
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013 2103

Sampling High-Dimensional Bandlimited Fields
on Low-Dimensional Manifolds
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Abstract—Consider the task of sampling and reconstructing
a bandlimited spatial field in using moving sensors that take
measurements along their path. It is inexpensive to increase the
sampling rate along the paths of the sensors but more expensive
to increase the total distance traveled by the sensors per unit area,
which we call the path density. In this paper, we introduce the
problem of designing sensor trajectories that are minimal in path
density subject to the condition that the measurements of the field
on these trajectories admit perfect reconstruction of bandlimited
fields. We study various possible designs of sampling trajectories.
Generalizing some ideas from the classical theory of sampling
on lattices, we obtain necessary and sufficient conditions on the
trajectories for perfect reconstruction. We show that a single set of
equispaced parallel lines has the lowest path density from certain
restricted classes of trajectories that admit perfect reconstruction.
We then generalize some of our results to higher dimensions. We
first obtain results on designing sampling trajectories in higher
dimensional fields. Further, interpreting trajectories as 1-D mani-
folds, we extend some of our ideas to higher dimensional sampling
manifolds. We formulate the problem of designing -dimensional
sampling manifolds for -dimensional spatial fields that are
minimal in manifold density, a natural generalization of the path
density. We show that our results on sampling trajectories for
fields in can be generalized to analogous results on -di-
mensional sampling manifolds for -dimensional spatial fields.

Index Terms—Mobile sensing, multidimensional signal pro-
cessing, nonuniform sampling, union of lattices, sampling theory,
sampling trajectories.

I. INTRODUCTION

A. Problem Description

C ONSIDER the problem of sampling a -dimensional
time-invariant spatial field , where

represents a -dimensional spatial location. If is bandlimited,
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Fig. 1. Two approaches for sampling a field in . (a) Static sampling on
points. (b) Mobile sampling on a curve.

results from classical sampling theory (see, e.g., [3] and [4])
provide schemes for sampling and reconstructing the field
based on measurements of the field at a countable number
of spatial locations, e.g., points on a lattice or a nonuniform
collection of points like the one depicted in Fig. 1(a). The
performance metric used in designing such sampling schemes
is the sampling density—i.e., the number of sampling locations
per unit spatial volume. Such a metric is motivated by the fact
that one typically employs static sensors to measure the field at
their locations and hence the sampling density is equal to the
spatial density of the sensor deployment.
The scenario is different in some practical cases. Consider for

instance the problem of sampling a -dimensional spatial field
(where ) using a mobile sensor that moves along a
continuous path through space and takes measurements along its
path. An example of the path of a sensor moving in is shown
in Fig. 1(b). In such cases, it is often inexpensive to increase the
spatial sampling rate along the sensor’s path. Hence, it is rea-
sonable to assume that the sensor can record the field values at
an arbitrarily high but finite resolution on its path. The objec-
tive now is to reconstruct the -dimensional field using only the
values of the field at closely spaced points on the path of the
sensor through . For such a sampling scheme, the density of
the sampling points in is no longer a relevant performance
metric. Instead, a more relevant metric is the average distance
that needs to be traveled by the sensor per unit spatial volume
(or area, for ). We call this metric the path density. Such a
metric is relevant in applications like environmental monitoring
using moving sensors [5], [6], where the path density directly
measures the distance moved by the sensor per unit area. This
metric is also useful in designing -space trajectories for MRI
[7], where the path density captures the total length of the tra-
jectories per unit area in -space which can be used as a proxy
for the total scanning time per unit area in -space.
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Fig. 2. Three approaches for sampling a field in : sampling on a lattice, along
lines, and along planes. (a) Sampling lattice. (b) Sampling lines. (c) Sampling
planes.

Now consider a different related problem. Suppose we want
to reconstruct a 3-D bandlimited spatial field using measure-
ments of the field along 2-D surfaces. Such a scheme is em-
ployed in applications like transmission electron microscopy
(TEM) [8] andMRI [9]. In these cases, it may be relatively inex-
pensive to increase the sampling resolution on the 2-D measure-
ment surfaces but it may be more expensive to increase the total
area of the measurement surfaces. Thus, it may be reasonable to
assume that the measurements reveal the value of the field at ar-
bitrarily high resolutions on the surfaces. The objective now is to
design measurement surfaces that admit perfect reconstruction
of bandlimited fields and are simultaneously minimal in area.
Motivated by such problems, we introduce a generalization

of the classical theory of sampling of -dimensional fields on
countable sets of points to a theory of sampling on countable
sets of -dimensional manifolds on where . Some ex-
amples of sampling schemes for sampling a field in are illus-
trated in Fig. 2. Fig. 2(a) depicts sampling on a lattice, Fig. 2(b)
sampling on a set of equispaced parallel lines, and Fig. 2(c) sam-
pling on a set of equispaced parallel planes, corresponding to

, , and , respectively.
Initially, we focus on the case since our primary mo-

tivation comes from the problem of mobile sensing. The trajec-
tory of a mobile sensor can be interpreted as a 1-D manifold, or
in other words, a curve, through space. Mobile sensing has an
advantage over classical static sensing in that a single sensor can
be used to take measurements at several positions within an area
of interest [10]. Moreover, in some applications [11], moving
sensors can sample the fields along their paths at high spatial
frequencies thereby reducing the amount of spatial aliasing in-
troduced in the samples. Furthermore, as we point out in [12]
and [13], a moving sensor admits filtering over space in the di-
rection of motion of the sensor, whereas no such spatial filtering
is possible in the case of static sampling. Such spatial filtering
helps in reducing the amount of aliasing and the contribution of
out-of-band noise in the reconstructed field.

B. Main Results

Our results for provide guidance for designing trajecto-
ries for mobile sensors moving through space. Focusing initially
on straight line trajectories, we identify some configurations of
straight line trajectories that admit perfect reconstruction of ban-
dlimited fields. This can be interpreted as a generalization of the
classical Nyquist sampling criterion for sampling on a lattice to

TABLE I
SUMMARY OF SOME RESULTS. EACH RESULT USES THE ONE ABOVE IT. “NEC”
STANDS FOR NECESSARY CONDITIONS, “SUF” FOR SUFFICIENT CONDITIONS FOR
PERFECT RECONSTRUCTION, AND “OPT” STANDS FOR OPTIMALITY CONDITIONS

UNDER THE SAMPLING SCHEME SPECIFIED BY THE COLUMN.

sampling on lines. We also formulate the problem of designing
sampling trajectories with minimal path density that admit per-
fect reconstruction of bandlimited fields and obtain partial solu-
tions to this problem, restricting ourselves to specific classes of
straight line trajectories. Our main results for straight line tra-
jectories are the following.
1) Necessary and sufficient conditions on a union of
sets of equispaced parallel lines that admit perfect recon-
structions of bandlimited fields in (see Theorem 2.4).

2) Optimality of a single set of equispaced parallel lines from
among unions of sets of equispaced parallel lines for sam-
pling bandlimited fields in (see Theorem 3.2).

3) Optimum configuration of a uniform set of parallel lines for
sampling bandlimited fields in (see Corollary 3.4.1).

4) Optimality of a uniform set of parallel lines from among
all trajectory sets that visit all points in a sampling lattice
(see Propositions 3.3 and 3.5).

We also consider nonaffine trajectories such as concentric cir-
cles and interleaved spirals and discuss some known results and
some new results on sufficient conditions for perfect reconstruc-
tion. These results are based on an application of Beurling’s the-
orem on sufficient conditions for nonuniform sampling.
We then consider higher dimensional sampling manifolds

corresponding to . We introduce a manifold density
metric for sampling manifolds that generalizes the path density
metric for sampling trajectories. We generalize our results on
sampling on lines in to sampling on hyperplanes in
which are -dimensional manifolds where . Our main
results for hyperplanes are the following.
1) Necessary and sufficient conditions on a union of
sets of equispaced parallel hyperplanes that admit perfect
reconstructions of bandlimited fields in (see Theorem
4.3).

2) Optimality of a single set of equispaced parallel hyper-
planes from among unions of sets of equispaced parallel
hyperplanes for sampling bandlimited fields in (see
Theorem 4.4).

The dependences between various results is summarized in the
form of a table in Table I in Section VI of this paper.

C. Related Work

Although there has not been any past work specifically on
the problem of designing optimal sampling manifolds or tra-
jectories, some reconstruction schemes based on measurements
taken along concentric circular trajectories have been proposed
by Tewfik et al. [14] and Myridis and Chamzas [15]. Various
sampling trajectories have also been studied in the context of
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MRI (see, e.g., [9], [16]–[18]). However, the literature on trajec-
tory design for MRI is of a different flavor from ours, since the
primary focus in these research works is to suppress noise in the
reconstruction and they do not aim for exact reconstruction. To
the best of our knowledge, this paper is the first to introduce the
notion of path density and manifold density and the notions of
optimal sampling trajectories and optimal sampling manifolds
for exact reconstruction of bandlimited fields.

D. Notations and Conventions

Most of the notations and conventions we use are described
where they first arise. In Section A in the Appendix, we provide
a detailed list of symbols. Here, we present some commonly
used notations.
We denote a field in -dimensional space by a com-

plex-valued mapping . For a field , we define
its Fourier transform as

(1)

where denotes the imaginary unit, and denotes the scalar
product between vectors and in . We use to denote
the collection of fields with finite energy such that the Fourier
transform of is supported on a set , i.e.,

(2)

For , we use to denote its interior in . Also, for
any , we use to denote the set obtained by shifting
by , defined as

(3)

We use the following notations for order statistics.When
, we say that a real-valued function if there

exists such that for all , we have

Similarly, we say if for every there exists
such that for all , we have

We use to denote the Dirac delta function in -dimen-
sions. The value of is understood from context. We use to
denote the Kronecker delta function. For vectors , we
use to denote the Euclidean norm of and to denote
the Euclidean inner product.

E. Outline

The rest of this paper is organized as follows. In Section II,
we formally define the notion of sampling trajectories and
introduce the Nyquist criterion for sampling trajectories. We
describe various designs of sampling trajectories and provide
conditions on these trajectories for perfect reconstruction of
bandlimited fields. We provide results on trajectory sets com-
posed of straight lines, circles, and spirals. In Section III, we
study the problem of optimizing sampling trajectories in terms
of the path density metric and present some optimality results
from certain restricted configurations of sampling trajectories.
In Section IV, we discuss sampling on higher-dimensional

manifolds. We generalize our results on sampling on straight
line trajectories to sampling on hyperplanes in high-dimen-
sional spaces. We discuss reconstruction schemes in Section V
and conclude the paper in Section VI.

II. SAMPLING TRAJECTORIES

We now discuss the problem of designing trajectories for
sampling. We consider natural generalizations of sampling lat-
tices and unions of sampling lattices to trajectories.

A. Preliminaries

We use the following terminology in this section. A trajectory
in refers to a curve in . We represent a trajectory by a

continuous function of a real variable taking values on

A simple example of a trajectory is a straight line defined by
for some . A trajectory set is defined

as a countable collection of trajectories

(4)

where is a countable set of indices and for each ,
is a trajectory in the trajectory set . A simple example of a
trajectory set is a countable collection of parallel lines through
.
We introduce a natural generalization of the sampling den-

sity metric that characterizes the sampling efficiency of sam-
pling lattices. In a sampling scheme using mobile sensors, it
is much more difficult to increase the spatial density of trajec-
tories than to increase the sampling rate along the trajectories.
Hence, unlike in classical sampling theory, the density of sam-
pling points in space is no longer an appropriate metric for quan-
tifying the efficiency of a mobile sampling scheme. A more rea-
sonable metric is the total length of the trajectories required to
span a field of given spatial volume. Let and denote
-dimensional spherical balls of radii centered, respectively,
at the origin and at a point . For any given trajectory set
, we denote its path density by defined as follows:

(5)

where represents the total arc-length of trajectories
from located within the ball and represents
the volume of the ball. Clearly, and

. For a trajectory set composed of differentiable functions
, we note that can be explicitly calculated as

(6)

where represents the Euclidean norm of and

represents the portion of trajectory that lies within .
We say that a set of points is uniformly discrete if

we have , i.e., there exists
such that for any two distinct points , we have
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.1 For a set , let denote the class of fields
bandlimited to as defined in (2). Let denote the collection
of all uniformly discrete sets which have the property
that any field can be reconstructed exactly from its
values on , i.e., is uniquely determined from

. Classical sampling theory is primarily concerned with
the elements of , e.g., Nyquist sampling lattices [19]. We
now introduce the desirable properties of sampling trajectory
sets.

Definition 2.1: A trajectory set of the form (4) is called a
Nyquist trajectory set for if it satisfies the following
conditions.

(C1) Nyquist: There exists a uniformly discrete collection
of points on the trajectories in such that admits

perfect reconstruction of fields in , i.e.,
and .

(C2) Nondegeneracy: For any , there is a contin-
uous curve of length no more than that
contains the portion of the trajectory set that is located
within .

We also introduce a special notation for the collection of all
Nyquist trajectory sets.

Definition 2.2: We use to denote the collection of all
Nyquist trajectory sets for , i.e., is the collection of all
trajectory sets of the form (4) that satisfy conditions (C1) and
(C2).
The condition (C1) ensures that the entire field can be re-

constructed exactly from samples taken on the trajectories. This
is the direct analog of the Nyquist condition for sampling on
points. The restriction that only uniformly discrete collections
of samples are allowed is a standard one in nonuniform sam-
pling theory (see, e.g., [18] and [20]). There is a subtle reason
for adopting this restriction in this work. We know that a ban-
dlimited signal is an entire function and hence can be completely
recovered (see, e.g., [21] and [22]) using its values on an in-
terval or using its values on a convergent sequence of points.
Such results can be used to construct a trajectory in with fi-
nite total length such that bandlimited fields can be perfectly re-
constructed using the field values on the trajectory. However, in
reality, it is impossible to accurately measure the field values on
an interval or on a convergent sequence of points. The condition
(C2) ensures that the path density metric does indeed capture the
total length that needs to be traversed by a single moving sensor
using the trajectories in for sampling. This avoids degenerate
static cases like the situation in which every trajectory corre-
sponds to a single point in a sampling lattice for the field . Such
a degenerate trajectory set has path density equal to zero, but it
is not possible to visit all of these points by using a single sensor.
In fact, we know from Nyquist sampling theory that if we had

sensors available for sampling spherical regions of ra-
dius , it may be possible to sample bandlimited fields without
any movement at all.
In a practical deployment, it is not possible to take measure-

ments of the field at all points along a continuous path because

1For example, lattices in are uniformly discrete, but a sequence in
converging to a point in is not.

Fig. 3. Illustration of the result of Lemma 2.1 for fields in . The vector
represents the velocity vector in the spatial domain and and represent the
limits of the spectrum of in the frequency domain.

a continuous path has an infinite number of points. However, if
the sensor moving along a trajectory is exposed to a bandlim-
ited function of time, it is possible to reconstruct the entire field
along its path from uniformly spaced samples. This motivates
the following additional desirable condition (K1) of a trajectory
set .

(K1) For any field , the 1-D signal is
bandlimited2 for all .

The following lemma shows that trajectory sets composed of
straight lines satisfy condition (K1).

Lemma 2.1: For let denote a
straight line trajectory parameterized by . Then, for ,
the function is bandlimited to the set where

We do not prove this lemma since it follows easily from ele-
mentary properties of the Fourier transform (see, e.g., [23]). The
limits of the spectral support and are illustrated in Fig. 3. Be-
cause of this desirable bandlimitedness property of for
straight line trajectories, almost all the trajectory sets that we
study in this paper are collections of straight line trajectories.

B. Sampling Trajectories for

We now present some simple examples of trajectory sets on
and compute their path densities. We discuss conditions re-

quired to ensure that these trajectory sets are Nyquist trajectory
sets for specific choices of . These results can be in-
terpreted as a generalization of known results on conditions on
sampling lattices [19] and unions of sampling lattices [24] for
perfect reconstruction of bandlimited fields.
1) Uniform Set: The most natural choice of a trajectory set

in is a collection of equispaced straight line trajectories of
the form

(7)

where , and are fixed vectors in with de-
noting the unit vector orthogonal to . These trajectories are
lines oriented parallel to and are spaced units apart. We
refer to such a set of equispaced parallel line trajectories as uni-
form sets in . Uniform sets form a periodic configuration of
straight lines and hence can be interpreted as a natural general-
ization of sampling lattices to sampling trajectory sets. It is also

2i.e., has compact support in the Fourier domain.
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Fig. 4. Three choices of sampling trajectory sets for : uniform sets, union of
uniform sets, and concentric equispaced circular trajectories. (a) Uniform set.
(b) Union of uniform sets. (c) Concentric circles.

immediate from Lemma 2.1 that uniform sets satisfy the desir-
able condition (K1).
As an example, let be a uniform set parallel to the x-axis

with the spacing between adjacent lines equal to , defined by
where

(8)

Such a uniform set is shown in Fig. 4(a). Suppose is a compact
convex subset of . Let

where we use the convention of (3) for a shifted version of a set.
It can be easily shown via classical sampling theory [19] that
forms a Nyquist trajectory set for if . More precisely,
it can be shown that

(9)

and

(10)

These results, as well as analogous results for general uniform
sets, follow as special cases of Theorem 2.4 which we prove
later in the paper. We now illustrate the main idea behind the
result via a simple visual proof. Since the sensors can measure
the field at high resolutions, we can assume that for any ,
the sensors can measure the field value at points of the form

. In this case, we have access to field samples
, which correspond to samples on a rect-

angular lattice. We know from classical sampling theory that the
sampled impulse stream

has a Fourier spectrum composed of spectral repetitions of
over a reciprocal lattice of points in the Fourier domain

Such a spectrum with repetitions is illustrated in Fig. 5(a) where
is chosen to be a circle. Now, can be made arbitrarily small.

In the limit as , the sampled spectrum satisfies

(11)

Fig. 5. Sampled spectrum of a 2-D field bandlimited to a circle . The support
of the sampled spectrum is composed of periodic repetitions of on the plane.
(a) Sampled spectrum. (b) Limit as .

This means that the spectral repetitions along the -axis no
longer overlap, leading to Fig. 5(b). Now perfect recovery is
possible whenever the spectral repetitions along the -direction
do not overlap, or equivalently when .
It is straightforward to generalize the results of (9) and (10) to

general uniform sets of the form (7) by interpreting these sets as
shifted and rotated versions of the simple example we consid-
ered in (8). The exact conditions can be explicitly obtained from
Theorem 2.4 which is stated in the next section. In the following
lemma, we characterize the path density of a uniform set.

Lemma 2.2: The path density of a uniform set of the form
in (7) is given by

(12)

Furthermore, satisfies condition (C2).

We provide a proof in Section B in the Appendix.
The analyses for uniform sets can be extended to a more

general configuration of straight line trajectories composed of
unions of uniform sets which we discuss next.
2) Union of Uniform Sets: For vectors let

denote the uniform set defined by where

(13)

where is a unit vector in orthogonal to and .
Thus, is a uniform set oriented parallel to with the spacing
between adjacent lines equal to apart. The vector is just
an offset from the origin. We define the vector as

(14)

If we assume that we are given samples of the field at points
of the form , then the sampled spectrum from
these samples corresponds to repetitions of the field spectrum .
As in the example we considered in Section II-B1, if we choose
a small enough value of , then it can be shown via classical sam-
pling results [19] that the sampled spectrum comprises spectral
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repetitions in one direction. We obtain the following spectrum
analogous to (11):

(15)

Now suppose we have such uniform sets
of the form (13). Let denote the union of all the sets

(16)

An example of such a trajectory set for is depicted in
Fig. 4(b). It follows from Lemma 2.2 that the path density of
this trajectory set is given by

(17)

We now seek the conditions under which forms a Nyquist
trajectory set for . Since we now have samples from dif-
ferent uniform sets, it may be possible to reconstruct the field
although the sampled spectrum from each individual uni-
form set given by (15) is aliased. Let denote the set of
points

(18)

The following proposition gives a necessary condition that must
be satisfied by any Nyquist trajectory set for that is a union of
uniform sets represented in the form (16).

Proposition 2.3: Let be a compact convex set. Sup-
pose for some . Then, .

Here, denotes the interior of and denotes the shifted
version of the interior as defined in (3). The aforementioned re-
sult can be proved by constructing a sinusoidal field that van-
ishes on all the lines in , and has a Fourier transform sup-
ported on . We provide a proof in Section C in the
Appendix. The result is equivalent to the fact that every
must satisfy

This necessary condition must be satisfied by all unions of uni-
form sets that form Nyquist trajectory sets for . When
, it can be shown that the tightest necessary condition given by
Proposition 2.3 is also sufficient. Our main result in two dimen-
sions is the following theorem which provides necessary and
sufficient conditions to ensure that forms a Nyquist trajec-
tory set for when .

Theorem 2.4: Let be a compact convex set. Let
denote a union of uniform sets expressed in the form of (16) with

. For , assume that and are noncollinear.
Then, we have

(19)

and

(20)

where is defined in (18).

The result of (20) clearly follows from Proposition 2.3. The
rest of the theorem is proved in Section D in the Appendix.
Theorem 2.4 gives us necessary and sufficient conditions on

unions of uniform sets that admit perfect reconstruction. The
conclusion shows that it is possible to recover the field com-
pletely using readings on multiple uniform sets even when the
measurements on each individual uniform set may be aliased.
The result of Theorem 2.4 can be generalized to higher dimen-
sions where sampling on lines is replaced with sampling on hy-
perplanes. This generalization is contained in Theorem 4.3.
The results of Theorem 2.4 can be interpreted as special cases

of classical sampling on a discrete collection of points. Since
uniform sets are composed of straight line trajectories, we know
from Lemma 2.1 that the restriction of the bandlim-
ited field to any line in the uniform set of (13) is ban-
dlimited. Clearly, for a fixed , the bandwidths of the
are identical for all . Now suppose that the sensors moving
along each of the lines in the set take uniform spatial samples
that are apart. It follows via the bandlimitedness of
that the field values can be recovered ex-
actly from the samples provided
is small enough. It is also clear that the points

lie on a shifted version of a rectangular lattice. Thus,
for , the conditions given in Theorem 2.4 can be in-
terpreted as the condition for perfect recovery under a special
case of sampling on a shifted rectangular lattice, viz., when the
sampling interval along one direction of the lattice is arbitrarily
small. We have already seen this interpretation in Section II-B1
where we illustrated the idea using Fig. 5. We can extend this
interpretation to the case. For , the collection
of sample locations from the two uniform sets, viz., the collec-
tion defines a union of
two shifted rectangular lattices. Hence, the result of Theorem
2.4 can be interpreted [2] as the condition for perfect recovery
under a special case of sampling on a union of two shifted lat-
tices [24], when the sampling intervals are arbitrarily small.
We note that in this example, the samples taken on each indi-
vidual shifted lattice are aliased but given all sets of samples,
perfect recovery is possible. The value of required can be de-
termined from the bandwidth of via Lemma 2.1.
We also note that the result of Theorem 2.4 on unions of

uniform sets is similar in spirit to known works on the related
problem of sampling on the union of shifted versions of a lattice
(see, e.g., [25]–[27]). These works (e.g., [27, Example 2]) pro-
vide necessary and sufficient conditions for sampling on unions
of shifted versions of a lattice, whereas as we argued in the pre-
vious paragraph, our results provide conditions for sampling on
certain unions of shifted nonidentical lattices. Furthermore, as
can be seen from the proof of Theorem 2.4, the condition

is equivalent to the condition for invertibility of a linear system
of equations relating the values of the Fourier transform of
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Fig. 6. Two sets of mutually orthogonal uniform sets and the sampled spectra from samples taken on these trajectories discussed in the first part of Example 2.1.
(a) Orthogonal sets of trajectories. (b) Sampled spectra from the two sets, the first figure corresponds to the horizontal trajectories and the second to the vertical
trajectories. (c) Critical sampling.

the field. This is analogous to the invertibility condition of
Papoulis [27].
We conclude this section on unions of uniform sets with an

example that illustrates the result of Theorem 2.4 for mutually
orthogonal uniform sets under two different choices of .

Example 2.1 (Mutually Orthogonal Uniform Sets): Consider
a trajectory set composed of the union of two uniform sets,
one oriented parallel to the -axis spaced units apart and
another parallel to the -axis spaced units apart.
1) Suppose . Such a set of trajectories is il-
lustrated in Fig. 6(a) with the trajectories parallel to -axis
( -axis) colored in black (red). Suppose is a circular disk
of radius centered at the origin. The sampled spectra cor-
responding to the samples from each set of trajectories is
illustrated in Fig. 6(b). From Theorem 2.4, it follows that
in order to guarantee perfect recovery, we must have that
at least one point of the form must lie outside
. Hence, the maximum value of required to ensure that
the field can be perfectly reconstructed is . From
simple geometry, it can be seen that when , the first
spectral repetitions along the -axis touch the first spectral
repetitions along the -axis as illustrated in Fig. 6(c). Thus,
when , these first repetitions along the two axes
do not overlap and thus every point satisfies either

or and thus the whole
spectrum can be recovered using both sam-
pled spectra.

2) If is not a circular disk, the conditions are a bit more
complex to state. Suppose . Such a set
of trajectories is illustrated in Fig. 7(a) with the trajecto-
ries parallel to -axis ( -axis) colored in black (red). Con-
sider this example from [2, Example 3.2] when has the
shape of a right triangle given by

. The sampled spectra corresponding
to the samples from each set of trajectories is illustrated in
Fig. 7(b). In this case, Theorem 2.4 predicts that perfect re-
construction is possible whenever . When

, the sampled spectra are as shown in Fig. 7(c). We
have partitioned into seven distinct portions, each por-
tion being characterized by the nature of spectral overlap in

the two sampled spectra. We see that the portions of such
as and in Fig. 7(c) are aliased in the spectra from
both the uniform sets. Nevertheless, Theorem 2.4 shows
that whenever , perfect reconstruction is
possible. In this case, it can be verified that the sampled
spectra at the different portions of satisfy the following
relations:

where and denote the sampled spectra from the
trajectories parallel to the -axis and -axis, respectively.
Thus, the original spectrum can be recovered as

where denotes the indicator function of set .
Hence, the original field can be recovered by inverting the
Fourier spectrum.

The two cases considered in Example 2.1 are distinctly
different. In the first case, we saw that the conditions for perfect
recovery is the same as the requirement that every part of
is unaliased in at least one of the two spectra, whereas in

the second case, we saw that perfect recovery is possible even
when some portions of the spectrum are aliased in both sampled
spectra.
3) Concentric Equispaced Circular Trajectories: We now

consider an example of a set of nonaffine trajectories. Suppose
is a circular disk of radius centered at the origin. Let

where denotes a circular trajectory of ra-
dius centered at the origin. Such a trajectory set is shown in
Fig. 4(c). It is easily verified that condition (C2) is satisfied by
this trajectory set. It is also known from [15] that any field ban-
dlimited to is reconstructible from its values on these trajec-
tories whenever . However, this does not verify whether
condition (C1) is satisfied because exact reconstruction of the
field using the scheme in [15] requires the field values at all
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Fig. 7. Two sets of mutually orthogonal uniform sets and the sampled spectra from samples taken on these trajectories discussed in the second part of Example
2.1. (a) Orthogonal sets of trajectories. (b) Sampled spectra from the two sets, the first figure corresponds to the horizontal trajectories and the second to the vertical
trajectories. (c) Critical sampling.

points on the continuous circular curve. Nevertheless, one can
use the Beurling frame theorem to show that indeed condition
(C1) is also satisfied when . In the following, we give a
version of Beurling’s theorem for isotropic bandlimited fields in
, i.e., fields bandlimited to a circular disk in the Fourier trans-

form. This version of the theorem is taken from [18]. The slight
difference from the statement in [18] is due to the different def-
inition of the Fourier transform.
Theorem 2.5 (Beurling’s Covering Theorem): Let

be a circular disk of radius centered at the origin. For any
uniformly discrete set , let

If , then , i.e., any is uniquely
determined from .

We can now use this theorem to verify that condition (C1)
is satisfied by . For small enough, we note that on
each circle , we can choose a discrete collection of equispaced
points such that the arc-length between nearest neighbors on the
circle lies in the interval . Let denote the set of all such
points together with the origin. It follows that is uniformly
discrete and satisfies . Now if , we
can choose small enough to ensure that . Thus, by
Beurling’s covering theorem, it follows that whenever

.

We now compute the path density for this trajectory set.
Clearly, the maximum density of trajectories is at the origin
and hence the supremum in (5) is achieved at the origin. A
disk of radius with center at the origin contains a total of

concentric circles separated by a radial distance of .
This leads to a total trajectory length of whence
we get . Since we require to ensure that

, it follows that the lowest possible path density among
trajectory sets that satisfy this condition is achieved when
meets the upper bound and is given by .
We also note that this trajectory set does not satisfy condition

(K1) in Section II-A because the signals along the circles are not
bandlimited. Nevertheless, these signals have a finite essential
bandwidth as established in Lemma 2.6 in the following.

Lemma 2.6: Let where . Consider a sensor
moving at a constant angular velocity of along a circle of
radius centered at the origin. The time-domain signal

is essentially bandlimited to
where .

We provide a proof in Section E in the Appendix.
We note that the signal in Lemma 2.6 is periodic in

time. Hence, it can be represented by a Fourier series expan-
sion . The coefficients can be
computed explicitly using Bessel functions as

(21)
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Fig. 8. Trajectory set in composed of a union of three interleaved
Archimedean spirals.

where and . The Fourier series coeffi-
cients are negligible for . Thus, the signal
can be approximated as

(22)

Hence, if we havemeasurements of at a finitelymany points
of time, then we can use the approximation of (22) to estimate
the periodic from these samples.
4) Union of Spiral Trajectories: Another type of non-affine

trajectories are spirals. The geometry of spiral trajectories are
particularly convenient to use in MRI applications and hence
they have been studied extensively in the field of MRI (see,
e.g, [18] and [28]). For example, the work [18] contains some
results on perfect reconstruction of bandlimited fields from their
measurements taken on spiral trajectories and unions on spiral
trajectories. Suppose is the circular disk of radius centered at
the origin. Consider a trajectory set composed of interleaved
spirals of the form

(23)

where are Archimedean spirals of the form

for . An example of such a trajectory
set for is shown in Fig. 8. It follows via [18, Example
3] that satisfies condition (C1) whenever . This
result is established by applying Beurling’s covering theorem
(Theorem 2.5) to identify a uniformly discrete set of points on
the spirals satisfying .Moreover, since is composed
of a finite number of continuous trajectories, it follows trivially
that the condition (C2) is satisfied by this trajectory set. Hence,
it follows that whenever .

In the following lemma, we compute the path density of the
trajectory set of interleaved spirals.

Lemma 2.7: The path density of the union of spiral trajecto-
ries of (23) satisfies .

We provide a proof in Section F in the Appendix. Since we
require to ensure that it follows that the
lowest possible path density among trajectory sets that satisfy
this condition is achieved when meets the upper bound and is
given by for all values of .
Before we conclude this section, we mention a caveat on the

use of Beurling’s covering theorem (Theorem 2.5) for identi-
fying optimal spacings in trajectory sets. This theorem gives
only a sufficient condition on sampling sets. Although we used
the conditions for this theorem to find conditions on the trajec-
tory sets of Section II-B3 and Section II-B4 required to ensure
that they are Nyquist trajectory sets, these are only sufficient
conditions. Some trajectory sets that do not satisfy these condi-
tions may also be Nyquist trajectory sets. For instance, in Ex-
ample 2.1 (i) of Section II-B2, we saw that the maximum pos-
sible spacing possible for a union of equispaced orthogonal uni-
form sets is . However, for a union of equispaced
orthogonal uniform sets satisfying the conditions of Beurling’s
theorem, we need to have . This proves the existence
of Nyquist trajectory sets that do not satisfy the conditions of
Beurling’s theorem.

C. Sampling Trajectories for Where

For , we consider only trajectory sets composed
of periodically spaced parallel straight lines analogous to
the uniform sets we considered in Section II-B1 for .
Let denote a basis for such that
is a unit vector orthogonal to the hyperplane spanned by

. In other words, for all .
Consider trajectories of the form

(24)

where . Let denote the
trajectory set

(25)

We refer to such a set of periodically spaced parallel line trajec-
tories as uniform sets3 in . A simple example of a uniform set
in is illustrated in Fig. 9 corresponding to

(26)

We use to denote the collection of all uniform sets
that form Nyquist trajectory sets for . In other words, is the
collection of uniform sets in that satisfy conditions (C1) and
3For an exact generalization of uniform sets in , we have to include an

additive shift of some vector to . We avoid it here to keep the
presentation simple. Generalization of the results to nonzero shifts is trivial.
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Fig. 9. Simple example of a uniform set in .

(C2). The following theorem provides conditions on the vectors
and on the set so that .

Theorem 2.8: Let denote the uniform set defined in (25).
Let denote vectors in satisfying

for and and let denote
a compact convex set with a point of symmetry at the origin.
Then, we have if

(27)

The condition (27) is also necessary in the sense that if there
exists such that , where
denotes the interior of in , then .

We provide a proof in Section G in the Appendix. The crux of
the proof lies in the fact that the sufficient condition to ensure
that satisfies condition (C1) is that for small enough, the
lattice of points defined by
forms a sampling lattice for , i.e., admits perfect reconstruc-
tion [19] of fields in from its samples on the lattice. Since
is convex and symmetric about the origin, this condition is

equivalent to (27). We illustrate the result for a simple example
given in the following.

Example 2.2 (Rectangular Uniform Sets): Consider the uni-
form set shown in Fig. 9 corresponding to the basis vectors of
(26). In this case, it is easily verified that

(28)

Hence, for this trajectory set, the condition in (27) is equivalent
to the condition that the vectors

generate a sampling lattice for the set , the intercept of
with the plane defined as .
It is easily verified from classical sampling results [19] that for
compact convex sets with a point of symmetry, this is exactly
the condition required to ensure that there is no aliasing in the
samples of the field measured at points of the form

for small enough. Now suppose
that is a spherical ball of radius centered at the origin. Then,

is just a circular disk so that the condition to ensure perfect
reconstruction becomes

The path density of uniform sets in is characterized in the
following lemma.

Lemma 2.9: The path density of the trajectory set defined
in (25) is given by

where denotes the determinant of the Gram
matrix defined by .

We provide a proof outline in Section H in the Appendix.
As we did with Theorem 2.4, the results of Theorem 2.8 can

also be interpreted as a special case of sampling on lattices.
Since uniform sets in are composed of straight line trajec-
tories, we know from Lemma 2.1 that the restriction
of the bandlimited field to any line in the uniform set is ban-
dlimited. It follows that the field along each line can be perfectly
reconstructed using uniform sampling along the line, provided
the sampling interval is small enough. If we further assume
that the sampling locations on the lines are aligned with each
other, then the collection of the sampling locations on all lines
can be expressed as where is
small enough. Clearly, this collection of points forms a sampling
lattice in . Thus, the results of Theorem 2.8 can be interpreted
as the conditions for perfect reconstruction under a special case
of sampling on a lattice in when the sampling interval along
one direction is sufficiently small. The value of required can
be determined from the bandwidth of via Lemma 2.1.

III. OPTIMAL SAMPLING TRAJECTORIES

As we argued earlier, the path density of a trajectory set cap-
tures the total distance required to be traveled per unit area for
sampling spatial fields using a mobile sensor moving on the tra-
jectory set. Hence, it is of interest to characterize the optimal
trajectory set for sampling fields that are bandlimited to a given
set . We seek a solution to the following problem:

(29)

In this section, we identify partial solutions to the problem,
solving it exactly for trajectory sets restricted to some subsets
of .
We introduce some notation. Suppose

forms a basis for . A lattice generated by the vectors
is a collection of points in of the form

(30)

For any lattice , it is known that (see, e.g., [29, p. 276]) it is
always possible to define a basis of such
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that is generated by and the basis vector is
a vector with shortest length in , i.e.,

A lattice is called a sampling lattice for a set if every
bandlimited field with Fourier transform supported
on can be recovered perfectly using only the values of the
field at points in the lattice. The sampling density of a sam-
pling lattice of the form (30) is defined as the average number
of points per unit volume in .
In the following lemma, we present a simple result that iden-

tifies the shortest strategy for visiting all points in a sampling
lattice for .

Lemma 3.1: Let be a lattice of points in of the form (30)
such that is a shortest vector of the
lattice. Let denote the set of trajectory sets of the form
(4) that visits all points in :

Then, the minimum in the following problem:

(31)

is achieved by the uniform set given by
where

Proof: Let and be arbitrary. Since sat-
isfies condition (C2), it follows that there is a continuous curve
of length that contains all the lattice points
in . If one follows the curve starting at one of its end-
points, one will eventually visit all points in before
reaching the end of . By construction, the shortest path con-
necting any two points in has a length no less than

. Hence, the total length of should satisfy

where denotes cardinality. This further implies that

By the definition of , it is easily verified that choosing
achieves equality in the aforementioned relation. The desired
result follows.

An immediate corollary of this lemma is the fact that for any
set , a uniform set has the shortest path density among all tra-
jectory sets containing a sampling lattice for . In this section,
we use this lemma together with results from Section II to es-
tablish some optimality properties of uniform sets.

A. Optimality for

It is difficult to solve (29) exactly because it is difficult to
characterize all the trajectory sets that satisfy conditions (C1)
and (C2). However, as we show in the following, it is possible
to identify the optimal trajectory set among those that can be
written as a finite union of uniform sets like in (16). Such tra-
jectory sets have the added advantage that they satisfy the de-
sirable property of (K1), as proved in Lemma 2.1.
Let denote the collection of trajectory sets in
such that is a finite union of uniform sets of the form

where for each , is a uniform set.We need the following def-
initions. For a nonempty compact convex set and any

, let denote the distance between the two parallel
supporting hyperplanes of that are perpendicular to the vector
. We refer to as the breadth of in the direction . The
width of is defined by the relation

(32)

A chord of is defined as the nonempty intersection of with
a line in . For , is defined as the maximum
length of a chord of parallel to . The width can alter-
nately also be interpreted as (see, e.g., [30])

(33)

In the following theorem, we identify the union of uniform
sets with minimal path density such that the trajectory set is a
Nyquist trajectory set for .
Theorem 3.2: For any nonempty compact convex set
, let be the minimizer in (32), and for , let denote

a uniform set given by where

where is orthogonal to . Then, for all
and is optimal in path density as , i.e.,

The width and the optimizer appearing in the state-
ment of the theorem are illustrated in Fig. 10(a). This result is
established by identifying the union of uniform sets with min-
imal path density that satisfies the conditions of Theorem 2.4.
We provide a proof for the theorem in Section I in the Appendix.
This optimality result can be generalized to the case of sampling
-dimensional fields on unions of uniform sets of hyperplanes.
This result is the topic of Theorem 4.4.
In short, Theorem 3.2 establishes the optimality of a uniform

set from all trajectory sets in . In particular, we have identi-
fied a sequence of uniform sets of trajectories indexed by with
path densities converging to the infimum path density from
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Fig. 10. Width of a convex set , and the limiting optimal uniform set
corresponding to critical sampling given by Theorem 3.2. The optimal uniform
set is oriented orthogonal to the direction in which is narrowest. (a) Width

of a convex set and the direction along which is narrowest. The
orientation is the minimizer in (32). (b) Optimal uniform set for corre-
sponding to critical sampling obtained by plugging in the solution of
Theorem 3.2.

as tends to zero. The limiting uniform set corresponding to crit-
ical sampling is obtained by plugging in . This critically
sampled uniform set is a set of parallel lines oriented parallel to
and spaced apart, as shown in Fig. 10(b).
In addition to the optimality property of Theorem 3.2, uni-

form sets satisfy a different optimality property. In particular,
uniform sets are optimal among all trajectory sets in that
contain all the points on a sampling lattice for , as the fol-
lowing result shows.

Proposition 3.3: For any set , let be a
trajectory set that visits all points in a sampling lattice for .
Then, there exists a uniform set such that

.
Proof: Let denote the sampling lattice for that is vis-

ited by . It is immediate from Lemma 3.1 that the minimum
path density in the collection of all trajectory sets that visit is
achieved by a uniform set. This uniform set automatically satis-
fies condition (C1) since it contains a sampling set for . Since
uniform sets further satisfy condition (C2) by lemma 2.2, the
result follows.

We now revisit the original problem (29) that we wished to
solve. The results of Theorem 3.2 and Proposition 3.3 suggest
that the uniform set given in Theorem 3.2 is optimal from a
wide class of trajectory sets. It is tempting to consider the pos-
sibility that this optimality extends to a wider class so that this
uniform set also solves (29). Some further evidence for this is
obtained by identifying the trajectory sets with minimal path
densities among those studied in Sections II-B3 and II-B4. As-
sume that a circular disk of radius . In this case, we know
from Theorem 3.2 that the best path density possible with a
uniform set is . We also see that among all the configura-
tions of equispaced concentric circular trajectories in dis-
cussed in Section II-B3, the lowest path density is given by
achieved when is equal to the upper limit of . A similar
conclusion also holds for the union of interleaved spiral trajec-
tories in Section II-B4. The lowest path density among all con-
figurations of interleaved spiral trajectories in discussed in
Section II-B4 is also equal to achieved when the parameter
is equal to the upper limit of . Thus, the best known path

densities from the examples in Sections II-B3 and II-B4 also
match the best path density of a uniform set when is a circular
disk. However, it is not easy to verify whether this is indeed the
optimal value of (29). We recall that in the classical case of sam-
pling fields in on a uniformly discrete collection of points,
the best known lower bound on the sampling density is obtained
from Landau’s necessary conditions [31] (see also [20, Corol-
lary 1]). It is also known that one can identify a collection of
sampling points with a sampling density that is arbitrarily close
to this bound [32], [33, Corollary 4.5]. It may be possible to ex-
tend Landau’s conditions and the constructions of [32] and [33,
Corollary 4.5] to Nyquist trajectory sets and thus obtain a solu-
tion to the problem (29) of identifying the Nyquist trajectory set
with minimal path density.
In the following section, we generalize some of the aforemen-

tioned optimality results for sampling trajectories in two dimen-
sions to higher dimensions.

B. Optimality for Where

For fields in with , we consider only uniform sets of
the form (25). We also restrict ourselves to fields bandlimited to
sets that are compact convex subsets of and have a point of
symmetry at the origin. As in Section II-C, let denote
the collection of all uniform sets in that form Nyquist trajec-
tory sets for . From Theorem 2.8, we know the necessary and
sufficient conditions on the vectors required for

. We now seek the solution to the problem

(34)

where is a compact convex set with a point of sym-
metry at the origin. In this section, we outline a procedure for
solving the aforementioned problem. In our approach, we relate
this problem to the problem of designing optimal sampling lat-
tices for static sampling in .
Let be a uniform set as defined in (25) where is defined

in (24) with the vectors forming a basis for
with for all . Let denote a
unitary matrix such that , the unit vector along the th
principal axis. Define

(35)

Also let and let be the vector obtained
from by omitting its last component. We have the following
result that relates the problem of designing optimal uniform
sets to the well-studied problem of designing optimal sampling
lattices.

Proposition 3.4: Let be a compact convex set with
a point of symmetry at the origin and let be a uniform set
in as described previously. Let , , and be as defined
previously. Then, the uniform set satisfies if and
only if the lattice of points defined by

forms a sampling lattice for . Furthermore, the
path density is equal to the sampling density of .

Proof: Consider the field defined by
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Clearly, the Fourier transform of is supported on the set

Now the problem of sampling the field along the line is
equivalent to sampling the field along the line defined
by

(36)

where . Hence, if , then it
follows that

and that the path density of is identical to that of . We know
from Theorem 2.8 that the necessary and sufficient condition for

is given by

(37)

where are defined as vectors in that satisfy
for and . Now since , it

follows that for . This fact together with
the fact that is convex and symmetric about the origin implies
that the condition (37) is equivalent to

(38)

where is the vector obtained from by omitting
its last component. By construction, it is clear that

for . Thus, it follows from
[19] that condition (38) is exactly the necessary and sufficient
condition to ensure that forms a sampling lattice for .
We now consider the path density . Since , it is

clear that the collection of points

remains unaltered if we replace by

for . Thus, it follows via Lemma 2.9 that the path
density satisfies

where is a matrix with entries
. Since the sampling density of is equal

to (see [19]) and , the result follows
from Lemma 2.9.

As an immediate consequence of the aforementioned result,
we have the following corollary on optimal sampling trajectory
sets from .

Corollary 3.4.1: Let denote a compact convex set
with a point of symmetry at the origin. Among all possible
choices of unitary matrices, let be the one such that the
set defined as in (35) admits a sampling lattice with min-
imal sampling density in . Also suppose that the vectors

generate an optimal sampling lat-

tice for fields bandlimited to . Let be a uniform set as de-
fined in (25) where the vectors are given by

(39)

Then, and solves4 the optimization problem (34).

The problem of identifying sampling lattices with minimal
density is well studied in the literature (see, e.g., [19], [34], and
[35]). Such results can be used in conjunction with the afore-
mentioned corollary to design optimal uniform sets in . In
the following, we present some examples of for which
we can explicitly solve for the optimal uniform set.

Example 3.1: Suppose is the spherical ball . In
this case, it is easy to see that defined in (35) is a -di-
mensional spherical ball of radius in for all choices of the
unitary matrix . Hence, without loss of optimality, we choose
in Corollary 3.4.1 to be the identity matrix. Now suppose

that generate a sampling lattice
with minimal sampling density for fields in bandlimited
to . Define

Then, it follows via Corollary 3.4.1 that the uniform set de-
fined in (25) with the aforementioned choices for vectors
achieves the minimum in (34). For , the vectors can
be chosen as

This follows from the fact that a sampling grid based on a hexag-
onal lattice is the optimal lattice [19] for 2-D isotropic fields.
This optimal configuration of a uniform set and the associated
hexagonal sampling lattice is illustrated in Fig. 11. The exact
choices of vectors for fields bandlimited to spherical balls in
for all can be obtained from the aforementioned result

using the results on optimal lattices for isotropic fields presented
in [19, Table C.I]. As mentioned in [19], these results are based
on results on closest packing of spheres in .

Example 3.2: Now suppose is a cuboidal region in
given by
where . We are interested in choosing the vec-
tors in a uniform set of the form (25) such that it

4We are being imprecise here to keep the presentation simple. In reality, the
optimal orientation can be found. But the optimal uniform set can only be
approached since an optimal sampling lattice for can only be approached.
To be precise, one would have to consider a series of uniform sets satisfying

akin to the statement of Theorem 3.2. The
mentioned here is the limit of .
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Fig. 11. Optimal configuration of a uniform set for sampling an isotropic field
in . The cross section forms a hexagonal sampling lattice as shown.

solves (34). In this case, it can be seen that the mentioned in
Corollary 3.4.1 admits a lattice with minimal sampling density
when we have . In this case, is the identity matrix and
the set . Therefore, by the
corollary, it follows that (34) is solved by

Such a trajectory set is illustrated in Fig. 9 where and
.

In the following proposition, we present a different optimality
property of uniform sets. We show that uniform sets are optimal
among all sets in that contain all points in a sampling lattice
for . This result is the analog of Proposition 3.3 for .

Proposition 3.5: Let denote a compact convex set
with a point of symmetry at the origin, and be any
trajectory set that visits all points in a sampling lattice for .
Then, there exists a uniform set such that

.
Sketch of Proof: This follows from Lemma 3.1 and Lemma

2.2 via the same argument used in proving Proposition 3.3.

The aforementioned result implies that the optimal uniform
set given by Corollary 3.4.1 is optimal among all trajectory sets
that visit all points in a sampling lattice for . However, we
have not solved (29). Nevertheless, as we mentioned in the case
of trajectories in , it may be possible to extend Landau’s nec-
essary conditions [31] and the results on optimal configurations
of points [32], [33, Corollary 4.5] for sampling in to Nyquist
trajectory sets in and thus obtain a solution to (29).

IV. GENERALIZATION TO HIGHER DIMENSIONAL
SAMPLING MANIFOLDS

In Sections II and III, we studied the problem of sampling
bandlimited fields in on trajectories. Trajectories can be re-
garded as 1-D manifolds in . We now consider a general-
ization of this problem in which we replace trajectories with
general -dimensional manifolds in for . Such a
setting is relevant in applications where the process of mea-
suring a -dimensional field involves the process of recording
the field values on several -dimensional manifolds at a fine
resolution. For example, consider the problem of sampling and
reconstructing a 3-D object from its views along several 2-D

sections. Such a sampling and reconstruction scheme is often
employed in applications like TEM [8] and MRI [9] where one
tries to recreate the 3-D structure of an object after imaging or
scanning the surfaces of several cross sections of the object. In
such cases, it may be of interest to identify the optimal orienta-
tions along which the images should be taken so as to minimize
the total area of the images taken while still being able to recon-
struct the 3-D structure of the object.
We use the following terminology. A -manifold in will

mean a topological manifold embedded in such that every
point in has a neighborhood in that is homeomorphic to
, e.g., a 1-manifold in is a curve in and a 2-manifold

in is a surface in . Generalizing the concept of a trajectory
set, we define a -manifold set in as a countable collection
of -manifolds in of the form where
denotes a -manifold in and . We also define a general-
ization of the path density metric to manifolds. If one assumes
that it is inexpensive to increase the sampling density on the
sampling manifolds, the metric of interest is the total volume of
the all the sampling manifolds per unit spatial volume. We call
this metric the manifold density of the manifold set. For a set
of -manifolds in , the manifold density is defined by

(40)

where represents the total -dimensional volume of
the portions of the manifolds from that are located within
the ball and represents the volume of the ball.
For example, when , the manifold density is exactly the
same as the path density defined in (5), and when and

, the manifold density represents the total area of
the sampling surfaces per unit volume. Similarly, we generalize
Nyquist trajectory sets to manifolds.

Definition 4.4: A -manifold set in of the form
is called a Nyquist -manifold set for if it

satisfies the following conditions:
(M1) Nyquist: There exists a uniformly discrete collection
of points on the manifolds in such that admits per-

fect reconstruction of fields in , i.e.,
and .

When the value of is clear from context, we just say Nyquist
manifold set. We use a special notation for collections of
Nyquist -manifold sets:

Definition 4.2: For , we define as the collection
of all Nyquist -manifold sets for .
The examples of Nyquist trajectory sets in that we con-

sidered in Section II are Nyquist 1-manifold sets, or equiva-
lently, elements of for . We now seek generaliza-
tions of these examples to . The other problem of interest
is a generalization of (29). However, we note that the problem

is in general ill-posed under the current def-
inition of since it is possible to construct a set of mani-
folds with vanishing manifold density, e.g., the degenerate case
in which each manifold is confined to a small neighborhood
of some point in a sampling lattice for . This problem can be
made more meaningful if further restrictions are placed on the
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elements of by imposing a condition analogous to condi-
tion (C2) in the definition of in Section II-A. However, we
do not consider such a definition in this paper to keep the pre-
sentation simple. Instead, restricting ourselves to hyperplanes,
we establish a generalization of Theorem 3.2 for sets of hyper-
planes, i.e., affine manifolds of dimension .
For some with , let denote the hyperplane

. Generalizing uniform sets of
straight line trajectories, we define a uniform hyperplane set in
to be a collection of equispaced parallel hyperplanes of the

form where

is a shifted version5 of the hyperplane . Thus, is a collection
of hyperplanes parallel to located at intervals of units. The
manifold density of the uniform hyperplane set is given in the
following result.

Lemma 4.1: The manifold density of the uniform hyperplane
set defined previously is given by

where is the spacing between adjacent parallel hyperplanes.
Sketch of Proof: This lemma can be proved in exactly the

same way as Lemma 2.2 by considering -dimensional rect-
angular regions located within a -dimensional spherical ball.
We skip the details.

We first obtain generalizations of Proposition 2.3 and The-
orem 2.4 to unions of uniform hyperplane sets. Given finite sets
of vectors , unit vectors , and scalars ,
let denote the uniform hyperplane set

(41)

where
(42)

represents a shifted version of hyperplane
. The union of the uniform hyperplane sets
is defined as

(43)

We are interested in finding the conditions on so that
. Since we assume that the field can be sampled at a fine

resolution on each of the sampling manifolds , we can con-
struct a sufficiently fine lattice in composed of points from
such that every point on is arbitrarily close to some point

from the lattice. For such a lattice, it follows via classical sam-
pling theory [19] that the spectral repetitions in the sampled
spectrum obtained from the samples taken on such a lattice are
spaced arbitrarily far apart in all directions except one. In this

5We avoid using the notational convention of (3) here which we reserve for
sets in the frequency space.

case, if is a compact set, the sampled spectrum from observa-
tions on satisfies

(44)

where . This is analog to (15) and is derived explic-
itly in Lemma A.4 in Section K in the Appendix.
Let denote the set of points

Then, we have the following results that generalize Proposition
2.3 and Theorem 2.4. The following proposition gives a neces-
sary condition that must be satisfied by any union of uniform
hyperplane sets that forms a Nyquist manifold set for .

Proposition 4.2: Let be a compact convex set and let
denote a union of uniform hyperplane sets of the form (43).

Suppose for some . Then, .

As in the case of Proposition 2.3, the aforementioned propo-
sition can be proved by constructing a sinusoidal field that van-
ishes on all the hyperplanes in , and has a Fourier transform
supported on . We provide a proof in Section J in
the Appendix. In other words, this proposition implies that every

must necessarily satisfy

This necessary condition must be satisfied by all uniform hyper-
plane sets that form Nyquist manifold sets for . When the
vectors are linearly independent (which automatically forces
the constraint ), it can be shown that the tightest neces-
sary condition given by Proposition 4.2 is also sufficient. In that
scenario, the following theorem provides necessary and suffi-
cient conditions to ensure that forms a Nyquist manifold set
for .
Theorem 4.3: Let be a compact convex set. Let de-

note the union of uniform hyperplane sets defined in (43). Sup-
pose that the vectors are linearly independent.
Then, we have the following generalization of Theorem 2.4:

(45)

and moreover

(46)

We provide a proof in Section K in the Appendix. The proof
of the first result (45) is very similar to that of the analogous
result (19) for . We also note that the second result (46) is
a restatement of Proposition 4.2. As we saw in the discussion
following Theorem 2.4, these results can also be interpreted as
the conditions for sampling on a union of shifted lattices [24]
under special case in which each of the lattices is finely sampled
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Fig. 12. Three configurations of sampling on planes discussed in Example 4.1. (a) Uniform set. (b) Two orthogonal uniform sets. (c) Three orthogonal uniform sets.

in all directions except one.We do not repeat the discussion here
since the argument is very similar to that for uniform sets in .
In the following, we illustrate the theorem using a simple ex-

ample of sampling a field in . In such a case, the hyperplanes
in are just planes.

Example 4.1: Suppose is a spherical ball of radius
centered at the origin. For let ,

, and . We consider three
examples of unions of uniform hyperplane sets.
1) Uniform set of planes: Consider a uniform set of planes
parallel to the plane spaced at intervals of units
given by where

Such a configuration is illustrated in Fig. 12(a). In this case,
we have spectral repetitions along axis. Hence, it fol-
lows from Theorem 4.3 that the maximum value of to
ensure that is . It is easily verified via
elementary geometry that is the condition to en-
sure that the intersection of two spheres

It follows that this is exactly the condition to ensure that
there is no aliasing in (44).

2) Union of two orthogonal uniform sets of planes: Consider
a union of two uniform sets of planes one parallel to the
plane spaced at intervals of units and another parallel
to the plane spaced at intervals of units given by

where where

Such a configuration is illustrated in Fig. 12(b). In this
case, we obtain spectral repetitions along the axis from
and along axis from . Hence, it follows from

Theorem 4.3 that the maximum value of to ensure
that is . It is easily verified that

is the condition to ensure that the intersection of
three spheres

In other words, for each , there is at least one set
among and that does not contain . It fol-
lows via (44) that this is exactly the condition required to
ensure that for every , there is at least one
such that the sampled spectrum from the samples
on matches the true spectrum .

3) Union of three mutually orthogonal uniform sets of planes:
Consider a union of three uniform sets of planes one par-
allel to the plane, another parallel to the plane, and a
third parallel to the plane, with each spaced at intervals
of units given by where
where

Such a configuration is illustrated in Fig. 12(c). In this case,
we obtain spectral repetitions along the axis from ,
along axis from , and along from . Hence, it
follows from the theorem that the maximum value of
to ensure that is . It is easily verified
that is the condition to ensure that the intersec-
tion of four spheres

In other words, for each , there is at least one set
among , , and that does not con-
tain . It follows via (44) that this is exactly the condi-
tion required to ensure that for every , there is at
least one such that the sampled spectrum

, the true spectrum.

We now present a generalization of the optimality result of
Theorem 3.2. We denote by the collection of manifold sets
in that are unions of uniform hyperplane sets. We have
the following optimality result for a uniform hyperplane set.
Theorem 4.4: For any nonempty compact convex set
, let be the minimizer in (32), and for , let denote

a uniform hyperplane set given by where
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with . Then, for all
and is optimal in manifold density as , i.e.,

This result is established by identifying the union of uniform
hyperplane sets with minimal manifold density that satisfies the
conditions of Theorem 4.3. We provide a proof in Section L in
the Appendix. In short, Theorem 4.4 establishes the optimality
of a uniform set from all trajectory sets in . In particular,
we have identified a sequence of uniform sets of hyperplanes in-
dexed by with manifold densities converging to the infimum
manifold density from as tends to zero. The limiting uni-
form set corresponding to critical sampling is obtained by plug-
ging in . This critically sampled uniform hyperplane set
is a set of parallel hyperplanes oriented parallel to and spaced

apart.
For fields in , this result implies that for sampling a 3-D

field, it is more efficient to sample along one set of equispaced
parallel planes rather than along several different sets of equis-
paced parallel planes. In particular, in Example 4.1, this result
implies that the first configuration of planes has a lower mani-
fold density than the other two examples. This conclusion can
be verified by calculating the optimal manifold densities in the
three cases using Lemma 4.1. The minimum manifold densities
in the first, second, and third cases are, respectively, , ,

and .

V. RECONSTRUCTION SCHEMES

We now consider schemes for reconstructing bandlimited
fields using measurements of the field taken along the various
sampling trajectories and manifolds proposed previously. The
reconstruction schemes we propose can be broadly classified
into two types. For trajectory sets and manifold sets composed
of affine sets such as lines and hyperplanes, we use results
from sampling on lattices and unions of lattices. For nonaffine
trajectories and manifolds, we use schemes for nonuniform
sampling based on the Beurling frame theorem [18].
We first consider sampling trajectories. We know from

Lemma 2.1 that uniform sets of the form (7) for fields in
and (25) for fields in satisfy condition (K1). Hence, the field
values at all points on these straight line trajectories can be
reconstructed from samples taken at uniform spatial intervals.
The maximum spacing allowed between adjacent samples on
the lines can be calculated from Lemma 2.1. Suppose that the
sensors on each of the parallel lines take samples at uniform
intervals and that the sample locations on the various parallel
lines are aligned with each other. In such a case, the collection
of all samples obtained on all these lines effectively corresponds
to a collection of samples of the field taken over a periodic
lattice of points. Hence, for uniform sets of trajectories, any
reconstruction algorithm used for reconstructing bandlimited
fields on lattices is sufficient (see, e.g., [19]). For unions of uni-
form sets like in (16), the resulting set of points forms a union
of sampling lattices. In this case, reconstruction schemes for
sampling on unions of lattices are applicable (see, e.g., [24]).

Alternatively, more general schemes for nonuniform sampling
such as the projection on convex sets (POCS) algorithm [36]
can be used.
Reconstruction schemes for the circular trajectories consid-

ered in Section II-B3 are provided in [14] and [15]. However,
since these trajectory sets do not satisfy condition (K1), these re-
construction schemes require the exact field values at all points
on the circular trajectories. For an approximate reconstruction
from samples taken by sensors moving at constant angular ve-
locity, one can use the approximation provided in (22) in con-
junction with the reconstruction scheme of [15]. In addition,
if one is interested in reconstructing the field accurately only
over a finite number of lines through the origin, then it is suf-
ficient to sample the field at all points of intersection between
these lines and the circles and use the reconstruction scheme of
[15]. Alternatively, as we showed in Section II-B3, it is possible
to reconstruct the field from a uniformly discrete collection of
points on the concentric circles chosen to satisfy the conditions
of Beurling’s covering theorem. The reconstruction algorithm is
based on a frame analysis and is described in [18]. The same re-
construction algorithm is also applicable for the union of spiral
trajectories of Section II-B4. Similarly, even for arbitrary non-
affine trajectories like the one shown in Fig. 1(b) it is possible
to identify a set of sampling points and a corresponding exact
reconstruction scheme via the Beurling theorem.
Now consider the case of sampling on uniform hyperplane

sets. We can make an argument analogous to that of sampling
on uniform sets of trajectories. The restriction of a bandlimited
field to the hyperplane is also bandlimited. Like in (42), any
hyperplane in can be expressed in the form

for some vectors . Now if we let denote a
matrix with linearly independent columns that are also

orthogonal to , then the hyperplane can be expressed as
. In the following lemma, we identify

the bandwidth of the field restricted to .

Lemma 5.1: Let denote a field bandlimited
to some set . Consider any hyperplane ex-
pressed in the form where is a

matrix. Then, the restricted field defined by

is bandlimited to .
Proof: Using and to denote the Fourier transforms of

and , respectively, we have

whence
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The conclusion of the aforementioned lemma shows that the
restriction of a bandlimited field to a hyperplane is also bandlim-
ited. Hence, the field values on all points on the hyperplane can
be reconstructed exactly using only the field values measured
on a sufficiently fine lattice of points on the hyperplane. Thus, a
sampling scheme using a uniform hyperplane set of the form in
(41) can be practically implemented by using measurements on
a -dimensional lattice of points for each of the hyperplanes.
If the sampling lattices on each parallel hyperplane are aligned
with each other, then the collection of all sampling points from
all the hyperplanes forms a lattice in . Thus, reconstruction
schemes for reconstructing bandlimited fields on lattices can be
used in these cases (see, e.g., [19] and [36]). Similarly, if we con-
sider sampling manifold sets like in (43) composed of unions of
uniform hyperplane sets, reconstruction schemes for sampling
on unions of lattices are applicable (see, e.g., [24]). Alterna-
tively, the POCS algorithm [36] can also be used for nonuni-
form sampling.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the problem of sampling
bandlimited fields in on trajectories and other lower di-
mensional manifolds. We have presented various examples of
Nyquist trajectory sets and Nyquist manifold sets that admit
perfect reconstruction of bandlimited fields. We obtained
necessary and sufficient conditions on a union of uniform
hyperplane sets to be able to reconstruct bandlimited fields.
We also introduced the path density and manifold density
metrics and illustrated some optimality properties of select
trajectory sets and manifold sets in terms of these metrics. In
particular, we established the fact that a uniform hyperplane
set achieves the minimum manifold density among unions of
uniform hyperplane sets that admit perfect reconstruction of
bandlimited fields. Some of our main results are summarized
in Table I. Besides these results, we also have Propositions 3.3
and 3.5 which show that uniform sets in and are optimal
from among all Nyquist trajectory sets that visit all points in a
sampling lattice for a given . In addition, we have considered
nonaffine trajectories such as concentric circles and interleaved
spirals and discussed some known results and some new results
on sufficient conditions for perfect reconstruction.
This paper opens numerous avenues for future work in terms

of extensions and generalizations. We have not completely
solved the general problem that we posed in (29) which seeks
the trajectory set in with minimal path density. The best
results we have so far are Theorem 3.2, Corollary 3.4.1, and
Proposition 3.3 which establish different suboptimality proper-
ties of uniform sets. We also made the interesting observation
that for isotropic fields bandlimited to a circular disk of ra-
dius in , the minimum path density for uniform sets in
matches the minimum path density for the sets of concentric
circles that we considered as well as the minimum path density
for the set of interleaved spirals we considered. This minimum
value is given by . It remains to be seen whether this can
be bettered by employing some other trajectory sets, perhaps
involving a nonuniform collection of sampling trajectories.

As mentioned earlier, a potential approach would be to try to
generalize Landau’s lower bound on the minimum sampling
density required for sampling bandlimited fields on points
[31] (see also [20, Corollary 1]) to analogous bounds on the
minimum path density and minimum manifold density required
for sampling on trajectories and manifolds. It may then be
possible to extend known results on sampling configurations
with minimal sampling density [32], [33, Corollary 4.5] to
Nyquist trajectory sets to solve (29). Similar extensions to the
problem of designing manifolds with minimal manifold density
are also of interest. However, before proceeding, we need to
first generalize condition (C2) to manifolds in such a way that
the class of allowed sampling manifolds can be restricted to a
meaningful set that does not admit trivial solutions composed
of degenerate manifolds.
Many results in this paper can potentially be extended to more

general settings. For instance, most of our results are under the
assumption that the field is bandlimited to a convex subset of .
Ideas from the proofs of these results can be used to extend these
results to more general classes of fields, e.g., bandpass fields
bandlimited to nonconvex regions, and nonbandlimited fields
that form shift-invariant spaces. The results on sampling on cir-
cles and spirals in can be extended to analogous results on
sampling on concentric spherical shells, concentric cylindrical
shells, and concentric helixes in for . The Beurling
theorem can be applied to design sampling and reconstruction
schemes for such nonaffine manifolds.
An important practical aspect that we have ignored in this

work is ambient noise which affects the measurement process.
In the presence of noise, perfect reconstruction is not possible.
In such a case, it would be of interest to study the tradeoff be-
tween path (manifold) density and SNR in the reconstructed
field and to identify optimal sampling trajectories (manifolds)
that optimizes the tradeoff at a given noise level. This tradeoff
is also relevant in sampling nonbandlimited parametric fields
such as diffusion fields using mobile sensors.
It is also of interest to extend our analysis to the design of
-space trajectories for MRI. The bandlimited field model we
use in this paper is analogous to using a spatially limited field
model in MRI. However, in MRI literature one typically as-
sumes that in addition to the object being spatially limited, the
object has more energy in the lower frequencies in -space. It
would be interesting to generalize our approach to such a setting
wherein one makes assumptions on the field both in the spatial
and frequency domains.

APPENDIX

A. List of Symbols and Definitions
Field of interest.

Fourier transform of the field of
interest defined in (1).

Euclidean norm of the vector .

Euclidean inner product between
vectors and .
Dirac delta function.



UNNIKRISHNAN AND VETTERLI: SAMPLING HIGH-DIMENSIONAL BANDLIMITED FIELDS ON LOW-DIMENSIONAL MANIFOLDS 2121

Kronecker delta function
evaluated at .

Any set satisfying

.

Collection of fields bandlimited
to a given set as defined in (2).

Collection of all uniformly
discrete sets with the
property that any field
can be reconstructed exactly from
its values on .

Set shifted by the vector as
defined in (3).

Path density of trajectory set
defined in (5).

The -dimensional spherical ball
of radius centered at the origin in
: .

The -dimensional spherical ball
of radius centered at :

.

Collection of all Nyquist
trajectory sets for , i.e.,
trajectory sets that satisfy
conditions (C1) and (C2).

Trajectory set composed of
equispaced parallel lines as
defined in (7).

Trajectory set composed of a
periodic configuration of parallel
lines of the form in (25).

Collection of all uniform sets that
are in .

Collection of all trajectory sets
in that can be expressed as a
finite union of uniform sets.

Width of a convex set as
defined in (32).

Manifold density of a set of
-manifolds as defined in (40).

Collection of all Nyquist
-manifold sets for , i.e.,
manifold sets satisfying condition
(M1).

Collection of all manifold sets
in that can be expressed
as a finite union of uniform
hyperplane sets.

Fig. 13. Computing the path density of a uniform set (a) Total length of interest
(b) Area representing lower bound in (47) (c) Area representing upper bound in
(47).

B. Proof of Lemma 2.2

Let be the straight line trajectory defined in (7). Let
denote the length of the portion of the line located within
the disk . Let denote the range of indices
such that . We are interested in the total length of the
portions of the lines within the disk . This total length
is as illustrated in Fig. 13(a) when the lines are horizontal. Let

. Now we can approximate the area of the disk
above and below by rectangular regions with sides to
obtain the inequality

(47)

The areas representing the lower and upper bounds are illus-
trated, respectively, in Figs. 13(b) and (c). Now

. Hence, we have

and (12) follows by taking limits. It is also immediate that line
segments of length for can all be connected by a
continuous curve by connecting portions at the ends of adjacent
segments via a part of the circumference. The length of such
a curve is no more than and hence satisfies
condition (C2).
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C. Proof of Proposition 2.3

By the given condition, it follows that . Now
consider the field

The Fourier transform of the field is supported on the set
in the Fourier domain. Although the fields are not

in , they can be approximated by functions
defined by

where and denotes the th component
of vector . The Fourier transform of is supported on points
close to . In particular, we have

where is the square
and is the set shifted by following our convention

from (3).
Since can be made arbitrarily small, it follows from the fact

that that there exists an such that is supported
on a subset of the set in the Fourier domain. It can also be ver-
ified that for all , the functions vanish on the straight
line trajectories in . Hence, all fields are bandlimited to
but they cannot be reconstructed uniquely based on their values
on the lines in . Thus, it follows that does not satisfy con-
dition (C1) and hence .

D. Proof of Theorem 2.4

We prove only (19) since result of (20) clearly follows from
Proposition 2.3. We need the following definition and lemma.
The lemma is made more general than what is required for this
proof because the general result is required later.
For any set , we say that is lattice convex if the

following condition holds: if , then
for all such that . For the lattice
, we define the unit cell as the subset of points

where denotes the th component of , and denotes the unit
vector along the th principal axis. A translate of the unit cell is
any shifted version of the expressed in the form

for some .

Lemma A.1: Let be a compact lattice-convex set.
Associated with each element is a value . These
values satisfy the linear relations

(48)

where and and are known, and

Suppose that these equations are consistent, i.e., they admit at
least one solution. Further suppose that does not contain
or its translates.
Then, the values can be uniquely identified

from the relations in (48).
Proof: Since the equations in (48) are known to be consis-

tent, we just have to show that these equations admit a unique
solution. This is equivalent to showing that the homogenous
system obtained from those equations with the set to zero
admits a unique solution. In other words, we need to establish
the following claim:
Claim: Under the conditions of the statement of Lemma A.1,

the equations
(49)

admit a unique solution given by for all .
We prove the claim using induction on . Suppose .

In that case, it is easy to see that if does not contain or its
translates, is a singleton and hence the claim holds trivially.
Now suppose that the claim holds for . Now let

. Suppose does not contain or its translates.
Define

and

where denotes the th component of vector . Let

Now let be defined as

Clearly, by construction, for all , we have
. Since , this implies that

and hence all values are necessarily
equal to 0.
It is easy to see that there is a set such that one

can define a bijection between elements and as

and .
It is also easy to see from this definition that is lattice convex,
because was itself lattice convex. Furthermore, does not
contain or its translates, since does not contain
or its translates. To each element , we associate a value

where . It is clear
by the definition of and that the equations in (49) cor-
responding to and involve only
the values and hence can be rewritten with

replaced by where is the element of corre-
sponding to . Thus, it follows via the induction assumption for

applied to that the values ,
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or equivalently the values , are necessarily
equal to 0. Thus, we have shown that for all .
In order to complete the proof of the claim, we need to show

that for all . This follows by a straight-
forward induction on . Since for ,
we have established that the claim is true for all lattice-convex
sets such that . Now with still fixed
at , assume that the statement of the claim is true for
all lattice-convex sets with . Now
consider any lattice-convex set with .
By the argument presented in the previous paragraph, we have

for all where
as previously. It is straightforward to see that is a lat-
tice-convex subset of with . Fur-
thermore, since we have for all , the vari-
ables can be removed from the linear re-
lations (49) to obtain linear relations involving only the vari-
ables . By the induction assumption on

, it follows that must hold for all
. This completes the induction on and thus

the induction on . Therefore, this completes the proof of the
claim and hence the lemma.

We now proceed to the proof of (19). Suppose

(50)

Let denote the 2-D Fourier transform of any field bandlim-
ited to . Let be arbitrary. Consider the following set:

(51)

where is a matrix with th column given by defined
in (14). It is easy to see via the convexity of that is a lattice-
convex subset of . Furthermore, condition (50) implies that
translates of the unit cell are not contained within . To each
element of , we associate the value . Now
the expressions in (15) for the spectrum of the samples taken
on points on the parallel lines in can be rewritten as

(52)

for all . Evaluating these equations at the
points , we obtain consistent linear equations
in of the form (48) with

. Applying Lemma A.1 to the set defined in (51) we con-
clude that for each , the values of the Fourier trans-
form can be decoded using the values

. Since was ar-
bitrary, this proves that can be recovered for all .
Thus, we have verified that satisfies condition (C1)whenever
(50) holds.
We now verify that satisfies condition (C2). For each ,

it is clear that for any , the portions of the lines in the
uniform set within can be connected by a continuous
path containing just these portions as well as portions of the
circumference of the circle. Thus, the length of such a curve is
just . Hence, such curves corresponding to

each of the can be joined into a single curve with length
. Thus, condition

(C2) in the definition of also holds and hence . This
completes the proof of (19).

E. Proof of Lemma 2.6

We have

where is the Fourier transform of . The Fourier transform of
is given by

(53)

where

(54)

where denotes the Bessel function of order and in (54),
we use and . Using the approxima-
tion that for , we get the desired result
from (53) via the bandlimitedness of .

F. Proof of Lemma 2.7

From the geometry of the problem, it is clear that the
spiral trajectories are densest around the origin and hence the
supremum in the definition of path density in (5) is achieved
at the origin. Now let and

denote the and coordinates
of the trajectory . Then, the total length of the trajectories
located within a disk of radius centered at the origin is given
by

The result follows.

G. Proof of Theorem 2.8

Before we proceed, we need the following lemmas.
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Lemma A.2: For any , let denote a uniform set in
as defined in (25). Then, for any and any ,

there is a continuous curve of length that
contains the portions of the straight line trajectories from that
are located within . Here, is as defined in (6).

Proof: We prove this claim by induction on . For ,
the uniform set comprises a set of parallel lines and the ball

is a circle for any . We assume without loss of
generality that the lines are parallel to the -axis. In this case,
it is easy to visualize a non-self-intersecting continuous curve
that passes through the portions of these lines within .
A possible curve is one that starts with the portion of the line
with the lowest ordinate and then proceeds to portions of lines
with higher ordinates sequentially, using the portion of the cir-
cumference of the circle between adjacent portions as a connec-
tion. Hence, the total length of such a curve would be no more
than the . Hence, the statement of the lemma is
proved for .
Now assume that the statement of the lemma is true for
. Under this assumption, we will now establish the lemma

for . Let and be arbitrary. Consider
a uniform set of the form (25). Let

. Let
. Clearly,

. Now, for each , let denote the intersection of
with and let denote the total length of the line seg-
ments in . Clearly, . By the definition
of , it is clear that the points in lie on a hyperplane in

defined by

Clearly, the intersection is congruent to a ball in
of the form where . Hence, by the induction

hypothesis, it follows that there is a continuous curve that
covers with length . Since the longest
distance between any two points in is no more than ,
any two distinct curves and can be joined into a single
continuous curve of length . Thus, there is a single
continuous curve of length

that covers . Since , we have
.Moreover, by the definition of , it is clear that

. Thus, the total length of the curve is indeed
. Thus, the lemma is proved by the principle of math-

ematical induction.

Lemma A.3: Suppose is a compact convex set with
a point of symmetry at the origin. Then,

for some if and only if .
Proof: The if part of the statement follows via the con-

vexity and symmetry of . Now suppose

If , it follows by symmetry that
. By convexity, therefore,

.

Now we proceed to the proof of Theorem 2.8. We first prove
the sufficiency of (27). Suppose satisfies (27). Lemma A.2
shows that satisfies condition (C2). Now let us consider con-
dition (C1). Since the field can be measured at all points on the
lines in , it follows from the structure of in (25) that we can
sample the field at points of the form

(55)

where is arbitrary. The points in (55) correspond to
a lattice with finite density in generated by the vectors

where , and
. It follows from [19] that the Fourier transform of the

sampled field, sampled at points on the lattice (55), is made up
of repetitions of the Fourier transform on the reciprocal lattice
of points of the form generated by the
vectors chosen to satisfy

(56)

where denotes the Kronecker delta function. Clearly, the first
vectors defined previously are exactly as defined

in the statement of the theorem. Now since and hence
can be made arbitrarily small, it follows that can be made
arbitrarily large. Hence, for compact sets , the spectral repeti-
tions in the direction can be ignored and hence perfect recon-
struction is guaranteed provided spectral repetitions at the points

do not overlap. Or equivalently

(57)

Thus, it follows via Lemma A.3 that under the assumptions of
Theorem 2.8, we have provided

(58)

Now let us consider the necessary condition. Suppose
such that . Consider the field

defined by

where denotes the unit vector along the th principal axis. The
Fourier transform of is supported within a cubic box of width
centered at the points .

By the condition on , it follows that there exists some
small enough such that . Now, from the condition
on given in the statement of the theorem, it follows that

for all and for all where
is as defined in (24). Hence, cannot be recovered from its
samples on since it is not distinguishable from the field

that is identically 0—i.e., for all .
Thus, .
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H. Outline of Proof of Lemma 2.9

Lemma 2.9 can be proved using the same approach as in the
proof of Lemma 2.2. Just as we approximated a circle with rect-
angles in the proof of Lemma 2.2, we will now approximate a
-spherical ball with parallelotopes. As earlier, let denote
a -dimensional spherical ball of radius centered at .
For , let denote the coefficients in the basis expan-
sion . Now for , define

Let

with as defined in (24). For each
, let denote the length of the line segment repre-

senting the intersection of the line with . We then have

Now we can approximate with the parallelotope generated
by the vectors so that

. In fact, it can be shown that

Now and hence the result follows.

I. Proof of Theorem 3.2

From Theorem 2.4, it easily follows that . Suppose
is expressed in the form as defined in (13). Then, the

vector defined in (14) corresponding to is given by

and hence by the definition of and by (19), we have
for all . Also from Lemma 2.2, we have

In order to complete the proof, we will establish that for all
, we have . Suppose is expressed

in the form defined in (16). Using the notations and assumptions
of Theorem 2.4, it follows that if , we need

where denotes the interior of set . Together with the
relation (33) satisfied by the width of a convex set, it follows
that there should exist two points in separated by a distance
greater than . This means that

This means that the path density calculated using Lemma 2.2
satisfies

J. Sketch of Proof for Proposition 4.2

The result follows via the exact same steps as those followed
in proving Proposition 2.3 by considering the field

It is easily verified that the field vanishes at points on the hy-
perplanes in for all values of . Hence, cannot be uniquely
identified from its values on . Moreover, for small enough,
the field has a Fourier transform supported on the set . Thus,
does not satisfy condition (M1) and hence .

K. Proof of Theorem 4.3

We only prove (45) since (46) follows directly from Proposi-
tion 4.2.
Let be the manifold set defined in (43) with defined in

(41). Let form an orthonormal set of
vectors spanning the subspace . Suppose that for each we
are given samples on the parallel hyperplanes in at points of
the form . Let
denote the Fourier transform of the following impulse stream
of samples from the th manifold set in (16):

(59)

where represents the Dirac delta function in -dimensions.
We have the following lemma.

Lemma A.4: Let be a compact set. If is small
enough, then the spectrum of the sampled field in (59) can
be expressed in terms of the Fourier transform of the field
as

(60)

where are as defined in the statement of Theorem 4.3.
Proof: As earlier, let form an

orthonormal set of vectors spanning the subspace . Let
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and for . Thus, the sampling points
form a lattice defined by shifted by .
It follows from [19] that the sampled spectrum of the impulse
stream in (59) can be expressed as

(61)

where satisfy . This im-
plies that . Also, making arbitrarily small ensures that

for whence for . Hence,
since is compact, it follows that for small enough, only terms
with for all contribute to the summation in (61)
for . Replacing with leads to (60).

We now proceed to the proof of (45). Suppose

(62)

We have to verify the condition (M1) holds. Let denote the
2-D Fourier transform of any field bandlimited to . Let
be arbitrary. Consider the following set:

(63)

where is a matrix with th column given by the vector
. It is easy to see via the convexity of that is a lat-

tice-convex subset of . Furthermore, condition (62) implies
that translates of the unit cell are not contained within . To
each element of , we associate the value .
Now the conclusion (60) of Lemma A.4 can be restated as

These equations can be evaluated at the points
to obtain consistent linear equations in of

the form (48) with , where
represents the spectrum of the samples taken on points on the

manifolds in . Applying Lemma A.1 to the set defined in
(63), we conclude that for each , the values of the Fourier
transform can be decoded using the
values . Since was
arbitrary, this proves that can be recovered for all ,
thus completing the proof of (45).

L. Proof of Theorem 4.4

From Theorem 4.3, it easily follows that . Suppose
is expressed in the form as defined in (41). Then, the

vector appearing in Theorem 4.3 corresponding to
is given by

and hence by the definition of and by (45), we have
for all . Also from Lemma 4.1, we have

Now consider any expressed in the form of (43).
Using the notations and assumptions of Theorem 4.3, it follows
that if , we need

where denotes the interior of set . Following the same
steps as in the proof of Theorem 3.2, we get .

ACKNOWLEDGMENT

We thank the anonymous reviewers for several helpful sug-
gestions including the connections to Beurling’s covering the-
orem, Bruce Hajek for his insightful comments on a previous
version of this work, and Yue Lu for helpful discussions.

REFERENCES

[1] J. Unnikrishnan and M. Vetterli, “Sampling trajectories for mobile
sensing,” in Proc. 49th Annu. Allerton Conf. Commun., Control,
Comput., Monticello, IL, Sep. 2011, pp. 1230–1237.

[2] J. Unnikrishnan andM. Vetterli, “On sampling a high-dimensional ban-
dlimited field on a union of shifted lattices,” in Proc. IEEE Int. Symp.
Inf. Theory, Jul. 2012, pp. 1468–1472.

[3] R. Marks, Introduction to Shannon Sampling and Interpolation
Theory, ser. Springer Texts in Electrical Engineering Series. New
York: Springer-Verlag, 1991.

[4] R. Marks, Advanced Topics in Shannon Sampling and Interpolation
Theory, ser. Springer Texts in Electrical Engineering Series. New
York: Springer-Verlag, 1993.

[5] P. T. Kehl, “GPS based dynamic monitoring of air pollutants in the
City of Zurich,” Ph.D. dissertation, ETH Zurich, Zurich, Switzerland,
2007.

[6] A. Singh, R. Nowak, and P. Ramanathan, “Active learning for adap-
tive mobile sensing networks,” in Proc. 5th Int. Conf. Inform. Process.
Sens. Netw., 2006, pp. 60–68.

[7] N. Myridis and C. Chamzas, “K-space sampling: A new trajectory and
two reconstruction methods,” in Proc. 4th Sci. Meet. Soc. Magn. Res-
onance, May 3, 1996, vol. 3, p. 1616.

[8] K. M. Harris, E. Perry, J. Bourne, M. Feinberg, L. Ostroff, and J. Hurl-
burt, “Uniform serial sectioning for transmission electronmicroscopy,”
J. Neurosci., vol. 26, no. 47, pp. 12101–12103, Nov. 2006.

[9] M. T. Vlaardingerbroek and J. A. den Boer, Magnetic Resonance
Imaging: Theory and Practice. New York: Springer, 2003.

[10] T. Ajdler, L. Sbaiz, and M. Vetterli, “Dynamic measurement of room
impulse responses using a moving microphone,” J. Acoust. Soc. Amer.,
vol. 122, no. 3, pp. 1636–1645, 2007.

[11] A. Cigada, M. Lurati, F. Ripamonti, and M. Vanali, “Moving micro-
phone arrays to reduce spatial aliasing in the beamforming technique:
Theoretical background and numerical investigation,” J. Acoust. Soc.
Amer., vol. 124, no. 6, pp. 3648–3658, 2008.

[12] J. Unnikrishnan and M. Vetterli, “Sampling and reconstructing spatial
fields using mobile sensors,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Mar. 2012, pp. 3789–3792.

[13] J. Unnikrishnan and M. Vetterli, “Sampling and reconstruction of spa-
tial fields using mobile sensors,” IEEE Trans. Signal Process., Oct.
2012, to be published.

[14] A. Tewfik, B. Levy, and A. Willsky, “Sampling theorems for two-di-
mensional isotropic random fields,” IEEE Trans. Inf. Theory, vol. 34,
no. 5, pp. 1092–1096, Sep. 1988.



UNNIKRISHNAN AND VETTERLI: SAMPLING HIGH-DIMENSIONAL BANDLIMITED FIELDS ON LOW-DIMENSIONAL MANIFOLDS 2127

[15] N. E.Myridis and C. Chamzas, “Sampling on concentric circles,” IEEE
Trans. Med. Imag., vol. 17, no. 2, pp. 294–299, Apr. 1998.

[16] J. J. Benedetto, A. M. Powell, and H.-C Wc, “MRI signal reconstruc-
tion by Fourier frames on interleaving spirals,” in Proc. IEEE Int.
Symp. Biomed. Imag., 2002, pp. 717–720.

[17] J. G. Pipe, “An optimized center-out k-space trajectory for multishot
MRI: Comparison with spiral and projection reconstruction,” Magn.
Reson. Med., vol. 42, no. 4, pp. 714–720, 1999.

[18] J. J. Benedetto and H.-C. Wu, A. L. A. Aldroubi and M. Unser, Eds.,
“Nonuniform sampling and spiral MRI reconstruction,” in Proc. SPIE
Symp. Wavelets Appl. Signal Image Process. VIII, Jun. 2000, vol. 4119,
pp. 130–141.

[19] D. P. Petersen and D. Middleton, “Sampling and reconstruction of
wave-number-limited functions in N-dimensional Euclidean spaces,”
Inf. Control, vol. 5, pp. 279–323, 1962.

[20] K. Gröchenig and H. Razafinjatovo, “On Landau’s necessary density
conditions for sampling and interpolation of band-limited functions,”
J. London Math. Soc., vol. 54, no. 3, pp. 557–565, 1996.

[21] C. R. Giardina, “Band-limited signal extrapolation by truncated Bern-
stein polynomials,” J. Math. Anal. Appl., vol. 104, no. 1, pp. 264–273,
1984.

[22] A. Papoulis, “A new algorithm in spectral analysis and band-limited
extrapolation,” IEEE Trans. Circuits Syst., vol. 22, no. 9, pp. 735–742,
Sep. 1975.

[23] R. Bracewell, The Fourier Transform and Its Applications, 3rd ed.
New York: McGraw-Hill, 1999.

[24] H. Behmard and A. Faridani, “Sampling of bandlimited functions on
unions of shifted lattices,” J. Fourier Anal. Appl., vol. 8, pp. 43–58,
2002.

[25] A. Kohlenberg, “Exact interpolation of band-limited functions,” J.
Appl. Phys., vol. 24, pp. 1432–1436, Dec. 1953.

[26] J. Yen, “On nonuniform sampling of bandwidth-limited signals,” IRE
Trans. Circuit Theory, vol. 3, no. 4, pp. 251–257, 1956.

[27] A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits
Syst., vol. 24, no. 11, pp. 652–654, Nov. 1977.

[28] E. Yudilevich and H. Stark, “Spiral sampling: Theory and an applica-
tion to magnetic resonance imaging,” J. Opt. Soc. Amer. A, vol. 5, no.
4, pp. 542–553, Apr. 1988.

[29] V. V. Vazirani, Approximation Algorithms. New York: Springer-
Verlag, 2004.

[30] F. A. Valentine, Convex Sets. New York: McGraw-Hill, 1964.
[31] H. Landau, “Necessary density conditions for sampling and interpola-

tion of certain entire functions,” Acta Mathematica, vol. 117, no. 1, pp.
37–52, Jul. 1967.

[32] K. F. Cheung, “A multidimensional extension of Papoulis’ general-
ized sampling expansion with the application in minimum density sam-
pling,” in Advanced Topics in Shannon Sampling and Interpolation
Theory. New York: Springer-Verlag, 1993, pp. 85–119.

[33] J. Marzo, “Sampling sequences in spaces of bandlimited functions
in several variables,” Ph.D. dissertation, Universitat de Barcelona,
Barcelona, Spain, 2008.

[34] Y. Lu, M. Do, and R. Laugesen, “A computable Fourier condition gen-
erating alias-free sampling lattices,” IEEE Trans. Signal Process., vol.
57, no. 5, pp. 1768–1782, May 2009.

[35] R. Mersereau, “The processing of hexagonally sampled two-dimen-
sional signals,” Proc. IEEE, vol. 67, no. 6, pp. 930–949, Jun. 1979.

[36] K. Grochenig, “Reconstruction algorithms in irregular sampling,”
Math. Comput., vol. 59, no. 199, pp. 181–194, 1992.

Jayakrishnan Unnikrishnan (S’06–M’10) received the B.Tech. degree
in electrical engineering from the Indian Institute of Technology Madras,
Chennai, in 2005 and the M.S. and Ph.D. degrees in electrical and computer
engineering from the University of Illinois at Urbana-Champaign in 2007 and
2010, respectively.
He is a postdoctoral Researcher at the School of Computer and Communi-

cation Sciences,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. His current research interests include detection and estimation
theory, signal processing, and information theory.
Dr. Unnikrishnan is a recipient of the Vodafone Graduate Fellowship Award

from the University of Illinois at Urbana-Champaign for 2007–2008 and the
E.A. Reid Fellowship Award from the ECE department at the University of Illi-
nois at Urbana-Champaign for 2010–2011.

Martin Vetterli (S’86–M’86–SM’90–F’95) received the Dipl. El.-Ing. degree
from ETH Zurich (ETHZ), Switzerland, in 1981, the MS degree from Stanford
University in 1982, and the Doctoratès Sciences degree from EPF Lausanne
(EPFL), Switzerland, in 1986.
He was a research assistant at Stanford and EPFL, and has worked for

Siemens and AT&T Bell Laboratories. In 1986 he joined Columbia University
in New York, where he was last an Associate Professor of Electrical Engi-
neering and co-director of the Image and Advanced Television Laboratory.
In 1993, he joined the University of California at Berkeley, where he was a
Professor in the Department of Electrical Engineering and Computer Sciences
until 1997, and has held an Adjunct Professor position until June 2010.
Since 1995 he is a Professor of Communication Systems at EPF Lausanne,

Switzerland, where he chaired the Communications Systems Division (1996/
97), and heads the Audiovisual Communications Laboratory. From 2001 to
2004 he directed the National Competence Center in Research on mobile in-
formation and communication systems. He also was a Vice-President at EPFL
from October 2004 to February 2011 in charge, among others, of international
affairs and computing services. He has held visiting positions at ETHZ (1990)
and Stanford (1998). From March 2011 on, he is Dean of the School of Com-
puter and Communication Sciences of EPFL. As of January 2013, he will lead
the Swiss National Science Foundation.
He is a fellow of IEEE, a fellow of ACM, a fellow of EURASIP, and amember

of SIAM. He is on the editorial boards of Applied and Computational Har-
monic Analysis, the Journal of Fourier Analysis and Application, and the IEEE
JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING.
He received the Best Paper Award of EURASIP in 1984, the Research Prize

of the Brown Bovery Corporation (Switzerland) in 1986, the IEEE Signal Pro-
cessing Society’s Senior Paper Awards in 1991, in 1996 and in 2006 (for papers
with D. LeGall, K. Ramchandran, and Marziliano and Blu, respectively). He
won the Swiss National Latsis Prize in 1996, the SPIE Presidential award in
1999, the IEEE Signal Processing Technical Achievement Award in 2001, the
IEEE Signal Processing Society Award in 2010 and is an ISI highly cited re-
searcher in engineering. He was a member of the Swiss Council on Science and
Technology from 2000 to 2003.
He was a plenary speaker at various conferences (e.g., IEEE ICIP, ICASSP,

ISIT) and is the co-author of three books with J. Kovacevic, “Wavelets and
Subband Coding”, 1995, with P. Prandoni “Signal Processing for Communi-
cations”, 2008 and with J. Kovacevic and V.K. Goyal, “Fourier and Wavelet
Signal Processing”, 2012.
He has published about 150 journal papers on a variety of topics in signal/

image processing and communications and holds two dozen patents.
His research interests include sampling, wavelets, multirate signal pro-

cessing, computational complexity, signal processing for communications,
digital image/video processing, joint source/channel coding, signal processing
for sensor networks and inverse problems like acoustic tomography.


