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I. SENSORCAM PROTOTYPE V.1

Our first approach to visual monitoring was the deployment
of mobile phone an integrated camera. It was powered by a car
battery and installed on the unknown glacier since unknown
date. It kept sending one picture of the glacier every hour
during daytime and stopped working after two months due
to power depletion. We consider it as a successful feasibility
study.

Based on the experiences gathered in this first deployment,
we developed Sensorcam, a more flexible camera designed to
be fully autonomous. It includes a Colobri PXA270 embedded
platform, a GSM radio communication module, and a solar
power system as the energy source. The master board runs an
embedded Linux system 2.6.26 and controls all the peripherals.

Fig. 1a shows the Colobri PXA270 board, the GSM
module, and the associated “glue” board. To provide power
supply, we build a solar power system with a battery and a
2.4W solar panel (Fig. 1b). We deployed this solar system at an
Alps mountain for more than six months. Using solar radiation
data collected from the deployed system, we calculate the
average energy supply during the winter period (most adverse
period) from 15th Jan 2011 till 17th Mar 2011. The energy
budget is listed in Table I.

II. IMAGE REGISTRATION

To establish point-wise correspondence between stereo-
view images, epipolar geometry is the standard tool for image
registration [5]. However, it requires known scene structure
in prior, which is usually not feasible. Estimating depth is
one way to retrieve scene structure. However, the state-of-the-
art depth estimation algorithms are not accurate enough for
registration task. As an alternative, we propose a registration
algorithm based on the homography geometry. This algorithm
is used in our works [2] [3] for image registration.

The homography geometry is described by a single 3× 3
matrix, so that any correspondence points x,y of stereo-view
images can be related by a linear transformation1:

x = H · y.

The simplicity of this model greatly reduces the complexity
of model estimation and the transmission overhead. On the
other hand, such a model can be inaccurate because it is
designed for (i) two images taken by a fixed rotating camera
or (ii) stereo-view images with only planar scenes, which
is not the general case. The registration error in the near
field scenery creates a negative effect for the overall coding

1x,y are homogeneous coordinates, see definition at [5].

Fig. 2. Robust registration algorithm of stereo-view images: the last two
steps determine the common imaging area. Cross denotes the original point
tagged by SIFT/SURF and circle denotes the inliers selected by RANSAC.

efficiency. To overcome this, we propose a robust algorithm to
detect a common imaging area that approximately obeys the
homography geometry. This strategy fits our application, since
the planar scenes “far” from the cameras dominates in envi-
ronmental monitoring applications. We focus the distributed
successive refinement on the common imaging area, the rest
of the image have very limited correlation and therefore can
be coded independently.

To estimate the homography model (matrix H) for two
stereo-view images, we need at least 4 non-collinear corre-
spondence point pairs. These correspondence pairs are ob-
tained by extracting feature points using SIFT [6] or SURF [1]
and then establishing the correspondence using the nearest
neighbor search method. To avoid outliers in the correspon-
dence poll we generated, we use RANSAC [4] as a robust
model estimation algorithm to overcome the errors in the
dataset and keep time efficiency at the same time.

To automatically detect the common imaging area, we can
use the fact that the feature points selected by RANSAC tends
to cluster in practice. These points will define the area that
is well registered after homography transformation. Still, this
simple idea may miss some background area (e.g., sky) if the
features of the texture are too weak to be selected. However,
in environmental monitoring applications, the background
usually lays in the upper part of image. Therefore, we can
naturally assume the region above the labeled area is the
background (e.g., the sky), which is also a planar scene.

In sum, Fig. 2 illustrates the entire routine of robust reg-
istration algorithm (Fig. 3 shows sample registration results):

1) Feature points are generated for two stereo-views image
IX and IY, and matched with each other.

2) RANSAC selects the inlier point pairs that gives a robust
estimation of the homography matrix.
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Fig. 1. Sensorcam prototype v.1: (a) Master board and GSM module. (b) Solar power system.
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Fig. 3. Correspondence mapping using homography geometry of stereo-view images from datasets Scene A and Scene B. The registered right view is
overlaid on left view. The yellow frame labels the area that is well registered.

3) The minimal rectangular hull containing all inlier point
pairs is determined, and then extended to the top of the
image. This is the detected common imaging area X,Y .

III. EXPERIMENTAL SETUP OF [3]
To analyze the performance for the proposed algorithm

in [3], we first collect image data-sets using conventional
cameras, and then run the algorithm on the Sensorcam v.1
board to get a approximate energy profiling. Table I lists
some of the parameters related to the experiments. In this
section, we introduce the experimental setup, and also give the
justifications how the simulation represents a practical system.

A. Interleaved sampling
Fig. 4a shows the two cameras deployed on the roof of

a building with the solar power system. Each camera can be
programmed to capture images periodically and store them in
a local SD card. The two deployed cameras are synchronized
to start simultaneously and sample at one-minute interval. By
selecting corresponding images, we can get the datasets as
in the interleaved sampling setup. Moreover, by subsampling
the video stream, we get datasets with different sampling
frequency f .

TABLE I
PARAMETERS USED IN ENERGY PROFILING

Colibri PXA270 [8]
CPU 520MHz
SDRAM 64M
FLASH 32M
Consumption (normal) 800mW
Consumption (sleep) 7mW

long range radio [9]
Consumption (Tx@30dBm) 2860mW
Consumption (Rx) 240mW
Consumption (idle) 14mW
Speed 16Kbps

camera module OV7720 [7]
Resolution 640×480
Consumption (active) 120mW

solar power system @ 2.4W

Battery capacity 135KJ
Battery charge efficiency 70%
Average energy supply (winter) 12.6KJ/day
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Fig. 4. Experimental setup to capture datasets: (a) Two surveillance cameras with solar power system watching Scene B. (b) The setup of two cameras (red
dots) on roof of a building in campus. Scene A and B show the viewpoints of two datasets.

B. Datasets

In order to investigate the algorithm in a more compre-
hensive way, we deploy the cameras to monitor two different
sceneries (see Fig. 4b) with opposite depth structures: Scene A
captures the facade of a building which is a planar scene suit-
able for homography geometry. In contrast, Scene B includes
buildings stretching out to the mountains far away, which has
complex depth structure.

TABLE II
PARAMETERS OF DATASET COLLECTING

dataset sample weather duration frames

Scene A Fig. 3a cloudy 14:00-24:00 594
Scene B Fig. 3b sunny 06:30-16:30 600

The related information of these two datasets are listed
in Table II, and all raw images can be accessed at http://dl.
dropbox.com/u/7084673/papers/multicamera datasets.zip.

C. Overhearing

We calculate if there is enough “idle” time in channel
usage for overhearing. From Table I, the average energy budget
we have per day after canceling out background consumption
during idle/sleep mode is 12.6KJ×0.7−(7+14)mW×24h =
7.0 KJ. For a video with resolution 640×480, assuming we
use the naive Motion JPEG to compress the video, the typical
size of each frame ranges from 20 to 40 KB. The consumption
per frame can be estimated as:

• TX: 40KB/16Kbps × 2860mW = 28.6 ∼ 57.2J.
• Camera: 1s × 120mW = 0.12J.
• CPU (capture/compress image): 2s × 800mW = 1.6J.
• Overhead (GSM startup, etc.): 10s × 1W = 10J.

Therefore, the energy constraint allows a sampling frequency
(sleep at nighttime) at 8 ∼ 14 pic/h. In other words, the
sampling interval of each camera is 250 ∼ 450s. To transmit
an image, it takes 20 ∼ 40KB/16Kbps = 10 ∼ 20s. Thus, it
leaves enough idle time: 20s�250s.

D. Algorithm implementation

We implement all algorithms described (except DIS-
COVER) using C/C++ and run them on the Sensorcam v.1
board. They are based on several open-source libraries, in-
cluding:

1) OpenCV: library of programming functions for real time
computer vision.2

2) x264: library and application for encoding video streams
into the H.264/MPEG-4 AVC format.3

The executable codec of DISCOVER is also available on
http://www.discoverdvc.org/, but not applicable for running on
the Sensorcam v.1 board due to lack of source code.

E. Energy profiling

The most critical factor in evaluating a wireless cam-
era network is the energy consumption. We can retrieve an
approximate energy profiling of each camera by combining
computation and communication consumptions:

1) The algorithms are executed on a Sensorcam v.1 board
based on the datasets collected beforehand. Therefore
the time spent on running the program can be known
accurately, which indicates the energy used for compu-
tation.

2) Once we know the size of codewords generated by the
algorithm, we can calculate the transmission time from
GSM Tx speed, which indicates the energy used for
communication (including passive overhearing).

As we point out in Sec. III-D, DISCOVER is an exception
that cannot be executed on the Sensorcam v.1. To estimate its
computation consumption, we can refer to the relative com-
plexity of DISCOVER to H.2644, and use H.264 consumption
to determine the computation energy of DISCOVER on the
Sensorcam v.1 board.

2See http://opencv.willowgarage.com/wiki/
3See http://www.videolan.org/developers/x264.html
4See http://www.img.lx.it.pt/∼discover/complexity.html

http://dl.dropbox.com/u/7084673/papers/multicamera_datasets.zip
http://dl.dropbox.com/u/7084673/papers/multicamera_datasets.zip
http://www.discoverdvc.org/
http://opencv.willowgarage.com/wiki/
http://www.videolan.org/developers/x264.html
http://www.img.lx.it.pt/~discover/complexity.html


It is also worth mentioning that we only consider the en-
ergy consumption of wireless cameras, and the BS is assumed
to have sufficient power supply. As a consequence, our system
design principle is to minimize the overall energy consumption
of the cameras, ignoring any extra energy consumption at the
BS.
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