others can acquire these locks immediately
and continue executing. In spite of its potential benefits,
modern database engines do not implement ELR and to our
knowledge this is the first paper to analyze empirically ELR’s
performance. We hypothesize that this is largely due to the
effectiveness of asynchronous commit [26,30], which obvi-
ates ELR and which nearly all major systems do provide.
However, systems which do not sacrifice durability can ben-
efit strongly from ELR under workloads which exhibit lock
contention and/or long log flush times.

3.2 Evaluation of ELR

We use the TPC-B [37] and TPC-C [38] benchmarks to eval-
uate ELR. The benchmark executes on a 64-context Niagara

Fig. 3 Speedup due to ELR when running the TPC-B benchmark and
varying I/O latency and skew in data accesses. Higher values indicate
more improvement due to ELR

II server running the Shore-MT storage manager [15] (further
details about the platform and experimental methodology can
be found in Sect. 6).

Figure 3 shows the benefit of ELR over a baseline system
when we run the TPC-B benchmark and we vary the two
major factors which impact its effectiveness: lock conten-
tion and I/O latency. The y-axis shows speedup due to ELR
as the skew of zipfian-distributed data accesses increases
along the x-axis. Lower skew leads to more uniform accesses
and lower lock contention. Different log device latencies are
given as data series ranging from 0 to 10 ms. The first series
(0 ms) is measured using a ram-disk which imposes almost no
additional delay beyond a round trip through the OS kernel
(40–80µs). The remaining series are created by using a com-
bination of asynchronous I/O and high resolution timers to
impose additional response times of 100µs (fast flash drive),
1 ms (fast magnetic drive), and 10 ms (slow magnetic drive).

TPC-B may exhibit significant lock contention. As shown
in the graph, ELR’s speedup is maximized (35×) for slower
devices, but remains substantial (2×) even with flash drives
if contention is present. This effect occurs because trans-
actions are short even compared to 100µs I/O times, and
ELR eases contention by removing that delay from the criti-
cal path. As write performance of most flash drives remains
unpredictable (and usually slower than desired) ELR remains
an important optimization even as systems move away from
magnetic media.

Varying lock contention impacts performance in three
phases. For very low contention, the probability of a trans-
action to request an already-held lock is low. Thus, holding
that lock through the log flush does not stall other transac-
tions and ELR has no opportunity to improve performance.
At the other extreme, very high skew leads to such high con-
tention that transactions encounter held locks even with no
log flush time. In the middle range, however, ELR signifi-
cantly improves performance because holding locks through
log flush causes stalls which would not have arisen otherwise.

123

R. Johnson et al.

Fig. 4 Impact of ELR in a system running the TPC-C benchmark and
the log is stored on a magnetic disk

The sweet spot becomes wider as longer I/O times stretch out
the total transaction length in the baseline case. Finally, by
way of comparison, the intuitive rule that 80% of accesses are
to 20% of the data corresponds roughly to a skew of 0.85.
In other words, workloads are likely to exhibit exactly the
contention levels which ELR is well-equipped to reduce.

In Fig. 4 we present the throughput of the baseline and an
ELR-enabled system (using Shore-MT as well) when run-
ning the TPC-C benchmark on a 100WH database. We keep
the log device latency equal to 4 ms and we vary the num-
ber of the threads executing transactions. We observe that
apart from skewness, the number of concurrent clients issu-
ing transactions has important effect in a system with ELR
compared against a system without ELR. As the number of
concurrent clients increases, the lock contention is higher.
In the baseline, the lock contention does not allow the sys-
tem to achieve higher throughput since clients accessing the
same locks have to wait for the log flush to take place. On the
contrary, using ELR we can take advantage of the available
parallelism and serve a higher number of requests concur-
rently, increasing the throughput 1.1×, 1.5×, 2.2× for 150,
200, and 400 threads, respectively. We observe that ELR can
increase concurrency both when data accesses are skewed
and when the number of concurrent clients increases, lead-
ing to more accesses per time on the same data locations.

In conclusion, we find that ELR is a straightforward opti-
mization which can benefit even modern database engines.
Further, as the next section demonstrates, it will become an
important component in a safe replacement for asynchronous
commit.

4 Decoupling OS scheduling from log flush operations

The latency of a log flush arises from two sources: (a) the
actual I/O wait time and (b) the context switches required
to block and unblock the thread at either end of the wait.
Existing log flush optimizations, such as group commit,
focus on improving I/O wait time without addressing thread

scheduling. Similarly, while ELR removes log flush from
the critical path of other transactions (shown as (B) in Fig. 1)
the requesting transaction must still block for its log flush
I/O and be rescheduled as the I/O completes (shown as (A)
in Fig. 1). Unlike I/O wait time, which the OS can overlap
with other work, each scheduling decision consumes several
microseconds of CPU time which cannot be overlapped.

The cost of scheduling and context switching is increas-
ingly important for several reasons. First, high-performance
solid-state storage provides access times measured in tens of
microseconds. Scheduling decisions and thread switching,
which usually take 10–20µs each, thus become a significant
fraction of the total delay. Second, exponentially growing
core counts make scheduler overload an increasing concern
as the OS must dispatch threads for every transaction comple-
tion. The scheduler must coordinate these scheduling deci-
sions (at least loosely) across all cores. The excessive context
switching triggers a scheduling bottleneck which manifests
as a combination of high load (e.g., many runnable threads)
but low CPU utilization and significant system time.

Figure 5 (left) shows an example of the scheduler over-
load induced when the Shore-MT storage manager runs the
TPC-B benchmark on a 64-context Sun Niagara II machine.
As the number of client threads increases along the x-axis,
we plot the rate of context switches (in thousands/s), as well
as the CPU utilization achieved and the number of CPUs
running inside the OS kernel (system time). The number of
context switches increases steadily with the number of client
threads.2 The CPU utilization curve illustrates that the OS is
unable to handle this load, as 12 of the 64 hardware contexts
are idle. Further, as load increases an increasing fraction of
total load is due to system time rather than the application,
further reducing the effective utilization.

Excessive context switching explains why group commit
alone is not fully scalable and why asynchronous commit is
popular despite being unsafe. The latter eliminates context
switching associated with transaction commit while the for-
mer does not.

4.1 Flush pipelining

To eliminate the scheduling bottleneck (and thereby increase
CPU utilization and throughput), the database engine must
decouple the transaction commit from thread scheduling. We
propose Flush Pipelining, a technique which allows agent
threads to detach from transactions during log flush in order
to execute other work, resuming the transaction once the flush
is completed.

2 Daemon threads contribute the observed secondary effect. As load
increases these threads wake more and more frequently at first, then
sleep less and less, and finally resort to polling as the system becomes
saturated.

123

Multicore and multisocket hardware

Fig. 5 Comparison of CPU
utilization and OS scheduler
activity without (left) and with
(right) pipelined log flush
optimization active. In a healthy
system, utilization is high and
system overheads (context
switching and system time) are
low

Flush pipelining operates as follows. First, agent threads
commit transactions asynchronously (without waiting for
the log flush to complete). However, unlike asynchronous
commit they do not return immediately to the client but
instead detach from the transaction, encore its state at the
log, and continue executing other transactions. A daemon
thread triggers log flushes using policies similar to those used
in group commit (e.g., “flush every X transactions, L bytes
logged, or T time elapsed, whichever comes first”). After
each I/O completion, the daemon notifies the agent threads
of newly hardened transactions, which eventually reattach
to each transaction, finish the commit process, and return
results to the client. Transactions which abort after generat-
ing log records must also be hardened before rolling back.
The agent threads handle this case as relatively rare under
traditional (non-optimistic) concurrency control and do not
pass the transaction to the flush daemon.3

When combined with ELR (see previous section), flush
pipelining provides the same throughput as asynchronous
commit without sacrificing any safety.4 Only the log’s dae-
mon thread suffers wait time and scheduling due to log flush
requests, with agent threads pipelining multiple requests to
hide even long delays.

4.2 Evaluation of flush pipelining

To evaluate flush pipelining we run the same experiment as in
Fig. 5 (left), but this time with flush pipelining active. Figure 5
(right) shows the result. As before we vary the number of
client threads and measure the number of context switches
(in millions), utilization achieved, and the OS system time
contribution. In contrast to the baseline case, the number
of context switches after an initial increase remains almost
steady for the entire load spectrum. The utilization reaches

3 Most transaction rollbacks not due to deadlocks arise because of
invalid inputs; these usually abort before generating any log and do
not have to be considered.
4 Asynchronous commit does deliver superior response times for indi-
vidual transactions (they do not wait for the log flush to complete), but
the delays overlap perfectly and overall throughput is not impacted.

Fig. 6 Performance comparison of the baseline system, flush pipelin-
ing, and asynchronous commit. Higher values are better

the maximum possible (64) indicating that the scheduling
bottleneck has been resolved. Further confirmation comes
from the system time contribution, which remains nearly
constant regardless of how many threads enter the system.
This behavior is expected because only one thread issues I/O
requests regardless of thread counts, and the group commit
policy ensures that requests become larger rather than more
frequent.

Figure 6 compares the performance of baseline Shore-MT
to asynchronous commit and flush pipelining when running
the TPC-B benchmark. The x-axis varies the number of cli-
ents as we plot throughput on the y-axis. Even with a fast log
disk, the baseline system begins to lag almost immediately
as scheduling overheads increase reducing its scalability. In
contrast, the other two scale better achieving up to 22% higher
performance. As Sect. 6.4 will show, for even more log-inten-
sive workloads the benefits of flush pipelining are larger.

In summary, flush pipelining successfully and safely
removes the log from the system’s critical path of execution
by breaking the correlation between transaction commits and
scheduling.

5 Scalable log buffer design for multicore

Most database engines use some variant of ARIES [23],
which assigns each log record a unique log sequence

123

R. Johnson et al.

number (LSN). The LSN encodes a record’s disk address,
acts as a timestamp for data pages written to disk, and serves
as a pointer to log records both in memory and on disk. It
is also convenient for LSN to serve as addresses in the log
buffer, so that generating an LSN also reserves buffer space.
In order to keep the database consistent in spite of repeated
failures, ARIES imposes strict ordering constraints on LSN
generation. While a total ordering is not technically required
for correctness, valid partial orders tend to be too complex
and interdependent to be worth pursuing as a performance
optimization. Still, we explore this option in Sect. 7.2.

Because of its serial nature, LSN generation and the
accompanying log inserts impose serious limitation on paral-
lelism in the system. In this section we attack the problem at
its root, developing techniques which allow LSN generation
to proceed in parallel. We achieve parallelism by adapting
the concept of “elimination” [33] to allow the system to gen-
erate sequence numbers in groups. An especially desirable
effect of this grouping is that increased load leads to larger
groups rather than causing contention. We also explore the
performance trade-offs that come from decoupling the LSN
generation process from the actual log buffer insert operation.

We begin by considering the basic log insertion algorithm,
which consists of three distinct phases:

1. LSN generation and log buffer acquire. The thread must
first claim the space it will eventually fill with the
intended log record

2. Log record insertion. The thread copies the log record in
the buffer space it has claimed.

3. Log buffer release. The transaction releases the buffer
space, which allows the log manager to write the record
to disk.

Baseline implementation A straightforward log insert imple-
mentation acquires a central mutex before performing all
three phases and the mutex is released at the same time as
the buffer (see Algorithm 1 in Sect. A.1 of the appendix for
a concrete example).

This approach is attractive for its simplicity: log inserts
are relatively inexpensive, and in the monolithic case, buffer
release is simplified to a mutex release. Further, even though
LSN generation is fully serial, it is also short and predictable
(barring exceptional situations such as buffer wraparound or
full log buffer, which are comparatively rare).

The monolithic log insert suffers a major weakness
because it serializes buffer fill operations, even though buffer
regions never overlap, adding their cost directly to the criti-
cal path. In addition, log record sizes vary significantly, mak-
ing copying costs unpredictable. Figure 7(B) illustrates how
a single large log record can impose long delays on later
threads; this situation arises frequently in our system because

the distribution of log records has two strong peaks at 40
and 264 B (a 6× difference) and the largest log records can
occupy several kB each.

To permanently eliminate contention for the log buffer,
we seek to make the cost of accessing the log independent
of both the sizes of the log records being inserted and the
number of threads inserting them. The following subsections
explore both approaches and propose a hybrid solution which
combines them.

5.1 Consolidating buffer allocation

A log record consists of a standard header followed by an
arbitrary payload. Log buffer allocation is composable in
the sense that two successive requests also begin with a log
header and end with an arbitrary payload. We exploit this
composability by allowing threads to combine their requests
into groups, carve up and fill the group’s buffer space off the
critical path, and finally release it back to the log as a unit.
To this end we extend the idea of elimination-based backoff
[13,24], a hybrid approach combining elimination trees [33]
with backoff. Threads which encounter contention back off,
but instead of sleeping or counting cycles they congregate at
an elimination array, a set of auxiliary locations where they
attempt to combine their requests with those of others.

When elimination is successful, threads satisfy their
requests without returning to the shared resource at all, mak-
ing the backoff very effective. For example, stacks are ame-
nable to elimination because push and pop requests which
encounter each other while backing off can cancel each other
directly via the elimination array and leave. Similarly, threads
which encounter contention for log inserts back off to a con-
solidation array and combine their requests before reattempt-
ing the log buffer. We use the term “consolidation” instead of
“elimination” because, unlike with a stack or counter, threads

Fig. 7 Illustrations of several log buffer designs. The baseline system
can be optimized for shorter critical path (D), fewer threads attempting
log inserts (C), or both (CD)

123

Multicore and multisocket hardware

must still cooperate after combining their requests so that
the last to finish can release the group’s buffer space. Like
an elimination array, any number of threads can consolidate
into a single request, effectively bounding contention at the
log buffer to the number of array entries protecting the log
buffer, rather than the number of threads in the system. Algo-
rithm 2 (Sect. A.2 of the appendix) provides a sketch of the
consolidation array-based buffer allocation.

The net effect of consolidation is that only the first thread
from each group competes to acquire buffer space from the
log, and only the last thread to leave must wait to release
it. Figure 7(C) depicts the effect of consolidation; the first
thread to arrive is joined by two others while it waits on the
log mutex and all three proceed in parallel once the mutex
acquire succeeds. However, as the figure also shows, con-
solidation leaves significant wait times because only buffer
fill operations within a group proceed in parallel; operations
between groups are still serialized. Given enough threads in
the system, at least one thread of each group is likely to insert
a large log record, delaying later groups.

5.2 Decoupling buffer fill and delegating release

Because buffer fill operations are not inherently serial
(records never overlap) and have variable costs, they are
highly attractive targets to move off the critical path. All
threads which have acquired buffer regions can safely fill
those regions in any order as long as they release their regions
in LSN order. We therefore modify the original algorithm so
that threads release the mutex immediately after acquiring
buffer space. Buffer fill operations thus become pipelined,
with a new buffer fill starting as soon as the next thread can
acquire its own buffer region.

Decoupling log inserts from holding locks results in a
non-trivial buffer release operation which becomes a second
critical section. Like LSN generation, buffer release must
be serialized to avoid creating gaps in the log. Log records
must be written to disk in LSN order because recovery must
stop at the first gap it encounters; in the event of a crash,
any committed transactions beyond a gap would be lost.
No mutex is required, but before releasing its own buffer
region, each thread must wait until the previous buffer has
been released (Algorithm 3, Sect. A.3 of the appendix, gives
pseudocode).

With pipelining in place, arriving threads can overlap their
buffer fills with that of a large log record, without waiting for
it to finish first. Figure 7(D) illustrates the improved concur-
rency that results with significantly reduced wait times at the
buffer acquire phase. Under most circumstances, log record
sizes do not vary enough that threads wait for previous ones
to release the buffer, but high skew in the record size distri-
bution will limit scalability because a very large record will
force small ones which follow to wait for it to complete.

A further optimization (not shown in the figure) allows
threads to delegate their buffer release to a predecessor which
has still not completed.

To summarize the delegated buffer release protocol,
threads which would normally have to wait for a predeces-
sor instead attempt to mark their buffer as abandoned using
an atomic compare-and-swap operation. Threads which suc-
ceed in abandoning their buffer before the predecessor noti-
fies them are free to leave, forcing the predecessor to release
all buffers that would have waited for it. In addition to mak-
ing the system much less sensitive to large log inserts, it
also improves performance because a single thread releases
groups of buffers in a tight loop rather than communicating
the releases with other threads.

5.3 Putting it all together: hybrid log buffer

In the previous two sections we outlined (a) a consolidation
array which reduces the number of threads entering the log
insert critical section and (b) a decoupled buffer fill which
allows threads to pipeline buffer fills outside the critical sec-
tion. Neither approach eliminates all contention by itself, but
the two are orthogonal and can be combined easily. Consol-
idating groups of threads limits log contention to a constant
that does not depend on the number threads in the system,
while providing a degree of buffer insert pipelining (within
groups but not between them). Decoupling buffer fill oper-
ations allow pipelining between groups and reduces the log
critical section length by moving buffer outside, thus mak-
ing performance relatively insensitive to log record sizes. The
resulting design, shown in Fig. 7(CD), achieves bounded con-
tention for threads in the buffer acquire stage and maximum
pipelining of all operations. As we will see later, this hybrid
version consistently outperforms the other configurations by
combining their best features.

6 Evaluation of log buffer optimizations

We implement the techniques described in Sects. 3, 4, and
5 into a logging subsystem called Aether. To enhance read-
ability, most of the performance evaluation of ELR and flush
pipelining is shown in Sects. 3 and 4, respectively. Unless
otherwise stated, in this subsection we assume those optimi-
zations are already in place. This section details the sensi-
tivity of the consolidation array-based techniques to various
parameters, and finally evaluates performance of Aether in a
prototype database system.

6.1 Experimental setup

All experiments were performed on a Sun T5220 (Niagara
II) server with 64 GB of main memory running Solaris 10.

123

R. Johnson et al.

The Niagara II chip contains sixteen processing pipelines,
each capable of supporting four hardware contexts, for a
total of 64 OS-visible “CPUs.” The high degree of hardware
parallelism makes it a good indicator of the challenges all
platforms will face as on-chip core counts continue to dou-
ble. We use Shore-MT [15], an open-source multi-threaded
storage manager. We developed Shore-MT by modifying the
SHORE storage manager [3] to achieve high scalability on
multicore platforms. To eliminate contention in the lock man-
ager and focus on logging, we use a version of Shore-MT
with Speculative Lock Inheritance [14]. We run the following
benchmarks:

TATP TATP [25]. models a cell phone provider database. It
consists of seven very small transactions, both update and
read-only. The application exhibits little logical contention,
but the small transaction sizes stress database services, espe-
cially logging and locking. We use a database of 100 K Sub-
scribers.

TPC-B This benchmark [37]. models a banking workload
and it is intended as a database stress test. It consists of a
single small update transaction and exhibits moderate lock
contention. Our experiments utilize a 100-teller data set.

TPC-C TPC-C [38]. models an online transaction processing
database for a retailer. It consists of five transactions which
follow customer orders from initial creation to final delivery
and payment. We use a database of 100 Warehouses.

Log insert microbenchmark. We extract a subset of Shore-
MT’s log manager as an executable which supports only log
insertions without flushes to disk or performing other work,
thereby isolating the log buffer performance. We then vary
the number of threads, the log record size and distribution,
and the timing of inserts.

For each component of Aether, we first quantify exist-
ing bottlenecks, then implement our solution in Shore-MT
and evaluate the resulting impact on performance. Because
our focus is on the logging subsystem, and because modern
transaction processing workloads are largely memory resi-
dent [35], we use memory-resident data sets, while disk still
provides durability.

All results report the average of 10 30-second runs unless
stated otherwise; we do not report variance because all mea-
surements were within 2% of the mean. Measurements come
from timers in the benchmark driver as well as Sun’s profiling
tools. Profiling is highly effective at identifying software bot-
tlenecks even in the early stages before they begin to impact
performance, because problematic functions can be seen to
shift their position in the timing breakdowns.

We note that the hardware limits scalability somewhat
by multiplexing many hardware contexts over each pro-
cessor pipeline; we verify that this is the case by running

independent copies of Shore-MT in parallel (where the effect
remains in spite of a total lack of software contention), and
on multi-socket machines (where the effect is shifted to the
right by a factor proportional to the number of sockets).

6.2 Log buffer contention

First, to set the stage, we measure log buffer contention after
the ELR and the flush pipelining have been applied. Figure 8
shows the time breakdown for Shore-MT with ELR and flush
pipelining active using its baseline log buffer implementation
as an increasing number of clients submit the UpdateLo-
cation transaction from TATP. As the load in the system
increases, the time each transaction spends contenting for the
log buffer increases, at a point which the log buffer conten-
tion becomes the bottleneck taking more than 35% of the
execution time. This problem will only grow as processor
vendors release more parallel multi-core hardware.

6.3 Impact of log buffer optimizations (microbenchmarks)

A database log manager should be able to sustain any num-
ber of threads regardless of the size of the log records they
insert, limited only by memory and compute bandwidth.
Next, through a series of microbenchmarks we determine
how well the log buffer designs proposed in Sects. 5.1–5.3
meet these goals. In each experiment we compare the baseline
implementation with the consolidation array (C), decoupled
buffer insert (D), and the hybrid solution combining the two
optimizations (CD). We examine scalability with respect to
both thread counts and log record sizes and we analyze how
the consolidation array’s size impacts its performance. Fur-
ther experiments in the paragraphs which follow explore the
impact of skew in the record size distribution and of changing
the number of slots in the slot array.

Scalability with respect to thread count The most important
metric of a log buffer is how many insertions it can sustain

Fig. 8 Breakdown of the execution time of Shore-MT with ELR and
flush pipelining, running TATP-UpdateLocation transactions, as load
increases. The log buffer becomes the bottleneck

123

Multicore and multisocket hardware

 64

 256

 1024

 4096

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

M
B

/s
)

Thread #

(a) (b)

2300CD
C
D

Baseline

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 100 1000 10000

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size (bytes)

CD-L1
CD

C
D

Baseline

Fig. 9 Sensitivity analysis of the C-Array with respect to thread counts and log record size

per unit time, or the bandwidth which the log can sustain at
a given average log insert size. It is important because core
counts grow exponentially while log record sizes are applica-
tion- and DBMS-dependent and are fixed. The average record
size in our workloads is about 120 bytes and a high-perfor-
mance application generates between 100 and 200 MBps of
log, or between 800 K and 1.6 M log insertions per second.

Figure 9 (left) shows the performance of the log inser-
tion microbenchmark for records of an average size of 120 B
as the number of threads varies along the x-axis. Each data
series shows one of the log variants. We can see that the base-
line implementation quickly becomes saturated, peaking at
roughly 140 MB/s and falling slowly as contention increases
further. Due to its complexity, the consolidation array starts
out with lower throughput than the baseline. But once con-
tention increases, the threads combine their requests and per-
formance scales linearly. In contrast, decoupled insertions
avoid the initial performance penalty and perform better, but
eventually the growing contention degrades performance and
perform worst than the consolidation array.

Finally, the hybrid approach combines the best properties
of both optimizations, eliminating most of the startup cost
from (C) while limiting the contention which (D) suffers. The
drop in scalability near the end is a hardware limitation, as
described in Sect. 6.1. Overall, we see that while both consol-
idation and decoupling are effective at reducing contention,
both have limitations which we overcome by combining the
two, achieving near-linear scalability.

Scalability with respect to log record size. In addition to
thread counts, log record sizes also have a strong influence on
the performance of the log buffer. In the case of the baseline
and consolidated variants, larger record sizes increase the
critical section length; in all cases, however, larger record
sizes decrease the number of log inserts one thread can per-
form because it must copy an increasing amount of data per
insertion.

Figure 9 (right) shows the impact of these two factors,
plotting sustained bandwidth achieved by 64 threads as they
insert log records ranging between 48 B and 12 kB (the largest

record size in Shore-MT). As log records grow the base-
line performs better, but there is always enough contention
that makes all other approaches more attractive. The consol-
idated variant (C) performs better at small records sizes as it
can handle contention much better than the decoupled record
insert (D). But once the records size is over 1 kB, contention
becomes low and the decoupled insert variant fares better as
more log inserts can be pipelined at the same time. The hybrid
variant again significantly outperforms its base components
across the whole range, but in the end all three become band-
width-limited as they saturate the machine’s memory system.

Finally, we modify the microbenchmark so that threads
insert their log records repeatedly into the same thread-local
storage, which is L1 cache resident. With the memory band-
width limitation removed, the hybrid variant continues to
scale linearly with record sizes until it becomes CPU-limited
at roughly 21 GBps (nearly 20× higher throughput than mod-
ern systems can reach).

Robustness to skewed record sizes. In Fig. 10 we test the sta-
bility of the consolidated buffer acquire with delegated buffer
release (CDE, for short) and compare it with the hybrid var-
iant (CD) from Sect. 5.3. We use the same microbenchmark
setup from Sect. 6 but modify it to present the worst-case

Fig. 10 Performance impact of log record size skew

123

R. Johnson et al.

scenario for the CD algorithm: a strongly bi-modal distri-
bution of log record sizes. We fix one peak at 48 bytes (the
smallest and the most common log record size in Shore-MT)
and we vary the second peak (called the outlier). For every
60 small records a large record is inserted in the log. CD per-
forms poorly with such a workload because the rare, large
record can block many smaller ones and disrupt the pipelin-
ing effect. We present along the y-axis the throughput as we
increase the outlier record size along the x-axis. CD and CDE
perform similarly until an outlier size of around 8 kB, when
CD stops scaling and its performance levels off. CDE, which
is immune to record size variability, achieves up to double the
performance of the CD for outlier records larger than 65 kB.

The CDE algorithm is more robust than the CD variant
but, for the database workloads we examined, it is unnec-
essary in practice because nearly all records are small and
the frequency of larger outliers is orders magnitude smaller
than examined here. For example, in Shore-MT the largest
log record is 12 kB with a frequency of 0.01% of the total
log inserts. In addition, CDE achieves around 10% lower
throughput than the CD variant under normal circumstance,
making it unattractive. Nevertheless, for other configurations
which encounter significant skew, the CDE algorithm might
be attractive given its stability guarantee.

Sensitivity to slot array size. Our last microbenchmark ana-
lyzes whether (and by how much) the consolidation arrays
performance is affected by the number of available slots. Ide-
ally the performance should depend only on the hardware and
be stable as thread counts vary. Figure 11 shows a contour
map of the space of slot sizes and thread counts, where the
height of each data point is its sustained bandwidth. Lighter
colors indicate higher bandwidth, with contour lines mark-
ing specific throughput levels. We achieve peak performance
with 3–4 slots, with lower thread counts peaking with fewer
and high thread counts requiring a somewhat larger array.
The optimal slot number corresponds closely with the num-
ber of threads required to saturate the baseline log which the
consolidation array protects. Based on these results we fix
the consolidation array size at four slots to favor high thread
counts; at low thread counts the log is not on the critical path
of the system and its peak performance therefore matters
much less than at high thread counts.

6.4 Overall impact of Aether

To complete the experimental analysis, we successively add
each of the components of Aether to the baseline log sys-
tem and measure the impact. With all components active we
avoid the bottlenecks summarized in Fig. 1 and can identify
optimizations which are likely to have highest impact now
and in the future.

Fig. 11 Sensitivity to the number of slots in the consolidation array

Fig. 12 Overall performance improvement provided by each compo-
nent of Aether when running the TPC-B benchmark

Figure 12 captures the scalability of Shore-MT running
the TPC-B benchmark. We plot throughput as the number of
client threads varies along the x-axis. For systems today, flush
pipelining provides the largest single performance boost,
37% higher peak performance than the baseline. The scal-
able log buffer adds a 15% further speedup by eliminating log
contention. Overall the Aether logging subsystem achieves
58% higher performance than the baseline implementation.

Based on these results we conclude that the most pressing
bottleneck is scheduler overload induced by high transaction
throughput and the associated context switching. However,
flush pipelining depends on ELR to prevent log-induced lock
contention which would otherwise limit scalability.

As core counts continue to increase, we also predict that in
the future, log buffer contention will become the most serious
bottleneck unless techniques such as the hybrid implementa-
tion presented in this section are used. Even today, contention
at the log buffer impacts scalability to considerable degree.
In addition, the profiling results from Fig. 8 indicate that

123

Multicore and multisocket hardware

this bottleneck is growing rapidly with core counts and will
soon dominate. This indication is further strengthened by the
fact that Shore-MT running on modern hardware achieves
almost exactly the peak log throughput we measure in the
microbenchmark for the baseline log. In other words, even a
slight increase in throughput (with corresponding log inser-
tions) will likely push the log bottleneck to the forefront.
Fortunately, the hybrid log buffer displays no such lurking
bottleneck and our microbenchmarks suggest that it has sig-
nificant headroom to accept additional log traffic as systems
scale in the future.

7 Scalable logging on multiple sockets

Server designs today increasingly utilize non-uniform mem-
ory architectures (NUMA) where groups of cores or CPUs
closely located (islands of cores) can access their own local
memory faster than memory belonging to other islands. For
example, in a multi-socket machine it is common for each
CPU to have one or more dedicated memory controllers
which provide much faster access than the memories of other
sockets. Such configurations are attractive because memory
bandwidth is proportional to the number of processing units.
Inter-island communication, however, is much slower and
has lower available bandwidth compared to the local mem-
ory; additionally, the programming model becomes more
complicated because programmers must now pay attention
to the island where each chunk of memory is allocated.

In this section we investigate the scalability of Aether to
multi-socket architectures, which put several multicore pro-
cessors together for even higher parallelism than a traditional
chip multiprocessor machine. To test the scalability of the
Aether logging system, we use a Sun Niagara II machine
very similar to the one in Sect. 6.1 except that this time the
server boasts 4 sockets, each with a Niagara II chip, for a
total of 256 hardware contexts.

In Fig. 13 we run the microbenchmark of Sect. 6.3 on the
multisocket Niagara II machine to test the scalability of the
combination array (labeled as CD-Vanilla) by varying along

 16

 64

 256

 1024

 4096

 16384

 1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
B

/s
)

Thread #

CD-Distributed
CD-SocketBound

CD-Socket
CD-Vanilla

Baseline

Fig. 13 Throughput of the three Aether variations on a four-socket
multicore system

the x-axis the number of threads that access the log, while
measuring the throughput along the y-axis. For comparison
purposes, we also show the throughput achieved by Aether in
the single-socket case (labeled as CD-SocketBound). As we
can see, for a single thread the combination array achieves
the same performance on both the single-socket and multi-
socket machine. Between two and four threads, however, the
throughput of the system drops by a factor of 2 with every new
thread added due to the increasing inter-socket communica-
tion. Next, for thread counts up to 32, Aether scales linearly
with the number of added threads but is unable to bridge
the performance gap imposed by inter-chip communication.
After 32 threads, the contention caused by the growing num-
ber of threads explodes and brings performance almost to the
single-thread level. This is caused by expensive atomic oper-
ations used by lock hand-offs and by the management of the
combination array; off-chip accesses increase latency inside
important critical sections, exacerbating contention and mak-
ing the optimal number of slots vary widely between 3 and 10.

7.1 Optimizing the log buffer design for NUMA

From the Fig. 13, we identify two main performance prob-
lems. First, high contention due to increased latency means
the consolidation array no longer scales effectively as thread
counts increase beyond 64 threads. Second, latency reduces
single-thread performance to the point that, even with perfect
scalability beyond 64 threads, the NUMA machine would
barely match the performance of its smaller sibling with 1/4
the processing power!

In the following subsections we discuss two improve-
ments to the combination array implementation which make
it more suitable for NUMA accesses by minimizing inter-
socket communication. The first is illustrated by Fig. 14b.
We observe that allowing threads from different sockets to
combine into the same group is counter-productive because
the latency of crossing socket boundaries is higher than the
wait without any consolidation at all. We therefore introduce
separate combination arrays for every socket. Threads run-
ning on a given socket can combine their requests with others
from the same socket, utilizing socket-local data structures.
Only the group leaders are required to make the expensive
requests for memory as they acquire the log insert mutex on
behalf of the entire socket. This leads to orderly, round robin-
style hand-offs as log state migrates between sockets. These
optimizations have multiple advantages: (i) they eliminate
inter-socket communication overhead for the management
of the logic of the combination array (as all combinations
are done on socket-local data structures), (ii) they reduce
cache coherency communication when writing to the single
log buffer, because large aggregated log records will not be
as prone to false sharing of cache lines, and (iii) a single lock
hand-off services all requests of a socket.

123

R. Johnson et al.

Fig. 14 Modifications of the
Aether combination array for
scaling to NUMA architectures

We present in Fig. 13 the results for the improved multi-
socket combination array (called CD-Socket). As we can see,
the drop in performance due to contention for slots for higher
thread counts is fully addressed. Unfortunately, the perfor-
mance hit between 2 and 4 threads remains, albeit some-
what smaller than it was for the vanilla combination array
implementation. Thus, the combination array is successful
in handling contention but it cannot compensate for the long
latencies NUMA imposes on lock hand-off and log buffer
writing times. This result suggests that the only way to avoid
the penalty is to also avoid most inter-socket communication.
This leads us to our second improvement, a distributed log
implementation designed to avoid latency penalties within a
single process.

7.2 Distributed logging

A distributed log has the potential to ease bottlenecks by
spreading load over N logs instead of just one; if we bind
each log to a socket, we can further apply our single-socket
optimizations such as the consolidation array. This design is
shown on the far right of Fig. 14. Intuitively, it should be
possible to parallelize the log, given that most transactions
execute in parallel without conflicts. In particular, the reason
we suffer log contention at all is because many transactions
attempt to make independent updates which the system did
not need to order with respect to each other. However, several
issues must be addressed by a potential distributed log:

– Because it is prohibitively expensive to write back pages
every time they migrate, or to track dependencies due
to migrations, transactions must flush all logs when they
commit, increasing latency drastically.

– Log sequence numbers (LSN), the de-facto unit of time
in the database, are incomparable unless they refer to the
same log. We need some other method for establishing a
system-wide notion of time.

Fig. 15 Inter-log dependencies for 1 ms of TPC-C (8 logs, 100 kB,
30 commits)

– Log files may not all flush at the same rate, leading to
“holes” in the log which can lead to unrecoverable situa-
tions, such as redoing the deletion of a record which was
never added. ELR makes this worse, because transactions
can commit without flushing and later transactions now
depend on data which may be lost in a hole.

The following subsections highlight in turn each challenge
and our proposed solution; more detailed descriptions follow
in the next subsection.

7.2.1 Dependency tracking in a distributed log

Write-ahead logging allows transactions to release page
latches immediately after use, minimizing data contention
and allowing database pages to accumulate many changes
in the buffer pool before being written back to disk. Fur-
ther, serial logging allows transactions to not track physical
dependencies, especially those that arise with physiological
logging,5 as a transaction’s commit will never reach disk
before its dependencies. A distributed log removes that latter

5 For example, if transaction A inserts a record in slot 13 of a page, and
then B inserts a record in slot 14, A’s log record must become durable
first or recovery could encounter an inconsistent page and fail.

123

Multicore and multisocket hardware

condition, and must therefore track transaction dependencies
and ensure that logs become durable in a coherent order, as
discussed by DeWitt et al. [7]. In addition, it must do so
without requiring multiple log flushes per transaction, or the
serial implementation will actually be faster.

Unfortunately, this challenge is difficult to address by sim-
ple partitioning schemes because physical dependencies can
be very tight, especially with hot database pages. For exam-
ple, Fig. 15 shows the dependencies which would arise in
an 8-way distributed log for a system running the TPC-C
benchmark [38]. Each node in the graph represents a log
record, with horizontal edges connecting records from the
same log. Diagonal edges mark physical dependencies which
arise when a page moves between logs. Dark edges mark
tight dependencies where the older record is one of the five
most recently inserted records for its log at the time. The
entire graph covers roughly 100 kB of log records, which
corresponds to less than 1 ms wall time and about a dozen
transaction commits.

Our experiments show that, on a four-socket system pages
have a 30–40% chance of migrating sockets after any given
use. This migration ratio holds for both TATP (with very
small transactions) and for TPC-C (with significantly larger
transactions). Similarly, there is no obvious way to partition
transactions in such a way that they access only a certain
subset of the data, as required for partitioned/shared-nothing
systems to avoid two-phase commit.

Rather than track dependencies, we assume a relatively
small number of sockets in the system and flush all logs
at every transaction commit. Each transaction is pinned and
inserts records only to the log of the socket it started on, which
means that log records for the same data page are allowed to
be recorded freely to any log. We rely on early lock release
and flush pipelining to hide the associated latencies and allow
the system to maintain high throughput. The design of our
distributed flush protocol only requires one log record, in the
transaction’s local log.

7.2.2 Replacing the LSN with a global clock

Because log sequence numbers from different logs cannot be
used to order log records globally, we must find some other
mechanism to track the flow of time so that during recovery,
logs can be merged properly. To this end, we propose a global
sequence numbering (GSN) scheme based on Lamport time-
stamps [18], which allows us to establish a total order for all
updates to a given page or transaction while still permitting
parallelism between pages and transactions. We then replace
the LSN everywhere that global timekeeping is required. In
particular, we convert the page recovery LSN to a GSN by
giving each page a Lamport timestamp, and log recovery
merges logs based on record GSNs. We discuss this scheme
in more detail in the next section.

7.2.3 Avoiding holes in the log

Because dependencies are so widespread and frequent, it is
almost infeasible to track them, and even if tracked efficiently
the dependencies would still require most transactions to
flush multiple logs at commit time. Also, log files may not
all flush at the same rate, leading to holes in the log. Judging
by Fig. 15 there is no obvious way of assigning log records
to different partitions so that the dependency lines between
partitions would be significantly reduced. The authors are
unaware of any DBMS which distributes the log within a
single node. The two primary techniques for preserving log
integrity are to write back dirty pages whenever they migrate
(e.g., Oracle CacheFusion [17]), or to flush the log at each
migration (Rdb/VMS [21]). Because page migrations are so
frequent in our system, occurring on 30–40% of accesses,
both approaches impose unacceptable I/O penalties.

To avoid holes without an I/O for every migration, we
require every externally visible event, such as a transaction
commit or dirty page writeback, to synchronize with all logs.
It does so by recording the tail of each log as part of a log
sync record, which is inserted into the transaction’s local log.
At recovery time, the system can examine these sync records
in order to identify holes in the log; the system then truncates
the log to remove holes. Ensuring that the logs flush success-
fully before a transaction returns results to the user ensures
that it is safe to truncate in this fashion—by definition, any
changes dependent on a hole in the log were never exposed
to the world and can be ignored.

7.3 Lamport clocks

The Lamport clock [18] is a distributed time-tracking device
which defines a loose partial ordering of events in the system.
Conceptually, Lamport clocks are based on message pass-
ing: “processes” (threads, transactions, workers, etc.) per-
form “actions” (computation) which are ordered locally but
not globally. Processes send “messages” to each other when
they need to communicate, and these messages provide a
partial ordering for events in the system. Every process main-
tains a timestamp under the following rules:

1. Every message is accompanied by its sender’s current
timestamp

2. A receiving process updates its own timestamp to be at
least as large as the one in the message.

3. Every meaningful action or message received is an
“event” and increments the process timestamp.

The above rules order events relative to inter-process com-
munication: if two processes never communicate, their time-
stamps will be completely unrelated to each other and can be

123

R. Johnson et al.

said to have occurred “simultaneously.” On the other hand,
two processes which communicate heavily will have much
stronger ordering imposed as they repeatedly synchronize
their timestamps, but still the ordering is too weak to estab-
lish causality for events originating from different processes.

Formally, if we let C(x) be the timestamp of event x ,
and define A → B to mean “A happened before B”, then
A → B ⇒ C(A) < C(B), but the opposite does not hold.
That is, we cannot say with certainty that A → B based
only on Lamport timestamps C(A) and C(B) (unless A and
B are from the same process). Recall that all events from
two processes which never communicate occur “at the same
time” even though the corresponding timestamps may very
well be larger or smaller timestamps relative to each other.
However, given events A with timestamp C(A), we can say
with certainty that C(A) �< C(B) ⇒ A �→ B (A can only
have occurred “before” B if its timestamp is smaller).

In the database system, we are interested in three types
of “processes”: the records inserted into a given log, the
reads and writes performed by a transaction, and the updates
to objects such as database pages. We therefore maintain a
Lamport timestamp for each of these, allowing all events
involving the same page, etc., to be totally ordered. Our
inability to infer happened-before relationships for other
events is unimportant, because pessimistic concurrency con-
trol ensures that any two log entries which can occur simulta-
neously are independent. Therefore, establishing that B did
not happen before A is enough to safely replay A before B,
because if the events were not independent the dependency
would have been captured when synchronizing timestamps.

Figure 16 illustrates the three main types of communica-
tion which arise in the database system: page reads, updates,
and log synchronization. The first involves a transaction and a
page only (no logging), the second involves a transaction and
the log (and usually a page as well), while the third involves
multiple logs only.

Before continuing, we should point out that logging in
a database system confuses matters slightly because some
events (those which generate log records) are more impor-
tant than others (those which merely update timestamps),
because only the former are available at recovery time. We
therefore use solid circles to denote logged events, while hol-
low circles represent timestamp updates (which serve only
to impose order on future log records). In each example, the
starting timestamps are denoted by hollow circles filled with a
hatched pattern, and a timestamp synchronization is denoted
with an arrow whose length shows how much the timestamp
changed. Time flows from left to right.

7.3.1 Page read

When a transaction reads a page (Fig. 16a, b) it synchronizes
its timestamp with that of the page while the page’s timestamp

remains unchanged. For example, part (a) of Fig. 16 shows
the case where transaction T reads a “newer” page P and
must update its timestamp to reflect this fact. Part (b), on the
other hand, shows a transaction which reads an “older” page
and does not respond to the page’s smaller timestamp.

Conceptually, we can say the page broadcasts a mes-
sage (its contents) whenever it is updated, and transactions
which eventually read that version of the page can be said to
have “received” the message. Synchronizing the transaction
with the page is important to capture the flow of informa-
tion between pages. For example, if a transaction building
an index reads record R from page P1 without synchroniz-
ing its timestamp, a later insertion to page P2 could have
C(P2) < C(P1). Should a crash occur, recovery would
wrongly conclude that page P2 should be recovered first
(because it could not have occurred after the change to P1),
leaving a window of vulnerability where index probes find
the entry in P2 but fail to find the corresponding value in page
P1. By synchronizing T ’s timestamp when it reads P1, we
ensure that any later actions which depend on that read (such
as the insert to P2) will be recovered in order.

7.3.2 Log writes

Log writes are the only source of timing information avail-
able after a crash, and must therefore preserve all ordering
needed to maintain consistency of the recovered data. When
a transaction T inserts a record into log L , both must syn-
chronize their timestamps to the larger of the two; if a page P

(a) (b)

(c) (d)

(f)(e)

Fig. 16 Examples of Lamport timestamp synchronization in the
distributed log

123

Multicore and multisocket hardware

is involved it must also be synchronized. This synchroniza-
tion ensures proper ordering of updates to a page, as well as
history in the transaction and log. While in a truly distributed
system such three-way synchronization would be impossible,
in our single-node system the transaction, log, and page have
already been brought together by the computation and syn-
chronizing them is inexpensive. Part (c) of Fig. 16 illustrates
the case where the page and transaction must be brought
forward to match the log’s timestamp, while part (d) shows
the case where the transaction and log are behind in time
before the insert. Either way, all three entities have the same
timestamp once the log insertion completes.

Although log records are already totally ordered by their
log sequence number (LSN, or address on disk), log time-
stamps are important because pages frequently migrate
between logs. When page P is updated in log L1 and then
L2, timestamp synchronization ensures that recovery pro-
cesses L1’s record first. Log sequence numbers, which are
only comparable for records in the same log, do not provide
this necessary information.

7.3.3 Log synchronization

Whenever a thread is about to make updated state externally
visible, it must first synchronize all logs in the system. This
is a three-step process:

1. The thread records the current timestamp of every log
and updates each log’s timestamp to be no smaller than
its own.

2. The thread inserts a synchronization record—containing
the recorded timestamps—into its own log

3. The thread requests the system to harden all logs up to its
own timestamp, waiting for the I/O to complete before
continuing.

Figure 16e and f illustrate the first two steps. In (e), the
calling log is the most advanced in time and therefore updates
only the other logs’ timestamps; in (f), the calling log is nei-
ther the most nor the least advanced, and must update both
its own and others’ timestamps.

Log synchronization is required in order to permit recov-
ery to detect “holes” in the log which would otherwise render
the system unrecoverable. We discuss log holes in the next
section.

7.4 Recovery and holes in the distributed log

Perhaps the biggest challenge of distributing the log is the
possibility of encountering “holes”—log records which did
not make it to stable storage before a crash but whose suc-
cessors did. Holes are not a problem for a single log because

all records go to the same place; if any earlier record is miss-
ing, then none of the later ones were written either. While
it is technically possible for holes to arise in a single log,
recovery avoids any problems by truncating the log at the
first invalid or missing record it finds. In a distributed log,
however, recovery has no way to detect whether dependent
records from a different log are missing because the available
Lamport timestamps do not establish causality. If log L1 and
L2 have C(L2) < C(L1), we may have lost log records in
the crash and it is tempting to truncate L1 at C(L2). Unfor-
tunately, it’s just as likely that L2 was fully up to date and
simply contained no later records, in which case truncating
L1 could lose committed data.

One workaround would be to force each externally visi-
ble action (transaction commit or dirty page write back) to
insert into every log, thus synchronizing their timestamps
and ensuring that recovery knows “when” in each log the
action occurred. However, this approach suffers from two
major weaknesses. First, forcing every transaction commit
to insert into every log increases drastically the number of
log records inserted and also obviates much of the benefits
we might gain by pinning transactions to socket-local log
managers. Second, transactions frequently update different
records stored in the same page, and a small hole in the log
can render the page unrecoverable even if the transactions
involved never committed.6 Forcing transactions to record
every page update in every log would completely defeat the
point of distributing the log in the first place.

Our solution, which we described earlier, is to have trans-
actions record log dependencies in a single log record before
making changes visible to the outside world. As long as
they ensure each log is hardened up to the recorded time-
stamp before continuing, the system can recover the log. This
approach has the advantage that it only requires the transac-
tion to ever write to its own log, and we can minimize the
additional overhead by embedding the dependency informa-
tion in the commit record which has to be written anyway.

At recovery time, the system analyzes each log individu-
ally, recording the last synchronization record whose depen-
dencies are all met. After analysis completes, the system
selects the maximum timestamp for each log out of all com-
pleted sync records and truncates the log there. We can safely
truncate because by definition no later events (including
attempted a second attempted sync) were exposed to the out-
side world and can therefore be ignored. Because every syn-
chronization advances the other logs’ Lamport timestamps,
it is impossible for one sync record to have unmet dependen-
cies while a later synchronization originating from the same

6 For example, suppose that T1 inserts Ri into slotted page P , and T2
later inserts R j . Suppose that T1 and T2 are bound to logs L1 and L2,
and only L2 hardens before a crash. Recovery will attempt to insert R j
past-end in the slot array and flag the page as corrupted.

123

R. Johnson et al.

log is fully satisfied. Log redo then processes log records,
smallest timestamp first, until it reaches the last sync record
of each log. Every log record redone is thus guaranteed to
have all its dependencies from other logs met. Finally, log
undo proceeds as usual, rolling back all in-progress transac-
tions discovered in all logs, largest timestamp first.

7.5 Performance of the distributed log

Our preliminary evaluation of distributed logging takes two
forms. First, we modify the consolidation array microbench-
mark to incorporate per-socket logging, and second, we
implement our distributed design in Shore-MT. We test both
on a four-socket Niagara II machine with 256 hardware con-
texts.

7.5.1 Experimental setup

The primary difference with our main experimental setup is
the need for running threads to identify their current socket.
This turns out to be straightforward in x86 machines, where
the CPUID instruction is an efficient source of this informa-
tion. On our SPARC hardware, however, we rely on Sun’s
DTrace [2] to cooperate with our program to identify the log-
ical CPU (and hence socket) which each thread runs on. We
achieve this by instrumenting DTrace to capture the address
of a thread-local variable at thread startup, into which it writes
the CPU ID every time a thread is scheduled on-CPU. While
it is technically possible with both DTrace and the CPUID
instruction to have an untimely preemption which migrates
the thread to a new socket, this would only cause a slight
performance drop due to additional cache misses. Correct
execution does not rely on the thread being pinned to a given
socket for any amount of time.

7.5.2 Consolidation array microbenchmark

In order to make a case for distributed logging, we extend
the consolidation array microbenchmark to create one full
log buffer replica for each socket in the system. Threads then
identify which socket’s log they should use. The performance
of this technique, when combined with the normal consolida-
tion array within each socket, is shown as the CD-Distributed
series of Fig. 13. The latency penalty suffered by previous
schemes is completely eliminated, and performance scales
linearly until the machine is nearly saturated. The slight dip
at the end occurs because some memory is allocated on the
wrong sockets and leads to unwanted coherence traffic; for
very high thread counts this traffic overwhelms the intercon-
nect between sockets and slows down the system.

As a further experiment (not shown), we simulated the
case where threads must synchronize the logs after every
few log inserts. In the very worst case, an update transaction

would insert exactly two records: one for a single change
to the database, and a commit record. Our profiling shows
that TATP transactions insert 3–5 log records per transaction,
while TPC-C transactions generate 75 or more. However, we
found that adding log synchronization reduced performance
by less than 5%. This low cost makes sense because log syn-
chronization does not generate extra log records in the other
logs, only a memory read and single atomic swap in the case
where the other log is out of date compared with the current
one.

The high performance of the distributed c-array, combined
with the low synchronization penalty we observe, lead us to
conclude that the distributed log mechanism is a promising
way to reduce log contention in the system.

7.6 Distributed log in Shore-MT

Following the design outlined in Sect. 7.3, we implemented
a distributed log in Shore-MT. We then evaluate the perfor-
mance of this version of Shore-MT using the TATP bench-
mark. While TATP provides the high update rates which lead
to contention, it also poses a worst case for the distributed log
because transactions are so short that they cannot amortize
the cost of a log sync over very many other log record inser-
tions. Table 1 summarizes the results of these experiments
when run on our four-socket Niagara II machine, as well as a
four-socket Intel Xeon with six cores per socket (24 contexts
total with hyperthreading disabled).

For each machine, we examine two cases: the mix of trans-
actions of TATP (15% of the transactions are updates), and
isolated the read-only GetSubscriberData transaction.
Further, we examine three cases: the baseline Shore-MT as
well as the distributed log when accessed by socket (Dlog-S)
or randomly (Dlog-R). We would expect that the socket-
bound distributed log will be more expensive than the base-
line, but scale better than either the baseline or the case where
threads access logs randomly rather than by socket.

In practice, we see that the distributed log costs anywhere
from 5–15% performance due to its increased complexity and
the need to log both GSN and LSN information for each log
record. Unfortunately, we find that the hoped-for scalability
does not materialize because applying the distributed log only

Table 1 Comparison of the performance of baseline and distributed
logging on two multisocket machines

Niagara Xeon

TATP (ktps) GSD TATP (ktps) GSD

Baseline 256 551 ktps 326 726 ktps

DLog-S 260 515 ktps 275 720 ktps

DLog-R 247 N/A 267 N/A

123

Multicore and multisocket hardware

shifts the bottleneck to other parts of the database engine.
While we eliminated several of these bottlenecks, we came
to the conclusion that there are simply too many other sources
of cross-socket communication in the system for the distrib-
uted log to make much difference over the multisocket-opti-
mized consolidation array. This hypothesis is supported by
the small or even non-existent penalty we observe by allow-
ing threads to access logs randomly—there are enough other
sources of coherence traffic that the distributed log’s contri-
butions are lost in the noise. We note that the distributed log
indeed eliminates contention, unlike the multisocket-opti-
mized c-array. Profiling the systems indicates that the log
generates no contention to speak of and that other areas such
as the lock manager (particularly deadlock detection) are the
bottlenecks.

Based on these results, we conclude that, in order to truly
benefit from a distributed log, the other memory accesses
in the system must also be distributed, perhaps following a
design philosophy such as DORA [28] and PLP [29]. These
approaches either logically or physically partition the acces-
ses of the worker threads, eliminating most forms of commu-
nication in the system while still allowing it when necessary.
We leave this integration as future work.

8 Conclusions

Log manager performance becomes increasingly important
as database engines continue to increase performance by
exploiting hardware parallelism. However, the serial nature
of the log, as well as long I/O times, threatens to turn the log
into a growing bottleneck. As available hardware parallel-
ism grows exponentially, contention for the central log buffer
threatens to halt scalability. A new algorithm, consolidation
array-based backoff, incorporates concepts from distributed
systems to convert the previously serial log insert operation
into a parallel one which scales well even under much higher
contention than current systems can generate. We address
more immediate concerns of excessive log-induced context
switching using a combination of early lock release and log
flush pipelining which allow transactions to commit without
triggering scheduler activity, and without sacrificing safety or
durability. Finally, we explore potential methods for extend-
ing this performance to non-uniform architecture (NUMA)
machines, which raise a different set of challenges than sin-
gle-socket multicore machines. Taken together, these tech-
niques allow the database log manager to stay off the critical
path of the system for maximum performance even as avail-
able parallelism continues to increase.

Acknowledgments This work was partially supported by a Sloan
research fellowship, NSF grants CCR-0205544, IIS-0133686, and IIS-
0713409, an ESF EurYI award, and Swiss National Foundation funds.

Appendix A: Detailed log insertion algorithms

This section provides detailed descriptions and pseudocode
for the optimizations we discussed in the previous section.
It also describes in detail the “consolidation array” algo-
rithm which makes the log insertion optimizations possible.
We expect this section to be especially useful for achieving
a deeper understanding of these optimizations, and also to
allow practitioners to implement them in their own systems.

A.1 Baseline

In a straightforward implementation, a single mutex pro-
tects the logs buffer, LSN generation state, and other struc-
tures. Algorithm 1 presents such an approach, which the later
designs build on. In the baseline case a log insert always
begins with acquiring the global mutex (L2) and finishes
with its release (L18). Inside the critical section there are
three operations: (i) A thread first allocates log buffer space
(L7–11); (ii) It then performs the record insert (L12–15);
(iii) Finally, it releases the buffer space making the record
insert visible to the flush daemon by incrementing a ded-
icated pointer (L17). As discussed, the baseline algorithm
suffers two weaknesses. First, contention is proportional to
the number of threads in the system; second, the critical sec-
tion length is proportional to the amount of work performed
by each thread.

A.2 Consolidation array

Consolidation-based backoff aims to reduce contention and,
more importantly, make it independent of the number of

Algorithm 1 Baseline log insertion

1 def log_insert(size, data):
lock_acquire(L)
lsn = buffer_acquire(size)

4 buffer_fill(lsn, size, data)
buffer_release(lsn, size)

end
7 def buffer_acquire(size):

/* ensure buffer space available */
lsn = /* update lsn and buffer state */

10 return lsn
end
def buffer_fill(lsn, size, data):

13 /* set record’s LSN */
/* copy data to buffer (may wrap) */

end
16 def buffer_release(lsn, size):

/* release buffer up to lsn+size */
lock_release(L)

19 end

123

R. Johnson et al.

Algorithm 2 Log insertion with consolidation

def log_insert(size, data):
2 if (lock_attempt(L)== SUCCESS)

/* no contention */
lsn = buffer_acquire(size)

5 buffer_fill(lsn, size, data)
buffer_release(lsn, size)
return

8 end
{s, offset} = slot_join(size)
if (0 == offset)

11 /* slot owner */
lock_acquire(L)
group_size = slot_close(s)

14 lsn = buffer_acquire(group_size)
slot_notify(s, lsn, group_size)

else
17 /* wait for owner */

{lsn, group_size} = slot_wait(s)
end

20 buffer_fill(lsn+offset, size, data)
if (slot_release(s, size) == SLOT_DONE)

/* Last to leave, must release buffer */
23 buffer_release(lsn, group_size)

slot_free(s)
end

26 end

threads accessing the log. A sketch of the code is presented
in Algorithm 2. The primary data structure consists of an
array with a fixed number of slots where threads can aggre-
gate their requests. Rather than acquiring the lock uncondi-
tionally, threads begin with a non-blocking lock attempt. If
the attempt succeeds, they perform the log insert directly, as
before (L2–8). Threads which encounter contention back off
to the consolidation array and attempt to join one of its slots
at random (L9). The first thread to claim a slot becomes that
slot’s owner; other threads can join the slot’s group while
the slot owner (or “group leader”) waits for the mutex. Once
inside the critical section, the group leader is responsible to
acquire buffer space for all waiting threads in its group. It
atomically reads the current group size and marks the group
as closed (L13); once a slot closes, threads can no longer
join the group. The group leader then computes the amount
of buffer space needed, acquires it, and notifies the other
group members (L14–15) before beginning its own buffer
fill. Meanwhile, threads which join the group infer their rel-
ative position in the group’s meta-request based the group
size at the time they joined; once the group leader reports the
LSN and buffer location each thread can compute the exact
LSN and buffer region which belongs to it (L18 and L20). As
each thread leaves (leader included), it decrements the slots
reference count; the last thread to leave releases the buffer
and frees the slot for reuse (L21–25).

Once a consolidation array slot closes, it remains inacces-
sible while the threads in the group perform the consolidated

Algorithm 3 Log insertion with decoupled buffer fill

1 def buffer_acquire(size, data):
/* wait for buffer space */
lsn = /* update lsn and buffer state */

4 lock_release(L)
return lsn

end
7 def buffer_release(lsn, size):

while (lsn != next_release_lsn)
/* wait my turn */

10 end
/* release buffer up to lsn+size */
next_release_lsn = lsn+size

13 end

log insert, with time proportional to the log record insert
size plus the overhead of releasing the buffer space. To pre-
vent newly arrived threads from finding all slots closed and
being forced to wait, each slot owner removes the consolida-
tion structure from the consolidation array when it closes,
replacing it with a fresh slot that can accommodate new
threads (L13). The effect is that the array slot position reopens
quickly, even though the threads which consolidated their
request are still working on the previous (now-private) resi-
dent of that slot. We avoid memory management overheads
by allocating a large number of consolidation structures at
start-up time, which we treat as a circular buffer when allo-
cating new slots. At any given moment of time, arriving
threads access only the combination structures present in the
slots of the consolidation array, and those slots are returned
to the free pool after the buffer release stage. In the com-
mon case the next slot to be allocated was freed long ago
and each allocation consists of incrementing an array off-
set. Section A.4 describes the implementation details of the
consolidation array.

A.3 Decoupled buffer fill

Decoupling the log insert from holding the mutex reduces
the critical section length and also prevents large log records
from causing contention. Algorithm 3 shows the changes
over the baseline implementation (Algorithm 1) needed to
decouple buffer fills from the serial LSN generation phase.
First, a thread acquires the log mutex, generates the LSN,
and allocates buffer space. Then, it releases the central mu-
tex immediately (L4) and performs its buffer fill concurrently
with other threads. Once the buffer fill is completed, the
thread waits for all other threads to finish their inserts (L8)
before it releases its log buffer space (L12). The release stage
uses the implicit queuing of the next_release_lsn var-
iable to avoid expensive atomic operations or mutex acqui-
sitions.

123

Multicore and multisocket hardware

A.4 Consolidation-based backoff

The consolidated log buffer acquire described in Algorithm 2
uses a new algorithm which we develop here, the consolida-
tion array, to divert contention away from the log buffer. We
base our design on the elimination-based backoff algorithm
[13], extending it to allow the extra cooperation needed to
free the buffer after threads consolidate their requests.

Elimination backoff turns “opposing operations” (e.g.,
stack push and pop) into a particularly effective form of
backoff: threads which encounter contention at the main data
structure probe randomly an array of N slots while they wait.
Threads which arrive at a slot together serve each others
requests and thereby cancel each other out. When such elim-
inations occur, the participating threads return to their caller
without ever entering the main data structure, slashing con-
tention. With an appropriately sized elimination array, an
unbounded number of threads can use the shared data struc-
ture without causing undue contention.

Consolidation backoff operates on a similar principle to
elimination, but with the complication that log inserts do not
cancel each other out entirely: at least one thread from each
group (the group leader) must still acquire space from the log
buffer on behalf of the group. In this sense consolidation is
more similar to a shared counter than a stack, but with the fur-
ther requirement that the last thread of each group to complete
its buffer fill operation must release the groups buffer back
to the log. These additional communication points require
two major differences between the consolidation array and
an elimination array. First, the slot protocol which threads use
to combine requests is significantly more complex. Second,
slots spend a significant fraction of their lifecycle unavailable
for consolidation and it becomes important to replace busy
slots with fresh ones for consolidation to remain effective
under load. Algorithm 4 gives pseudocode for the consolida-
tion array implementation, which the following paragraphs
describe in further detail, while the next section supplements
the pseudocode with a detailed description of a slot’s life
cycle and state space.

Slot join operation (L14–32). The consolidation array con-
sists of ARRAY_SIZEpointers to active slots. Threads which
enter the slot array start probing for slots in the OPEN state,
starting at a random location. Probing repeats as necessary,
but should be relatively rare because slots are swapped out
of the array immediately whenever they become PENDING.
Threads attempt to claim OPEN slots using atomic com-
pare-and-swap to increment the state by the insert size.
In the common case the compare-and-swap instruction
fails only if another thread also incremented the slot’s size.
However, the slot may also close, forcing the thread to start
probing again. Eventually the thread succeeds in joining a
slot and returns a (slot, offset) pair. The offset serves two

Algorithm 4 Consolidation array implementation

1 def atomic_swap_state(s, val):
/* atomically read /s->state/ and assign

/val/ to it; return the value read */
4 end
def atomic_cas_state(s, old_val, new_val):

/* atomically read /s->state/ and assign
7 /new_val/ to it iff the value read equals

/old_val/; always return the value read */
end

10 def atomic_add_state(s, amt):
/* atomically increment /s->state/ by /amt/;

return the value stored */
13 end

def slot_join(size):
probe_slot:

16 idx = randn(ARRAY_SIZE)
s = slot_array[idx];
old_s = s->state

19 join_slot:
if(old_s < SLOT_READY)

/* new threads not welcome */
22 goto probe_slot;

end
snew = old_s + size

25 cur_s = atomic_cas_state(s, old_s, new_s)
if(cur_s != old_s)

old_s = cur_s
28 goto join_slot

end
/* return my position within the group */

31 return {s, old_s-SLOT_READY}
end
def slot_close(s):

34 retry:
s2 = slot_pool[pool_idx % POOL_SiZE];
pool_idx = pool_idx+1

37 if(s2->state != SLOT_FREE)
goto retry;

end
40 /* new arrivals will no longer see s */

s2->state = SLOT_OPEN
slot_array[s->idx] = s2

43 old_s = atomic_swap_state(s, SLOT_PENDING)
return old_s-SLOT_READY

end
46 def slot_notify(s, lsn, group_size):

s->lsn = lsn
s->group_size = group_size

49 s->state = SLOT_DONE-group_size
end
def slot_wait(s):

52 while(s->state > SLOT_DONE)
/* wait for notify */

end
55 return {s->lsn, s->group_size}

end
def slot_release(s, size):

58 new_s = atomic_add_state(s, size)
return new_s

end
61 def slot_free(s):

s->state = SLOT_FREE
end

123

R. Johnson et al.

purposes: the thread at position zero becomes the group
leader and must acquire space in the log buffer on behalf
of the group, and follower threads use their offset to partition
the resulting allocation with no further communication.

Slot close operation (L33–45). After the group leader
acquires the log buffer mutex, it closes the group in order to
determine the amount of log space to request (and to prevent
new threads from arriving after allocation has occurred). It
does so using an atomic swap, which returns the current state
and assigns a state of PENDING. The state change forces all
further slot_join operations to fail (L20), but incoming
threads will almost never see this, instead using the fresh slot
which the calling thread already swapped into the array. To
do so, it probes through the pool of available slots, searching
for a FREE one. The pool is sized large enough to ensure
the first probe nearly always succeeds. The pool allocation
need not be atomic because the caller already holds the log
mutex. Once the slot is closed the function returns the group
size to the caller so it can request the appropriate quantity of
log buffer space.

Slot notify and wait operations (L46–56). After the slot
owner acquires buffer space, it stores the base LSN and
buffer address into the slot, then sets the slots state to
DONE-group_size as a signal to the rest of the group.
Meanwhile, waiting threads spin until the state changes, then
retrieve the starting LSN and size of the group (the latter is
necessary because any thread could be the one to release the
groups buffer space).

Slot release and free operations (L57–63). As each thread
completes its buffer insert, it decrements the slots count by
its contribution. The last thread to release will detect that
the slot count became DONE and must free the slot; all other
threads may leave immediately. The slot does not immedi-
ately become free, however, because the calling thread may
still need to use it. This is particularly important for the del-
egated buffer release optimization described in Sect. A.6,
because the to-be-freed slot becomes part of a queue to be
processed by some other thread. Once the slot is truly fin-
ished, the owning thread sets its state to FREE; the operation
need not be atomic because other threads ignore closed slots.

In conclusion, the consolidation array provides a way for
threads to communicate in a much more distributed fash-
ion than the original (serial) log buffer operation which it
protects. The overhead is small, in the common case two or
three atomic operations per participating thread, and occurs
entirely off the critical path (other threads continue to access
the log unimpeded).

A.5 Lifecycle of a c-array slot

The pseudocode presented in the previous section makes
heavy use of the state of a c-array slot, using it to encode

Fig. 17 Life cycle and state space of a c-array slot, to accompany Algo-
rithm 4. The OPEN (COPYING) state covers all values at least as large
(small) as READY (DONE)

several bits of information at different points in its lifetime.
These include the status of the slot, the size of the group
being formed, and whether the slot can be released or other
threads still use it.

Figure 17 summarizes the state space for an array slot.
There are four major phases in the slot’s lifetime: open, pend-
ing, copying, and done. The figure is comprised of two parts:
the upper part shows the state machine and highlights the
conditions that cause transitions to new states. The lower
part depicts the space of integer values used to encode states
compactly. The latter is important because the lock-free algo-
rithms we use only allow us to manipulate a single machine
word atomically.

Open phase. During the first phase, the slot is open and arriv-
ing threads build up a group. The state starts with the constant
value READY (zero works well in practice), which indicates
to incoming threads that no group has formed yet. As each
thread joins the group, it atomically increments the state by
the amount of buffer space it needs. The size of the group at
any time is therefore state-READY. The open phase ends
when the group leader (the first thread to arrive) succeeds in
acquiring the log buffer mutex.

Pending phase. Once the group leader acquires the log mu-
tex, it (non-atomically) allocates and assigns a new slot to
the c-array, then atomically swaps the state’s value with the
constant value PENDING (any integer less than READY suf-
fices). Incoming threads which still retain a reference to the
slot treat PENDING as a signal to retrieve the new slot from
the slot array and use it instead; all later incoming threads see
the new slot first and use it directly. The group leader then
extracts the group size by subtracting READY from the state
value it swapped out, requests the needed log buffer space,

123

Multicore and multisocket hardware

and stores the results (non-atomically) in other members of
the slot object.

Copying phase. Having stored the requisite information in
the slot object, the group leader notifies waiting threads by
assigning DONE-size to the slot’s state (where DONE is
smaller than PENDING). Once the slot’s state is less than or
equal to DONE, other threads in the group can safely proceed
to claim and fill their buffer space. As each thread completes
the fill operation (group leader included), it again increments
atomically the slot’s state by the amount of buffer space it
used; the thread which causes the slot’s state to equal DONE
is the last to finish and must release the slot.

Done phase. Once the last thread releases the slot and all
other uses for that slot are known to be finished (e.g., serving
as a qnode for delegated buffer release), the slot can be freed
by assigning (non-atomically) the value FREE to it, where
DONE < FREE < PENDING. At this point the slot can be
reallocated by a group leader that transitions some other open
slot to the pending phase, and the cycle repeats.

A.6 Delegated log buffer release and skew

Both the consolidation and decoupling optimizations dis-
cussed so far still require that all threads release their buffers
in LSN order, which remains a potential source of delays.
Many smaller insertions might execute entirely in the shadow
of a large one and would then have to wait for the large
insert to complete before releasing their buffer space. Fur-
ther, buffer and log file wraparounds (which require special
treatment and extra work at log flush time) prevent consoli-
dation of buffer releases: consolidation would occur before
acquiring the log mutex which allows the corner cases to be
identified.

We remove this extra dependency between transactions
by extending the decoupled buffer fill optimization so that
the implied LSN queue becomes a physical data structure,
as shown in Algorithm 5. Before releasing the mutex, dur-
ing the buffer acquire, each thread joins a release queue (L4),
storing in the queue node all information needed to release its
buffer region.7 The decoupled buffer fill proceeds as before.
At buffer release time, the thread first attempts to abandon its
queue node, delegating the corresponding buffer release to
a (presumably slower) predecessor which has not yet com-
pleted its own buffer fill. The delegation protocol is lock-
free and non-blocking and is based on the abortable MCS
queue lock by Scott [32] and the critical section-combining
approach by Oyama et al. [27].

To summarize the protocol, a thread with at least one pre-
decessor attempts to change its queue node status atomi-

7 The signature of buffer_release function changes to reflect this
fact.

Algorithm 5 Log insertion with delegated buffer release

def buffer_acquire(size, data):
/* wait for buffer space */

3 lsn = /* update lsn and buffer state */
qnode = queue_join(Q, lsn, size)
lock_release(L)

6 return qnode
end
def buffer_release(qnode):

9 if (queue_delegate(Q, qnode) == DELEGATED)
return /* someone else will release*/

end
12 do_release:

/* release qnode’s buffer region */
next = queue_handoff(Q, qnode)

15 if (next && is_delegated(next))
qnode = next
goto do_release

18 end
end

cally from waiting to delegated (L9, corresponding to the
aborted state in Scotts work). On success, a predecessor
will be responsible for the buffer release and the thread
returns immediately. Otherwise, or if no predecessor exists,
the thread releases its own buffer region and attempts to leave
before its successor can delegate more work to it (L14). A
successful compare-and-swap from waiting to released
prevents the successor from abandoning its node; on fail-
ure, the thread continues to release delegated nodes until
it reaches the end of the queue or successfully hands off
(L15–18). Threads randomly choose not to abandon their
nodes with probability 1/32 to prevent a treadmill effect
where one thread becomes stuck performing endless dele-
gated buffer releases for its peers. This breaks long dele-
gation chains (which are relatively rare) without impeding
pipelining in the common case. As with Oyama’s proposal
[27], the grouping actually improves performance because a
single thread does all the work without incurring the cache
coherence misses that arise when multiple threads hand off to
each other.

As an implementation detail, we note that the state var-
iable s can double as a queue node when delegated buffer
release is combined with consolidation array. In this case,
queue_handoff is responsible for calling slot_free
once the passed-in qnode is no longer visible to other threads.

References

1. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: understanding
flash IO patterns. In: CIDR’09: Fourth Biennial Conference on
Innovative Data Systems Research, pp. 48–54. Asilomar, USA
(2009)

123

R. Johnson et al.

2. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instru-
mentation of production systems. In: USENIX Annual Technical
Conference (2004)

3. Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E.,
McAuliffe, M.L., Naughton, J.F., Schuh, D.T., Solomon,
M.H., Tan, C.K., Tsatalos, O.G., White, S.J., Zwilling, M.J.:
Shoring up persistent applications. In: Proceedings of the 1994
ACM SIGMOD international conference on management of data,
Minneapolis, USA, pp. 383–394. ACM, New York (1994)

4. Chen, S.: Flashlogging: exploiting flash devices for synchronous
logging performance. In: Proceedings of the 35th SIGMOD inter-
national conference on management of data, pp. 73–86. ACM, New
York (2009)

5. Daniels, D.S., Spector, A.Z., Thompson, D.S.: Distributed logging
for transaction processing. In: Proceedings of the 1987 ACM SIG-
MOD international conference on management of data, San Fran-
cisco, CA, USA, pp. 82–96. ACM, New York (1987)

6. Dewitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A.,
Hsiao, H.I., Rasmussen, R.: The Gamma database machine project.
IEEE Trans. Knowl. Data Eng. 2(1), pp. 44–62. IEEE, Piscataway,
NJ, USA (1990)

7. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker,
M.R., Wood, D.A.: Implementation techniques for main memory
database systems. In: Proceedings of the 1984 ACM SIGMOD
international conference on management of data, Boston, MA,
USA, pp. 1–8. ACM, New York (1984)

8. Gawlick, D., Kinkade, D.: Varieties of concurrency control in
IMS/VS fast path. IEEE Database Eng. Bull. 8(2), pp. 3–10.
Washington, DC, USA (1985)

9. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of repli-
cation and a solution. In: Proceedings of the 1996 ACM SIGMOD
international conference on management of data, Boston, Montreal,
Quebec, Canada, pp. 173–182. ACM, New York (1996)

10. Hardavellas, N., Pandis, I., Johnson, R.F., Mancheril, N.,
Ailamaki, A., Falsafi, B.: Database servers on chip multiproces-
sors: limitations and opportunities. In: CIDR’07: Third Biennial
Conference on Innovative Data Systems Research, Asilomar, CA,
USA, pp. 79–87 (2007)

11. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP
through the looking glass, and what we found there. In: Proceedings
of the 2008 ACM SIGMOD international conference on manage-
ment of data, Vancouver, Canada, pp. 981–992. ACM, New York
(2008)

12. Helland, P., Sammer, H., Lyon, J., Carr, R., Garrett, P., Reuter,
A.: Group commit timers and high volume transaction systems.
In: HPTS’87: 2nd International Workshop on High Performance
Transaction Systems, Pacific Grove, CA, USA, pp. 301–329

13. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack
algorithm. In: Proceedings of the sixteenth annual ACM sympo-
sium on Parallelism in algorithms and architectures, Barcelona,
Spain, pp. 206–215. ACM, New York (2004)

14. Johnson, R., Pandis, I., Ailamaki, A.: Improving OLTP scalability
using speculative lock inheritance. PVLDB 2(1), 479–489 (2009)

15. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.:
Shore-MT: a scalable storage manager for the multicore era. In:
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, Saint
Petersburg, Russia, pp. 24–35. ACM, New York (2009)

16. Johnson, R.F., Pandis, I., Stoica, R., Athanassoulis, M., Ailamaki,
A.: Aether: a scalable approach to logging. PVLDB 3(1–2), 681–
692 (2010)

17. Lahiri, T., Srihari, V., Chan, W., MacNaughton, N.,
Chandrasekaran, S.: Cache fusion: extending shared-disk clusters
with shared caches. In: Proceedings of the 27th International
Conference on Very Large Data Bases, pp. 683–686. Morgan
Kaufmann Publishers Inc., San Francisco (2001)

18. Lamport, L.: Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACM 21(7), 558–565 (1978)

19. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for
flash memory SSD in enterprise database applications. In: Pro-
ceedings of the 2008 ACM SIGMOD international conference on
management of data, Boston, Vancouver, Canada, pp. 1075–1086.
ACM, New York (2008)

20. Lomet, D.: Recovery for shared disk systems using multiple redo
logs. Technical report CRL-90-4, Digital Equipment Corporation,
Cambridge Research Lab (1990)

21. Lomet, D., Anderson, R., Rengarajan, T.K., Spiro, P.: How the
Rdb/VMS data sharing system became fast. Technical report CRL-
92-4, Digital Equipment Corporation, Cambridge Research Lab
(1992)

22. Mohan, C.: ARIES/KVL: a key-value locking method for con-
currency control of multiaction transactions operating on B-tree
indexes. In: Proceedings of the 16th International conference on
very large data bases, pp. 392–405. Morgan Kaufmann Publishers
Inc., San Francisco (1990)

23. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.:
ARIES: a transaction recovery method supporting fine-granular-
ity locking and partial rollbacks using write-ahead logging. ACM
TODS 17(1), 94–162 (1992)

24. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination
to implement scalable and lock-free FIFO queues. In: Proceedings
of the seventeenth annual ACM symposium on Parallelism in algo-
rithms and architectures, Las Vegas, Nevada, USA, pp. 253–262.
ACM, New York (2005)

25. Neuvonen, S., Wolski, A., Manner, M., Raatikka, V.: Telecom
application transaction processing benchmark (TATP). See http://
tatpbenchmark.sourceforge.net/

26. Oracle: Asynchronous commit: Oracle database advanced appli-
cation developer’s guide. Available at http://download.oracle.com/
docs/cd/B19306_01/appdev.102/b14251/adfns_sqlproc.htm

27. Oyama, Y., Taura, K., Yonezawa, A.: Executing parallel pro-
grams with synchronization bottlenecks efficiently. In: PDSIA’99:
International Workshop on parallel and distributed computing for
symbolic and irregular applications, Sendai, Japan, pp. 182–204
(1999)

28. Pandis, I., Johnson, R.F., Hardavellas, N., Ailamaki, A.: Data-
oriented transaction execution. PVLDB 3(1–2), pp. 928–939
(2010)

29. Pandis, I., Tözün, P., Johnson, R., Ailamaki, A.: PLP: page latch-
free shared-everything OLTP. Technical report, EPFL (2011)

30. PostgreSQL: Asynchronous commit: PostgreSQL 8.4.2 doc-
umentation. Available at http://www.postgresql.org/files/
documentation/pdf/8.4/postgresql-8.4.2-A4.pdf

31. Rafii, A., DuBois, D.: Performance tradeoffs of group commit log-
ging. In: CMG Conference (1989)

32. Scott, M.L.: Non-blocking timeout in scalable queue-based spin
locks. In: Proceedings of the twenty-first annual symposium on
principles of distributed computing, Monterey, California, pp. 31–
40. ACM, New York (2002)

33. Shavit, N., Touitou, D.: Elimination trees and the construction of
pools and stacks: preliminary version. In: Proceedings of the sev-
enth annual ACM symposium on parallel algorithms and architec-
tures, SPAA’95, Santa Barbara, CA, USA, pp. 54–63. ACM, New
York (1995)

34. Soisalon-Soininen, E., Ylönen, T.: Partial strictness in two-phase
locking. In: Proceedings of the 5th International Conference on
Database Theory, pp. 139–147. Springer, London (1995)

35. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s time
for a complete rewrite). In: Proceedings of the 33rd international
conference on very large data bases, Vienna, Austria, pp. 1150–
1160 (2007)

123

http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
http://download.oracle.com/docs/cd/B19306_01/appdev. 102/b14251/adfns_sqlproc.htm
http://download.oracle.com/docs/cd/B19306_01/appdev. 102/b14251/adfns_sqlproc.htm
http://www.postgresql.org/files/documentation/pdf/8.4/ postgresql-8.4.2-A4.pdf
http://www.postgresql.org/files/documentation/pdf/8.4/ postgresql-8.4.2-A4.pdf

Multicore and multisocket hardware

36. Thomson, A., Abadi, D.J.: The case for determinism in database
systems. PVLDB 3(1–2), 70–80 (2010)

37. TPC benchmark B standard specification, revision 2.0 (1994).
Available at http://www.tpc.org/tpcb

38. TPC benchmark C (OLTP) standard specification, revision 5.9
(2007). Available at http://www.tpc.org/tpcc

123

http://www.tpc.org/tpcb
http://www.tpc.org/tpcc

	Scalability of write-ahead logging on multicore and multisocket hardware
	Abstract
	1 Introduction
	1.1 Write-ahead logging and log bottlenecks
	1.2 A holistic approach to scalable logging
	1.3 Scaling to multisocket systems

	2 Related work
	2.1 Handling logging-related problems
	2.2 Distributed logging

	3 Moving log I/O latency off the critical path
	3.1 Early lock release
	3.2 Evaluation of ELR

	4 Decoupling OS scheduling from log flush operations
	4.1 Flush pipelining
	4.2 Evaluation of flush pipelining

	5 Scalable log buffer design for multicore
	5.1 Consolidating buffer allocation
	5.2 Decoupling buffer fill and delegating release
	5.3 Putting it all together: hybrid log buffer

	6 Evaluation of log buffer optimizations
	6.1 Experimental setup
	6.2 Log buffer contention
	6.3 Impact of log buffer optimizations (microbenchmarks)
	6.4 Overall impact of Aether

	7 Scalable logging on multiple sockets
	7.1 Optimizing the log buffer design for NUMA
	7.2 Distributed logging
	7.2.1 Dependency tracking in a distributed log
	7.2.2 Replacing the LSN with a global clock
	7.2.3 Avoiding holes in the log

	7.3 Lamport clocks
	7.3.1 Page read
	7.3.2 Log writes
	7.3.3 Log synchronization

	7.4 Recovery and holes in the distributed log
	7.5 Performance of the distributed log
	7.5.1 Experimental setup
	7.5.2 Consolidation array microbenchmark

	7.6 Distributed log in Shore-MT

	8 Conclusions
	Acknowledgments
	Appendix A: Detailed log insertion algorithms
	A.1 Baseline
	A.2 Consolidation array
	A.3 Decoupled buffer fill
	A.4 Consolidation-based backoff
	A.5 Lifecycle of a c-array slot
	A.6 Delegated log buffer release and skew

	References

