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The Jacques Monod conference ‘‘Insect Immunity in Action: From Fundamental Mechanisms of Host
Defense to Resistance Against Infections in Nature,’’ organized by Ulrich Theopold (Stockholm University,
Sweden) and Dominique Ferrandon (CNRS, France), was held in May 2009 in Aussois, France. Here, we
review key topics and concepts that were presented and highlight emerging trends in the field of insect
immunity.

provided by Infoscience - École polytechnique fédérale d
Introduction
Studies of insect immune responses have had a profound impact

on our understanding of how insects fight microbial infections

and the nature of metazoan innate immunity. Significant prog-

ress has recently been made in research on insect immunity,

and there has been a new focus on naturally acquired infections.

The Jacques Monod conference ‘‘Insect Immunity in Action,’’

organized by Ulrich Theopold and Dominique Ferrandon at Aus-

sois (France) and supported by the CNRS, provided a superb

opportunity for researchers in this field to come together and

discuss recent developments and the future of research in insect

immunity. Here, we will review the key topics and concepts that

were illuminated by this workshop. We also wish to pay tribute to

Hans G. Boman, a pioneer in the field, who characterized the first

inducible antimicrobial peptide in 1981 and sadly passed away in

December (Figure 1).

Pattern Recognition: New Insights into Toll Pathway
Activation
Unlike mammalian Toll-like receptors, the Drosophila Toll re-

ceptor does not interact directly with microbial products and is

instead activated by a cleaved form of the secreted cytokine-

like molecule Spätzle. During the immune response, Spätzle pro-

cessing results from complex cascades of serine proteases

initially activated by secreted pattern recognition receptors

sensing Gram-positive bacteria or fungi (Lemaitre and Hoff-

mann, 2007). New insights into the mechanism of activation of

the Toll pathway were presented during the meeting. Activation

of the Toll pathway by fungi is, in part, mediated by GNBP3

through the sensing of b(1,3)-glucans. GNBP3 belongs to the

b-glucan recognition protein family and contains an N-terminal

domain that binds to b(1,3)-glucans and a C-terminal domain

that is homologous to the catalytic domain of b-glucanase. Until

now, no information has been available concerning the structure

of this class of pattern recognition receptor. Alain Roussel

(Orléans, France) reported the structure of the N-terminal

domain of GNBP3, revealing an immunoglobulin-like fold in

which the glucans-binding site is masked by a loop (Figure 2A,

box 2). GNBP3 shows specificity of interaction with long-chain

polysaccharides, and mutagenesis revealed an essential role
for the occluding loop in providing this specificity, highlighting

a distinctive mechanism for b-glucan recognition. This work

also indicated the importance of accessibility to ligands for path-

ogen recognition, with the recombinant GNBP3 N terminus

binding specifically to new buds and bud scars of Candida albi-

cans. Petros Ligoxygakis (Oxford, UK) discussed how a single

pattern recognition receptor, the peptidoglycan recognition

protein (PGRP) PGRP-SA, can sense Gram-positive bacteria

with widely differing cell wall compositions (Figure 2A, box 4).

He reported that, in wild-type Staphylococcus aureus, fluores-

cently labeled PGRP-SA binds only to newly generated cell walls

during division. However, in a teichoic acid mutant strain, PGRP-

SA is able to bind all over the cell wall. This suggests that the

presence of teichoic acid in the cell wall can limit the access of

PGRP-SA to its ligand, peptidoglycan. This finding perhaps

explains previous results that show different requirements for

PGRP-SA and PGRP-SD as coreceptors of GNBP-3 for different

bacteria, suggesting that different recognition complexes are

required for different cell wall compositions. These studies are

providing new insights into how pattern recognition occurs

in vivo for the detection of live microbes.

Bok Leul Lee (Busan, South Korea) has purified several pattern

recognition receptors and serine proteases from the haemo-

lymph of a coleopteran insect, Tenebrio molitor, and was able

to reconstitute in vitro all of the steps from binding of peptido-

glycan to the PGRP-SA/GNBP1 complex, or glucan to GNBP3,

to Toll pathway activation by Spätzle (Figure 2A, box 3). He dem-

onstrated that all of these pattern recognition receptors recruit

a unique apical modular serine protease (Roh et al., 2009), as

recently observed in Drosophila (Buchon et al., 2009b). He plans

to use these reconstituted pathways to develop kits capable of

detecting minute quantities of peptidoglycan or glucan in solu-

tion. Studies presented by David Gubb (Derio, Spain) suggested

a new and unexpected mechanism to tightly regulate these

proteolytic cascades by the scavenging of serpin/protease

complexes (Figures 2A, box 1, and 2B). The turnover in the hae-

molymph of Necrotic, a serpin regulating the Toll pathway, is

extremely rapid. Surprisingly, Necrotic is removed from the

haemolymph by two groups of giant cells, the garland and

pericardial athrocytes, and this endocytic uptake requires the
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low-density lipoprotein (LDL) receptor LpR1 (Soukup et al.,

2009). This mechanism is reminiscent of the removal of inert ser-

pin/proteinase complexes from circulation in mammals via LDL-

receptor-mediated endocytosis in the liver.

Mining the Imd Pathway
Although a number of new pathways have been identified as

playing important roles in innate immunity, there is still much to

be learned about the Imd pathway (Lemaitre and Hoffmann,

2007). Recent studies have identified several negative regulators

of the Imd pathway. François Leulier (Gif-sur-Yvette, France)

showed that Pirk (referred to in his work as PIMS) is required

to establish immune tolerance to commensal bacteria in the

gut (Lhocine et al., 2008) (Figure 2A, box 8). A marked increase

in basal Imd activity is seen in pirk/pims mutant flies, and this

chronic activation seems to be deleterious, with pirk/pims

mutants showing a reduced life span. Both of these effects are

Figure 1. Hans G. Boman and the Discovery of Antimicrobial
Peptides
Having worked previously on tRNA methylation and penicillin resistance, it was
in the 1970s that Hans Boman (1924-2008) turned his interest to insect immu-
nity. At the time, the existence of innate immunity was not recognized, and he
wondered how insects were able to protect themselves from pathogens? With
his coworkers Håkan Steiner and Dan Hultmark, he discovered the first anti-
bacterial peptide, Cecropin, in the Cecropia moth in 1981 (Steiner et al.,
1981). This seminal discovery opened up a whole new field of research, leading
to the isolation of antibacterial peptides from all walks of life and the realization
of the importance of innate immunity in the initial response to infections in hu-
mans. The discovery of inducible antimicrobial peptides also paved the way to
the genetic analysis of their regulation in Drosophila.
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rescued in bacteria-free flies, suggesting that they are depen-

dent on the presence of commensal bacteria. Thus, negative

regulation of the Imd pathway is crucial to prevent a chronic

immune response to gut bacteria.

Why should there be so many negative regulators of the Imd

pathway when no clear negative regulators of the Toll pathway

are known? This could relate to the fact that Imd is increasingly

being shown to have broader immune roles than Toll, regulating

antimicrobial peptides in epithelial tissues as well as systemi-

cally. Because only epithelial tissues are constantly exposed to

commensal and dietary microbes, it may be that stringent

control of the Imd pathway is required in these tissues to prevent

excessive basal activity.

In spite of its central role in immunity, the nature of the interac-

tions between components of the Imd pathway is still poorly

understood. Neal Silverman (Massachusetts, USA) has been at-

tempting to rectify this situation and reported a key role for ubiq-

uitination in generating a scaffold to assemble pathway compo-

nents (Figure 2A, box 5). He showed that cleavage of Imd by the

caspase Dredd exposes a domain that allows interaction with

the putative E3 ligase Diap2. This interaction leads to K63 poly-

ubiquitination of Imd, a modification known to play roles in signal

transduction. In this case, Silverman proposes that this polyubi-

quitination serves as a scaffold to mediate interaction with the

downstream pathway components Tab2, Tak1, and the IKK

complex. Marie-Odile Fauvarque (Grenoble, France) identified

a deubiquitinase, USP36, that is responsible for removing these

K63 polyubiquitin chains and is likely to indirectly promote K48

polyubiquitination and degradation of IMD (Figure 2A, box 7).

This deubiquitination is required to suppress constitutive activa-

tion of IMD and downstream pathways. Thus, the control of the

ubiquitination state of IMD is essential to regulation of the

pathway.

Activation of the IMD pathway results in cleavage of the tran-

scription factor Relish, allowing its NF-kB module to enter the

nucleus. Silverman discussed his finding that phosphorylation

of the transcription factor Relish is not required, as previously

suspected, for its cleavage. Rather, Relish phosphorylation is

specifically required for recruitment of RNA polymerase II to tar-

get promoters (Ertürk-Hasdemir et al., 2009) (Figure 2A, box 6).

JAK/STAT as a Tissue Damage Response Pathway
The JAK-STAT pathway has already been identified by gene

expression profiling as a regulator of a subset of Drosophila

immune response genes, but its function was not clear (Agaisse

et al., 2003). However, new data serve to emphasize its key role

in response to tissue damage. Increasing evidence in vertebrate

systems supports the notion that immune responses have a role

in tumor surveillance. José Carlos Pastor-Pareja (New Haven,

USA) reported the exciting observation that haemocytes (circu-

lating immune cells) adhere to tumors in Drosophila upon detec-

tion of basement membrane disruption (Pastor-Pareja et al.,

2008) (Figures 2A, box 10, and 2C). The same phenomenon is

observed in response to physically inflicted wounds that breach

basement membranes. In both cases, the damaged tissues up-

regulate JNK activity and secrete Unpaired cytokines that acti-

vate JAK/STAT signaling in haemocytes and the fat body and

lead to haemocyte proliferation. These observations suggest

that the basement membrane, which surrounds every organ,
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Figure 2. Key Pathways of Innate Immunity, Highlighting New Findings
(A) The Toll pathway is activated in response to Gram-positive bacteria or Fungi, via a cascade of serine proteases leading to the cleavage of the Toll ligand Spät-
zle. Studies presented at the meeting highlighted the rapid degradation of the serine protease necrotic (1, David Gubb), the structure of the pattern recognition
receptor GNBP3 (2, Alain Roussel), the fact that both GNBP3 and GNBP1 activate the same cascade of serine proteases (3, Bok Luel Lee), and the combinatorial
nature of the receptors that detect Gram-positive bacteria (4, Petros Ligoxygakis). The Imd pathway detects Gram-negative bacteria and is directly activated by
PGRP-LC binding of peptidoglycan. The downstream pathway was clarified at the meeting by Neal Silverman (5 and 6), who showed that Imd is cleaved by the
caspase Dredd, allowing it to associate with the E3 ligase Diap2. This results in K63 polyubiquitination, likely forming a scaffold for additional complex members
and leading to cleavage and phosphorylation of the NF-kB transcription factor Relish. Relish enters the nucleus and recruits RNA polymerase II to target
promoters in a phosphorylation-dependent manner. Other talks discussed the downregulation of Imd signaling by the deubiquitinase USP36 (7, Marie-Odile Fau-
varque), by Pirk/PIMS (8, Francois Leulier), and, in the tsetse fly, by PGRP-LB (9, Serap Aksoy). The JAK/STAT pathway is activated by cytokines that bind to the
receptor Domeless, resulting in phosphorylation of the transcription factor STAT by the kinase JAK. STAT dimers then translocate to the nucleus and activate
a transcriptional response. JAK/STAT plays a role in the response to stress or injury, and work presented at the meeting showed a role for this pathway in
the recruitment of haemocytes to tumors and epithelial wounds (10, José Carlos Pastor-Pareja) and the activation of epithelial renewal in response to gut damage
caused by infections (11, Dominique Ferrandon, Nicolas Buchon).
(B) Uptake of the serpin protease Necrotic (red) by Garland cells, as reported by David Gubb. Adapted from Soukup et al. (2009).
(C) Recruitment of haemocytes (marked by Serpent in red) to a GFP-expressing RasV12/scrib�/� tumor in the eye antennal disc, as reported by José Carlos
Pastor-Pareja. Adapted from Pastor-Pareja et al. (2008).
(D) Upregulation of cell proliferation in the gut (marked by GFP under the control of the escargot-Gal4 driver) following oral infection with Ecc15, as reported by
Nicolas Buchon. Reproduced from Buchon et al. (2009a).
Cell Host & Microbe 6, August 20, 2009 ª2009 Elsevier Inc. 109
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has a general role as an indicator of tissue integrity, allowing the

immune system to sense damage by assessing basal membrane

status. Further studies should analyze how immune genes regu-

lated by the JAK-STAT pathway participate in wound repair.

Gut Immunity
The systemic immune response of Drosophila has been exten-

sively studied, based on a septicemia model of direct introduc-

tion of bacteria into the body cavity. However, in recent years,

the focus has shifted to the local immune responses of epithelial

tissues, particularly the gut, and this was a prominent theme of

the meeting.

Damage Sensing and Epithelial Renewal

To maintain homeostasis, the gut epithelium is constantly re-

newed by the division and differentiation of intestinal stem cells

(ISCs). Several recent reports have highlighted an unexpected

link between this epithelial renewal and oral bacterial infection.

It was recently shown that ingestion of an infectious but nonlethal

bacterium Erwinia carotovora 15 (Ecc15) strongly stimulates ISC

division, promoting a rapid turnover of the gut epithelium

(Buchon et al., 2009a). How this renewal is stimulated and

what purpose it serves remained unclear. Nicolas Buchon (Lau-

sanne, Switzerland) presented evidence that increased epithe-

lium renewal is a response to self-inflicted damage of the intes-

tine caused by reactive oxygen species (ROS) produced, in part,

by the NADPH oxidase Duox (see below) (Figures 2A, box 11,

and 2D). The resultant stem cell proliferation is induced by the

JAK-STAT pathway upon the release of the cytokine Upd3 by

damaged enterocytes. These data suggest that gut homeostasis

is maintained in the face of bacterial infection by balancing the

cell damage caused by the protective ROS response with

epithelial repair through ISC activation. This is clearly an impor-

tant facet of gut immune defense, given that mutant flies that

are unable to repair their epithelium are highly susceptible to

Ecc15 infection. Dominique Ferrandon (Strasbourg, France) re-

ported the results of an extensive in vivo RNAi screen covering

78% of genes in the genome, which aimed to identify genes

affecting survival after oral infection with the lethal entomopatho-

genic bacterium Serratia marcescens (Cronin et al., 2009)

(Figure 2A, box 11). More than 800 genes were identified, with

overrepresentation of a number of biological processes, in-

cluding signaling, intracellular transport, and transcriptional reg-

ulation. In addition to this technical tour de force, these studies

also revealed that S. marcescens triggers epithelial renewal

through the JAK-STAT pathway. Contrary to observations with

Ecc15, reducing the capacity for epithelium renewal increased

the survival of flies, suggesting that S. marcescens subverts

host defenses by triggering excessive and ultimately deleterious

proliferation of gut cells. Conversely, high doses of another

lethal bacterium, Pseudomonas entomophila, were reported by

Buchon to disrupt the gut by blocking epithelium renewal, sug-

gesting that epithelium renewal could be a common target for

manipulation by pathogenic bacteria.

New Pathways in the Regulation of ROS Production

One of the most interesting findings in recent years has been the

discovery of the role of the NADPH oxidase Duox in the elimina-

tion of ingested microbes. The participation of the NADPH

gp91(phox) in the killing of microbes in the phagosomes of mac-

rophages is well known to immunologists. Less clear, however,
110 Cell Host & Microbe 6, August 20, 2009 ª2009 Elsevier Inc.
is the role of a second conserved family of NADPH proteins

called Duox proteins. In addition to the NADPH domain, Duox

proteins have an N-terminal extracellular peroxidase domain

(PHD) that can produce ROS in a regulated manner. The group

of Won-Jae Lee (Seoul) has shown that Duox is responsible for

a rapid synthesis of ROS in the gut following oral ingestion of

bacteria. In the absence of Duox, ingested bacteria are able to

persist and proliferate in the intestinal tract, and increased

mortality is observed (Ha et al., 2005). Won-Jae Lee (Seoul,

South Korea) presented data revealing complex regulation of

Duox through two distinct pathways. The activity of the Duox

protein is first regulated through a Gaq/phospholipase-Cb

pathway leading to the release of intracellular Ca2+ from the

endoplasmic reticulum. Under basal conditions, this regulation

is essential to control dietary microbes, with even dietary yeast

killing flies lacking Duox, Gaq, or PLCb (Ha et al., 2009). A

second level of regulation is the transcriptional upregulation of

the Duox gene in response to pathogenic microbes through

a p38-MAPK pathway downstream of the peptidoglycan

receptor PGRP-LC and Imd (but not downstream of Imd

pathway components). The PLCb pathway is required both to

downregulate Duox expression in basal conditions (via Calci-

neurin-B and a MAP kinase phosphatase) and as an upstream

component of the p38-MAPK pathway to upregulate Duox

expression in response to pathogenic microbes. This suggests

a crucial role for the level of PLCb activity, presumably depen-

dent on the level of the unidentified ligand of this pathway.

Clearly, the identity of this ligand (possibly related to stress)

and, indeed, the receptor upstream of Gaq (likely a G-coupled

receptor) will be important to identify in the future. These studies

reveal new mechanisms of microbial killing and new regulatory

pathways. Could this role of Duox be conserved in mammalian

epithelia? Preliminary studies from the Lee laboratory suggest

that a Duox protein, regulated by a PLCb, is involved in ROS

production in cultured mammalian intestinal cells. Along these

lines, a recent study in zebrafish revealed a different role for

Duox in epithelial cells, in wounding-dependent generation of

a gradient of H2O2 required for leukocyte recruitment to the

wound (Niethammer et al., 2009).

A further suggestion of conservation is seen in the p38-MAPK

pathway, which has also been implicated in immune defense in

other organisms, such as nematodes and plants. Johnathan Ew-

bank (Marseille, France) spoke about his work on the regulation

of an antimicrobial peptide gene, nlp-29, in Caenorhabditis ele-

gans (Ziegler et al., 2009). This regulation requires G protein

signaling, a PKCd, and p38. Could this pathway, at the frontier

between stress response and immunity, be an ancestral-

microbe-sensing system, preceding the emergence of a pattern

recognition mechanism?

Trapping and Killing of Bacteria by Clotting
The mechanisms of clotting are poorly conserved between

vertebrates and insects, and the only enzyme that is known to

play a role in clotting in both groups is transglutaminase (corre-

sponding to vertebrate factor XIII), which crosslinks clotting

fibers. Using RNAi, Ulrich Theopold (Stockholm, Sweden) re-

ported that transglutaminase (and clotting in general) is not crit-

ical for proper wound healing in flies. Instead, it plays an im-

mune role, trapping and killing bacteria, with transglutaminase
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substrates being incorporated into bacterial and fungal cell

walls. In the absence of transglutaminase, apparently normal

clots form, but these no longer trap bacteria, and larvae are

more susceptible to septicemia. This resembles the role of hu-

man factor XIII in trapping and eliminating bacteria. That this is

a common mechanism for bacterial killing is suggested by the

observation of fibrous extracellular traps generated by neutro-

phils (Wartha et al., 2007). It will be interesting to discover

whether Drosophila clots contain embedded antimicrobial mole-

cules in the same way as these traps.

Antimalarial Response in Anopheles

Plasmodium development within Anopheles mosquitoes is

a vulnerable step in the transmission cycle of the malaria para-

sites. Scientists are interested in understanding the interactions

leading to this bottleneck, as targeting this step represents

a promising strategy for malaria control.

A Complement-like System in Insects

The thioester-containing complement C3-like protein TEP1 and

two leucine-rich repeat (LRR) proteins, LRIM1 and APL1C (or

LRIM2), have been identified as major factors regulating the

Plasmodium parasite load in mosquitoes. Recent studies now

indicate that these factors function together in a common com-

plement-like pathway. The two LRR proteins circulate in the hae-

molymph as a multimeric complex held together by disulfide

bridges. This complex interacts with and stabilizes the mature

form of TEP1. Upon Plasmodium berghei infection, TEP1 is re-

leased from the complex and binds to the surface of midgut-

invading Plasmodium parasites, targeting them for destruction.

Results presented by Elena Levashina (Strasbourg, France)

and George Christophides (London, UK) showed that LRIM1

and APL1C are required for binding of TEP1 to the malaria para-

sites (Fraiture et al., 2009; Povelones et al., 2009). Depletion of

the LRR proteins from the mosquito haemolymph by RNAi

results in nonspecific deposition of TEP1 on Anopheles tissues,

thereby depleting mature TEP1 from circulation in the haemo-

lymph and abolishing its binding on Plasmodium. Thus, these

major antiparasitic factors in mosquitoes jointly function as

a complement-like system in parasite killing.

Some species of Anopheles mosquitoes do not serve as

vectors for Plasmodium, as they always mount a successful im-

mune response against the parasites, and these species provide

another way to understand Plasmodium resistance. Silencing of

LRIM1, LRIM2, and TEP1 in the resistant mosquito An. quadrian-

nalatus completely abolishes the killing of P. berghei by melani-

zation and dramatically increases the number of oocysts, thus

transforming it into a highly permissive parasite host (Habtewold

et al., 2008).

Role of the Microbiome and Innate Immune Pathways

Anopheles gambiae antimicrobial responses are largely

controlled by the Toll, Imd, and JAK-STAT immune pathways

via the NF-kB transcription factors REL1 and REL2 and STATs.

Different pathways seem to mediate resistance to different para-

site species, with the Imd pathway crucial for resistance to the

human malaria parasite P. falciparum, whereas the Toll pathway

appears to be most efficient against the rodent parasite P. ber-

ghei. In addition to mosquito immune responses, recent studies

implicate the microbial gut fauna in Plasmodium parasite resis-

tance. To better understand the molecular interplay between
commensal bacteria and P. falciparum in An. gambiae, George

Dimopoulos (Baltimore, USA) has adopted a functional geno-

mics approach. He reported that the presence of microbiota in

mosquitoes results in the upregulation of a significant subset

of immune genes, including several anti-Plasmodium factors,

and that elimination of the microbiota results in an increased

susceptibility to Plasmodium infection. Transcriptome analyses

suggest that the commensal bacteria modulate mosquito sus-

ceptibility to Plasmodium through immune responses, plausibly

through activation of basal epithelial immunity (Dong et al.,

2009). A complementary approach by George Christophides

(London, UK) showed that the immune response against midgut

microbiota is mediated, at least partly, by the peptidoglycan

recognition protein, PGRP-LC. Upon recognition of bacteria,

this receptor triggers activation of the REL2-signaling pathway

that consequently modulates infections with Plasmodium. It is

hoped that these studies will allow researchers to boost

mosquito defenses against Plasmodium, perhaps by producing

transgenic mosquitoes or introducing specific bacteria into

mosquito populations, and ultimately halt the spread of malaria.

Symbiotic Bacteria and Host Immunity
In addition to their microbiota, at least a third of arthropod species

harbor maternally inherited bacteria that live within host cells.

New insights into the advantages that these microbes can confer

on their hosts and the mechanisms that allow these microbes to

escape host immune responses were provided at the meeting.

Among the symbiotic organisms that have been most exten-

sively studied is Wolbachia, which infects more than 20% of

insect species. Until recently, it was thought that Wolbachia

infections of insects were largely parasitic and had invaded

host populations by manipulating the reproduction of their hosts

to increase their transmission through the female germline.

However, new studies are suggesting that Wolbachia infections

in Drosophila can confer resistance to viruses and therefore act

as mutualists. Independent investigations reported by Karyn

Johnson (Brisbane, Australia) and Luis Teixeira (Oeiras, Portugal)

have shown that Drosophila infected with Wolbachia are less

susceptible to the mortality induced by a range of RNA viruses,

whereas animals cured of Wolbachia by tetracycline treatment

fully regain their susceptibility (Hedges et al., 2008; Teixeira

et al., 2008). Wolbachia increases the survival of flies infected

with four different RNA viruses—Drosophila C virus (DCV),

Cricket paralysis virus (CrPV), Nora virus, and Flock house virus

(FHV) —but has no effect on survival to infections of the DNA

virus insect iridescent virus 6. The increase in resistance against

three of these viruses results from a reduction of the viral titer.

However, Teixeira showed that titers of FHV are not affected,

suggesting that Wolbachia confers a tolerance, rather than

a resistance, to the virus. Johnson also presented new data

showing varying levels of antiviral protection with different

Wolbachia strains in Drosophila simulans. The mechanism(s) by

which Wolbachia confers protection to infected individuals

remains unknown. Given that natural viral pathogens of D. mela-

nogaster are common in wild populations, the association of

Wolbachia with a robust antiviral effect may confer an advantage

to flies. Increasing antiviral immunity in vector insects such as

mosquitoes, which transmit devastating pathogens like Dengue

and West Nile virus, would clearly be of immediate interest, and
Cell Host & Microbe 6, August 20, 2009 ª2009 Elsevier Inc. 111
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Wolbachia presents an alternative strategy to transgenic ap-

proaches. This is particularly exciting, as Wolbachia can be

transferred between species and can rapidly spread through

natural populations by manipulating their hosts’ reproduction.

Some insects have obligate symbionts, such as Buchnera in

aphids and Wigglesworthia in tsetse flies, that support vital host

physiological functions. Studies in tsetse flies by Serap Aksoy

(Yale, USA) suggest yet another role for obligate symbiosis in

host biology. Adult tsetse flies are highly resistant to infections

with parasitic African trypanosomes, but removal of Wiggleswor-

thia by antibiotic treatment causes the flies to become highly

susceptible to parasitism (Pais et al., 2008). RNAi depletion of

a host peptidoglycan recognition protein similar to PGRP-LB

suggests that it plays a dual role in tsetse. In Drosophila,

PGRP-LB has been shown to cleave peptidoglycan into frag-

ments that are not detected by the immune system, thereby

downregulating the immune response (Figure 2A, box 9). In tsetse

flies, PGRP-LB also seems to scavenge peptidoglycan to prevent

induction of immune pathways in response to Wigglesworthia. It

might also play an additional role in interfering with parasitism.

PGRP-LB silencing induces the Imd pathway, resulting in the

synthesis of antimicrobial peptides, damage to Wigglesworthia

(Wang et al., 2009), and a consequent loss of host fecundity. At

the same time, the flies become highly susceptible to trypano-

some parasitism. It is not clear whether this results from a direct

antiparasitic function of PGRP-LB or from interference with the

synthesis of unknown downstream molecules. Thus, the obligate

nature of Wigglesworthia symbiosis may result from its beneficial

effects on host immunity as well as fecundity.

Employing PGRP-LB to ensure tolerance of obligate symbi-

onts is not isolated to tsetse flies, with a similar role being shown

in weevils (Anselme et al., 2006). Wherever symbionts are neces-

sary for the survival or reproduction of their hosts, we might

expect to find host mechanisms to suppress immune responses

and ensure tolerance of these symbionts. An extreme example

can be found in aphids, where genome sequence data indicate

extensive erosion of genes and pathways coding for host

immune functions (Pennisi, 2009), presumably to protect their

obligate symbiont, Buchnera.

The Evolution of Resistance and Tolerance
Pathogens can have dramatically different effects on the health

of the individuals that they infect. Whereas some pathogens

are lethal, others can be relatively benign. For example, Dan

Hultmark (Umea, Sweden) described how the recently identified

Nora virus can be present in massive quantities in Drosophila

with only limited consequences (a modest reduction in life span)

(Habayeb et al., 2009). Intriguingly, although most flies can clear

the virus if maintained in clean conditions (the virus is transmitted

through feces), a subpopulation remains persistently infected.

It is increasingly becoming clear that ‘‘tolerance’’ to pathogens

(limiting the health impact of a given pathogen burden) may also

be a viable immune strategy, reducing the damage caused by

the pathogen, rather than mounting a ‘‘resistance’’ response

that kills or controls the pathogen. Although the concepts of

resistance and tolerance are widely used in the plant sciences,

until recently, they have been largely ignored in the study of

animal diseases. Several talks focused on the genetic basis of

tolerance to infection in Drosophila. David Schneider (Stanford,
112 Cell Host & Microbe 6, August 20, 2009 ª2009 Elsevier Inc.
USA) found that a mutation in Serine protease 7 (Sp7), which

encodes a component of the melanisation pathway, reduced

the survival of flies infected with Listeria monocytogenes, despite

having no effect on the number of bacteria (Ayres and Schneider,

2008). However, when Sp7 mutant flies are infected with other

species of bacteria, both increased and decreased bacterial

load are observed, showing that genes that control tolerance

to one pathogen may control resistance to others. Another way

in which flies can tolerate infection was described by Naoaki

Shinzawa (Obihiro, Japan), who found that overexpression of

p38 MAP kinase increased the survival of flies infected with intra-

cellular bacteria, despite having little effect on bacterial load.

This effect was caused by the tolerant flies having enlarged plas-

matocytes (phagocytes), which prevented phagocytosed

bacteria from escaping and harming their host. Understanding

how animals can tolerate infection may have important implica-

tions for public health. For example, if medical interventions or

selective breeding of animals increases tolerance to infection

rather than resistance, there will be little selection for pathogens

to evolve countermeasures to the increased tolerance. There-

fore, such strategies may avoid many of the problems that result

from pathogens evolving to survive drug treatments or to infect

resistant breeds of animals and plants.

One of the reasons that animals may evolve tolerance rather

than resistance is that resistance can be very costly. An overac-

tive immune response can be severely deleterious for an animal,

but this effect is only seen after an animal becomes infected.

However, increased resistance to pathogens may also be costly

in uninfected animals. This was illustrated by Yixin Ye (Queens-

land, Australia), who described how populations of Drosophila

that were artificially selected to survive infection with Pseudo-

monas aeruginosa rapidly evolved resistance to the bacterium

(Ye et al., 2009). However, this increase in resistance was ac-

companied by a reduction in the survival and egg hatch rates

of uninfected flies. Once selection was relaxed, the population

lost its resistance, suggesting selection for susceptibility in the

absence of the pathogen.

In contrast to most other organisms, researchers working on

Drosophila immune responses typically rely on microbes that

do not occur in wild flies, and the natural pathogens and parasites

of flies are largely unknown. Darren Obbard (Edinburgh, UK)

described how both wild and laboratory Drosophila are infected

with a diverse range of viruses, some of which occur at a high

prevalence. These natural pathogens will impose a strong selec-

tion pressure on flies to evolve resistance. Frank Jiggins (Cam-

bridge, UK) has resequenced most of the genes in the Drosophila

immune system in various Drosophila populations to investigate

how natural selection has acted on them. A small subset of genes

in the immune system has a very high rate of adaptive evolution,

and these genes tend to be in immune-signaling pathways or to

be components of the antiviral RNAi response. Signaling path-

ways and the RNAi machinery are common targets of pathogen

molecules that suppress the immune response, suggesting that

immune suppression may be a key force driving evolution of the

immune system. The way in which natural selection acts on

the Drosophila immune system is often strikingly different from

the patterns seen in vertebrates. For example, there is no evi-

dence of natural selection maintaining polymorphisms like those

seen in vertebrate MHC genes, and vertebrate antimicrobial



Cell Host & Microbe

Meeting Report
peptides often have high rates of adaptive evolution, whereas

Drosophila ones do not. This is probably the result of insects

and vertebrates differing in their ecology, the pathogens they

encounter, and their immune systems.

Perspectives
Though it is not possible to discuss all of the talks presented at

this meeting, we hope to highlight emerging trends in the field

of insect immunity. One of these is a new interest in the host

response to natural infections, focusing on the immune response

and homeostasis of the gut. In this context, outcomes vary dras-

tically, depending on the bacterial strains used to infect the fly.

This is also a feature of new studies that emphasize the role of

tolerance in evading the harmful effects of infections. In some

cases, tolerance leads to persistent infections, such as that of

the Nora virus, which provide an opportunity to investigate

natural transmission of infections between individuals. Many

researchers are now analyzing the survival of insects to microbial

infection in a more integrated manner that encompasses not

only immune defense, but also critical aspects of the host’s

physiology. Also of interest, and little studied as yet, is under-

standing the underlying causes of death following pathogenic

infections. Massive cell death of the intestinal epithelium seems

to underlie the lethality of some oral infections, and Ioannis

Eleftherianos (Strasbourg, France) presented data suggesting

that infection with the Flock house virus may be causing death

through heart failure, with a role for stress-activated potassium

channels in mediating survival.

A much-increased emphasis is also being placed on the role of

nonpathogenic microbes in immune defense, including both the

microbiota and symbionts, which in many cases enhance immu-

nity or even provide novel immune functions. Of particular in-

terest are the parallels between mechanisms employed during

interactions with pathogens and symbionts. This is clearly illus-

trated by the case of catalytic PGRPs, which seem to play roles

in moderating the immune response to pathogens and allowing

tolerance of symbionts. Finally, an intriguing case was made

for the importance of social interactions in immunity focusing

on the social insects, the ants, in which a ‘‘social immune mem-

ory’’ was proposed by Sylvia Cremer (Regensburg, Germany) to

explain increased survival to infection of naive ants exposed

to infected colony members, and bees, concerning which Jay

Evans (Beltsville, USA) discussed colony level defenses and

the pathogens associated with Colony Collapse Disorder.

Thus, research in the insect immunity continues to be a rich

and diverse field, having an impact on our general understanding

of metazoan immunity, and also has the potential to improve

human health through innovative strategies to control or manip-

ulate insect disease vectors.
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