
A Notion of Glue Expressiveness for
Component-Based Systems

Simon Bliudze1 and Joseph Sifakis1

VERIMAG, Centre Équation, 2 av de Vignate, 38610, Gières, France
{bliudze, sifakis}@imag.fr

Abstract. Comparison between different formalisms and models is of-
ten by flattening structure and reducing them to behaviorally equivalent
models e.g., automaton and Turing machine. This leads to a notion of
expressiveness which is not adequate for component-based systems where
separation between behavior and coordination mechanisms is essential.
The paper proposes a notion of glue expressiveness for component-based
frameworks characterizing their ability to coordinate components.
Glue is a closed under composition set of operators mapping tuples of
behavior into behavior. Glue operators preserve behavioral equivalence.
They only restrict the behavior of their arguments by performing mem-
oryless coordination.
Behavioral equivalence induces an equivalence on glue operators. We
compare expressiveness of two glues G1 and G2 by considering whether
glue operators of G1 have equivalent ones in G2 (strong expressiveness).
Weak expressiveness is defined by allowing a finite number of additional
behaviors in the arguments of operators of G2.
We propose an SOS-style definition of glues, where operators are charac-
terized as sets of SOS-rules specifying the transition relation of composite
components from the transition relations of their constituents. We pro-
vide expressiveness results for the glues of BIP and of process algebras
such as CCS, CSP and SCCS. We show that for the considered expres-
siveness criteria, glues of the considered process calculi are less expressive
than general SOS glue. Furthermore, glue of BIP has exactly the same
strong expressiveness as glue definable by the SOS characterization.

1 Introduction

A central idea in systems engineering is that complex systems are built by assem-
bling components. Large components are obtained by “gluing” together simpler
ones. “Gluing” can be considered as an operation on sets of components.

Component-based techniques have seen significant development, especially
through the use of object technologies supported by languages such as C++,
Java, and standards such as UML and CORBA. There exist various component
frameworks encompassing a large variety of mechanisms for composing compo-
nents. They focus rather on the way components interact than on their internal
behavior. We lack adequate notions of expressiveness to compare the merits and
weaknesses of these frameworks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Usually, comparison between formalisms and models is by flattening structure
and reduction to a behaviorally equivalent model e.g., automaton and Turing
machine. In this manner, all finite state formalisms turn out to be expressively
equivalent independently of the features used for composition of behaviors. Many
models and languages are Turing-expressive, while their coordination capabilities
are tremendously different. This fact motivated work on the expressive power
of programming languages. Felleisen [1] has provided a framework formally cap-
turing meanings of expressiveness for sequential programming languages and
taking into account not only the semantics but also the primitives of languages.
Although the general framework is interesting, for component-based systems we
need specific results focusing on composition and allowing comparison of differ-
ent composition operators.

This paper proposes a notion of glue expressiveness for component-based
systems. It builds on results and concepts presented in [2] that guided the de-
sign of the BIP (Behavior, Interaction, Priority) framework [3]. BIP allows the
construction of complex components from atomic ones represented as labeled
transition systems, by using two classes of operators: 1) Interaction operators
which compose the behavior of their arguments by using interactions (strongly
synchronized transitions); 2) Priority operators which are unary operators used
to restrict non-determinism of their arguments by disabling an interaction when
some interaction of higher priority is enabled.

We consider a framework where composite components are built by appli-
cation of glue operators. Components are characterized by their behavior and
represented in some semantic domain B equipped with an equivalence relation
R. For instance, behaviors can be modeled as labeled transition systems, with
an equivalence relation such as strong bisimulation, ready simulation, or simu-
lation. In this case, the behavior of a component consists of all its states and
transitions. In general, the behavior is not modified when the component takes
a transition. This constitutes an important difference with the process algebra
setting, where processes evolve to become other processes.

The concept of glue operator is a generalization of operators in BIP. Parallel
composition operators of the process calculi CCS, SCCS, or CSP, are glue op-
erators as well as their unary operators such as labeling, hiding and restriction.
Contrary to interleaving, non-deterministic choice is not a glue operator, as it
requires additional memory: the choice is applied only once and remains the
same for all subsequent transitions of the composed system.

A glue on B is a closed under composition set G of operators transforming
behavior, i.e. mapping tuples of behaviors to behaviors. We require that glue
operators only restrict the behavior of their arguments without adding new one,
i.e. perform memoryless coordination of behavior.

The equivalence relation R on B induces an equivalence relation on glue
operators: two n-ary glue operators are equivalent if for any n-tuple of behaviors
from B they give equivalent behaviors. The proposed notion of expressiveness
allows the comparison of two glues G1 and G2 on the same semantic domain B
by considering whether for any glue operator gl1 ∈ G1 there exists an equivalent

operator gl2 ∈ G2 (strong expressiveness). Weak expressiveness is defined by
allowing a finite number of additional behaviors in the arguments of gl2.

The main results of the paper can be summarized as follows:

– We propose an SOS-style definition of glues, where operators are charac-
terized as sets of SOS-rules specifying the transition relation of composite
components from the transition relations of their constituents. The premises
of the rules may involve both positive and negative predicates specifying
respectively enabledness or non-enabledness of transitions of components.

– We show that relations, induced on glues by strong bisimulation, ready simu-
lation (preorder and equivalence), and simulation equivalence, coincide. This
allows a simple characterization of glue operators as formulae of an algebra
generated from the set of the ports of the components by using disjunction,
conjunction, and negation operators. The algebra has most of the axioms of
a boolean algebra. It does not have the absorption axiom, which is replaced
by a weaker one.

– Using this algebraic characterization of glues, we provide expressiveness re-
sults for the glues of BIP and of process algebras such as CCS, CSP and
SCCS. They show that, for the considered expressiveness criteria, glues of
the considered process calculi are less expressive than general glue operators.
Furthermore, glue of BIP has exactly the same strong expressiveness as glue
definable by the SOS characterization.

The paper is structured as follows. In Sect. 2, we define basic notions that
we use in the paper: LTS, SOS-style glue operators, and equivalence relations
on these; we provide some results that allow, in particular, to define the alge-
bra of glue formulae, AGF(P), used to encode the glue operators. In Sect. 3 we
introduce the notions of glue expressiveness. In Sect. 4, we use AGF(P) to com-
pare expressiveness of the glues of CCS, CSP, SCCS, and BIP. We conclude, in
Sect. 5, by discussing the results and some directions for future work.

2 Labeled Transition Systems and Glue Operators

In this section, we introduce labeled transition systems (LTS), used to describe
behavior, as well as composition operators on these defined in terms of SOS [4].

2.1 Labeled Transition Systems

Definition 1. A labeled transition system is a triple B = (Q,P,→), where Q is
a set of states, P is a set of ports, and →⊆ Q× 2P ×Q is a set of transitions,
each labeled by an action (i.e. a subset of ports).

For q, q′ ∈ Q and a ∈ 2P , we write q a→ q′, if (q, a, q′) ∈→. An interaction
a is enabled in state q, denoted q a→, if there exists q′ ∈ Q such that q a→ q′. If
such q′ does not exist, a is disabled, denoted q 6 a→.

Notice that reachability related issues are not in the scope of this paper.
Consequently, we do not speak of initial states of LTS.

Definition 2. Let B1 = (Q1, P1,→) and B2 = (Q2, P2,→) be two LTS, and let
R ⊆ Q1 ×Q2 be a binary relation. R is

1. a simulation iff, for all q1R q2, q1
a→ q′1 implies q2

a→ q′2, for some q′2 ∈ Q2

such that q′1R q′2.
2. a ready simulation iff it is a simulation and, for q1R q2, q1 6

a→ implies q2 6
a→.

3. a bisimulation iff both R and R−1 are simulations.

We write B1 vS B2 (resp. B1 vRS B2) if there exists a simulation (resp.
ready simulation) relating each state of B1 to some state of B2. vS and vRS are
respectively the simulation and the ready simulation preorders on behaviors. We
denote by 'X = vX ∩ v−1

X , with X ∈ {S,RS}, the corresponding equivalences.
Similarly, B1↔B2, iff there exists a bisimulation relating all states of both

B1 and B2. ↔ is the bisimulation equivalence on behaviors.

Remark 1. It is well known (e.g., [5]) that these relations are connected by the
following inclusions: ↔ ⊆ 'RS ⊆ 'S and vRS ⊆ vS .

2.2 Glue Operators

Structural Operational Semantics (SOS) [4, 6] has been used to define the seman-
tics of programs in terms of LTS. A number of SOS formats have been developed,
using various syntactic features [7].

We consider a very simple setting focusing exclusively on behavior composi-
tion. In the context of component-based systems, definition of glue only requires
the specification of parallel composition operators, as sequential and recursive
computation can be represented by individual behaviors. Below, we propose an
SOS rules format for component-based composition.

Definition 3. An n-ary glue operator gl is defined as follows. The application
of gl to behaviors Bi = (Qi, Pi,→), for i ∈ [1, n], is a behavior gl(B1, . . . , Bn) =
(Q,P,→), with state space Q =

∏n
i=1Qi the Cartesian product of Qi, set of

ports P =
⋃n
i=1 Pi, and the maximal transition relation derivable with a set of

inference rules of the form

r = {Bi : qi
ai−→ q′i}i∈I {Bj : qj 6

bjk−→ | k ∈ [1,mj]}j∈J
gl(B1, . . . , Bn) : q1 . . . qn

a−→ q̃1 . . . q̃n

(premises)
(conclusion)

, (1)

where I, J ⊆ [1, n]; a =
⋃
i∈I ai; and q̃i = q′i, for i ∈ I, and q̃i = qi, for i 6∈ I.

Premises of the form B : q a→ q′ are called positive, those of the form B : q 6 a→
are called negative. Additionally, we require that

1. for each i ∈ [1, n], r has at most one positive premise involving Bi;
2. r has at least one positive premise;
3. a label can appear either in positive or in negative premises, but not in both.1

1 A rule with contradictory premises would never be applicable. We include this con-
dition, as it simplifies further proofs and formulations.

We denote by Pos(r) and Neg(r) the sets of positive and negative premises
of r respectively (notice that a rule is completely defined by its premises). We
identify the glue operator gl with its defining set of derivation rules. A glue
operator having no negative premises in any of its derivation rules is called a
positive glue operator.

Lemma 1 ([5]). Glue operators preserve ready simulation and bisimulation,
i.e. B1RB′

1 implies, gl(B1, B2, . . . , Bn)R gl(B′
1, B2, . . . , Bn), for any behaviors

B1, . . . , Bn, and B′
1, an n-ary glue operator gl, and R ∈ {vRS ,'RS , ↔}.

The simulation preorder is preserved by positive glue operators.

Example 1 (Rendezvous). Consider the family of binary operators ρa,b, param-
eterized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
ρa,b(B1, B2) is inferred from B1 and B2 by the set of rules

B1 : q1
a→ q′1 B2 : q2

b→ q′2

ρa,b(B1, B2) : q1q2
ab→ q′1q

′
2

. (2)

and, for all x 6= a and y 6= b,

B1 : q1
x→ q′1

ρa,b(B1, B2) : q1q2
x→ q′1q2

,
B2 : q2

y→ q′2
ρa,b(B1, B2) : q1q2

y→ q1q
′
2

. (3)

For two behaviors B1, B2 having transitions labeled respectively by a and b,
ρa,b(B1, B2) is the parallel composition of B1 and B2, where a strong synchro-
nization of a and b is the only possible action.

Example 2 (Broadcast). Consider the family of binary operators βa,b, parame-
terized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
βa,b(B1, B2) is inferred from B1 and B2 by the set of rules

B1 : q1
a→ q′1

βa,b(B1, B2) : q1q2
a→ q′1q2

,
B1 : q1

a→ q′1 B2 : q2
b→ q′2

βa,b(B1, B2) : q1q2
ab→ q′1q

′
2

. (4)

For two behaviors B1, B2 having transitions labeled respectively by a and b,
βa,b(B1, B2) is the parallel composition of B1 and B2, where interactions a and
b are weakly synchronized with a being the trigger. In other words, B2 can
perform a transition on b only if it is synchronized with a transition of B1 on a.

Example 3 (Priority). Consider the family of unary operators πa,b, parameter-
ized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
πa,b(B) is inferred from B by the set of rules

B : q a→ q′ B : q 6 b→
πa,b(B) : q a→ q′

,
q

b→ q′

πa,b(B) : q b→ q′
. (5)

For a behavior B having transitions labeled by a and b, πa,b(B) is the restriction
of B, where the interaction a can only happen if b is not possible, i.e. a has lower
priority than b.

2.3 Relations on Glue Operators

The relations on LTS defined above are canonically extended to glue operators.

Definition 4. For R ∈ {vS ,vRS ,'S ,'RS , ↔}, the relation R is extended to
glue operators by putting, for any two n-ary glue operators gl1 and gl2,

gl1R gl2
def⇐⇒ ∀B1, . . . , Bn, gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn) . (6)

Clearly, the inclusions of Rem. 1 also hold for relations on glue operators.

Lemma 2. Two glue operators gl1 = {r1} and gl2 = {r1, r2}, with Pos(r1) =
Pos(r2) and Neg(r1) ⊆ Neg(r2), are bisimilar gl1↔ gl2.

Proof. The proof follows immediately from the definition of bisimilarity. It is
based on the fact that, whenever r2 is applicable, r1 can also be applied. ut

Definition 5. If a glue operator does not have redundant rules as in Lem. 2, we
say that it is without redundancy.

Lemma 3. Let gl1, gl2 be glue operators, and gl1 be without redundancy. gl1 vS
gl2 implies that, for each rule r1 ∈ gl1, there is a rule r2 ∈ gl2 having Pos(r2) =
Pos(r1) and Neg(r2) ⊆ Neg(r1).

Proof. Consider the rule (cf. Def. 3)

r1 = {Bi : qi
ai−→ q′i}i∈I {Bj : qj 6

bjk−→ | k ∈ [1,mj]}j∈J
gl(B1, . . . , Bn) : q1 . . . qn

a−→ q̃1 . . . q̃n
∈ gl1 ,

and, for i ∈ [1, n], B1
i = (Qi, P,→i) having Qi = {qi} and →i defined by

→i =

{
{qi a→ qi | a ∈ 2P }, for i 6∈ J,
{qi a→ qi | a ∈ 2P } \ {qi

bik→ qi | k ∈ [1,mi]}, for i ∈ J .
(7)

Both behaviors obtained by applying gl1 and gl2 to B1
1 , . . . , B

1
n have exactly one

state that we denote respectively q′ and q′′.
All the premises of r1 are satisfied in q′. Hence q′ a→ q′ in gl1(B1

1 , . . . , B
1
n).

By simulation gl1 vS gl2, we also have gl1(B1
1 , . . . , B

1
n) vS gl2(B1

1 , . . . , B
1
n).

Hence, q′′ a→ q′′ in gl2(B1
1 , . . . , B

1
n), and there exists a rule r2 ∈ gl2 enabling this

transition. Thus, Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1). ut

Proposition 1. Let gl1, gl2 be glue operators without redundancy. Then gl1 'S
gl2 implies gl1 = gl2, where = is the equality of sets of derivation rules.

Proof. Consider a rule r1 ∈ gl1. By Lem. 3, gl1 vS gl2 implies that there exists
r2 ∈ gl2 having Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1), whereas gl2 vS gl1
implies that there exists r′1 ∈ gl1 having Pos(r′1) = Pos(r2) and Neg(r′1) ⊆
Neg(r2). By non-redundancy of gl1, we conclude r′1 = r1 = r2, i.e. gl1 ⊆ gl2. By
symmetry, this proves the proposition. ut

Proposition 2. Let gl1, gl2 be glue operators without redundancy. Then gl1 vRS
gl2 implies gl1 = gl2, where = is the equality of sets of derivation rules.

Proof. 1) Let gl1 vRS gl2 and consider a rule r1 ∈ gl1. By Lem. 3, there exists
r2 ∈ gl2, such that Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1). Suppose that
Neg(r2) (Neg(r1), i.e. there exists a negative premise (B : q 6 b→) ∈ Neg(r1) \
Neg(r2). Consider, for i ∈ [1, n], the behaviors B2

i = (Qi, P,→i), constructed
as in (7), but removing the transition corresponding to this premise. As in the
proof of Lem. 3, we denote q′ and q′′ the unique states of gl1(B2

1 , . . . , B
2
n) and

gl2(B2
1 , . . . , B

2
n) respectively. Clearly all the premises of r2 are still satisfied and

a transition q′′
a→ q′′ is possible in gl2(B2

1 , . . . , B
2
n). On the other hand, the

premises of r1 are no longer satisfied.
Suppose that there exists another rule r′1 ∈ gl1, which allows the transition

q′
a→ q′ in gl1(B2

1 , . . . , B
2
n). As above, we have Pos(r′1) = Pos(r1) = Pos(r2) and

Neg(r′1) ⊆ Neg(r2) ⊆ Neg(r1), which violates the non-redundancy assumption.
Assuming that there is no such rule r′1 ∈ gl1, we conclude that q′ 6 a→ in

gl1(B2
1 , . . . , B

2
n), which, by ready simulation, implies a contradiction: q′′ 6 a→ in

gl2(B2
1 , . . . , B

2
n). Hence, Neg(r2) = Neg(r1), i.e. r1 = r2 ∈ gl2 and gl1 ⊆ gl2.

2) Assume now that gl1 (gl2, i.e. there exists a rule r2 ∈ gl2 \ gl1 with
conclusion labeled by some interaction a. We consider again the behaviors B1

i ,
for i ∈ [1, n], constructed as above. Again, we have q′′ a→ q′′ in gl2(B1

1 , . . . , B
1
n),

and, by ready simulation, q′ a→ q′ in gl1(B1
1 , . . . , B

1
n). Hence, there exists r1 ∈

gl1 ⊆ gl2 enabling this transition. As above, we have Pos(r1) = Pos(r2) and
Neg(r1) ⊆ Neg(r2), which contradicts the non-redundancy of r2. ut

This proves the following theorem, implying that to compare glue operators
it is sufficient to compare the corresponding sets of SOS rules.

Theorem 1. Bisimulation, ready simulation preorder and equivalence, and sim-
ulation equivalence on glue operators coincide: ↔ = 'RS = 'S = vRS. All
these relations coincide with the equality of operators as sets of rules.

2.4 The Algebra of Glue Formulae

Theorem 1 also allows to define an algebraic encoding of glue operators, which
we use, in particular, to define the composition of glue operators. Glue compo-
sition must preserve essential information about atomic behavior. For instance,
if interaction a is inhibited by some other interaction b, this relation must be
maintained even when, in the composed system, b cannot be fired for some other
reason: b must be synchronized with another interaction that is not enabled in
the current state, or it is itself inhibited by another interaction.

For instance, assume that firing the interaction a takes one of the components
to a critical state, for which mutual exclusion must be ensured, whereas firing b
takes another component out of such state. If b is possible, a should not be fired
(as this would violate the mutual exclusion) even if b is inhibited by another
interaction c.

Although, a definition of composition, which respects these requirements,
can be given directly in terms of glue operators, it is much simpler and more
intuitive to give it in terms of the algebra presented below. An up to bisimulation
one-to-one correspondence between formulae of the algebra and glue operators
ensures the translation of composition back to glue operators.
Syntax Let P be a set of ports, such that 0, 1 6∈ P . The syntax of the algebra
of glue formulae, f ∈ AGF(P), is given by

f ::= f ∨ f | f ∧ t | e ,
t ::= (t ∨ t) | ¬e | e ,
e ::= e ∨ e | e ∧ e | (e) | a ∈ 2P | 0 | 1 ,

(8)

where the three operations, denoted by ‘¬’, ‘∧’, and ‘∨’ are respectively unary
negation and binary conjunction and disjunction (in order of decreasing binding
power). We often omit ‘∧’ and represent conjunction by simple juxtaposition.

Intuitively, e represents a positive expression, whereas t is a term which can
have a negation at top level, i.e. the negated term must be purely positive. As t
can only appear in conjunction with another term, a negative term, in AGF(P)
formulae, is always in conjunction with a positive term.
Axioms Both ∧ and ∨ are associative, commutative, idempotent, and distribute
over each other; 0 is the unit for ∨ ; 1 is the unit for ∧ ; f ∧ 0 = 0. Negation
satisfies all the axioms except double negation and excluded middle:

1. ¬0 = 1 and ¬1 = 0,
2. f ∧ ¬f = 0,

3. ¬f1 ∧ ¬f2 = ¬(f1 ∨ f2),
4. ¬f1 ∨ ¬f2 = ¬(f1 ∧ f2).

Lemma 4 (Restricted absorption). ∀f1, f2 ∈ AGF(P), f1 ¬f2 ∨ f1 = f1.

Lemma 5. Each formula f ∈ AGF(P) has a disjunctive normal form, i.e. a
representation as a disjunction of conjunctions of positive and negative variables.

Proof (Sketch). This follows from the existence of the DNF of boolean formulae
and the fact that the syntax (8) of AGF(P) guarantees that negation only ap-
pears at the top level. This property is also preserved by de Morgan’s laws. ut

Semantics The semantics of AGF(P) is given in terms of glue operators. It
depends on the mapping of ports in P to components. For a system with n atomic
components B1, . . . , Bn, the partition of P is given by a function κ : P → [1, n],
such that a port p ∈ P belongs to the component Bκ(p). The function κ trivially
extends to interactions within one component.

The meaning of a clause a1 . . . ak ∧ ¬b1 . . .¬bl is given by the rule r, having

Pos(r) =
{
Bκ(ai) : qκ(ai)

ai→ q′κ(ai)

∣∣∣ i ∈ [1, k]
}
,

Neg(r) =
{
Bκ(bi) : qκ(bi) 6

bi→
∣∣∣ i ∈ [1, l]

}
.

Clearly, the DNF of f 6= 0, 1, does not contain occurrences of neither 0 nor
1. The meaning of the formula f 6= 0, 1 is then given by the glue operator

glf defined by the set of rules, corresponding to clauses of the DNF of f . The
meaning of 0 is the operator defined by the empty set of derivation rules, which
blocks all interactions of all the components in the system.

Proposition 3. The axiomatization of AGF(P) is sound and complete, i.e., for
two formulae f1, f2 ∈ AGF(P), f1 = f2 if and only if glf1 ↔ glf2 .

For any glue operator gl, there exists f ∈ AGF(P), such that gl↔ glf .

Proof (Sketch). Clearly, the semantic construction above is one-to-one between
AGF(P) formulae and glue operators without redundancy. The second part
follows directly from Lemmas 2 and 4. ut

This proposition allows to identify the glue operators with their correspond-
ing glue formulae. We use this to define a composition of glue operators. The
usual composition is not compatible with the restriction that all interactions in
positive premises of a rule must participate in the conclusion (cf. Def. 3).

Example 4. Consider two operators defined by the corresponding formulae f =
a¬b ∨ b ∨ c and g = a ∨ b¬c ∨ c (cf. also the opening of this section). The usual
composition f ◦ g consists here in substituting b¬c for b in f . Thus, in f , a¬b
becomes a¬(b¬c) = a¬b∨a¬¬c, b becomes b¬c, and c stays the same. This gives
f ◦ g = a¬b∨ a¬¬c∨ b¬c∨ c. However, a¬¬c is not authorized by the syntax of
AGF(P). In terms of SOS, this would correspond to having a positive premise
c that would not participate in the conclusion of the rule.

Consider two glue operators defined by the formulae f =
∨
i∈I aixi and

g =
∨
j∈J bjyj , where, for i ∈ I and j ∈ J , ai and bj are conjunctions of positive

interaction variables, whereas xi and yj are purely negative expressions.

Definition 6. The composition of f with g is defined by

f ∗ g def=
∨
i∈I

∨
K⊆J

(
xi ∧

∧
k∈K

bkyk

)
=
∨
i∈I

∨
K⊆J

(
aixi ∧

∧
k∈K

yk

)
, (9)

where the inner disjunction is taken over all K ⊆ J , such that
∧
k∈K bk = ai.

Example 5. Taking on the previous example, we have f ∗ g = a¬b ∨ b¬c ∨ c.
Thus, when all three interactions a, b, and c are ready to be fired, both a and b
are inhibited by b and c respectively.

3 Expressiveness of Glue

Let B be a set of behaviors with a fixed equivalence relation R ⊆ B ×B. A glue
is a set G of operators on B. We denote by Glue the set of all glues on B. We
denote G(n) ⊆ G the set of all n-ary operators in G. Thus, G =

⋃
n≥1G

(n).
To determine whether one glue is more expressive than another, we compare

their respective sets of behaviors composable from the same atomic ones. Several

approaches to comparing the expressiveness of glues can be considered according
to the type of modifications of the system that one allows in order to perform
the comparison. In any case, this consists in exhibiting for each operator of one
glue an equivalent operator in the other one. Below, we define two criteria for
the comparison of glue expressiveness:

1. Strong expressiveness, where the exhibited glue operator must be applied to
the same set of behaviors as the original one,

2. Weak expressiveness, where the exhibited glue operator must be applied to
the same set of behaviors as the original one, with potentially an addition
of some fixed set of coordination behaviors.

Definition 7. For a given set B and an equivalence R on B, the strong ex-
pressiveness preorder 4S ⊆ Glue × Glue w.r.t. R is defined by putting, for G1,
G2 ∈ Glue, G1 4S G2 if, for any n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃gl2 ∈ G(n)

2 : gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn) . (10)

Definition 8. For a given set B and an equivalence R on B, the weak expres-
siveness preorder 4W ⊆ Glue × Glue w.r.t. R is defined by putting, for G1,
G2 ∈ Glue, G1 4W G2 if there exists a finite subset C ⊂ B of coordination
behaviors such that, for any n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃C1, . . . , Cm ∈ C, gl2 ∈ G(n+m)

2 : (11)
gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn, C1, . . . , Cm) .

These two preorders allow to define the following notions for glue comparison.

Definition 9. Let G1, G2 ∈ Glue. The following relations are defined w.r.t. R.

1. G1 and G2 are strongly equivalent if G1 4S G2 and G2 4S G1.
2. G1 and G2 are weakly equivalent if G1 4W G2 and G2 4W G1.
3. G1 is strongly more expressive than G2 if G2 4S G1 and G1 64W G2.
4. G1 is weakly more expressive than G2 if G2 4W G1 and G1 64W G2.

Remark 2. The two order relations (“strongly more expressive” and “weakly
more expressive”) defined above are partial orders (as opposed to preorders).
However, notice that we define the relation “strongly more expressive” to be
stronger than the canonical order induced by the preorder 4S . As G1 4S G2

implies G1 4W G2, the case G1 4S G2 and G2 4W G1 fits the case 2 above, i.e.
G1 and G2 are weakly equivalent.

Example 6. We consider behaviors to be LTS. Let P be a universal set of ports.
We define two glues Bin and Ter generated respectively by families of binary
and ternary rendezvous operators: ρ(2)

a,b and ρ(3)
a,b,c for all a, b, c ∈ 2P (cf. Ex. 1).

Clearly, Ter 4S Bin, as for any a, b ∈ 2P , and any B1, B2, B3, we have
ρ
(3)
a,b,c(B1, B2, B3) = ρ

(2)
a,bc

(
B1, ρ

(2)
b,c (B2, B3)

)
. On the contrary, Bin 64W Ter, as

any two components at any given state can only perform two actions (one action
each), whereas three are needed for a ternary synchronization. We conclude that
Bin is strongly more expressive than Ter.

We have supposed so far that systems are built from components with disjoint
sets of ports and that all actions are observable. To compare expressiveness of
formalisms that do not meet this requirements, we adapt the definition of glue
expressiveness by using labeling functions that modify the labeling of transitions
without otherwise affecting the transition relation.

Definition 10. Let B be a set of behaviors with a universal set of ports P and
R an equivalence on B. Let ϕ,ψ : P → P be two given labeling functions, such
that ψ ◦ϕ = id. The strong (ϕ,ψ)-expressiveness preorder 4(ϕ,ψ)

S ⊆ Glue×Glue
w.r.t. R is defined by putting, for G1, G2 ∈ Glue, G1 4(ϕ,ψ)

S G2 iff, for any
n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃gl2 ∈ G(n)

2 : gl1(B1, . . . , Bn)Rψ
(
gl2

(
ϕ(B1), . . . , ϕ(Bn)

))
, (12)

where e.g., ϕ(B) is the behavior obtained from B by applying ϕ to labels of all
the transitions in B.

Definitions 8 and 9 are adapted analogously.

Example 7. Taking on the previous example, consider τ 6∈ P, and let C =
({1}, {τ},→) be an LTS with the only transition 1 τ→ 1.

For any B1, B2 and a, b ∈ 2P , we have ρ(2)
a,b(B1, B2)Rψ

(
ρ
(3)
a,b,τ (B1, B2, C)

)
,

where ψ is a labeling function erasing all occurrences of τ , and R is any of the
equivalence relations discussed in Sect. 2.3. Thus, Bin 4(id,ψ)

W Ter, i.e. Bin and
Ter are weakly (id, ψ)-equivalent.

4 Glues of BIP and Process Algebras

In the following sections, we compare the glues of BIP [3] and those of classical
calculi: CSP [8], CCS [9], and SCCS [10]. All these glues are positive and consist
in their respective parallel composition and restriction operators.

Lemma 6. Let G1 and G2 be two positive glues (i.e. consisting of only positive
glue operators). G1 4S G2 with respect to any of 'S, 'RS, and ↔ iff G1 ⊆ G2.

Proof (Sketch). Consider a family of behaviors, each having one state with loop
transitions on all corresponding interactions. To enable exactly the same transi-
tions, two positive glue operators must have exactly the same rules. ut

4.1 BIP

In BIP [3], behavior composition is by means of interaction models – sets of
interactions, described by connectors [11] – and priority models (partial orders
on interactions), used to enforce scheduling policies applied to interactions.

The composition operator, defined by a set of interactions γ ⊆ 2P , is given
by the AGF(P) formula intγ =

∨
γ (the disjunction of all the interactions in

B :

l1i
���

p
AAU
p

l2i
���

a
l3i

���
a

AAU
b

l4i l5i l6i
prπ(B) :

l1i
���

p
AAU
p

l2i
���

a
l3i
AAU

b

l4i l5i l6i
Fig. 1. Example behavior for the proof of Prop. 5

γ). We denote by IM the set of all such glue operators. As interactions are sets
of ports, operators in IM are purely positive (each clause of such an operator
being a conjunction of positive port variables).

A priority model π is a strict partial order on 2P . For a, a′ ∈ 2P , we write
a ≺ a′ iff (a, a′) ∈ π, meaning that interaction a has less priority than a′. The
priority operator is given by the AGF(P) formula

prπ =
∨
a∈2P

(
a ∧

∧
a≺a′

¬a′
)
.

We denote BIP the glue consisting of all operators obtained by composition
(cf. Def. 6) of interaction and priority operators.

Proposition 4. IM is strongly equivalent to the set of all positive glue opera-
tors, whereas BIP is strongly equivalent to the set of all glue operators.

Proof (Sketch). The first affirmation is trivial. It is also clear from the above
presentation that any operator in BIP is a glue operator in the sense of Def. 3.
To show that any glue operator can be realized in BIP, we represent it as a DNF
formula f ∈ AGF(P). Each conjunctive clause of f has a positive and a negative
part. The positive parts of all clauses uniquely define the the set of interactions
γ, whereas regrouping (by de Morgan’s laws) the negative parts of all clauses
with the same positive part defines the priority model. ut

Proposition 5. BIP is strongly more expressive than IM w.r.t. 'S (a fortiori
'RS and ↔).

Proof (Sketch). First of all, IM ⊂ BIP and IM contains only positive operators.
Hence, by Lem. 6, IM 4S BIP and BIP 64S IM . As, in BIP, all interactions
are visible this also implies BIP 64W IM . It is easy to show BIP 64(id,ψ)

W IM ,
with ψ erasing all the ports of coordination behavior, by considering the priority
model π = {(a, b)} applied to the behavior B (see Fig. 1). ut

4.2 CCS and SCCS

In both CCS and SCCS [9, 10], one considers the set A of actions along with the
set A = {a | a ∈ A} of complementary actions and the non-observable action τ .
L = A ∪A ∪ {τ} is the set of labels.

To render the action sets of different components disjoint, we consider (ϕ,ψ)-
expressiveness. We define ϕ(B) to be a behavior obtained from B by renaming
any action a ∈ A ∪ A of B to B.a. Conversely ψ(B) renames any action B.a of
B to a. Furthermore, for any behaviors B1, B2 we put ψ(B1.aB2.a) = τ .

The glue of CCS consists of operators obtained by hierarchical composition of
the parallel composition and restriction operators. Parallel composition ‖ opera-
tor allows binary synchronization of complementary actions a, a ∈ L. Restriction
\a excludes a given action a ∈ A and its complement a from communication,
thus enforcing synchronization a a, when it is possible.

For a system composed of n atomic behaviors B1, . . . , Bn, we consider pre-
fixed labels as ports, i.e. P = {Bi.a | i ∈ [1, n], a ∈ L}. The CCS parallel compo-
sition operator is expressed in AGF(P) by the formula

parCCS =
∨
a∈A

n∨
i,j=1

Bi.aBj .a ∨
∨
a∈A

n∨
i=1

(Bi.a ∨Bi.a ∨Bi.τ) . (13)

The unary restriction (i.e. applied to a single component) and the n-ary re-
striction (i.e. combined with the parallel composition of n components) operators
are given respectively by

rsta,1 =
n∨
i=1

∨
l 6=a,a

Bi.l , (14)

rsta,n =
∨
l∈A

n∨
i,j=1

Bi.l Bj .l ∨
∨

l∈A\{a}

n∨
i=1

(Bi.l ∨Bi.l ∨Bi.τ) . (15)

All operators in the CCS glue are positive. Moreover, a conjunctive clause
of the corresponding AGF(P) formula consists of at most two ports. As the
labeling ψ can only erase ports, this remains true even in presence of coordination
behavior. These observations allow us to conclude that, with ϕ and ψ as above,
IM is strongly more (ϕ,ψ)-expressive than the CCS glue.

In SCCS, labels are elements of a free Abelian group Act generated by A
(with a being the inverse of a). The glue of SCCS also consists of hierarchi-
cal combinations of the parallel composition and restriction operators. Parallel
composition × forces all components to synchronize. It is given by the formula

parSCCS =
n∧
i=1

(
Bi.τ ∨

∨
a∈A

Bi.a

)
. (16)

Restriction operator in SCCS is complementary to that of CCS, i.e. it states
the actions that are visible, rather than those that are invisible. Although, it can
be easily defined in terms of AGF(P), we omit this definition here.

The SCCS glue is also positive, which, as above, allows to conclude that it
is strongly less (ϕ,ψ)-expressive than IM . The opposite relation remains to be
investigated. The fact that conjunctive clauses of SCCS operators can comprise
more than two ports suggests that CCS glue is not weakly more expressive than
SCCS glue.

CCS IM BIP

SCCS

CSP

���

PPP

PPP

���

6<W

6<W

4S

6<W , 4S 6<W , 4S

4S

Fig. 2. Summary of relations between glues

4.3 CSP

In CSP [8], processes communicate over a set C of channels common to the
system. Again, we consider the same relabeling functions ϕ and ψ as in the
previous sections, and ports P = {Bi.c | i ∈ [1, n], c ∈ C ∪ {τ}}.

Again the glue of CSP consists of hierarchical combinations of the parallel
composition and restriction operator. Parallel composition ‖C′ is parameterized
by the subset C ′ ⊆ C of channels. Interactions on the channels in C ′ must
synchronize, whereas interactions on other channels interleave. This is given by
the formula

parCSP =
∨
c∈C′

n∧
i=1

Bi.c ∨
∨
c6∈C′

n∨
i=1

(Bi.τ ∨Bi.c) . (17)

Again, for the sake of brevity, we omit the restriction operator.
The CSP glue is also positive. It can be observed that conjunctive clauses of

the corresponding AGF(P) formulae consist exclusively of ports corresponding
to the same channel. This suggests that, as for the CCS glue, IM is strongly more
(ϕ,ψ)-expressive than the CSP glue. Again, the fact that conjunctive clauses of
the operators of the CSP can comprise more than two ports suggests that the
CCS glue is not weakly more expressive than the CSP glue.

Relations between the glues considered above are summarized in Fig. 2.

5 Conclusion

We studied notions for comparing expressiveness of glues in component-based
frameworks. In contrast to usual notions, they enforce separation between be-
havior and composition operators. For instance, it is not possible to have as in
process algebras, expansion theorems expressing parallel composition in terms
of non-deterministic choice and prefixing by actions.

The definition of glue operators considers transitions of composite compo-
nents as the result of the transitions of their constituents. We showed that bisim-
ilarity, ready simulation (preorder and equivalence), and simulation equivalence
coincide, when canonically extended to glue operators. This allows the charac-
terization of glues as formulae, which drastically simplifies the comparison and
composition of glues.

We have not yet completely explored possible relations between glues of
process calculi. However, they cannot be as expressive as glues with negative

premises and this weakness cannot be overcome even by allowing additional
behavior for coordination.

We have kept the framework as simple as possible. We only consider be-
havioral preorders where all the ports are observable. The robustness of the
presented results for expressiveness based on observational relations should be
investigated. Furthermore, we have not considered rules with lookahead premises
(e.g., [7]) which seems to increase expressiveness of positive rules.

We proposed a framework for dealing with expressiveness of composition op-
erators. This is a step towards breaking with reductionistic approaches which
consider glue operators only as behavior transformers. It allows setting up crite-
ria for comparing component-based languages and understanding their strengths
and weaknesses.

Acknowledgements

The authors are grateful to Philippe Bidinger, Yassine Lakhnech, and the anony-
mous reviewers for valuable discussion and constructive comments regarding this
paper.

References

1. Felleisen, M.: On the expressive power of programming languages. In: 3rd European
Symposium on Programming (ESOP’90). Volume 432 of LNCS., Springer (1990)
134–151

2. Sifakis, J.: A framework for component-based construction. In: 3rd IEEE Int.
Conf. on Software Engineering and Formal Methods (SEFM05). (September 2005)
293–300 Keynote talk.

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: 4th IEEE Int. Conf. on Software Engineering and Formal Methods
(SEFM06). (September 2006) 3–12 Invited talk.

4. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

5. Bloom, B.: Ready Simulation, Bisimulation, and the Semantics of CCS-Like Lan-
guages. PhD thesis, Massachusetts Institute of Technology (1989)

6. Aceto, L., Fokkink, W., Verhoef, C.: Chapter 3. Structural Operational Semantics.
In: Handbook of Process Algebra. Elsevier (2001) 197–292

7. Mousavi, M., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years
after. Theoretical Computer Science 373(3) (2007) 238–272

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall (April 1985)

9. Milner, R.: Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall (1989)

10. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science
25(3) (1983) 267–310

11. Bliudze, S., Sifakis, J.: The algebra of connectors — Structuring interaction in
BIP. In: Proc. of the EMSOFT’07, ACM SigBED (October 2007) 11–20

